xref: /linux/drivers/acpi/bus.c (revision 78f608d7aff05c245bf0aab00ce7273a7d9f04b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
4  *
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  */
7 
8 #define pr_fmt(fmt) "ACPI: " fmt
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/ioport.h>
13 #include <linux/kernel.h>
14 #include <linux/list.h>
15 #include <linux/sched.h>
16 #include <linux/pm.h>
17 #include <linux/device.h>
18 #include <linux/proc_fs.h>
19 #include <linux/acpi.h>
20 #include <linux/slab.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/workqueue.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #ifdef CONFIG_X86
26 #include <asm/mpspec.h>
27 #include <linux/dmi.h>
28 #endif
29 #include <linux/acpi_viot.h>
30 #include <linux/pci.h>
31 #include <acpi/apei.h>
32 #include <linux/suspend.h>
33 #include <linux/prmt.h>
34 
35 #include "internal.h"
36 
37 struct acpi_device *acpi_root;
38 struct proc_dir_entry *acpi_root_dir;
39 EXPORT_SYMBOL(acpi_root_dir);
40 
41 #ifdef CONFIG_X86
42 #ifdef CONFIG_ACPI_CUSTOM_DSDT
43 static inline int set_copy_dsdt(const struct dmi_system_id *id)
44 {
45 	return 0;
46 }
47 #else
48 static int set_copy_dsdt(const struct dmi_system_id *id)
49 {
50 	pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident);
51 	acpi_gbl_copy_dsdt_locally = 1;
52 	return 0;
53 }
54 #endif
55 
56 static const struct dmi_system_id dsdt_dmi_table[] __initconst = {
57 	/*
58 	 * Invoke DSDT corruption work-around on all Toshiba Satellite.
59 	 * https://bugzilla.kernel.org/show_bug.cgi?id=14679
60 	 */
61 	{
62 	 .callback = set_copy_dsdt,
63 	 .ident = "TOSHIBA Satellite",
64 	 .matches = {
65 		DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
66 		DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"),
67 		},
68 	},
69 	{}
70 };
71 #endif
72 
73 /* --------------------------------------------------------------------------
74                                 Device Management
75    -------------------------------------------------------------------------- */
76 
77 acpi_status acpi_bus_get_status_handle(acpi_handle handle,
78 				       unsigned long long *sta)
79 {
80 	acpi_status status;
81 
82 	status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
83 	if (ACPI_SUCCESS(status))
84 		return AE_OK;
85 
86 	if (status == AE_NOT_FOUND) {
87 		*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
88 		       ACPI_STA_DEVICE_UI      | ACPI_STA_DEVICE_FUNCTIONING;
89 		return AE_OK;
90 	}
91 	return status;
92 }
93 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle);
94 
95 int acpi_bus_get_status(struct acpi_device *device)
96 {
97 	acpi_status status;
98 	unsigned long long sta;
99 
100 	if (acpi_device_override_status(device, &sta)) {
101 		acpi_set_device_status(device, sta);
102 		return 0;
103 	}
104 
105 	/* Battery devices must have their deps met before calling _STA */
106 	if (acpi_device_is_battery(device) && device->dep_unmet) {
107 		acpi_set_device_status(device, 0);
108 		return 0;
109 	}
110 
111 	status = acpi_bus_get_status_handle(device->handle, &sta);
112 	if (ACPI_FAILURE(status))
113 		return -ENODEV;
114 
115 	if (!device->status.present && device->status.enabled) {
116 		pr_info(FW_BUG "Device [%s] status [%08x]: not present and enabled\n",
117 			device->pnp.bus_id, (u32)sta);
118 		device->status.enabled = 0;
119 		/*
120 		 * The status is clearly invalid, so clear the functional bit as
121 		 * well to avoid attempting to use the device.
122 		 */
123 		device->status.functional = 0;
124 	}
125 
126 	acpi_set_device_status(device, sta);
127 
128 	if (device->status.functional && !device->status.present) {
129 		pr_debug("Device [%s] status [%08x]: functional but not present\n",
130 			 device->pnp.bus_id, (u32)sta);
131 	}
132 
133 	pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta);
134 	return 0;
135 }
136 EXPORT_SYMBOL(acpi_bus_get_status);
137 
138 void acpi_bus_private_data_handler(acpi_handle handle,
139 				   void *context)
140 {
141 	return;
142 }
143 EXPORT_SYMBOL(acpi_bus_private_data_handler);
144 
145 int acpi_bus_attach_private_data(acpi_handle handle, void *data)
146 {
147 	acpi_status status;
148 
149 	status = acpi_attach_data(handle,
150 			acpi_bus_private_data_handler, data);
151 	if (ACPI_FAILURE(status)) {
152 		acpi_handle_debug(handle, "Error attaching device data\n");
153 		return -ENODEV;
154 	}
155 
156 	return 0;
157 }
158 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data);
159 
160 int acpi_bus_get_private_data(acpi_handle handle, void **data)
161 {
162 	acpi_status status;
163 
164 	if (!data)
165 		return -EINVAL;
166 
167 	status = acpi_get_data(handle, acpi_bus_private_data_handler, data);
168 	if (ACPI_FAILURE(status)) {
169 		acpi_handle_debug(handle, "No context for object\n");
170 		return -ENODEV;
171 	}
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data);
176 
177 void acpi_bus_detach_private_data(acpi_handle handle)
178 {
179 	acpi_detach_data(handle, acpi_bus_private_data_handler);
180 }
181 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data);
182 
183 static void acpi_print_osc_error(acpi_handle handle,
184 				 struct acpi_osc_context *context, char *error)
185 {
186 	int i;
187 
188 	acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error);
189 
190 	pr_debug("_OSC request data:");
191 	for (i = 0; i < context->cap.length; i += sizeof(u32))
192 		pr_debug(" %x", *((u32 *)(context->cap.pointer + i)));
193 
194 	pr_debug("\n");
195 }
196 
197 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context)
198 {
199 	acpi_status status;
200 	struct acpi_object_list input;
201 	union acpi_object in_params[4];
202 	union acpi_object *out_obj;
203 	guid_t guid;
204 	u32 errors;
205 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
206 
207 	if (!context)
208 		return AE_ERROR;
209 	if (guid_parse(context->uuid_str, &guid))
210 		return AE_ERROR;
211 	context->ret.length = ACPI_ALLOCATE_BUFFER;
212 	context->ret.pointer = NULL;
213 
