xref: /linux/drivers/acpi/bus.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_bus.c - ACPI Bus Driver ($Revision: 80 $)
4  *
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  */
7 
8 #define pr_fmt(fmt) "ACPI: " fmt
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/ioport.h>
13 #include <linux/kernel.h>
14 #include <linux/list.h>
15 #include <linux/sched.h>
16 #include <linux/pm.h>
17 #include <linux/device.h>
18 #include <linux/proc_fs.h>
19 #include <linux/acpi.h>
20 #include <linux/slab.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/workqueue.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #ifdef CONFIG_X86
26 #include <asm/mpspec.h>
27 #include <linux/dmi.h>
28 #endif
29 #include <linux/acpi_viot.h>
30 #include <linux/pci.h>
31 #include <acpi/apei.h>
32 #include <linux/suspend.h>
33 #include <linux/prmt.h>
34 
35 #include "internal.h"
36 
37 struct acpi_device *acpi_root;
38 struct proc_dir_entry *acpi_root_dir;
39 EXPORT_SYMBOL(acpi_root_dir);
40 
41 #ifdef CONFIG_X86
42 #ifdef CONFIG_ACPI_CUSTOM_DSDT
43 static inline int set_copy_dsdt(const struct dmi_system_id *id)
44 {
45 	return 0;
46 }
47 #else
48 static int set_copy_dsdt(const struct dmi_system_id *id)
49 {
50 	pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident);
51 	acpi_gbl_copy_dsdt_locally = 1;
52 	return 0;
53 }
54 #endif
55 
56 static const struct dmi_system_id dsdt_dmi_table[] __initconst = {
57 	/*
58 	 * Invoke DSDT corruption work-around on all Toshiba Satellite.
59 	 * https://bugzilla.kernel.org/show_bug.cgi?id=14679
60 	 */
61 	{
62 	 .callback = set_copy_dsdt,
63 	 .ident = "TOSHIBA Satellite",
64 	 .matches = {
65 		DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
66 		DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"),
67 		},
68 	},
69 	{}
70 };
71 #endif
72 
73 /* --------------------------------------------------------------------------
74                                 Device Management
75    -------------------------------------------------------------------------- */
76 
77 acpi_status acpi_bus_get_status_handle(acpi_handle handle,
78 				       unsigned long long *sta)
79 {
80 	acpi_status status;
81 
82 	status = acpi_evaluate_integer(handle, "_STA", NULL, sta);
83 	if (ACPI_SUCCESS(status))
84 		return AE_OK;
85 
86 	if (status == AE_NOT_FOUND) {
87 		*sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED |
88 		       ACPI_STA_DEVICE_UI      | ACPI_STA_DEVICE_FUNCTIONING;
89 		return AE_OK;
90 	}
91 	return status;
92 }
93 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle);
94 
95 int acpi_bus_get_status(struct acpi_device *device)
96 {
97 	acpi_status status;
98 	unsigned long long sta;
99 
100 	if (acpi_device_override_status(device, &sta)) {
101 		acpi_set_device_status(device, sta);
102 		return 0;
103 	}
104 
105 	/* Battery devices must have their deps met before calling _STA */
106 	if (acpi_device_is_battery(device) && device->dep_unmet) {
107 		acpi_set_device_status(device, 0);
108 		return 0;
109 	}
110 
111 	status = acpi_bus_get_status_handle(device->handle, &sta);
112 	if (ACPI_FAILURE(status))
113 		return -ENODEV;
114 
115 	if (!device->status.present && device->status.enabled) {
116 		pr_info(FW_BUG "Device [%s] status [%08x]: not present and enabled\n",
117 			device->pnp.bus_id, (u32)sta);
118 		device->status.enabled = 0;
119 		/*
120 		 * The status is clearly invalid, so clear the functional bit as
121 		 * well to avoid attempting to use the device.
122 		 */
123 		device->status.functional = 0;
124 	}
125 
126 	acpi_set_device_status(device, sta);
127 
128 	if (device->status.functional && !device->status.present) {
129 		pr_debug("Device [%s] status [%08x]: functional but not present\n",
130 			 device->pnp.bus_id, (u32)sta);
131 	}
132 
133 	pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta);
134 	return 0;
135 }
136 EXPORT_SYMBOL(acpi_bus_get_status);
137 
138 void acpi_bus_private_data_handler(acpi_handle handle,
139 				   void *context)
140 {
141 	return;
142 }
143 EXPORT_SYMBOL(acpi_bus_private_data_handler);
144 
145 int acpi_bus_attach_private_data(acpi_handle handle, void *data)
146 {
147 	acpi_status status;
148 
149 	status = acpi_attach_data(handle,
150 			acpi_bus_private_data_handler, data);
151 	if (ACPI_FAILURE(status)) {
152 		acpi_handle_debug(handle, "Error attaching device data\n");
153 		return -ENODEV;
154 	}
155 
156 	return 0;
157 }
158 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data);
159 
160 int acpi_bus_get_private_data(acpi_handle handle, void **data)
161 {
162 	acpi_status status;
163 
164 	if (!data)
165 		return -EINVAL;
166 
167 	status = acpi_get_data(handle, acpi_bus_private_data_handler, data);
168 	if (ACPI_FAILURE(status)) {
169 		acpi_handle_debug(handle, "No context for object\n");
170 		return -ENODEV;
171 	}
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data);
176 
177 void acpi_bus_detach_private_data(acpi_handle handle)
178 {
179 	acpi_detach_data(handle, acpi_bus_private_data_handler);
180 }
181 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data);
182 
183 static void acpi_print_osc_error(acpi_handle handle,
184 				 struct acpi_osc_context *context, char *error)
185 {
186 	int i;
187 
188 	acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error);
189 
190 	pr_debug("_OSC request data:");
191 	for (i = 0; i < context->cap.length; i += sizeof(u32))
192 		pr_debug(" %x", *((u32 *)(context->cap.pointer + i)));
193 
194 	pr_debug("\n");
195 }
196 
197 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context)
198 {
199 	acpi_status status;
200 	struct acpi_object_list input;
201 	union acpi_object in_params[4];
202 	union acpi_object *out_obj;
203 	guid_t guid;
204 	u32 errors;
205 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
206 
207 	if (!context)
208 		return AE_ERROR;
209 	if (guid_parse(context->uuid_str, &guid))
210 		return AE_ERROR;
211 	context->ret.length = ACPI_ALLOCATE_BUFFER;
212 	context->ret.pointer = NULL;
213 
214 	/* Setting up input parameters */
215 	input.count = 4;
