1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) 4 * 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 */ 7 8 #define pr_fmt(fmt) "ACPI: " fmt 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/ioport.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/sched.h> 16 #include <linux/pm.h> 17 #include <linux/device.h> 18 #include <linux/proc_fs.h> 19 #include <linux/acpi.h> 20 #include <linux/slab.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/workqueue.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #ifdef CONFIG_X86 26 #include <asm/mpspec.h> 27 #include <linux/dmi.h> 28 #endif 29 #include <linux/acpi_agdi.h> 30 #include <linux/acpi_apmt.h> 31 #include <linux/acpi_iort.h> 32 #include <linux/acpi_viot.h> 33 #include <linux/pci.h> 34 #include <acpi/apei.h> 35 #include <linux/suspend.h> 36 #include <linux/prmt.h> 37 38 #include "internal.h" 39 40 struct acpi_device *acpi_root; 41 struct proc_dir_entry *acpi_root_dir; 42 EXPORT_SYMBOL(acpi_root_dir); 43 44 #ifdef CONFIG_X86 45 #ifdef CONFIG_ACPI_CUSTOM_DSDT 46 static inline int set_copy_dsdt(const struct dmi_system_id *id) 47 { 48 return 0; 49 } 50 #else 51 static int set_copy_dsdt(const struct dmi_system_id *id) 52 { 53 pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); 54 acpi_gbl_copy_dsdt_locally = 1; 55 return 0; 56 } 57 #endif 58 59 static const struct dmi_system_id dsdt_dmi_table[] __initconst = { 60 /* 61 * Invoke DSDT corruption work-around on all Toshiba Satellite. 62 * https://bugzilla.kernel.org/show_bug.cgi?id=14679 63 */ 64 { 65 .callback = set_copy_dsdt, 66 .ident = "TOSHIBA Satellite", 67 .matches = { 68 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 69 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), 70 }, 71 }, 72 {} 73 }; 74 #endif 75 76 /* -------------------------------------------------------------------------- 77 Device Management 78 -------------------------------------------------------------------------- */ 79 80 acpi_status acpi_bus_get_status_handle(acpi_handle handle, 81 unsigned long long *sta) 82 { 83 acpi_status status; 84 85 status = acpi_evaluate_integer(handle, "_STA", NULL, sta); 86 if (ACPI_SUCCESS(status)) 87 return AE_OK; 88 89 if (status == AE_NOT_FOUND) { 90 *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | 91 ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; 92 return AE_OK; 93 } 94 return status; 95 } 96 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); 97 98 int acpi_bus_get_status(struct acpi_device *device) 99 { 100 acpi_status status; 101 unsigned long long sta; 102 103 if (acpi_device_override_status(device, &sta)) { 104 acpi_set_device_status(device, sta); 105 return 0; 106 } 107 108 /* Battery devices must have their deps met before calling _STA */ 109 if (acpi_device_is_battery(device) && device->dep_unmet) { 110 acpi_set_device_status(device, 0); 111 return 0; 112 } 113 114 status = acpi_bus_get_status_handle(device->handle, &sta); 115 if (ACPI_FAILURE(status)) 116 return -ENODEV; 117 118 acpi_set_device_status(device, sta); 119 120 if (device->status.functional && !device->status.present) { 121 pr_debug("Device [%s] status [%08x]: functional but not present\n", 122 device->pnp.bus_id, (u32)sta); 123 } 124 125 pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); 126 return 0; 127 } 128 EXPORT_SYMBOL(acpi_bus_get_status); 129 130 void acpi_bus_private_data_handler(acpi_handle handle, 131 void *context) 132 { 133 return; 134 } 135 EXPORT_SYMBOL(acpi_bus_private_data_handler); 136 137 int acpi_bus_attach_private_data(acpi_handle handle, void *data) 138 { 139 acpi_status status; 140 141 status = acpi_attach_data(handle, 142 acpi_bus_private_data_handler, data); 143 if (ACPI_FAILURE(status)) { 144 acpi_handle_debug(handle, "Error attaching device data\n"); 145 return -ENODEV; 146 } 147 148 return 0; 149 } 150 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); 151 152 int acpi_bus_get_private_data(acpi_handle handle, void **data) 153 { 154 acpi_status status; 155 156 if (!data) 157 return -EINVAL; 158 159 status = acpi_get_data(handle, acpi_bus_private_data_handler, data); 160 if (ACPI_FAILURE(status)) { 161 acpi_handle_debug(handle, "No context for object\n"); 162 return -ENODEV; 163 } 164 165 return 0; 166 } 167 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); 168 169 void acpi_bus_detach_private_data(acpi_handle handle) 170 { 171 acpi_detach_data(handle, acpi_bus_private_data_handler); 172 } 173 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); 174 175 static void acpi_print_osc_error(acpi_handle handle, 176 struct acpi_osc_context *context, char *error) 177 { 178 int i; 179 180 acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error); 181 182 pr_debug("_OSC request data:"); 183 for (i = 0; i < context->cap.length; i += sizeof(u32)) 184 pr_debug(" %x", *((u32 *)(context->cap.pointer + i))); 185 186 pr_debug("\n"); 187 } 188 189 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) 190 { 191 acpi_status status; 192 struct acpi_object_list input; 193 union acpi_object in_params[4]; 194 union acpi_object *out_obj; 195 guid_t guid; 196 u32 errors; 197 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 198 199 if (!context) 200 return AE_ERROR; 201 if (guid_parse(context->uuid_str, &guid)) 202 return AE_ERROR; 203 context->ret.length = ACPI_ALLOCATE_BUFFER; 204 context->ret.pointer = NULL; 205 206 /* Setting up input parameters */ 207 input.count = 4; 208 input.pointer = in_params; 209 in_params[0].type = ACPI_TYPE_BUFFER; 210 in_params[0].buffer.length = 16; 211 in_params[0].buffer.pointer = (u8 *)&guid; 212 in_params[1].type = ACPI_TYPE_INTEGER; 213 in_params[1].integer.value = context->rev; 214 in_params[2].type = ACPI_TYPE_INTEGER; 215 in_params[2].integer.value = context->cap.length/sizeof(u32); 216 in_params[3].type = ACPI_TYPE_BUFFER; 217 in_params[3].buffer.length = context->cap.length; 218 in_params[3].buffer.pointer = context->cap.pointer; 219 220 status = acpi_evaluate_object(handle, "_OSC", &input, &output); 221 if (ACPI_FAILURE(status)) 222 return status; 223 224 if (!output.length) 225 return AE_NULL_OBJECT; 226 227 out_obj = output.pointer; 228 if (out_obj->type != ACPI_TYPE_BUFFER 229 || out_obj->buffer.length != context->cap.length) { 230 acpi_print_osc_error(handle, context, 231 "_OSC evaluation returned wrong type"); 232 status = AE_TYPE; 233 goto out_kfree; 234 } 235 /* Need to ignore the bit0 in result code */ 236 errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); 237 if (errors) { 238 if (errors & OSC_REQUEST_ERROR) 239 acpi_print_osc_error(handle, context, 240 "_OSC request failed"); 241 if (errors & OSC_INVALID_UUID_ERROR) 242 acpi_print_osc_error(handle, context, 243 "_OSC invalid UUID"); 244 if (errors & OSC_INVALID_REVISION_ERROR) 245 acpi_print_osc_error(handle, context, 246 "_OSC invalid revision"); 247 if (errors & OSC_CAPABILITIES_MASK_ERROR) { 248 if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD] 249 & OSC_QUERY_ENABLE) 250 goto out_success; 251 status = AE_SUPPORT; 252 goto out_kfree; 253 } 254 status = AE_ERROR; 255 goto out_kfree; 256 } 257 out_success: 258 context->ret.length = out_obj->buffer.length; 259 context->ret.pointer = kmemdup(out_obj->buffer.pointer, 260 context->ret.length, GFP_KERNEL); 261 if (!context->ret.pointer) { 262 status = AE_NO_MEMORY; 263 goto out_kfree; 264 } 265 status = AE_OK; 266 267 out_kfree: 268 kfree(output.pointer); 269 return status; 270 } 271 EXPORT_SYMBOL(acpi_run_osc); 272 273 bool osc_sb_apei_support_acked; 274 275 /* 276 * ACPI 6.0 Section 8.4.4.2 Idle State Coordination 277 * OSPM supports platform coordinated low power idle(LPI) states 278 */ 279 bool osc_pc_lpi_support_confirmed; 280 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); 281 282 /* 283 * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': 284 * Starting with ACPI Specification 6.2, all _CPC registers can be in 285 * PCC, System Memory, System IO, or Functional Fixed Hardware address 286 * spaces. OSPM support for this more flexible register space scheme is 287 * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. 288 * 289 * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: 290 * - PCC or Functional Fixed Hardware address space if defined 291 * - SystemMemory address space (NULL register) if not defined 292 */ 293 bool osc_cpc_flexible_adr_space_confirmed; 294 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); 295 296 /* 297 * ACPI 6.4 Operating System Capabilities for USB. 298 */ 299 bool osc_sb_native_usb4_support_confirmed; 300 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); 301 302 bool osc_sb_cppc2_support_acked; 303 304 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; 305 static void acpi_bus_osc_negotiate_platform_control(void) 306 { 307 u32 capbuf[2], *capbuf_ret; 308 struct acpi_osc_context context = { 309 .uuid_str = sb_uuid_str, 310 .rev = 1, 311 .cap.length = 8, 312 .cap.pointer = capbuf, 313 }; 314 acpi_handle handle; 315 316 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 317 capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */ 318 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) 319 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT; 320 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) 321 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT; 322 323 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT; 324 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT; 325 if (IS_ENABLED(CONFIG_ACPI_PRMT)) 326 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT; 327 if (IS_ENABLED(CONFIG_ACPI_FFH)) 328 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT; 329 330 #ifdef CONFIG_ARM64 331 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 332 #endif 333 #ifdef CONFIG_X86 334 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 335 #endif 336 337 #ifdef CONFIG_ACPI_CPPC_LIB 338 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT; 339 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT; 340 #endif 341 342 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 343 344 if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) 345 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; 346 347 if (IS_ENABLED(CONFIG_USB4)) 348 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT; 349 350 if (!ghes_disable) 351 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT; 352 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 353 return; 354 355 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 356 return; 357 358 capbuf_ret = context.ret.pointer; 359 if (context.ret.length <= OSC_SUPPORT_DWORD) { 360 kfree(context.ret.pointer); 361 return; 362 } 363 364 /* 365 * Now run _OSC again with query flag clear and with the caps 366 * supported by both the OS and the platform. 