214 	/* Setting up input parameters */
215 	input.count = 4;
216 	input.pointer = in_params;
217 	in_params[0].type 		= ACPI_TYPE_BUFFER;
218 	in_params[0].buffer.length 	= 16;
219 	in_params[0].buffer.pointer	= (u8 *)&guid;
220 	in_params[1].type 		= ACPI_TYPE_INTEGER;
221 	in_params[1].integer.value 	= context->rev;
222 	in_params[2].type 		= ACPI_TYPE_INTEGER;
223 	in_params[2].integer.value	= context->cap.length/sizeof(u32);
224 	in_params[3].type		= ACPI_TYPE_BUFFER;
225 	in_params[3].buffer.length 	= context->cap.length;
226 	in_params[3].buffer.pointer 	= context->cap.pointer;
227 
228 	status = acpi_evaluate_object(handle, "_OSC", &input, &output);
229 	if (ACPI_FAILURE(status))
230 		return status;
231 
232 	if (!output.length)
233 		return AE_NULL_OBJECT;
234 
235 	out_obj = output.pointer;
236 	if (out_obj->type != ACPI_TYPE_BUFFER
237 		|| out_obj->buffer.length != context->cap.length) {
238 		acpi_print_osc_error(handle, context,
239 			"_OSC evaluation returned wrong type");
240 		status = AE_TYPE;
241 		goto out_kfree;
242 	}
243 	/* Need to ignore the bit0 in result code */
244 	errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
245 	if (errors) {
246 		if (errors & OSC_REQUEST_ERROR)
247 			acpi_print_osc_error(handle, context,
248 				"_OSC request failed");
249 		if (errors & OSC_INVALID_UUID_ERROR)
250 			acpi_print_osc_error(handle, context,
251 				"_OSC invalid UUID");
252 		if (errors & OSC_INVALID_REVISION_ERROR)
253 			acpi_print_osc_error(handle, context,
254 				"_OSC invalid revision");
255 		if (errors & OSC_CAPABILITIES_MASK_ERROR) {
256 			if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD]
257 			    & OSC_QUERY_ENABLE)
258 				goto out_success;
259 			status = AE_SUPPORT;
260 			goto out_kfree;
261 		}
262 		status = AE_ERROR;
263 		goto out_kfree;
264 	}
265 out_success:
266 	context->ret.length = out_obj->buffer.length;
267 	context->ret.pointer = kmemdup(out_obj->buffer.pointer,
268 				       context->ret.length, GFP_KERNEL);
269 	if (!context->ret.pointer) {
270 		status =  AE_NO_MEMORY;
271 		goto out_kfree;
272 	}
273 	status =  AE_OK;
274 
275 out_kfree:
276 	kfree(output.pointer);
277 	return status;
278 }
279 EXPORT_SYMBOL(acpi_run_osc);
280 
281 bool osc_sb_apei_support_acked;
282 
283 /*
284  * ACPI 6.0 Section 8.4.4.2 Idle State Coordination
285  * OSPM supports platform coordinated low power idle(LPI) states
286  */
287 bool osc_pc_lpi_support_confirmed;
288 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed);
289 
290 /*
291  * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities':
292  *   Starting with ACPI Specification 6.2, all _CPC registers can be in
293  *   PCC, System Memory, System IO, or Functional Fixed Hardware address
294  *   spaces. OSPM support for this more flexible register space scheme is
295  *   indicated by the “Flexible Address Space for CPPC Registers” _OSC bit.
296  *
297  * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in:
298  * - PCC or Functional Fixed Hardware address space if defined
299  * - SystemMemory address space (NULL register) if not defined
300  */
301 bool osc_cpc_flexible_adr_space_confirmed;
302 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed);
303 
304 /*
305  * ACPI 6.4 Operating System Capabilities for USB.
306  */
307 bool osc_sb_native_usb4_support_confirmed;
308 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed);
309 
310 bool osc_sb_cppc2_support_acked;
311 
312 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48";
313 static void acpi_bus_osc_negotiate_platform_control(void)
314 {
315 	u32 capbuf[2], *capbuf_ret;
316 	struct acpi_osc_context context = {
317 		.uuid_str = sb_uuid_str,
318 		.rev = 1,
319 		.cap.length = 8,
320 		.cap.pointer = capbuf,
321 	};
322 	acpi_handle handle;
323 
324 	capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
325 	capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */
326 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR))
327 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT;
328 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR))
329 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT;
330 	if (IS_ENABLED(CONFIG_ACPI_THERMAL))
331 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FAST_THERMAL_SAMPLING_SUPPORT;
332 
333 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
334 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
335 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_OVER_16_PSTATES_SUPPORT;
336 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GED_SUPPORT;
337 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_IRQ_RESOURCE_SOURCE_SUPPORT;
338 	if (IS_ENABLED(CONFIG_ACPI_PRMT))
339 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT;
340 	if (IS_ENABLED(CONFIG_ACPI_FFH))
341 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT;
342 
343 #ifdef CONFIG_ARM64
344 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
345 #endif
346 #ifdef CONFIG_X86
347 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
348 #endif
349 
350 #ifdef CONFIG_ACPI_CPPC_LIB
351 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
352 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
353 #endif
354 
355 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
356 
357 	if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
358 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
359 
360 	if (IS_ENABLED(CONFIG_USB4))
361 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT;
362 
363 	if (!ghes_disable)
364 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
365 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
366 		return;
367 
368 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
369 		return;
370 
371 	capbuf_ret = context.ret.pointer;
372 	if (context.ret.length <= OSC_SUPPORT_DWORD) {
373 		kfree(context.ret.pointer);
374 		return;
375 	}
376 
377 	/*
378 	 * Now run _OSC again with query flag clear and with the caps
379 	 * supported by both the OS and the platform.