216 	input.pointer = in_params;
217 	in_params[0].type 		= ACPI_TYPE_BUFFER;
218 	in_params[0].buffer.length 	= 16;
219 	in_params[0].buffer.pointer	= (u8 *)&guid;
220 	in_params[1].type 		= ACPI_TYPE_INTEGER;
221 	in_params[1].integer.value 	= context->rev;
222 	in_params[2].type 		= ACPI_TYPE_INTEGER;
223 	in_params[2].integer.value	= context->cap.length/sizeof(u32);
224 	in_params[3].type		= ACPI_TYPE_BUFFER;
225 	in_params[3].buffer.length 	= context->cap.length;
226 	in_params[3].buffer.pointer 	= context->cap.pointer;
227 
228 	status = acpi_evaluate_object(handle, "_OSC", &input, &output);
229 	if (ACPI_FAILURE(status))
230 		return status;
231 
232 	if (!output.length)
233 		return AE_NULL_OBJECT;
234 
235 	out_obj = output.pointer;
236 	if (out_obj->type != ACPI_TYPE_BUFFER
237 		|| out_obj->buffer.length != context->cap.length) {
238 		acpi_print_osc_error(handle, context,
239 			"_OSC evaluation returned wrong type");
240 		status = AE_TYPE;
241 		goto out_kfree;
242 	}
243 	/* Need to ignore the bit0 in result code */
244 	errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0);
245 	if (errors) {
246 		if (errors & OSC_REQUEST_ERROR)
247 			acpi_print_osc_error(handle, context,
248 				"_OSC request failed");
249 		if (errors & OSC_INVALID_UUID_ERROR)
250 			acpi_print_osc_error(handle, context,
251 				"_OSC invalid UUID");
252 		if (errors & OSC_INVALID_REVISION_ERROR)
253 			acpi_print_osc_error(handle, context,
254 				"_OSC invalid revision");
255 		if (errors & OSC_CAPABILITIES_MASK_ERROR) {
256 			if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD]
257 			    & OSC_QUERY_ENABLE)
258 				goto out_success;
259 			status = AE_SUPPORT;
260 			goto out_kfree;
261 		}
262 		status = AE_ERROR;
263 		goto out_kfree;
264 	}
265 out_success:
266 	context->ret.length = out_obj->buffer.length;
267 	context->ret.pointer = kmemdup(out_obj->buffer.pointer,
268 				       context->ret.length, GFP_KERNEL);
269 	if (!context->ret.pointer) {
270 		status =  AE_NO_MEMORY;
271 		goto out_kfree;
272 	}
273 	status =  AE_OK;
274 
275 out_kfree:
276 	kfree(output.pointer);
277 	return status;
278 }
279 EXPORT_SYMBOL(acpi_run_osc);
280 
281 bool osc_sb_apei_support_acked;
282 
283 /*
284  * ACPI 6.0 Section 8.4.4.2 Idle State Coordination
285  * OSPM supports platform coordinated low power idle(LPI) states
286  */
287 bool osc_pc_lpi_support_confirmed;
288 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed);
289 
290 /*
291  * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities':
292  *   Starting with ACPI Specification 6.2, all _CPC registers can be in
293  *   PCC, System Memory, System IO, or Functional Fixed Hardware address
294  *   spaces. OSPM support for this more flexible register space scheme is
295  *   indicated by the “Flexible Address Space for CPPC Registers” _OSC bit.
296  *
297  * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in:
298  * - PCC or Functional Fixed Hardware address space if defined
299  * - SystemMemory address space (NULL register) if not defined
300  */
301 bool osc_cpc_flexible_adr_space_confirmed;
302 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed);
303 
304 /*
305  * ACPI 6.4 Operating System Capabilities for USB.
306  */
307 bool osc_sb_native_usb4_support_confirmed;
308 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed);
309 
310 bool osc_sb_cppc2_support_acked;
311 
312 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48";
313 static void acpi_bus_osc_negotiate_platform_control(void)
314 {
315 	u32 capbuf[2], *capbuf_ret;
316 	struct acpi_osc_context context = {
317 		.uuid_str = sb_uuid_str,
318 		.rev = 1,
319 		.cap.length = 8,
320 		.cap.pointer = capbuf,
321 	};
322 	acpi_handle handle;
323 
324 	capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
325 	capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */
326 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR))
327 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT;
328 	if (IS_ENABLED(CONFIG_ACPI_PROCESSOR))
329 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT;
330 	if (IS_ENABLED(CONFIG_ACPI_THERMAL))
331 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FAST_THERMAL_SAMPLING_SUPPORT;
332 	if (IS_ENABLED(CONFIG_ACPI_BATTERY))
333 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_BATTERY_CHARGE_LIMITING_SUPPORT;
334 
335 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
336 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
337 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_OVER_16_PSTATES_SUPPORT;
338 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GED_SUPPORT;
339 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_IRQ_RESOURCE_SOURCE_SUPPORT;
340 	if (IS_ENABLED(CONFIG_ACPI_PRMT))
341 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT;
342 	if (IS_ENABLED(CONFIG_ACPI_FFH))
343 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT;
344 
345 #ifdef CONFIG_ARM64
346 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
347 #endif
348 #ifdef CONFIG_X86
349 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT;
350 #endif
351 
352 #ifdef CONFIG_ACPI_CPPC_LIB
353 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
354 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
355 #endif
356 
357 	capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
358 
359 	if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
360 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
361 
362 	if (IS_ENABLED(CONFIG_USB4))
363 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT;
364 
365 	if (!ghes_disable)
366 		capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
367 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
368 		return;
369 
370 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
371 		return;
372 
373 	capbuf_ret = context.ret.pointer;
374 	if (context.ret.length <= OSC_SUPPORT_DWORD) {
375 		kfree(context.ret.pointer);
376 		return;
377 	}
378 
379 	/*
380 	 * Now run _OSC again with query flag clear and with the caps
381 	 * supported by both the OS and the platform.