367 */ 368 capbuf[OSC_QUERY_DWORD] = 0; 369 capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD]; 370 kfree(context.ret.pointer); 371 372 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 373 return; 374 375 capbuf_ret = context.ret.pointer; 376 if (context.ret.length > OSC_SUPPORT_DWORD) { 377 #ifdef CONFIG_ACPI_CPPC_LIB 378 osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT; 379 #endif 380 381 osc_sb_apei_support_acked = 382 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT; 383 osc_pc_lpi_support_confirmed = 384 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT; 385 osc_sb_native_usb4_support_confirmed = 386 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT; 387 osc_cpc_flexible_adr_space_confirmed = 388 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 389 } 390 391 kfree(context.ret.pointer); 392 } 393 394 /* 395 * Native control of USB4 capabilities. If any of the tunneling bits is 396 * set it means OS is in control and we use software based connection 397 * manager. 398 */ 399 u32 osc_sb_native_usb4_control; 400 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); 401 402 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) 403 { 404 pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, 405 (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', 406 (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', 407 (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', 408 (bits & OSC_USB_XDOMAIN) ? '+' : '-'); 409 } 410 411 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; 412 static void acpi_bus_osc_negotiate_usb_control(void) 413 { 414 u32 capbuf[3]; 415 struct acpi_osc_context context = { 416 .uuid_str = sb_usb_uuid_str, 417 .rev = 1, 418 .cap.length = sizeof(capbuf), 419 .cap.pointer = capbuf, 420 }; 421 acpi_handle handle; 422 acpi_status status; 423 u32 control; 424 425 if (!osc_sb_native_usb4_support_confirmed) 426 return; 427 428 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 429 return; 430 431 control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | 432 OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; 433 434 capbuf[OSC_QUERY_DWORD] = 0; 435 capbuf[OSC_SUPPORT_DWORD] = 0; 436 capbuf[OSC_CONTROL_DWORD] = control; 437 438 status = acpi_run_osc(handle, &context); 439 if (ACPI_FAILURE(status)) 440 return; 441 442 if (context.ret.length != sizeof(capbuf)) { 443 pr_info("USB4 _OSC: returned invalid length buffer\n"); 444 goto out_free; 445 } 446 447 osc_sb_native_usb4_control = 448 control & acpi_osc_ctx_get_pci_control(&context); 449 450 acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); 451 acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", 452 osc_sb_native_usb4_control); 453 454 out_free: 455 kfree(context.ret.pointer); 456 } 457 458 /* -------------------------------------------------------------------------- 459 Notification Handling 460 -------------------------------------------------------------------------- */ 461 462 /* 463 * acpi_bus_notify 464 * --------------- 465 * Callback for all 'system-level' device notifications (values 0x00-0x7F). 466 */ 467 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) 468 { 469 struct acpi_device *adev; 470 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 471 bool hotplug_event = false; 472 473 switch (type) { 474 case ACPI_NOTIFY_BUS_CHECK: 475 acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); 476 hotplug_event = true; 477 break; 478 479 case ACPI_NOTIFY_DEVICE_CHECK: 480 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); 481 hotplug_event = true; 482 break; 483 484 case ACPI_NOTIFY_DEVICE_WAKE: 485 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); 486 break; 487 488 case ACPI_NOTIFY_EJECT_REQUEST: 489 acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); 490 hotplug_event = true; 491 break; 492 493 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: 494 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); 495 /* TBD: Exactly what does 'light' mean? */ 496 break; 497 498 case ACPI_NOTIFY_FREQUENCY_MISMATCH: 499 acpi_handle_err(handle, "Device cannot be configured due " 500 "to a frequency mismatch\n"); 501 break; 502 503 case ACPI_NOTIFY_BUS_MODE_MISMATCH: 504 acpi_handle_err(handle, "Device cannot be configured due " 505 "to a bus mode mismatch\n"); 506 break; 507 508 case ACPI_NOTIFY_POWER_FAULT: 509 acpi_handle_err(handle, "Device has suffered a power fault\n"); 510 break; 511 512 default: 513 acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); 514 break; 515 } 516 517 adev = acpi_get_acpi_dev(handle); 518 if (!adev) 519 goto err; 520 521 if (adev->dev.driver) { 522 struct acpi_driver *driver = to_acpi_driver(adev->dev.driver); 523 524 if (driver && driver->ops.notify && 525 (driver->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS)) 526 driver->ops.notify(adev, type); 527 } 528 529 if (!hotplug_event) { 530 acpi_put_acpi_dev(adev); 531 return; 532 } 533 534 if (ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) 535 return; 536 537 acpi_put_acpi_dev(adev); 538 539 err: 540 acpi_evaluate_ost(handle, type, ost_code, NULL); 541 } 542 543 static void