380 	 */
381 	capbuf[OSC_QUERY_DWORD] = 0;
382 	capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD];
383 	kfree(context.ret.pointer);
384 
385 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
386 		return;
387 
388 	capbuf_ret = context.ret.pointer;
389 	if (context.ret.length > OSC_SUPPORT_DWORD) {
390 #ifdef CONFIG_ACPI_CPPC_LIB
391 		osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT;
392 #endif
393 
394 		osc_sb_apei_support_acked =
395 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT;
396 		osc_pc_lpi_support_confirmed =
397 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT;
398 		osc_sb_native_usb4_support_confirmed =
399 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT;
400 		osc_cpc_flexible_adr_space_confirmed =
401 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
402 	}
403 
404 	kfree(context.ret.pointer);
405 }
406 
407 /*
408  * Native control of USB4 capabilities. If any of the tunneling bits is
409  * set it means OS is in control and we use software based connection
410  * manager.
411  */
412 u32 osc_sb_native_usb4_control;
413 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control);
414 
415 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits)
416 {
417 	pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg,
418 	       (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-',
419 	       (bits & OSC_USB_DP_TUNNELING) ? '+' : '-',
420 	       (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-',
421 	       (bits & OSC_USB_XDOMAIN) ? '+' : '-');
422 }
423 
424 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A";
425 static void acpi_bus_osc_negotiate_usb_control(void)
426 {
427 	u32 capbuf[3], *capbuf_ret;
428 	struct acpi_osc_context context = {
429 		.uuid_str = sb_usb_uuid_str,
430 		.rev = 1,
431 		.cap.length = sizeof(capbuf),
432 		.cap.pointer = capbuf,
433 	};
434 	acpi_handle handle;
435 	acpi_status status;
436 	u32 control;
437 
438 	if (!osc_sb_native_usb4_support_confirmed)
439 		return;
440 
441 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
442 		return;
443 
444 	control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING |
445 		  OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN;
446 
447 	/*
448 	 * Run _OSC first with query bit set, trying to get control over
449 	 * all tunneling. The platform can then clear out bits in the
450 	 * control dword that it does not want to grant to the OS.
451 	 */
452 	capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
453 	capbuf[OSC_SUPPORT_DWORD] = 0;
454 	capbuf[OSC_CONTROL_DWORD] = control;
455 
456 	status = acpi_run_osc(handle, &context);
457 	if (ACPI_FAILURE(status))
458 		return;
459 
460 	if (context.ret.length != sizeof(capbuf)) {
461 		pr_info("USB4 _OSC: returned invalid length buffer\n");
462 		goto out_free;
463 	}
464 
465 	/*
466 	 * Run _OSC again now with query bit clear and the control dword
467 	 * matching what the platform granted (which may not have all
468 	 * the control bits set).
469 	 */
470 	capbuf_ret = context.ret.pointer;
471 
472 	capbuf[OSC_QUERY_DWORD] = 0;
473 	capbuf[OSC_CONTROL_DWORD] = capbuf_ret[OSC_CONTROL_DWORD];
474 
475 	kfree(context.ret.pointer);
476 
477 	status = acpi_run_osc(handle, &context);
478 	if (ACPI_FAILURE(status))
479 		return;
480 
481 	if (context.ret.length != sizeof(capbuf)) {
482 		pr_info("USB4 _OSC: returned invalid length buffer\n");
483 		goto out_free;
484 	}
485 
486 	osc_sb_native_usb4_control =
487 		control & acpi_osc_ctx_get_pci_control(&context);
488 
489 	acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control);
490 	acpi_bus_decode_usb_osc("USB4 _OSC: OS controls",
491 				osc_sb_native_usb4_control);
492 
493 out_free:
494 	kfree(context.ret.pointer);
495 }
496 
497 /* --------------------------------------------------------------------------
498                              Notification Handling
499    -------------------------------------------------------------------------- */
500 
501 /**
502  * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler
503  * @handle: Target ACPI object.
504  * @type: Notification type.
505  * @data: Ignored.
506  *
507  * This only handles notifications related to device hotplug.
508  */
509 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data)
510 {
511 	struct acpi_device *adev;
512 
513 	switch (type) {
514 	case ACPI_NOTIFY_BUS_CHECK:
515 		acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n");
516 		break;
517 
518 	case ACPI_NOTIFY_DEVICE_CHECK:
519 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n");
520 		break;
521 
522 	case ACPI_NOTIFY_DEVICE_WAKE:
523 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n");
524 		return;
525 
526 	case ACPI_NOTIFY_EJECT_REQUEST:
527 		acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n");
528 		break;
529 
530 	case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
531 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n");
532 		/* TBD: Exactly what does 'light' mean? */
533 		return;
534 
535 	case ACPI_NOTIFY_FREQUENCY_MISMATCH:
536 		acpi_handle_err(handle, "Device cannot be configured due "
537 				"to a frequency mismatch\n");
538 		return;
539 
540 	case ACPI_NOTIFY_BUS_MODE_MISMATCH:
541 		acpi_handle_err(handle, "Device cannot be configured due "
542 				"to a bus mode mismatch\n");
543 		return;
544 
545 	case ACPI_NOTIFY_POWER_FAULT:
546 		acpi_handle_err(handle, "Device has suffered a power fault\n");
547 		return;
548 
549 	default:
550 		acpi_handle_debug(handle, "Unknown event type 0x%x\n", type);
551 		return;
552 	}
553 
554 	adev = acpi_get_acpi_dev(handle);
555 
556 	if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type)))
557 		return;
558 
559 	acpi_put_acpi_dev(adev);
560 
561 	acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL);
562 }
563 
564 static void acpi_notify_device(acpi_handle handle, u32 event, void *data)
565 {
566 	struct acpi_device *device = data;
567 	struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver);
568 
569 	acpi_drv->ops.notify(device, event);
570 }
571 
572 static int acpi_device_install_notify_handler(struct acpi_device *device,
573 					      struct acpi_driver *acpi_drv)
574 {
575 	u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ?