382 	 */
383 	capbuf[OSC_QUERY_DWORD] = 0;
384 	capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD];
385 	kfree(context.ret.pointer);
386 
387 	if (ACPI_FAILURE(acpi_run_osc(handle, &context)))
388 		return;
389 
390 	capbuf_ret = context.ret.pointer;
391 	if (context.ret.length > OSC_SUPPORT_DWORD) {
392 #ifdef CONFIG_ACPI_CPPC_LIB
393 		osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT;
394 #endif
395 
396 		osc_sb_apei_support_acked =
397 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT;
398 		osc_pc_lpi_support_confirmed =
399 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT;
400 		osc_sb_native_usb4_support_confirmed =
401 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT;
402 		osc_cpc_flexible_adr_space_confirmed =
403 			capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE;
404 	}
405 
406 	kfree(context.ret.pointer);
407 }
408 
409 /*
410  * Native control of USB4 capabilities. If any of the tunneling bits is
411  * set it means OS is in control and we use software based connection
412  * manager.
413  */
414 u32 osc_sb_native_usb4_control;
415 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control);
416 
417 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits)
418 {
419 	pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg,
420 	       (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-',
421 	       (bits & OSC_USB_DP_TUNNELING) ? '+' : '-',
422 	       (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-',
423 	       (bits & OSC_USB_XDOMAIN) ? '+' : '-');
424 }
425 
426 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A";
427 static void acpi_bus_osc_negotiate_usb_control(void)
428 {
429 	u32 capbuf[3], *capbuf_ret;
430 	struct acpi_osc_context context = {
431 		.uuid_str = sb_usb_uuid_str,
432 		.rev = 1,
433 		.cap.length = sizeof(capbuf),
434 		.cap.pointer = capbuf,
435 	};
436 	acpi_handle handle;
437 	acpi_status status;
438 	u32 control;
439 
440 	if (!osc_sb_native_usb4_support_confirmed)
441 		return;
442 
443 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
444 		return;
445 
446 	control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING |
447 		  OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN;
448 
449 	/*
450 	 * Run _OSC first with query bit set, trying to get control over
451 	 * all tunneling. The platform can then clear out bits in the
452 	 * control dword that it does not want to grant to the OS.
453 	 */
454 	capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE;
455 	capbuf[OSC_SUPPORT_DWORD] = 0;
456 	capbuf[OSC_CONTROL_DWORD] = control;
457 
458 	status = acpi_run_osc(handle, &context);
459 	if (ACPI_FAILURE(status))
460 		return;
461 
462 	if (context.ret.length != sizeof(capbuf)) {
463 		pr_info("USB4 _OSC: returned invalid length buffer\n");
464 		goto out_free;
465 	}
466 
467 	/*
468 	 * Run _OSC again now with query bit clear and the control dword
469 	 * matching what the platform granted (which may not have all
470 	 * the control bits set).
471 	 */
472 	capbuf_ret = context.ret.pointer;
473 
474 	capbuf[OSC_QUERY_DWORD] = 0;
475 	capbuf[OSC_CONTROL_DWORD] = capbuf_ret[OSC_CONTROL_DWORD];
476 
477 	kfree(context.ret.pointer);
478 
479 	status = acpi_run_osc(handle, &context);
480 	if (ACPI_FAILURE(status))
481 		return;
482 
483 	if (context.ret.length != sizeof(capbuf)) {
484 		pr_info("USB4 _OSC: returned invalid length buffer\n");
485 		goto out_free;
486 	}
487 
488 	osc_sb_native_usb4_control =
489 		control & acpi_osc_ctx_get_pci_control(&context);
490 
491 	acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control);
492 	acpi_bus_decode_usb_osc("USB4 _OSC: OS controls",
493 				osc_sb_native_usb4_control);
494 
495 out_free:
496 	kfree(context.ret.pointer);
497 }
498 
499 /* --------------------------------------------------------------------------
500                              Notification Handling
501    -------------------------------------------------------------------------- */
502 
503 /**
504  * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler
505  * @handle: Target ACPI object.
506  * @type: Notification type.
507  * @data: Ignored.
508  *
509  * This only handles notifications related to device hotplug.
510  */
511 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data)
512 {
513 	struct acpi_device *adev;
514 
515 	switch (type) {
516 	case ACPI_NOTIFY_BUS_CHECK:
517 		acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n");
518 		break;
519 
520 	case ACPI_NOTIFY_DEVICE_CHECK:
521 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n");
522 		break;
523 
524 	case ACPI_NOTIFY_DEVICE_WAKE:
525 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n");
526 		return;
527 
528 	case ACPI_NOTIFY_EJECT_REQUEST:
529 		acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n");
530 		break;
531 
532 	case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
533 		acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n");
534 		/* TBD: Exactly what does 'light' mean? */
535 		return;
536 
537 	case ACPI_NOTIFY_FREQUENCY_MISMATCH:
538 		acpi_handle_err(handle, "Device cannot be configured due "
539 				"to a frequency mismatch\n");
540 		return;
541 
542 	case ACPI_NOTIFY_BUS_MODE_MISMATCH:
543 		acpi_handle_err(handle, "Device cannot be configured due "
544 				"to a bus mode mismatch\n");
545 		return;
546 
547 	case ACPI_NOTIFY_POWER_FAULT:
548 		acpi_handle_err(handle, "Device has suffered a power fault\n");
549 		return;
550 
551 	default:
552 		acpi_handle_debug(handle, "Unknown event type 0x%x\n", type);
553 		return;
554 	}
555 
556 	adev = acpi_get_acpi_dev(handle);
557 
558 	if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type)))
559 		return;
560 
561 	acpi_put_acpi_dev(adev);
562 
563 	acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL);
564 }
565 
566 static void acpi_notify_device(acpi_handle handle, u32 event, void *data)
567 {
568 	struct acpi_device *device = data;
569 	struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver);
570 
571 	acpi_drv->ops.notify(device, event);
572 }
573 
574 static int acpi_device_install_notify_handler(struct acpi_device *device,
575 					      struct acpi_driver *acpi_drv)
576 {
577 	u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ?