acpi_notify_device(acpi_handle handle, u32 event, void *data) 544 { 545 struct acpi_device *device = data; 546 struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); 547 548 acpi_drv->ops.notify(device, event); 549 } 550 551 static void acpi_notify_device_fixed(void *data) 552 { 553 struct acpi_device *device = data; 554 555 /* Fixed hardware devices have no handles */ 556 acpi_notify_device(NULL, ACPI_FIXED_HARDWARE_EVENT, device); 557 } 558 559 static u32 acpi_device_fixed_event(void *data) 560 { 561 acpi_os_execute(OSL_NOTIFY_HANDLER, acpi_notify_device_fixed, data); 562 return ACPI_INTERRUPT_HANDLED; 563 } 564 565 static int acpi_device_install_notify_handler(struct acpi_device *device) 566 { 567 acpi_status status; 568 569 if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON) 570 status = 571 acpi_install_fixed_event_handler(ACPI_EVENT_POWER_BUTTON, 572 acpi_device_fixed_event, 573 device); 574 else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON) 575 status = 576 acpi_install_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON, 577 acpi_device_fixed_event, 578 device); 579 else 580 status = acpi_install_notify_handler(device->handle, 581 ACPI_DEVICE_NOTIFY, 582 acpi_notify_device, 583 device); 584 585 if (ACPI_FAILURE(status)) 586 return -EINVAL; 587 return 0; 588 } 589 590 static void acpi_device_remove_notify_handler(struct acpi_device *device) 591 { 592 if (device->device_type == ACPI_BUS_TYPE_POWER_BUTTON) 593 acpi_remove_fixed_event_handler(ACPI_EVENT_POWER_BUTTON, 594 acpi_device_fixed_event); 595 else if (device->device_type == ACPI_BUS_TYPE_SLEEP_BUTTON) 596 acpi_remove_fixed_event_handler(ACPI_EVENT_SLEEP_BUTTON, 597 acpi_device_fixed_event); 598 else 599 acpi_remove_notify_handler(device->handle, ACPI_DEVICE_NOTIFY, 600 acpi_notify_device); 601 } 602 603 /* Handle events targeting \_SB device (at present only graceful shutdown) */ 604 605 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 606 #define ACPI_SB_INDICATE_INTERVAL 10000 607 608 static void sb_notify_work(struct work_struct *dummy) 609 { 610 acpi_handle sb_handle; 611 612 orderly_poweroff(true); 613 614 /* 615 * After initiating graceful shutdown, the ACPI spec requires OSPM 616 * to evaluate _OST method once every 10seconds to indicate that 617 * the shutdown is in progress 618 */ 619 acpi_get_handle(NULL, "\\_SB", &sb_handle); 620 while (1) { 621 pr_info("Graceful shutdown in progress.\n"); 622 acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, 623 ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); 624 msleep(ACPI_SB_INDICATE_INTERVAL); 625 } 626 } 627 628 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) 629 { 630 static DECLARE_WORK(acpi_sb_work, sb_notify_work); 631 632 if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { 633 if (!work_busy(&acpi_sb_work)) 634 schedule_work(&acpi_sb_work); 635 } else 636 pr_warn("event %x is not supported by \\_SB device\n", event); 637 } 638 639 static int __init acpi_setup_sb_notify_handler(void) 640 { 641 acpi_handle sb_handle; 642 643 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) 644 return -ENXIO; 645 646 if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, 647 acpi_sb_notify, NULL))) 648 return -EINVAL; 649 650 return 0; 651 } 652 653 /* -------------------------------------------------------------------------- 654 Device Matching 655 -------------------------------------------------------------------------- */ 656 657 /** 658 * acpi_get_first_physical_node - Get first physical node of an ACPI device 659 * @adev: ACPI device in question 660 * 661 * Return: First physical node of ACPI device @adev 662 */ 663 struct device *acpi_get_first_physical_node(struct acpi_device *adev) 664 { 665 struct mutex *physical_node_lock = &adev->physical_node_lock; 666 struct device *phys_dev; 667 668 mutex_lock(physical_node_lock); 669 if (list_empty(&adev->physical_node_list)) { 670 phys_dev = NULL; 671 } else { 672 const struct acpi_device_physical_node *node; 673 674 node = list_first_entry(&adev->physical_node_list, 675 struct acpi_device_physical_node, node); 676 677 phys_dev = node->dev; 678 } 679 mutex_unlock(physical_node_lock); 680 return phys_dev; 681 } 682 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); 683 684 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, 685 const struct device *dev) 686 { 687 const struct device *phys_dev = acpi_get_first_physical_node(adev); 688 689 return phys_dev && phys_dev == dev ? adev : NULL; 690 } 691 692 /** 693 * acpi_device_is_first_physical_node - Is given dev first physical node 694 * @adev: ACPI companion device 695 * @dev: Physical device to check 696 * 697 * Function checks if given @dev is the first physical devices attached to 698 * the ACPI companion device. This distinction is needed in some cases 699 * where the same companion device is shared between many physical devices. 700 * 701 * Note that the caller have to provide valid @adev pointer. 702 */ 703 bool acpi_device_is_first_physical_node(struct acpi_device *adev, 704 const struct device *dev) 705 { 706 return !!acpi_primary_dev_companion(adev, dev); 707 } 708 709 /* 710 * acpi_companion_match() - Can we match via ACPI companion device 711 * @dev: Device in question 712 * 713 * Check if the given device has an ACPI companion and if that companion has 714 * a valid list of PNP IDs, and if the device is the first (primary) physical 715 * device associated with it. Return the companion pointer if that's the case 716 * or NULL otherwise. 