576 				ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY;
577 	acpi_status status;
578 
579 	status = acpi_install_notify_handler(device->handle, type,
580 					     acpi_notify_device, device);
581 	if (ACPI_FAILURE(status))
582 		return -EINVAL;
583 
584 	return 0;
585 }
586 
587 static void acpi_device_remove_notify_handler(struct acpi_device *device,
588 					      struct acpi_driver *acpi_drv)
589 {
590 	u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ?
591 				ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY;
592 
593 	acpi_remove_notify_handler(device->handle, type,
594 				   acpi_notify_device);
595 
596 	acpi_os_wait_events_complete();
597 }
598 
599 int acpi_dev_install_notify_handler(struct acpi_device *adev,
600 				    u32 handler_type,
601 				    acpi_notify_handler handler, void *context)
602 {
603 	acpi_status status;
604 
605 	status = acpi_install_notify_handler(adev->handle, handler_type,
606 					     handler, context);
607 	if (ACPI_FAILURE(status))
608 		return -ENODEV;
609 
610 	return 0;
611 }
612 EXPORT_SYMBOL_GPL(acpi_dev_install_notify_handler);
613 
614 void acpi_dev_remove_notify_handler(struct acpi_device *adev,
615 				    u32 handler_type,
616 				    acpi_notify_handler handler)
617 {
618 	acpi_remove_notify_handler(adev->handle, handler_type, handler);
619 	acpi_os_wait_events_complete();
620 }
621 EXPORT_SYMBOL_GPL(acpi_dev_remove_notify_handler);
622 
623 /* Handle events targeting \_SB device (at present only graceful shutdown) */
624 
625 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81
626 #define ACPI_SB_INDICATE_INTERVAL	10000
627 
628 static void sb_notify_work(struct work_struct *dummy)
629 {
630 	acpi_handle sb_handle;
631 
632 	orderly_poweroff(true);
633 
634 	/*
635 	 * After initiating graceful shutdown, the ACPI spec requires OSPM
636 	 * to evaluate _OST method once every 10seconds to indicate that
637 	 * the shutdown is in progress
638 	 */
639 	acpi_get_handle(NULL, "\\_SB", &sb_handle);
640 	while (1) {
641 		pr_info("Graceful shutdown in progress.\n");
642 		acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN,
643 				ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL);
644 		msleep(ACPI_SB_INDICATE_INTERVAL);
645 	}
646 }
647 
648 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data)
649 {
650 	static DECLARE_WORK(acpi_sb_work, sb_notify_work);
651 
652 	if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) {
653 		if (!work_busy(&acpi_sb_work))
654 			schedule_work(&acpi_sb_work);
655 	} else {
656 		pr_warn("event %x is not supported by \\_SB device\n", event);
657 	}
658 }
659 
660 static int __init acpi_setup_sb_notify_handler(void)
661 {
662 	acpi_handle sb_handle;
663 
664 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle)))
665 		return -ENXIO;
666 
667 	if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY,
668 						acpi_sb_notify, NULL)))
669 		return -EINVAL;
670 
671 	return 0;
672 }
673 
674 /* --------------------------------------------------------------------------
675                              Device Matching
676    -------------------------------------------------------------------------- */
677 
678 /**
679  * acpi_get_first_physical_node - Get first physical node of an ACPI device
680  * @adev:	ACPI device in question
681  *
682  * Return: First physical node of ACPI device @adev
683  */
684 struct device *acpi_get_first_physical_node(struct acpi_device *adev)
685 {
686 	struct mutex *physical_node_lock = &adev->physical_node_lock;
687 	struct device *phys_dev;
688 
689 	mutex_lock(physical_node_lock);
690 	if (list_empty(&adev->physical_node_list)) {
691 		phys_dev = NULL;
692 	} else {
693 		const struct acpi_device_physical_node *node;
694 
695 		node = list_first_entry(&adev->physical_node_list,
696 					struct acpi_device_physical_node, node);
697 
698 		phys_dev = node->dev;
699 	}
700 	mutex_unlock(physical_node_lock);
701 	return phys_dev;
702 }
703 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node);
704 
705 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev,
706 						      const struct device *dev)
707 {
708 	const struct device *phys_dev = acpi_get_first_physical_node(adev);
709 
710 	return phys_dev && phys_dev == dev ? adev : NULL;
711 }
712 
713 /**
714  * acpi_device_is_first_physical_node - Is given dev first physical node
715  * @adev: ACPI companion device
716  * @dev: Physical device to check
717  *
718  * Function checks if given @dev is the first physical devices attached to
719  * the ACPI companion device. This distinction is needed in some cases
720  * where the same companion device is shared between many physical devices.
721  *
722  * Note that the caller have to provide valid @adev pointer.
723  */
724 bool acpi_device_is_first_physical_node(struct acpi_device *adev,
725 					const struct device *dev)
726 {
727 	return !!acpi_primary_dev_companion(adev, dev);
728 }
729 
730 /*
731  * acpi_companion_match() - Can we match via ACPI companion device
732  * @dev: Device in question
733  *
734  * Check if the given device has an ACPI companion and if that companion has
735  * a valid list of PNP IDs, and if the device is the first (primary) physical
736  * device associated with it.  Return the companion pointer if that's the case
737  * or NULL otherwise.
738  *
739  * If multiple physical devices are attached to a single ACPI companion, we need
740  * to be careful.  The usage scenario for this kind of relationship is that all
741  * of the physical devices in question use resources provided by the ACPI
742  * companion.  A typical case is an MFD device where all the sub-devices share
743  * the parent's ACPI companion.  In such cases we can only allow the primary
744  * (first) physical device to be matched with the help of the companion's PNP
745  * IDs.
746  *
747  * Additional physical devices sharing the ACPI companion can still use
748  * resources available from it but they will be matched normally using functions
749  * provided by their bus types (and analogously for their modalias).