578 				ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY;
579 	acpi_status status;
580 
581 	status = acpi_install_notify_handler(device->handle, type,
582 					     acpi_notify_device, device);
583 	if (ACPI_FAILURE(status))
584 		return -EINVAL;
585 
586 	return 0;
587 }
588 
589 static void acpi_device_remove_notify_handler(struct acpi_device *device,
590 					      struct acpi_driver *acpi_drv)
591 {
592 	u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ?
593 				ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY;
594 
595 	acpi_remove_notify_handler(device->handle, type,
596 				   acpi_notify_device);
597 
598 	acpi_os_wait_events_complete();
599 }
600 
601 int acpi_dev_install_notify_handler(struct acpi_device *adev,
602 				    u32 handler_type,
603 				    acpi_notify_handler handler, void *context)
604 {
605 	acpi_status status;
606 
607 	status = acpi_install_notify_handler(adev->handle, handler_type,
608 					     handler, context);
609 	if (ACPI_FAILURE(status))
610 		return -ENODEV;
611 
612 	return 0;
613 }
614 EXPORT_SYMBOL_GPL(acpi_dev_install_notify_handler);
615 
616 void acpi_dev_remove_notify_handler(struct acpi_device *adev,
617 				    u32 handler_type,
618 				    acpi_notify_handler handler)
619 {
620 	acpi_remove_notify_handler(adev->handle, handler_type, handler);
621 	acpi_os_wait_events_complete();
622 }
623 EXPORT_SYMBOL_GPL(acpi_dev_remove_notify_handler);
624 
625 /* Handle events targeting \_SB device (at present only graceful shutdown) */
626 
627 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81
628 #define ACPI_SB_INDICATE_INTERVAL	10000
629 
630 static void sb_notify_work(struct work_struct *dummy)
631 {
632 	acpi_handle sb_handle;
633 
634 	orderly_poweroff(true);
635 
636 	/*
637 	 * After initiating graceful shutdown, the ACPI spec requires OSPM
638 	 * to evaluate _OST method once every 10seconds to indicate that
639 	 * the shutdown is in progress
640 	 */
641 	acpi_get_handle(NULL, "\\_SB", &sb_handle);
642 	while (1) {
643 		pr_info("Graceful shutdown in progress.\n");
644 		acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN,
645 				ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL);
646 		msleep(ACPI_SB_INDICATE_INTERVAL);
647 	}
648 }
649 
650 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data)
651 {
652 	static DECLARE_WORK(acpi_sb_work, sb_notify_work);
653 
654 	if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) {
655 		if (!work_busy(&acpi_sb_work))
656 			schedule_work(&acpi_sb_work);
657 	} else {
658 		pr_warn("event %x is not supported by \\_SB device\n", event);
659 	}
660 }
661 
662 static int __init acpi_setup_sb_notify_handler(void)
663 {
664 	acpi_handle sb_handle;
665 
666 	if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle)))
667 		return -ENXIO;
668 
669 	if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY,
670 						acpi_sb_notify, NULL)))
671 		return -EINVAL;
672 
673 	return 0;
674 }
675 
676 /* --------------------------------------------------------------------------
677                              Device Matching
678    -------------------------------------------------------------------------- */
679 
680 /**
681  * acpi_get_first_physical_node - Get first physical node of an ACPI device
682  * @adev:	ACPI device in question
683  *
684  * Return: First physical node of ACPI device @adev
685  */
686 struct device *acpi_get_first_physical_node(struct acpi_device *adev)
687 {
688 	struct mutex *physical_node_lock = &adev->physical_node_lock;
689 	struct device *phys_dev;
690 
691 	mutex_lock(physical_node_lock);
692 	if (list_empty(&adev->physical_node_list)) {
693 		phys_dev = NULL;
694 	} else {
695 		const struct acpi_device_physical_node *node;
696 
697 		node = list_first_entry(&adev->physical_node_list,
698 					struct acpi_device_physical_node, node);
699 
700 		phys_dev = node->dev;
701 	}
702 	mutex_unlock(physical_node_lock);
703 	return phys_dev;
704 }
705 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node);
706 
707 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev,
708 						      const struct device *dev)
709 {
710 	const struct device *phys_dev = acpi_get_first_physical_node(adev);
711 
712 	return phys_dev && phys_dev == dev ? adev : NULL;
713 }
714 
715 /**
716  * acpi_device_is_first_physical_node - Is given dev first physical node
717  * @adev: ACPI companion device
718  * @dev: Physical device to check
719  *
720  * Function checks if given @dev is the first physical devices attached to
721  * the ACPI companion device. This distinction is needed in some cases
722  * where the same companion device is shared between many physical devices.
723  *
724  * Note that the caller have to provide valid @adev pointer.
725  */
726 bool acpi_device_is_first_physical_node(struct acpi_device *adev,
727 					const struct device *dev)
728 {
729 	return !!acpi_primary_dev_companion(adev, dev);
730 }
731 
732 /*
733  * acpi_companion_match() - Can we match via ACPI companion device
734  * @dev: Device in question
735  *
736  * Check if the given device has an ACPI companion and if that companion has
737  * a valid list of PNP IDs, and if the device is the first (primary) physical
738  * device associated with it.  Return the companion pointer if that's the case
739  * or NULL otherwise.
740  *
741  * If multiple physical devices are attached to a single ACPI companion, we need
742  * to be careful.  The usage scenario for this kind of relationship is that all
743  * of the physical devices in question use resources provided by the ACPI
744  * companion.  A typical case is an MFD device where all the sub-devices share
745  * the parent's ACPI companion.  In such cases we can only allow the primary
746  * (first) physical device to be matched with the help of the companion's PNP
747  * IDs.