717 * 718 * If multiple physical devices are attached to a single ACPI companion, we need 719 * to be careful. The usage scenario for this kind of relationship is that all 720 * of the physical devices in question use resources provided by the ACPI 721 * companion. A typical case is an MFD device where all the sub-devices share 722 * the parent's ACPI companion. In such cases we can only allow the primary 723 * (first) physical device to be matched with the help of the companion's PNP 724 * IDs. 725 * 726 * Additional physical devices sharing the ACPI companion can still use 727 * resources available from it but they will be matched normally using functions 728 * provided by their bus types (and analogously for their modalias). 729 */ 730 struct acpi_device *acpi_companion_match(const struct device *dev) 731 { 732 struct acpi_device *adev; 733 734 adev = ACPI_COMPANION(dev); 735 if (!adev) 736 return NULL; 737 738 if (list_empty(&adev->pnp.ids)) 739 return NULL; 740 741 return acpi_primary_dev_companion(adev, dev); 742 } 743 744 /** 745 * acpi_of_match_device - Match device object using the "compatible" property. 746 * @adev: ACPI device object to match. 747 * @of_match_table: List of device IDs to match against. 748 * @of_id: OF ID if matched 749 * 750 * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of 751 * identifiers and a _DSD object with the "compatible" property, use that 752 * property to match against the given list of identifiers. 753 */ 754 static bool acpi_of_match_device(struct acpi_device *adev, 755 const struct of_device_id *of_match_table, 756 const struct of_device_id **of_id) 757 { 758 const union acpi_object *of_compatible, *obj; 759 int i, nval; 760 761 if (!adev) 762 return false; 763 764 of_compatible = adev->data.of_compatible; 765 if (!of_match_table || !of_compatible) 766 return false; 767 768 if (of_compatible->type == ACPI_TYPE_PACKAGE) { 769 nval = of_compatible->package.count; 770 obj = of_compatible->package.elements; 771 } else { /* Must be ACPI_TYPE_STRING. */ 772 nval = 1; 773 obj = of_compatible; 774 } 775 /* Now we can look for the driver DT compatible strings */ 776 for (i = 0; i < nval; i++, obj++) { 777 const struct of_device_id *id; 778 779 for (id = of_match_table; id->compatible[0]; id++) 780 if (!strcasecmp(obj->string.pointer, id->compatible)) { 781 if (of_id) 782 *of_id = id; 783 return true; 784 } 785 } 786 787 return false; 788 } 789 790 static bool acpi_of_modalias(struct acpi_device *adev, 791 char *modalias, size_t len) 792 { 793 const union acpi_object *of_compatible; 794 const union acpi_object *obj; 795 const char *str, *chr; 796 797 of_compatible = adev->data.of_compatible; 798 if (!of_compatible) 799 return false; 800 801 if (of_compatible->type == ACPI_TYPE_PACKAGE) 802 obj = of_compatible->package.elements; 803 else /* Must be ACPI_TYPE_STRING. */ 804 obj = of_compatible; 805 806 str = obj->string.pointer; 807 chr = strchr(str, ','); 808 strscpy(modalias, chr ? chr + 1 : str, len); 809 810 return true; 811 } 812 813 /** 814 * acpi_set_modalias - Set modalias using "compatible" property or supplied ID 815 * @adev: ACPI device object to match 816 * @default_id: ID string to use as default if no compatible string found 817 * @modalias: Pointer to buffer that modalias value will be copied into 818 * @len: Length of modalias buffer 819 * 820 * This is a counterpart of of_modalias_node() for struct acpi_device objects. 821 * If there is a compatible string for @adev, it will be copied to @modalias 822 * with the vendor prefix stripped; otherwise, @default_id will be used. 823 */ 824 void acpi_set_modalias(struct acpi_device *adev, const char *default_id, 825 char *modalias, size_t len) 826 { 827 if (!acpi_of_modalias(adev, modalias, len)) 828 strscpy(modalias, default_id, len); 829 } 830 EXPORT_SYMBOL_GPL(acpi_set_modalias); 831 832 static bool __acpi_match_device_cls(const struct acpi_device_id *id, 833 struct acpi_hardware_id *hwid) 834 { 835 int i, msk, byte_shift; 836 char buf[3]; 837 838 if (!id->cls) 839 return false; 840 841 /* Apply class-code bitmask, before checking each class-code byte */ 842 for (i = 1; i <= 3; i++) { 843 byte_shift = 8 * (3 - i); 844 msk = (id->cls_msk >> byte_shift) & 0xFF; 845 if (!msk) 846 continue; 847 848 sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); 849 if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) 850 return false; 851 } 852 return true; 853 } 854 855 static bool __acpi_match_device(struct acpi_device *device, 856 const struct acpi_device_id *acpi_ids, 857 const struct of_device_id *of_ids, 858 const struct acpi_device_id **acpi_id, 859 const struct of_device_id **of_id) 860 { 861 const struct acpi_device_id *id; 862 struct acpi_hardware_id *hwid; 863 864 /* 865 * If the device is not present, it is unnecessary to load device 866 * driver for it. 867 */ 868 if (!device || !device->status.present) 869 return false; 870 871 list_for_each_entry(hwid, &device->pnp.ids, list) { 872 /* First, check the ACPI/PNP IDs provided by the caller. */ 873 if (acpi_ids) { 874 for (id = acpi_ids; id->id[0] || id->cls; id++) { 875 if (id->id[0] && !strcmp((char *)id->id, hwid->id)) 876 goto out_acpi_match; 877 if (id->cls && __acpi_match_device_cls(id, hwid)) 878 goto out_acpi_match; 879 } 880 } 881 882 /* 883 * Next, check ACPI_DT_NAMESPACE_HID and try to match the 884 * "compatible" property if found. 