750  */
751 const struct acpi_device *acpi_companion_match(const struct device *dev)
752 {
753 	struct acpi_device *adev;
754 
755 	adev = ACPI_COMPANION(dev);
756 	if (!adev)
757 		return NULL;
758 
759 	if (list_empty(&adev->pnp.ids))
760 		return NULL;
761 
762 	return acpi_primary_dev_companion(adev, dev);
763 }
764 
765 /**
766  * acpi_of_match_device - Match device object using the "compatible" property.
767  * @adev: ACPI device object to match.
768  * @of_match_table: List of device IDs to match against.
769  * @of_id: OF ID if matched
770  *
771  * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of
772  * identifiers and a _DSD object with the "compatible" property, use that
773  * property to match against the given list of identifiers.
774  */
775 static bool acpi_of_match_device(const struct acpi_device *adev,
776 				 const struct of_device_id *of_match_table,
777 				 const struct of_device_id **of_id)
778 {
779 	const union acpi_object *of_compatible, *obj;
780 	int i, nval;
781 
782 	if (!adev)
783 		return false;
784 
785 	of_compatible = adev->data.of_compatible;
786 	if (!of_match_table || !of_compatible)
787 		return false;
788 
789 	if (of_compatible->type == ACPI_TYPE_PACKAGE) {
790 		nval = of_compatible->package.count;
791 		obj = of_compatible->package.elements;
792 	} else { /* Must be ACPI_TYPE_STRING. */
793 		nval = 1;
794 		obj = of_compatible;
795 	}
796 	/* Now we can look for the driver DT compatible strings */
797 	for (i = 0; i < nval; i++, obj++) {
798 		const struct of_device_id *id;
799 
800 		for (id = of_match_table; id->compatible[0]; id++)
801 			if (!strcasecmp(obj->string.pointer, id->compatible)) {
802 				if (of_id)
803 					*of_id = id;
804 				return true;
805 			}
806 	}
807 
808 	return false;
809 }
810 
811 static bool acpi_of_modalias(struct acpi_device *adev,
812 			     char *modalias, size_t len)
813 {
814 	const union acpi_object *of_compatible;
815 	const union acpi_object *obj;
816 	const char *str, *chr;
817 
818 	of_compatible = adev->data.of_compatible;
819 	if (!of_compatible)
820 		return false;
821 
822 	if (of_compatible->type == ACPI_TYPE_PACKAGE)
823 		obj = of_compatible->package.elements;
824 	else /* Must be ACPI_TYPE_STRING. */
825 		obj = of_compatible;
826 
827 	str = obj->string.pointer;
828 	chr = strchr(str, ',');
829 	strscpy(modalias, chr ? chr + 1 : str, len);
830 
831 	return true;
832 }
833 
834 /**
835  * acpi_set_modalias - Set modalias using "compatible" property or supplied ID
836  * @adev:	ACPI device object to match
837  * @default_id:	ID string to use as default if no compatible string found
838  * @modalias:   Pointer to buffer that modalias value will be copied into
839  * @len:	Length of modalias buffer
840  *
841  * This is a counterpart of of_alias_from_compatible() for struct acpi_device
842  * objects. If there is a compatible string for @adev, it will be copied to
843  * @modalias with the vendor prefix stripped; otherwise, @default_id will be
844  * used.
845  */
846 void acpi_set_modalias(struct acpi_device *adev, const char *default_id,
847 		       char *modalias, size_t len)
848 {
849 	if (!acpi_of_modalias(adev, modalias, len))
850 		strscpy(modalias, default_id, len);
851 }
852 EXPORT_SYMBOL_GPL(acpi_set_modalias);
853 
854 static bool __acpi_match_device_cls(const struct acpi_device_id *id,
855 				    struct acpi_hardware_id *hwid)
856 {
857 	int i, msk, byte_shift;
858 	char buf[3];
859 
860 	if (!id->cls)
861 		return false;
862 
863 	/* Apply class-code bitmask, before checking each class-code byte */
864 	for (i = 1; i <= 3; i++) {
865 		byte_shift = 8 * (3 - i);
866 		msk = (id->cls_msk >> byte_shift) & 0xFF;
867 		if (!msk)
868 			continue;
869 
870 		sprintf(buf, "%02x", (id->cls >> byte_shift) & msk);
871 		if (strncmp(buf, &hwid->id[(i - 1) * 2], 2))
872 			return false;
873 	}
874 	return true;
875 }
876 
877 static bool __acpi_match_device(const struct acpi_device *device,
878 				const struct acpi_device_id *acpi_ids,
879 				const struct of_device_id *of_ids,
880 				const struct acpi_device_id **acpi_id,
881 				const struct of_device_id **of_id)
882 {
883 	const struct acpi_device_id *id;
884 	struct acpi_hardware_id *hwid;
885 
886 	/*
887 	 * If the device is not present, it is unnecessary to load device
888 	 * driver for it.
889 	 */
890 	if (!device || !device->status.present)
891 		return false;
892 
893 	list_for_each_entry(hwid, &device->pnp.ids, list) {
894 		/* First, check the ACPI/PNP IDs provided by the caller. */
895 		if (acpi_ids) {
896 			for (id = acpi_ids; id->id[0] || id->cls; id++) {
897 				if (id->id[0] && !strcmp((char *)id->id, hwid->id))
898 					goto out_acpi_match;
899 				if (id->cls && __acpi_match_device_cls(id, hwid))
900 					goto out_acpi_match;
901 			}
902 		}
903 
904 		/*
905 		 * Next, check ACPI_DT_NAMESPACE_HID and try to match the
906 		 * "compatible" property if found.
907 		 */
908 		if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id))
909 			return acpi_of_match_device(device, of_ids, of_id);
910 	}
911 	return false;
912 
913 out_acpi_match:
914 	if (acpi_id)
915 		*acpi_id = id;
916 	return true;
917 }
918 
919 /**
920  * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs
921  * @ids: Array of struct acpi_device_id objects to match against.