748  *
749  * Additional physical devices sharing the ACPI companion can still use
750  * resources available from it but they will be matched normally using functions
751  * provided by their bus types (and analogously for their modalias).
752  */
753 const struct acpi_device *acpi_companion_match(const struct device *dev)
754 {
755 	struct acpi_device *adev;
756 
757 	adev = ACPI_COMPANION(dev);
758 	if (!adev)
759 		return NULL;
760 
761 	if (list_empty(&adev->pnp.ids))
762 		return NULL;
763 
764 	return acpi_primary_dev_companion(adev, dev);
765 }
766 
767 /**
768  * acpi_of_match_device - Match device object using the "compatible" property.
769  * @adev: ACPI device object to match.
770  * @of_match_table: List of device IDs to match against.
771  * @of_id: OF ID if matched
772  *
773  * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of
774  * identifiers and a _DSD object with the "compatible" property, use that
775  * property to match against the given list of identifiers.
776  */
777 static bool acpi_of_match_device(const struct acpi_device *adev,
778 				 const struct of_device_id *of_match_table,
779 				 const struct of_device_id **of_id)
780 {
781 	const union acpi_object *of_compatible, *obj;
782 	int i, nval;
783 
784 	if (!adev)
785 		return false;
786 
787 	of_compatible = adev->data.of_compatible;
788 	if (!of_match_table || !of_compatible)
789 		return false;
790 
791 	if (of_compatible->type == ACPI_TYPE_PACKAGE) {
792 		nval = of_compatible->package.count;
793 		obj = of_compatible->package.elements;
794 	} else { /* Must be ACPI_TYPE_STRING. */
795 		nval = 1;
796 		obj = of_compatible;
797 	}
798 	/* Now we can look for the driver DT compatible strings */
799 	for (i = 0; i < nval; i++, obj++) {
800 		const struct of_device_id *id;
801 
802 		for (id = of_match_table; id->compatible[0]; id++)
803 			if (!strcasecmp(obj->string.pointer, id->compatible)) {
804 				if (of_id)
805 					*of_id = id;
806 				return true;
807 			}
808 	}
809 
810 	return false;
811 }
812 
813 static bool acpi_of_modalias(struct acpi_device *adev,
814 			     char *modalias, size_t len)
815 {
816 	const union acpi_object *of_compatible;
817 	const union acpi_object *obj;
818 	const char *str, *chr;
819 
820 	of_compatible = adev->data.of_compatible;
821 	if (!of_compatible)
822 		return false;
823 
824 	if (of_compatible->type == ACPI_TYPE_PACKAGE)
825 		obj = of_compatible->package.elements;
826 	else /* Must be ACPI_TYPE_STRING. */
827 		obj = of_compatible;
828 
829 	str = obj->string.pointer;
830 	chr = strchr(str, ',');
831 	strscpy(modalias, chr ? chr + 1 : str, len);
832 
833 	return true;
834 }
835 
836 /**
837  * acpi_set_modalias - Set modalias using "compatible" property or supplied ID
838  * @adev:	ACPI device object to match
839  * @default_id:	ID string to use as default if no compatible string found
840  * @modalias:   Pointer to buffer that modalias value will be copied into
841  * @len:	Length of modalias buffer
842  *
843  * This is a counterpart of of_alias_from_compatible() for struct acpi_device
844  * objects. If there is a compatible string for @adev, it will be copied to
845  * @modalias with the vendor prefix stripped; otherwise, @default_id will be
846  * used.
847  */
848 void acpi_set_modalias(struct acpi_device *adev, const char *default_id,
849 		       char *modalias, size_t len)
850 {
851 	if (!acpi_of_modalias(adev, modalias, len))
852 		strscpy(modalias, default_id, len);
853 }
854 EXPORT_SYMBOL_GPL(acpi_set_modalias);
855 
856 static bool __acpi_match_device_cls(const struct acpi_device_id *id,
857 				    struct acpi_hardware_id *hwid)
858 {
859 	int i, msk, byte_shift;
860 	char buf[3];
861 
862 	if (!id->cls)
863 		return false;
864 
865 	/* Apply class-code bitmask, before checking each class-code byte */
866 	for (i = 1; i <= 3; i++) {
867 		byte_shift = 8 * (3 - i);
868 		msk = (id->cls_msk >> byte_shift) & 0xFF;
869 		if (!msk)
870 			continue;
871 
872 		sprintf(buf, "%02x", (id->cls >> byte_shift) & msk);
873 		if (strncmp(buf, &hwid->id[(i - 1) * 2], 2))
874 			return false;
875 	}
876 	return true;
877 }
878 
879 static bool __acpi_match_device(const struct acpi_device *device,
880 				const struct acpi_device_id *acpi_ids,
881 				const struct of_device_id *of_ids,
882 				const struct acpi_device_id **acpi_id,
883 				const struct of_device_id **of_id)
884 {
885 	const struct acpi_device_id *id;
886 	struct acpi_hardware_id *hwid;
887 
888 	/*
889 	 * If the device is not present, it is unnecessary to load device
890 	 * driver for it.
891 	 */
892 	if (!device || !device->status.present)
893 		return false;
894 
895 	list_for_each_entry(hwid, &device->pnp.ids, list) {
896 		/* First, check the ACPI/PNP IDs provided by the caller. */
897 		if (acpi_ids) {
898 			for (id = acpi_ids; id->id[0] || id->cls; id++) {
899 				if (id->id[0] && !strcmp((char *)id->id, hwid->id))
900 					goto out_acpi_match;
901 				if (id->cls && __acpi_match_device_cls(id, hwid))
902 					goto out_acpi_match;
903 			}
904 		}
905 
906 		/*
907 		 * Next, check ACPI_DT_NAMESPACE_HID and try to match the
908 		 * "compatible" property if found.
909 		 */
910 		if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id))
911 			return acpi_of_match_device(device, of_ids, of_id);
912 	}
913 	return false;
914 
915 out_acpi_match:
916 	if (acpi_id)
917 		*acpi_id = id;
918 	return true;
919 }
920 
921 /**
922  * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs
923  * @ids: Array of struct acpi_device_id objects to match against.