885 */ 886 if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) 887 return acpi_of_match_device(device, of_ids, of_id); 888 } 889 return false; 890 891 out_acpi_match: 892 if (acpi_id) 893 *acpi_id = id; 894 return true; 895 } 896 897 /** 898 * acpi_match_device - Match a struct device against a given list of ACPI IDs 899 * @ids: Array of struct acpi_device_id object to match against. 900 * @dev: The device structure to match. 901 * 902 * Check if @dev has a valid ACPI handle and if there is a struct acpi_device 903 * object for that handle and use that object to match against a given list of 904 * device IDs. 905 * 906 * Return a pointer to the first matching ID on success or %NULL on failure. 907 */ 908 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, 909 const struct device *dev) 910 { 911 const struct acpi_device_id *id = NULL; 912 913 __acpi_match_device(acpi_companion_match(dev), ids, NULL, &id, NULL); 914 return id; 915 } 916 EXPORT_SYMBOL_GPL(acpi_match_device); 917 918 static const void *acpi_of_device_get_match_data(const struct device *dev) 919 { 920 struct acpi_device *adev = ACPI_COMPANION(dev); 921 const struct of_device_id *match = NULL; 922 923 if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match)) 924 return NULL; 925 926 return match->data; 927 } 928 929 const void *acpi_device_get_match_data(const struct device *dev) 930 { 931 const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; 932 const struct acpi_device_id *match; 933 934 if (!acpi_ids) 935 return acpi_of_device_get_match_data(dev); 936 937 match = acpi_match_device(acpi_ids, dev); 938 if (!match) 939 return NULL; 940 941 return (const void *)match->driver_data; 942 } 943 EXPORT_SYMBOL_GPL(acpi_device_get_match_data); 944 945 int acpi_match_device_ids(struct acpi_device *device, 946 const struct acpi_device_id *ids) 947 { 948 return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; 949 } 950 EXPORT_SYMBOL(acpi_match_device_ids); 951 952 bool acpi_driver_match_device(struct device *dev, 953 const struct device_driver *drv) 954 { 955 const struct acpi_device_id *acpi_ids = drv->acpi_match_table; 956 const struct of_device_id *of_ids = drv->of_match_table; 957 958 if (!acpi_ids) 959 return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); 960 961 return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); 962 } 963 EXPORT_SYMBOL_GPL(acpi_driver_match_device); 964 965 /* -------------------------------------------------------------------------- 966 ACPI Driver Management 967 -------------------------------------------------------------------------- */ 968 969 /** 970 * acpi_bus_register_driver - register a driver with the ACPI bus 971 * @driver: driver being registered 972 * 973 * Registers a driver with the ACPI bus. Searches the namespace for all 974 * devices that match the driver's criteria and binds. Returns zero for 975 * success or a negative error status for failure. 976 */ 977 int acpi_bus_register_driver(struct acpi_driver *driver) 978 { 979 if (acpi_disabled) 980 return -ENODEV; 981 driver->drv.name = driver->name; 982 driver->drv.bus = &acpi_bus_type; 983 driver->drv.owner = driver->owner; 984 985 return driver_register(&driver->drv); 986 } 987 988 EXPORT_SYMBOL(acpi_bus_register_driver); 989 990 /** 991 * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus 992 * @driver: driver to unregister 993 * 994 * Unregisters a driver with the ACPI bus. Searches the namespace for all 995 * devices that match the driver's criteria and unbinds. 996 */ 997 void acpi_bus_unregister_driver(struct acpi_driver *driver) 998 { 999 driver_unregister(&driver->drv); 1000 } 1001 1002 EXPORT_SYMBOL(acpi_bus_unregister_driver); 1003 1004 /* -------------------------------------------------------------------------- 1005 ACPI Bus operations 1006 -------------------------------------------------------------------------- */ 1007 1008 static int acpi_bus_match(struct device *dev, struct device_driver *drv) 1009 { 1010 struct acpi_device *acpi_dev = to_acpi_device(dev); 1011 struct acpi_driver *acpi_drv = to_acpi_driver(drv); 1012 1013 return acpi_dev->flags.match_driver 1014 && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); 1015 } 1016 1017 static int acpi_device_uevent(struct device *dev, struct kobj_uevent_env *env) 1018 { 1019 return __acpi_device_uevent_modalias(to_acpi_device(dev), env); 1020 } 1021 1022 static int acpi_device_probe(struct device *dev) 1023 { 1024 struct acpi_device *acpi_dev = to_acpi_device(dev); 1025 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1026 int ret; 1027 1028 if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) 1029 return -EINVAL; 1030 1031 if (!acpi_drv->ops.add) 1032 return -ENOSYS; 1033 1034 ret = acpi_drv->ops.add(acpi_dev); 1035 if (ret) 1036 return ret; 1037 1038 pr_debug("Driver [%s] successfully bound to device [%s]\n", 1039 acpi_drv->name, acpi_dev->pnp.bus_id); 1040 1041 if (acpi_drv->ops.notify) { 1042 ret = acpi_device_install_notify_handler(acpi_dev); 1043 if (ret) { 1044 if (acpi_drv->ops.remove) 1045 acpi_drv->ops.remove(acpi_dev); 1046 1047 acpi_dev->driver_data = NULL; 1048 return ret; 1049 } 1050 } 1051 1052 pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, 1053 acpi_dev->pnp.bus_id); 1054 1055 get_device(dev); 1056 return 0; 1057 } 1058 1059 static void acpi_device_remove(struct device *dev) 1060 { 1061 struct acpi_device *acpi_dev = to_acpi_device(dev); 1062 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1063 1064 if (acpi_drv->ops.notify) 1065 acpi_device_remove_notify_handler(acpi_dev); 1066 1067 if (acpi_drv->ops.remove) 1068 acpi_drv->ops.remove(acpi_dev); 1069 1070 acpi_dev->driver_data = NULL; 1071 1072 put_device(dev); 1073 } 1074 1075 struct bus_type acpi_bus_type = { 1076 .name = "acpi", 1077 .match = acpi_bus_match, 1078 .probe = acpi_device_probe, 1079 .remove = acpi_device_remove, 1080 .uevent = acpi_device_uevent, 1081 }; 1082 1083 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) 1084 { 1085 return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); 1086 } 1087 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); 1088 1089 struct acpi_dev_walk_context { 1090 int (*fn)(struct acpi_device *, void *); 1091 void *data; 1092 }; 1093 1094 static int acpi_dev_for_one_check(struct device *dev, void *context) 1095 { 1096 struct acpi_dev_walk_context *adwc = context; 1097 1098 if (dev->bus != &acpi_bus_type) 1099 return 0; 1100 1101 return adwc->fn(to_acpi_device(dev), adwc->data); 1102 } 1103 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); 1104 1105 int acpi_dev_for_each_child(struct acpi_device *adev, 1106 int (*fn)(struct acpi_device *, void *), void *data) 1107 { 1108 struct acpi_dev_walk_context adwc = { 1109 .fn = fn, 1110 .data = data, 1111 }; 1112 1113 return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); 1114 } 1115 1116 int acpi_dev_for_each_child_reverse(struct acpi_device *adev, 1117 int (*fn)(struct acpi_device *, void *), 1118 void *data) 1119 { 1120 struct acpi_dev_walk_context adwc = { 1121 .fn = fn, 1122 .data = data, 1123 }; 1124 1125 return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); 1126 } 1127 1128 /* -------------------------------------------------------------------------- 1129 Initialization/Cleanup 1130 -------------------------------------------------------------------------- */ 1131 1132 static int __init acpi_bus_init_irq(void) 1133 { 1134 acpi_status status; 1135 char *message = NULL; 1136 1137 1138 /* 1139 * Let the system know what interrupt model we are using by 1140 * evaluating the \_PIC object, if exists. 1141 */ 1142 1143 switch (acpi_irq_model) { 1144 case ACPI_IRQ_MODEL_PIC: 1145 message = "PIC"; 1146 break; 1147 case ACPI_IRQ_MODEL_IOAPIC: 1148 message = "IOAPIC"; 1149 break; 1150 case ACPI_IRQ_MODEL_IOSAPIC: 1151 message = "IOSAPIC"; 1152 break; 1153 case ACPI_IRQ_MODEL_GIC: 1154 message = "GIC"; 1155 break; 1156 case ACPI_IRQ_MODEL_PLATFORM: 1157 message = "platform specific model"; 1158 break; 1159 case ACPI_IRQ_MODEL_LPIC: 1160 message = "LPIC"; 1161 break; 1162 default: 1163 pr_info("Unknown interrupt routing model\n"); 1164 return -ENODEV; 1165 } 1166 1167 pr_info("Using %s for interrupt routing\n", message); 1168 1169 status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); 1170 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 1171 pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); 1172 return -ENODEV; 1173 } 1174 1175 return 0; 1176 } 1177 1178 /** 1179 * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. 1180 * 1181 * The ACPI tables are accessible after this, but the handling of events has not 1182 * been initialized and the global lock is not available yet, so AML should not 1183 * be executed at this point. 1184 * 1185 * Doing this before switching the EFI runtime services to virtual mode allows 1186 * the EfiBootServices memory to be freed slightly earlier on boot. 1187 */ 1188 void __init acpi_early_init(void) 1189 { 1190 acpi_status status; 1191 1192 if (acpi_disabled) 1193 return; 1194 1195 pr_info("Core revision %08x\n", ACPI_CA_VERSION); 1196 1197 /* enable workarounds, unless strict ACPI spec. compliance */ 1198 if (!acpi_strict) 1199 acpi_gbl_enable_interpreter_slack = TRUE; 1200 1201 acpi_permanent_mmap = true; 1202 1203 #ifdef CONFIG_X86 1204 /* 1205 * If the machine falls into the DMI check table, 1206 * DSDT will be copied to memory. 1207 * Note that calling dmi_check_system() here on other architectures 1208 * would not be OK because only x86 initializes dmi early enough. 1209 * Thankfully only x86 systems need such quirks for now. 1210 */ 1211 dmi_check_system(dsdt_dmi_table); 1212 #endif 1213 1214 status = acpi_reallocate_root_table(); 1215 if (ACPI_FAILURE(status)) { 1216 pr_err("Unable to reallocate ACPI tables\n"); 1217 goto error0; 1218 } 1219 1220 status = acpi_initialize_subsystem(); 1221 if (ACPI_FAILURE(status)) { 1222 pr_err("Unable to initialize the ACPI Interpreter\n"); 1223 goto error0; 1224 } 1225 1226 #ifdef CONFIG_X86 1227 if (!acpi_ioapic) { 1228 /* compatible (0) means level (3) */ 1229 if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { 1230 acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; 1231 acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; 1232 } 1233 /* Set PIC-mode SCI trigger type */ 1234 acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, 1235 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); 1236 } else { 1237 /* 1238 * now that acpi_gbl_FADT is initialized, 1239 * update it with result from INT_SRC_OVR parsing 1240 */ 1241 acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; 1242 } 1243 #endif 1244 return; 1245 1246 error0: 1247 disable_acpi(); 1248 } 1249 1250 /** 1251 * acpi_subsystem_init - Finalize the early initialization of ACPI. 1252 * 1253 * Switch over the platform to the ACPI mode (if possible). 