922  * @adev: The ACPI device pointer to match.
923  *
924  * Match the ACPI device @adev against a given list of ACPI IDs @ids.
925  *
926  * Return:
927  * a pointer to the first matching ACPI ID on success or %NULL on failure.
928  */
929 const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids,
930 						    const struct acpi_device *adev)
931 {
932 	const struct acpi_device_id *id = NULL;
933 
934 	__acpi_match_device(adev, ids, NULL, &id, NULL);
935 	return id;
936 }
937 EXPORT_SYMBOL_GPL(acpi_match_acpi_device);
938 
939 /**
940  * acpi_match_device - Match a struct device against a given list of ACPI IDs
941  * @ids: Array of struct acpi_device_id object to match against.
942  * @dev: The device structure to match.
943  *
944  * Check if @dev has a valid ACPI handle and if there is a struct acpi_device
945  * object for that handle and use that object to match against a given list of
946  * device IDs.
947  *
948  * Return a pointer to the first matching ID on success or %NULL on failure.
949  */
950 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids,
951 					       const struct device *dev)
952 {
953 	return acpi_match_acpi_device(ids, acpi_companion_match(dev));
954 }
955 EXPORT_SYMBOL_GPL(acpi_match_device);
956 
957 static const void *acpi_of_device_get_match_data(const struct device *dev)
958 {
959 	struct acpi_device *adev = ACPI_COMPANION(dev);
960 	const struct of_device_id *match = NULL;
961 
962 	if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match))
963 		return NULL;
964 
965 	return match->data;
966 }
967 
968 const void *acpi_device_get_match_data(const struct device *dev)
969 {
970 	const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table;
971 	const struct acpi_device_id *match;
972 
973 	if (!acpi_ids)
974 		return acpi_of_device_get_match_data(dev);
975 
976 	match = acpi_match_device(acpi_ids, dev);
977 	if (!match)
978 		return NULL;
979 
980 	return (const void *)match->driver_data;
981 }
982 EXPORT_SYMBOL_GPL(acpi_device_get_match_data);
983 
984 int acpi_match_device_ids(struct acpi_device *device,
985 			  const struct acpi_device_id *ids)
986 {
987 	return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT;
988 }
989 EXPORT_SYMBOL(acpi_match_device_ids);
990 
991 bool acpi_driver_match_device(struct device *dev,
992 			      const struct device_driver *drv)
993 {
994 	const struct acpi_device_id *acpi_ids = drv->acpi_match_table;
995 	const struct of_device_id *of_ids = drv->of_match_table;
996 
997 	if (!acpi_ids)
998 		return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL);
999 
1000 	return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL);
1001 }
1002 EXPORT_SYMBOL_GPL(acpi_driver_match_device);
1003 
1004 /* --------------------------------------------------------------------------
1005                               ACPI Driver Management
1006    -------------------------------------------------------------------------- */
1007 
1008 /**
1009  * __acpi_bus_register_driver - register a driver with the ACPI bus
1010  * @driver: driver being registered
1011  * @owner: owning module/driver
1012  *
1013  * Registers a driver with the ACPI bus.  Searches the namespace for all
1014  * devices that match the driver's criteria and binds.  Returns zero for
1015  * success or a negative error status for failure.
1016  */
1017 int __acpi_bus_register_driver(struct acpi_driver *driver, struct module *owner)
1018 {
1019 	if (acpi_disabled)
1020 		return -ENODEV;
1021 	driver->drv.name = driver->name;
1022 	driver->drv.bus = &acpi_bus_type;
1023 	driver->drv.owner = owner;
1024 
1025 	return driver_register(&driver->drv);
1026 }
1027 
1028 EXPORT_SYMBOL(__acpi_bus_register_driver);
1029 
1030 /**
1031  * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus
1032  * @driver: driver to unregister
1033  *
1034  * Unregisters a driver with the ACPI bus.  Searches the namespace for all
1035  * devices that match the driver's criteria and unbinds.
1036  */
1037 void acpi_bus_unregister_driver(struct acpi_driver *driver)
1038 {
1039 	driver_unregister(&driver->drv);
1040 }
1041 
1042 EXPORT_SYMBOL(acpi_bus_unregister_driver);
1043 
1044 /* --------------------------------------------------------------------------
1045                               ACPI Bus operations
1046    -------------------------------------------------------------------------- */
1047 
1048 static int acpi_bus_match(struct device *dev, struct device_driver *drv)
1049 {
1050 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1051 	struct acpi_driver *acpi_drv = to_acpi_driver(drv);
1052 
1053 	return acpi_dev->flags.match_driver
1054 		&& !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
1055 }
1056 
1057 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env)
1058 {
1059 	return __acpi_device_uevent_modalias(to_acpi_device(dev), env);
1060 }
1061 
1062 static int acpi_device_probe(struct device *dev)
1063 {
1064 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1065 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1066 	int ret;
1067 
1068 	if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev))
1069 		return -EINVAL;
1070 
1071 	if (!acpi_drv->ops.add)
1072 		return -ENOSYS;
1073 
1074 	ret = acpi_drv->ops.add(acpi_dev);
1075 	if (ret) {
1076 		acpi_dev->driver_data = NULL;
1077 		return ret;
1078 	}
1079 
1080 	pr_debug("Driver [%s] successfully bound to device [%s]\n",
1081 		 acpi_drv->name, acpi_dev->pnp.bus_id);
1082 
1083 	if (acpi_drv->ops.notify) {
1084 		ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv);
1085 		if (ret) {
1086 			if (acpi_drv->ops.remove)
1087 				acpi_drv->ops.remove(acpi_dev);
1088 
1089 			acpi_dev->driver_data = NULL;
1090 			return ret;
1091 		}
1092 	}
1093 
1094 	pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name,
1095 		 acpi_dev->pnp.bus_id);
1096 
1097 	get_device(dev);