924  * @adev: The ACPI device pointer to match.
925  *
926  * Match the ACPI device @adev against a given list of ACPI IDs @ids.
927  *
928  * Return:
929  * a pointer to the first matching ACPI ID on success or %NULL on failure.
930  */
931 const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids,
932 						    const struct acpi_device *adev)
933 {
934 	const struct acpi_device_id *id = NULL;
935 
936 	__acpi_match_device(adev, ids, NULL, &id, NULL);
937 	return id;
938 }
939 EXPORT_SYMBOL_GPL(acpi_match_acpi_device);
940 
941 /**
942  * acpi_match_device - Match a struct device against a given list of ACPI IDs
943  * @ids: Array of struct acpi_device_id object to match against.
944  * @dev: The device structure to match.
945  *
946  * Check if @dev has a valid ACPI handle and if there is a struct acpi_device
947  * object for that handle and use that object to match against a given list of
948  * device IDs.
949  *
950  * Return a pointer to the first matching ID on success or %NULL on failure.
951  */
952 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids,
953 					       const struct device *dev)
954 {
955 	return acpi_match_acpi_device(ids, acpi_companion_match(dev));
956 }
957 EXPORT_SYMBOL_GPL(acpi_match_device);
958 
959 static const void *acpi_of_device_get_match_data(const struct device *dev)
960 {
961 	struct acpi_device *adev = ACPI_COMPANION(dev);
962 	const struct of_device_id *match = NULL;
963 
964 	if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match))
965 		return NULL;
966 
967 	return match->data;
968 }
969 
970 const void *acpi_device_get_match_data(const struct device *dev)
971 {
972 	const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table;
973 	const struct acpi_device_id *match;
974 
975 	if (!acpi_ids)
976 		return acpi_of_device_get_match_data(dev);
977 
978 	match = acpi_match_device(acpi_ids, dev);
979 	if (!match)
980 		return NULL;
981 
982 	return (const void *)match->driver_data;
983 }
984 EXPORT_SYMBOL_GPL(acpi_device_get_match_data);
985 
986 int acpi_match_device_ids(struct acpi_device *device,
987 			  const struct acpi_device_id *ids)
988 {
989 	return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT;
990 }
991 EXPORT_SYMBOL(acpi_match_device_ids);
992 
993 bool acpi_driver_match_device(struct device *dev,
994 			      const struct device_driver *drv)
995 {
996 	const struct acpi_device_id *acpi_ids = drv->acpi_match_table;
997 	const struct of_device_id *of_ids = drv->of_match_table;
998 
999 	if (!acpi_ids)
1000 		return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL);
1001 
1002 	return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL);
1003 }
1004 EXPORT_SYMBOL_GPL(acpi_driver_match_device);
1005 
1006 /* --------------------------------------------------------------------------
1007                               ACPI Driver Management
1008    -------------------------------------------------------------------------- */
1009 
1010 /**
1011  * __acpi_bus_register_driver - register a driver with the ACPI bus
1012  * @driver: driver being registered
1013  * @owner: owning module/driver
1014  *
1015  * Registers a driver with the ACPI bus.  Searches the namespace for all
1016  * devices that match the driver's criteria and binds.  Returns zero for
1017  * success or a negative error status for failure.
1018  */
1019 int __acpi_bus_register_driver(struct acpi_driver *driver, struct module *owner)
1020 {
1021 	if (acpi_disabled)
1022 		return -ENODEV;
1023 	driver->drv.name = driver->name;
1024 	driver->drv.bus = &acpi_bus_type;
1025 	driver->drv.owner = owner;
1026 
1027 	return driver_register(&driver->drv);
1028 }
1029 
1030 EXPORT_SYMBOL(__acpi_bus_register_driver);
1031 
1032 /**
1033  * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus
1034  * @driver: driver to unregister
1035  *
1036  * Unregisters a driver with the ACPI bus.  Searches the namespace for all
1037  * devices that match the driver's criteria and unbinds.
1038  */
1039 void acpi_bus_unregister_driver(struct acpi_driver *driver)
1040 {
1041 	driver_unregister(&driver->drv);
1042 }
1043 
1044 EXPORT_SYMBOL(acpi_bus_unregister_driver);
1045 
1046 /* --------------------------------------------------------------------------
1047                               ACPI Bus operations
1048    -------------------------------------------------------------------------- */
1049 
1050 static int acpi_bus_match(struct device *dev, const struct device_driver *drv)
1051 {
1052 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1053 	const struct acpi_driver *acpi_drv = to_acpi_driver(drv);
1054 
1055 	return acpi_dev->flags.match_driver
1056 		&& !acpi_match_device_ids(acpi_dev, acpi_drv->ids);
1057 }
1058 
1059 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env)
1060 {
1061 	return __acpi_device_uevent_modalias(to_acpi_device(dev), env);
1062 }
1063 
1064 static int acpi_device_probe(struct device *dev)
1065 {
1066 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1067 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1068 	int ret;
1069 
1070 	if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev))
1071 		return -EINVAL;
1072 
1073 	if (!acpi_drv->ops.add)
1074 		return -ENOSYS;
1075 
1076 	ret = acpi_drv->ops.add(acpi_dev);
1077 	if (ret) {
1078 		acpi_dev->driver_data = NULL;
1079 		return ret;
1080 	}
1081 
1082 	pr_debug("Driver [%s] successfully bound to device [%s]\n",
1083 		 acpi_drv->name, acpi_dev->pnp.bus_id);
1084 
1085 	if (acpi_drv->ops.notify) {
1086 		ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv);
1087 		if (ret) {
1088 			if (acpi_drv->ops.remove)
1089 				acpi_drv->ops.remove(acpi_dev);
1090 
1091 			acpi_dev->driver_data = NULL;
1092 			return ret;
1093 		}
1094 	}
1095 
1096 	pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name,
1097 		 acpi_dev->pnp.bus_id);
1098 
1099 	get_device(dev);