1254 * 1255 * Doing this too early is generally unsafe, but at the same time it needs to be 1256 * done before all things that really depend on ACPI. The right spot appears to 1257 * be before finalizing the EFI initialization. 1258 */ 1259 void __init acpi_subsystem_init(void) 1260 { 1261 acpi_status status; 1262 1263 if (acpi_disabled) 1264 return; 1265 1266 status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); 1267 if (ACPI_FAILURE(status)) { 1268 pr_err("Unable to enable ACPI\n"); 1269 disable_acpi(); 1270 } else { 1271 /* 1272 * If the system is using ACPI then we can be reasonably 1273 * confident that any regulators are managed by the firmware 1274 * so tell the regulator core it has everything it needs to 1275 * know. 1276 */ 1277 regulator_has_full_constraints(); 1278 } 1279 } 1280 1281 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) 1282 { 1283 if (event == ACPI_TABLE_EVENT_LOAD) 1284 acpi_scan_table_notify(); 1285 1286 return acpi_sysfs_table_handler(event, table, context); 1287 } 1288 1289 static int __init acpi_bus_init(void) 1290 { 1291 int result; 1292 acpi_status status; 1293 1294 acpi_os_initialize1(); 1295 1296 status = acpi_load_tables(); 1297 if (ACPI_FAILURE(status)) { 1298 pr_err("Unable to load the System Description Tables\n"); 1299 goto error1; 1300 } 1301 1302 /* 1303 * ACPI 2.0 requires the EC driver to be loaded and work before the EC 1304 * device is found in the namespace. 1305 * 1306 * This is accomplished by looking for the ECDT table and getting the EC 1307 * parameters out of that. 1308 * 1309 * Do that before calling acpi_initialize_objects() which may trigger EC 1310 * address space accesses. 1311 */ 1312 acpi_ec_ecdt_probe(); 1313 1314 status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); 1315 if (ACPI_FAILURE(status)) { 1316 pr_err("Unable to start the ACPI Interpreter\n"); 1317 goto error1; 1318 } 1319 1320 status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); 1321 if (ACPI_FAILURE(status)) { 1322 pr_err("Unable to initialize ACPI objects\n"); 1323 goto error1; 1324 } 1325 1326 /* Set capability bits for _OSC under processor scope */ 1327 acpi_early_processor_osc(); 1328 1329 /* 1330 * _OSC method may exist in module level code, 1331 * so it must be run after ACPI_FULL_INITIALIZATION 1332 */ 1333 acpi_bus_osc_negotiate_platform_control(); 1334 acpi_bus_osc_negotiate_usb_control(); 1335 1336 /* 1337 * _PDC control method may load dynamic SSDT tables, 1338 * and we need to install the table handler before that. 1339 */ 1340 status = acpi_install_table_handler(acpi_bus_table_handler, NULL); 1341 1342 acpi_sysfs_init(); 1343 1344 acpi_early_processor_set_pdc(); 1345 1346 /* 1347 * Maybe EC region is required at bus_scan/acpi_get_devices. So it 1348 * is necessary to enable it as early as possible. 1349 */ 1350 acpi_ec_dsdt_probe(); 1351 1352 pr_info("Interpreter enabled\n"); 1353 1354 /* Initialize sleep structures */ 1355 acpi_sleep_init(); 1356 1357 /* 1358 * Get the system interrupt model and evaluate \_PIC. 1359 */ 1360 result = acpi_bus_init_irq(); 1361 if (result) 1362 goto error1; 1363 1364 /* 1365 * Register the for all standard device notifications. 1366 */ 1367 status = 1368 acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, 1369 &acpi_bus_notify, NULL); 1370 if (ACPI_FAILURE(status)) { 1371 pr_err("Unable to register for system notifications\n"); 1372 goto error1; 1373 } 1374 1375 /* 1376 * Create the top ACPI proc directory 1377 */ 1378 acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); 1379 1380 result = bus_register(&acpi_bus_type); 1381 if (!result) 1382 return 0; 1383 1384 /* Mimic structured exception handling */ 1385 error1: 1386 acpi_terminate(); 1387 return -ENODEV; 1388 } 1389 1390 struct kobject *acpi_kobj; 1391 EXPORT_SYMBOL_GPL(acpi_kobj); 1392 1393 static int __init acpi_init(void) 1394 { 1395 int result; 1396 1397 if (acpi_disabled) { 1398 pr_info("Interpreter disabled.\n"); 1399 return -ENODEV; 1400 } 1401 1402 acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); 1403 if (!acpi_kobj) 1404 pr_debug("%s: kset create error\n", __func__); 1405 1406 init_prmt(); 1407 acpi_init_pcc(); 1408 result = acpi_bus_init(); 1409 if (result) { 1410 kobject_put(acpi_kobj); 1411 disable_acpi(); 1412 return result; 1413 } 1414 acpi_init_ffh(); 1415 1416 pci_mmcfg_late_init(); 1417 acpi_iort_init(); 1418 acpi_viot_early_init(); 1419 acpi_hest_init(); 1420 acpi_ghes_init(); 1421 acpi_scan_init(); 1422 acpi_ec_init(); 1423 acpi_debugfs_init(); 1424 acpi_sleep_proc_init(); 1425 acpi_wakeup_device_init(); 1426 acpi_debugger_init(); 1427 acpi_setup_sb_notify_handler(); 1428 acpi_viot_init(); 1429 acpi_agdi_init(); 1430 acpi_apmt_init(); 1431 return 0; 1432 } 1433 1434 subsys_initcall(acpi_init); 1435