1098 	return 0;
1099 }
1100 
1101 static void acpi_device_remove(struct device *dev)
1102 {
1103 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1104 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1105 
1106 	if (acpi_drv->ops.notify)
1107 		acpi_device_remove_notify_handler(acpi_dev, acpi_drv);
1108 
1109 	if (acpi_drv->ops.remove)
1110 		acpi_drv->ops.remove(acpi_dev);
1111 
1112 	acpi_dev->driver_data = NULL;
1113 
1114 	put_device(dev);
1115 }
1116 
1117 const struct bus_type acpi_bus_type = {
1118 	.name		= "acpi",
1119 	.match		= acpi_bus_match,
1120 	.probe		= acpi_device_probe,
1121 	.remove		= acpi_device_remove,
1122 	.uevent		= acpi_device_uevent,
1123 };
1124 
1125 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data)
1126 {
1127 	return bus_for_each_dev(&acpi_bus_type, NULL, data, fn);
1128 }
1129 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev);
1130 
1131 struct acpi_dev_walk_context {
1132 	int (*fn)(struct acpi_device *, void *);
1133 	void *data;
1134 };
1135 
1136 static int acpi_dev_for_one_check(struct device *dev, void *context)
1137 {
1138 	struct acpi_dev_walk_context *adwc = context;
1139 
1140 	if (dev->bus != &acpi_bus_type)
1141 		return 0;
1142 
1143 	return adwc->fn(to_acpi_device(dev), adwc->data);
1144 }
1145 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child);
1146 
1147 int acpi_dev_for_each_child(struct acpi_device *adev,
1148 			    int (*fn)(struct acpi_device *, void *), void *data)
1149 {
1150 	struct acpi_dev_walk_context adwc = {
1151 		.fn = fn,
1152 		.data = data,
1153 	};
1154 
1155 	return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check);
1156 }
1157 
1158 int acpi_dev_for_each_child_reverse(struct acpi_device *adev,
1159 				    int (*fn)(struct acpi_device *, void *),
1160 				    void *data)
1161 {
1162 	struct acpi_dev_walk_context adwc = {
1163 		.fn = fn,
1164 		.data = data,
1165 	};
1166 
1167 	return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check);
1168 }
1169 
1170 /* --------------------------------------------------------------------------
1171                              Initialization/Cleanup
1172    -------------------------------------------------------------------------- */
1173 
1174 static int __init acpi_bus_init_irq(void)
1175 {
1176 	acpi_status status;
1177 	char *message = NULL;
1178 
1179 
1180 	/*
1181 	 * Let the system know what interrupt model we are using by
1182 	 * evaluating the \_PIC object, if exists.
1183 	 */
1184 
1185 	switch (acpi_irq_model) {
1186 	case ACPI_IRQ_MODEL_PIC:
1187 		message = "PIC";
1188 		break;
1189 	case ACPI_IRQ_MODEL_IOAPIC:
1190 		message = "IOAPIC";
1191 		break;
1192 	case ACPI_IRQ_MODEL_IOSAPIC:
1193 		message = "IOSAPIC";
1194 		break;
1195 	case ACPI_IRQ_MODEL_GIC:
1196 		message = "GIC";
1197 		break;
1198 	case ACPI_IRQ_MODEL_PLATFORM:
1199 		message = "platform specific model";
1200 		break;
1201 	case ACPI_IRQ_MODEL_LPIC:
1202 		message = "LPIC";
1203 		break;
1204 	default:
1205 		pr_info("Unknown interrupt routing model\n");
1206 		return -ENODEV;
1207 	}
1208 
1209 	pr_info("Using %s for interrupt routing\n", message);
1210 
1211 	status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model);
1212 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
1213 		pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status));
1214 		return -ENODEV;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * acpi_early_init - Initialize ACPICA and populate the ACPI namespace.
1222  *
1223  * The ACPI tables are accessible after this, but the handling of events has not
1224  * been initialized and the global lock is not available yet, so AML should not
1225  * be executed at this point.
1226  *
1227  * Doing this before switching the EFI runtime services to virtual mode allows
1228  * the EfiBootServices memory to be freed slightly earlier on boot.
1229  */
1230 void __init acpi_early_init(void)
1231 {
1232 	acpi_status status;
1233 
1234 	if (acpi_disabled)
1235 		return;
1236 
1237 	pr_info("Core revision %08x\n", ACPI_CA_VERSION);
1238 
1239 	/* enable workarounds, unless strict ACPI spec. compliance */
1240 	if (!acpi_strict)
1241 		acpi_gbl_enable_interpreter_slack = TRUE;
1242 
1243 	acpi_permanent_mmap = true;
1244 
1245 #ifdef CONFIG_X86
1246 	/*
1247 	 * If the machine falls into the DMI check table,
1248 	 * DSDT will be copied to memory.
1249 	 * Note that calling dmi_check_system() here on other architectures
1250 	 * would not be OK because only x86 initializes dmi early enough.
1251 	 * Thankfully only x86 systems need such quirks for now.
1252 	 */
1253 	dmi_check_system(dsdt_dmi_table);
1254 #endif
1255 
1256 	status = acpi_reallocate_root_table();
1257 	if (ACPI_FAILURE(status)) {
1258 		pr_err("Unable to reallocate ACPI tables\n");
1259 		goto error0;
1260 	}
1261 
1262 	status = acpi_initialize_subsystem();
1263 	if (ACPI_FAILURE(status)) {
1264 		pr_err("Unable to initialize the ACPI Interpreter\n");
1265 		goto error0;
1266 	}
1267 
1268 #ifdef CONFIG_X86
1269 	if (!acpi_ioapic) {
1270 		/* compatible (0) means level (3) */
1271 		if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) {
1272 			acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK;
1273 			acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL;
1274 		}
1275 		/* Set PIC-mode SCI trigger type */
1276 		acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt,
1277 					 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2);
1278 	} else {
1279 		/*
1280 		 * now that acpi_gbl_FADT is initialized,
1281 		 * update it with result from INT_SRC_OVR parsing
1282 		 */
1283 		acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi;
1284 	}
1285 #endif
1286 	return;
1287 
1288  error0:
1289 	disable_acpi();
1290 }
1291 
1292 /**
1293  * acpi_subsystem_init - Finalize the early initialization of ACPI.