1100 	return 0;
1101 }
1102 
1103 static void acpi_device_remove(struct device *dev)
1104 {
1105 	struct acpi_device *acpi_dev = to_acpi_device(dev);
1106 	struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver);
1107 
1108 	if (acpi_drv->ops.notify)
1109 		acpi_device_remove_notify_handler(acpi_dev, acpi_drv);
1110 
1111 	if (acpi_drv->ops.remove)
1112 		acpi_drv->ops.remove(acpi_dev);
1113 
1114 	acpi_dev->driver_data = NULL;
1115 
1116 	put_device(dev);
1117 }
1118 
1119 const struct bus_type acpi_bus_type = {
1120 	.name		= "acpi",
1121 	.match		= acpi_bus_match,
1122 	.probe		= acpi_device_probe,
1123 	.remove		= acpi_device_remove,
1124 	.uevent		= acpi_device_uevent,
1125 };
1126 
1127 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data)
1128 {
1129 	return bus_for_each_dev(&acpi_bus_type, NULL, data, fn);
1130 }
1131 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev);
1132 
1133 struct acpi_dev_walk_context {
1134 	int (*fn)(struct acpi_device *, void *);
1135 	void *data;
1136 };
1137 
1138 static int acpi_dev_for_one_check(struct device *dev, void *context)
1139 {
1140 	struct acpi_dev_walk_context *adwc = context;
1141 
1142 	if (dev->bus != &acpi_bus_type)
1143 		return 0;
1144 
1145 	return adwc->fn(to_acpi_device(dev), adwc->data);
1146 }
1147 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child);
1148 
1149 int acpi_dev_for_each_child(struct acpi_device *adev,
1150 			    int (*fn)(struct acpi_device *, void *), void *data)
1151 {
1152 	struct acpi_dev_walk_context adwc = {
1153 		.fn = fn,
1154 		.data = data,
1155 	};
1156 
1157 	return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check);
1158 }
1159 
1160 int acpi_dev_for_each_child_reverse(struct acpi_device *adev,
1161 				    int (*fn)(struct acpi_device *, void *),
1162 				    void *data)
1163 {
1164 	struct acpi_dev_walk_context adwc = {
1165 		.fn = fn,
1166 		.data = data,
1167 	};
1168 
1169 	return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check);
1170 }
1171 
1172 /* --------------------------------------------------------------------------
1173                              Initialization/Cleanup
1174    -------------------------------------------------------------------------- */
1175 
1176 static int __init acpi_bus_init_irq(void)
1177 {
1178 	acpi_status status;
1179 	char *message = NULL;
1180 
1181 
1182 	/*
1183 	 * Let the system know what interrupt model we are using by
1184 	 * evaluating the \_PIC object, if exists.
1185 	 */
1186 
1187 	switch (acpi_irq_model) {
1188 	case ACPI_IRQ_MODEL_PIC:
1189 		message = "PIC";
1190 		break;
1191 	case ACPI_IRQ_MODEL_IOAPIC:
1192 		message = "IOAPIC";
1193 		break;
1194 	case ACPI_IRQ_MODEL_IOSAPIC:
1195 		message = "IOSAPIC";
1196 		break;
1197 	case ACPI_IRQ_MODEL_GIC:
1198 		message = "GIC";
1199 		break;
1200 	case ACPI_IRQ_MODEL_PLATFORM:
1201 		message = "platform specific model";
1202 		break;
1203 	case ACPI_IRQ_MODEL_LPIC:
1204 		message = "LPIC";
1205 		break;
1206 	default:
1207 		pr_info("Unknown interrupt routing model\n");
1208 		return -ENODEV;
1209 	}
1210 
1211 	pr_info("Using %s for interrupt routing\n", message);
1212 
1213 	status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model);
1214 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
1215 		pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status));
1216 		return -ENODEV;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * acpi_early_init - Initialize ACPICA and populate the ACPI namespace.
1224  *
1225  * The ACPI tables are accessible after this, but the handling of events has not
1226  * been initialized and the global lock is not available yet, so AML should not
1227  * be executed at this point.
1228  *
1229  * Doing this before switching the EFI runtime services to virtual mode allows
1230  * the EfiBootServices memory to be freed slightly earlier on boot.
1231  */
1232 void __init acpi_early_init(void)
1233 {
1234 	acpi_status status;
1235 
1236 	if (acpi_disabled)
1237 		return;
1238 
1239 	pr_info("Core revision %08x\n", ACPI_CA_VERSION);
1240 
1241 	/* enable workarounds, unless strict ACPI spec. compliance */
1242 	if (!acpi_strict)
1243 		acpi_gbl_enable_interpreter_slack = TRUE;
1244 
1245 	acpi_permanent_mmap = true;
1246 
1247 #ifdef CONFIG_X86
1248 	/*
1249 	 * If the machine falls into the DMI check table,
1250 	 * DSDT will be copied to memory.
1251 	 * Note that calling dmi_check_system() here on other architectures
1252 	 * would not be OK because only x86 initializes dmi early enough.
1253 	 * Thankfully only x86 systems need such quirks for now.
1254 	 */
1255 	dmi_check_system(dsdt_dmi_table);
1256 #endif
1257 
1258 	status = acpi_reallocate_root_table();
1259 	if (ACPI_FAILURE(status)) {
1260 		pr_err("Unable to reallocate ACPI tables\n");
1261 		goto error0;
1262 	}
1263 
1264 	status = acpi_initialize_subsystem();
1265 	if (ACPI_FAILURE(status)) {
1266 		pr_err("Unable to initialize the ACPI Interpreter\n");
1267 		goto error0;
1268 	}
1269 
1270 #ifdef CONFIG_X86
1271 	if (!acpi_ioapic) {
1272 		/* compatible (0) means level (3) */
1273 		if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) {
1274 			acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK;
1275 			acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL;
1276 		}
1277 		/* Set PIC-mode SCI trigger type */
1278 		acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt,
1279 					 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2);
1280 	} else {
1281 		/*
1282 		 * now that acpi_gbl_FADT is initialized,
1283 		 * update it with result from INT_SRC_OVR parsing
1284 		 */
1285 		acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi;
1286 	}
1287 #endif
1288 	return;
1289 
1290  error0:
1291 	disable_acpi();
1292 }
1293 
1294 /**
1295  * acpi_subsystem_init - Finalize the early initialization of ACPI.
1296  *
1297  * Switch over the platform to the ACPI mode (if possible).
1298  *
1299  * Doing this too early is generally unsafe, but at the same time it needs to be
1300  * done before all things that really depend on ACPI.  The right spot appears to
1301  * be before finalizing the EFI initialization.
1302  */
1303 void __init acpi_subsystem_init(void)
1304 {
1305 	acpi_status status;
1306 
1307 	if (acpi_disabled)
1308 		return;
1309 
1310 	status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE);
1311 	if (ACPI_FAILURE(status)) {
1312 		pr_err("Unable to enable ACPI\n");
1313 		disable_acpi();
1314 	} else {
1315 		/*
1316 		 * If the system is using ACPI then we can be reasonably
1317 		 * confident that any regulators are managed by the firmware
1318 		 * so tell the regulator core it has everything it needs to
1319 		 * know.
1320 		 */
1321 		regulator_has_full_constraints();
1322 	}
1323 }
1324 
1325 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context)
1326 {
1327 	if (event == ACPI_TABLE_EVENT_LOAD)
1328 		acpi_scan_table_notify();
1329 
1330 	return acpi_sysfs_table_handler(event, table, context);
1331 }
1332 
1333 static int __init acpi_bus_init(void)
1334 {
1335 	int result;
1336 	acpi_status status;
1337 
1338 	acpi_os_initialize1();
1339 
1340 	status = acpi_load_tables();
1341 	if (ACPI_FAILURE(status)) {
1342 		pr_err("Unable to load the System Description Tables\n");
1343 		goto error1;
1344 	}
1345 
1346 	/*
1347 	 * ACPI 2.0 requires the EC driver to be loaded and work before the EC
1348 	 * device is found in the namespace.
1349 	 *
1350 	 * This is accomplished by looking for the ECDT table and getting the EC
1351 	 * parameters out of that.
1352 	 *
1353 	 * Do that before calling acpi_initialize_objects() which may trigger EC
1354 	 * address space accesses.
1355 	 */
1356 	acpi_ec_ecdt_probe();
1357 
1358 	status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE);
1359 	if (ACPI_FAILURE(status)) {
1360 		pr_err("Unable to start the ACPI Interpreter\n");
1361 		goto error1;
1362 	}
1363 
1364 	status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION);
1365 	if (ACPI_FAILURE(status)) {
1366 		pr_err("Unable to initialize ACPI objects\n");
1367 		goto error1;
1368 	}
1369 
1370 	/*
1371 	 * _OSC method may exist in module level code,
1372 	 * so it must be run after ACPI_FULL_INITIALIZATION
1373 	 */
1374 	acpi_bus_osc_negotiate_platform_control();
1375 	acpi_bus_osc_negotiate_usb_control();
1376 
1377 	/*
1378 	 * _PDC control method may load dynamic SSDT tables,
1379 	 * and we need to install the table handler before that.
1380 	 */
1381 	status = acpi_install_table_handler(acpi_bus_table_handler, NULL);
1382 
1383 	acpi_sysfs_init();
1384 
1385 	acpi_early_processor_control_setup();
1386 
1387 	/*
1388 	 * Maybe EC region is required at bus_scan/acpi_get_devices. So it
1389 	 * is necessary to enable it as early as possible.
1390 	 */
1391 	acpi_ec_dsdt_probe();
1392 
1393 	pr_info("Interpreter enabled\n");
1394 
1395 	/* Initialize sleep structures */
1396 	acpi_sleep_init();
1397 
1398 	/*
1399 	 * Get the system interrupt model and evaluate \_PIC.
1400 	 */
1401 	result = acpi_bus_init_irq();
1402 	if (result)
1403 		goto error1;
1404 
1405 	/*
1406 	 * Register the for all standard device notifications.
1407 	 */
1408 	status =
1409 	    acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY,
1410 					&acpi_bus_notify, NULL);
1411 	if (ACPI_FAILURE(status)) {
1412 		pr_err("Unable to register for system notifications\n");
1413 		goto error1;
1414 	}
1415 
1416 	/*
1417 	 * Create the top ACPI proc directory
1418 	 */
1419 	acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL);
1420 
1421 	result = bus_register(&acpi_bus_type);
1422 	if (!result)
1423 		return 0;
1424 
1425 	/* Mimic structured exception handling */
1426       error1:
1427 	acpi_terminate();
1428 	return -ENODEV;
1429 }
1430 
1431 struct kobject *acpi_kobj;
1432 EXPORT_SYMBOL_GPL(acpi_kobj);
1433 
1434 static int __init acpi_init(void)
1435 {
1436 	int result;
1437 
1438 	if (acpi_disabled) {
1439 		pr_info("Interpreter disabled.\n");
1440 		return -ENODEV;
1441 	}
1442 
1443 	acpi_kobj = kobject_create_and_add("acpi", firmware_kobj);
1444 	if (!acpi_kobj)
1445 		pr_debug("%s: kset create error\n", __func__);
1446 
1447 	init_prmt();
1448 	acpi_init_pcc();
1449 	result = acpi_bus_init();
1450 	if (result) {
1451 		kobject_put(acpi_kobj);
1452 		disable_acpi();
1453 		return result;
1454 	}
1455 	acpi_init_ffh();
1456 
1457 	pci_mmcfg_late_init();
1458 	acpi_viot_early_init();
1459 	acpi_hest_init();
1460 	acpi_ghes_init();
1461 	acpi_arm_init();
1462 	acpi_scan_init();
1463 	acpi_ec_init();
1464 	acpi_debugfs_init();
1465 	acpi_sleep_proc_init();
1466 	acpi_wakeup_device_init();
1467 	acpi_debugger_init();
1468 	acpi_setup_sb_notify_handler();
1469 	acpi_viot_init();
1470 	return 0;
1471 }
1472 
1473 subsys_initcall(acpi_init);
1474