1294  *
1295  * Switch over the platform to the ACPI mode (if possible).
1296  *
1297  * Doing this too early is generally unsafe, but at the same time it needs to be
1298  * done before all things that really depend on ACPI.  The right spot appears to
1299  * be before finalizing the EFI initialization.
1300  */
1301 void __init acpi_subsystem_init(void)
1302 {
1303 	acpi_status status;
1304 
1305 	if (acpi_disabled)
1306 		return;
1307 
1308 	status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE);
1309 	if (ACPI_FAILURE(status)) {
1310 		pr_err("Unable to enable ACPI\n");
1311 		disable_acpi();
1312 	} else {
1313 		/*
1314 		 * If the system is using ACPI then we can be reasonably
1315 		 * confident that any regulators are managed by the firmware
1316 		 * so tell the regulator core it has everything it needs to
1317 		 * know.
1318 		 */
1319 		regulator_has_full_constraints();
1320 	}
1321 }
1322 
1323 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context)
1324 {
1325 	if (event == ACPI_TABLE_EVENT_LOAD)
1326 		acpi_scan_table_notify();
1327 
1328 	return acpi_sysfs_table_handler(event, table, context);
1329 }
1330 
1331 static int __init acpi_bus_init(void)
1332 {
1333 	int result;
1334 	acpi_status status;
1335 
1336 	acpi_os_initialize1();
1337 
1338 	status = acpi_load_tables();
1339 	if (ACPI_FAILURE(status)) {
1340 		pr_err("Unable to load the System Description Tables\n");
1341 		goto error1;
1342 	}
1343 
1344 	/*
1345 	 * ACPI 2.0 requires the EC driver to be loaded and work before the EC
1346 	 * device is found in the namespace.
1347 	 *
1348 	 * This is accomplished by looking for the ECDT table and getting the EC
1349 	 * parameters out of that.
1350 	 *
1351 	 * Do that before calling acpi_initialize_objects() which may trigger EC
1352 	 * address space accesses.
1353 	 */
1354 	acpi_ec_ecdt_probe();
1355 
1356 	status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE);
1357 	if (ACPI_FAILURE(status)) {
1358 		pr_err("Unable to start the ACPI Interpreter\n");
1359 		goto error1;
1360 	}
1361 
1362 	status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION);
1363 	if (ACPI_FAILURE(status)) {
1364 		pr_err("Unable to initialize ACPI objects\n");
1365 		goto error1;
1366 	}
1367 
1368 	/*
1369 	 * _OSC method may exist in module level code,
1370 	 * so it must be run after ACPI_FULL_INITIALIZATION
1371 	 */
1372 	acpi_bus_osc_negotiate_platform_control();
1373 	acpi_bus_osc_negotiate_usb_control();
1374 
1375 	/*
1376 	 * _PDC control method may load dynamic SSDT tables,
1377 	 * and we need to install the table handler before that.
1378 	 */
1379 	status = acpi_install_table_handler(acpi_bus_table_handler, NULL);
1380 
1381 	acpi_sysfs_init();
1382 
1383 	acpi_early_processor_control_setup();
1384 
1385 	/*
1386 	 * Maybe EC region is required at bus_scan/acpi_get_devices. So it
1387 	 * is necessary to enable it as early as possible.
1388 	 */
1389 	acpi_ec_dsdt_probe();
1390 
1391 	pr_info("Interpreter enabled\n");
1392 
1393 	/* Initialize sleep structures */
1394 	acpi_sleep_init();
1395 
1396 	/*
1397 	 * Get the system interrupt model and evaluate \_PIC.
1398 	 */
1399 	result = acpi_bus_init_irq();
1400 	if (result)
1401 		goto error1;
1402 
1403 	/*
1404 	 * Register the for all standard device notifications.
1405 	 */
1406 	status =
1407 	    acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
1408 					&acpi_bus_notify, NULL);
1409 	if (ACPI_FAILURE(status)) {
1410 		pr_err("Unable to register for system notifications\n");
1411 		goto error1;
1412 	}
1413 
1414 	/*
1415 	 * Create the top ACPI proc directory
1416 	 */
1417 	acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL);
1418 
1419 	result = bus_register(&acpi_bus_type);
1420 	if (!result)
1421 		return 0;
1422 
1423 	/* Mimic structured exception handling */
1424       error1:
1425 	acpi_terminate();
1426 	return -ENODEV;
1427 }
1428 
1429 struct kobject *acpi_kobj;
1430 EXPORT_SYMBOL_GPL(acpi_kobj);
1431 
1432 static int __init acpi_init(void)
1433 {
1434 	int result;
1435 
1436 	if (acpi_disabled) {
1437 		pr_info("Interpreter disabled.\n");
1438 		return -ENODEV;
1439 	}
1440 
1441 	acpi_kobj = kobject_create_and_add("acpi", firmware_kobj);
1442 	if (!acpi_kobj)
1443 		pr_debug("%s: kset create error\n", __func__);
1444 
1445 	init_prmt();
1446 	acpi_init_pcc();
1447 	result = acpi_bus_init();
1448 	if (result) {
1449 		kobject_put(acpi_kobj);
1450 		disable_acpi();
1451 		return result;
1452 	}
1453 	acpi_init_ffh();
1454 
1455 	pci_mmcfg_late_init();
1456 	acpi_viot_early_init();
1457 	acpi_hest_init();
1458 	acpi_ghes_init();
1459 	acpi_arm_init();
1460 	acpi_scan_init();
1461 	acpi_ec_init();
1462 	acpi_debugfs_init();
1463 	acpi_sleep_proc_init();
1464 	acpi_wakeup_device_init();
1465 	acpi_debugger_init();
1466 	acpi_setup_sb_notify_handler();
1467 	acpi_viot_init();
1468 	return 0;
1469 }
1470 
1471 subsys_initcall(acpi_init);
1472