1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_bus.c - ACPI Bus Driver ($Revision: 80 $) 4 * 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 */ 7 8 #define pr_fmt(fmt) "ACPI: " fmt 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/ioport.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/sched.h> 16 #include <linux/pm.h> 17 #include <linux/device.h> 18 #include <linux/proc_fs.h> 19 #include <linux/acpi.h> 20 #include <linux/slab.h> 21 #include <linux/regulator/machine.h> 22 #include <linux/workqueue.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #ifdef CONFIG_X86 26 #include <asm/mpspec.h> 27 #include <linux/dmi.h> 28 #endif 29 #include <linux/acpi_viot.h> 30 #include <linux/pci.h> 31 #include <acpi/apei.h> 32 #include <linux/suspend.h> 33 #include <linux/prmt.h> 34 35 #include "internal.h" 36 37 struct acpi_device *acpi_root; 38 struct proc_dir_entry *acpi_root_dir; 39 EXPORT_SYMBOL(acpi_root_dir); 40 41 #ifdef CONFIG_X86 42 #ifdef CONFIG_ACPI_CUSTOM_DSDT 43 static inline int set_copy_dsdt(const struct dmi_system_id *id) 44 { 45 return 0; 46 } 47 #else 48 static int set_copy_dsdt(const struct dmi_system_id *id) 49 { 50 pr_notice("%s detected - force copy of DSDT to local memory\n", id->ident); 51 acpi_gbl_copy_dsdt_locally = 1; 52 return 0; 53 } 54 #endif 55 56 static const struct dmi_system_id dsdt_dmi_table[] __initconst = { 57 /* 58 * Invoke DSDT corruption work-around on all Toshiba Satellite. 59 * https://bugzilla.kernel.org/show_bug.cgi?id=14679 60 */ 61 { 62 .callback = set_copy_dsdt, 63 .ident = "TOSHIBA Satellite", 64 .matches = { 65 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 66 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite"), 67 }, 68 }, 69 {} 70 }; 71 #endif 72 73 /* -------------------------------------------------------------------------- 74 Device Management 75 -------------------------------------------------------------------------- */ 76 77 acpi_status acpi_bus_get_status_handle(acpi_handle handle, 78 unsigned long long *sta) 79 { 80 acpi_status status; 81 82 status = acpi_evaluate_integer(handle, "_STA", NULL, sta); 83 if (ACPI_SUCCESS(status)) 84 return AE_OK; 85 86 if (status == AE_NOT_FOUND) { 87 *sta = ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED | 88 ACPI_STA_DEVICE_UI | ACPI_STA_DEVICE_FUNCTIONING; 89 return AE_OK; 90 } 91 return status; 92 } 93 EXPORT_SYMBOL_GPL(acpi_bus_get_status_handle); 94 95 int acpi_bus_get_status(struct acpi_device *device) 96 { 97 acpi_status status; 98 unsigned long long sta; 99 100 if (acpi_device_override_status(device, &sta)) { 101 acpi_set_device_status(device, sta); 102 return 0; 103 } 104 105 /* Battery devices must have their deps met before calling _STA */ 106 if (acpi_device_is_battery(device) && device->dep_unmet) { 107 acpi_set_device_status(device, 0); 108 return 0; 109 } 110 111 status = acpi_bus_get_status_handle(device->handle, &sta); 112 if (ACPI_FAILURE(status)) 113 return -ENODEV; 114 115 if (!device->status.present && device->status.enabled) { 116 pr_info(FW_BUG "Device [%s] status [%08x]: not present and enabled\n", 117 device->pnp.bus_id, (u32)sta); 118 device->status.enabled = 0; 119 /* 120 * The status is clearly invalid, so clear the functional bit as 121 * well to avoid attempting to use the device. 122 */ 123 device->status.functional = 0; 124 } 125 126 acpi_set_device_status(device, sta); 127 128 if (device->status.functional && !device->status.present) { 129 pr_debug("Device [%s] status [%08x]: functional but not present\n", 130 device->pnp.bus_id, (u32)sta); 131 } 132 133 pr_debug("Device [%s] status [%08x]\n", device->pnp.bus_id, (u32)sta); 134 return 0; 135 } 136 EXPORT_SYMBOL(acpi_bus_get_status); 137 138 void acpi_bus_private_data_handler(acpi_handle handle, 139 void *context) 140 { 141 return; 142 } 143 EXPORT_SYMBOL(acpi_bus_private_data_handler); 144 145 int acpi_bus_attach_private_data(acpi_handle handle, void *data) 146 { 147 acpi_status status; 148 149 status = acpi_attach_data(handle, 150 acpi_bus_private_data_handler, data); 151 if (ACPI_FAILURE(status)) { 152 acpi_handle_debug(handle, "Error attaching device data\n"); 153 return -ENODEV; 154 } 155 156 return 0; 157 } 158 EXPORT_SYMBOL_GPL(acpi_bus_attach_private_data); 159 160 int acpi_bus_get_private_data(acpi_handle handle, void **data) 161 { 162 acpi_status status; 163 164 if (!data) 165 return -EINVAL; 166 167 status = acpi_get_data(handle, acpi_bus_private_data_handler, data); 168 if (ACPI_FAILURE(status)) { 169 acpi_handle_debug(handle, "No context for object\n"); 170 return -ENODEV; 171 } 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(acpi_bus_get_private_data); 176 177 void acpi_bus_detach_private_data(acpi_handle handle) 178 { 179 acpi_detach_data(handle, acpi_bus_private_data_handler); 180 } 181 EXPORT_SYMBOL_GPL(acpi_bus_detach_private_data); 182 183 static void acpi_print_osc_error(acpi_handle handle, 184 struct acpi_osc_context *context, char *error) 185 { 186 int i; 187 188 acpi_handle_debug(handle, "(%s): %s\n", context->uuid_str, error); 189 190 pr_debug("_OSC request data:"); 191 for (i = 0; i < context->cap.length; i += sizeof(u32)) 192 pr_debug(" %x", *((u32 *)(context->cap.pointer + i))); 193 194 pr_debug("\n"); 195 } 196 197 acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context) 198 { 199 acpi_status status; 200 struct acpi_object_list input; 201 union acpi_object in_params[4]; 202 union acpi_object *out_obj; 203 guid_t guid; 204 u32 errors; 205 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; 206 207 if (!context) 208 return AE_ERROR; 209 if (guid_parse(context->uuid_str, &guid)) 210 return AE_ERROR; 211 context->ret.length = ACPI_ALLOCATE_BUFFER; 212 context->ret.pointer = NULL; 213 214 /* Setting up input parameters */ 215 input.count = 4; 216 input.pointer = in_params; 217 in_params[0].type = ACPI_TYPE_BUFFER; 218 in_params[0].buffer.length = 16; 219 in_params[0].buffer.pointer = (u8 *)&guid; 220 in_params[1].type = ACPI_TYPE_INTEGER; 221 in_params[1].integer.value = context->rev; 222 in_params[2].type = ACPI_TYPE_INTEGER; 223 in_params[2].integer.value = context->cap.length/sizeof(u32); 224 in_params[3].type = ACPI_TYPE_BUFFER; 225 in_params[3].buffer.length = context->cap.length; 226 in_params[3].buffer.pointer = context->cap.pointer; 227 228 status = acpi_evaluate_object(handle, "_OSC", &input, &output); 229 if (ACPI_FAILURE(status)) 230 return status; 231 232 if (!output.length) 233 return AE_NULL_OBJECT; 234 235 out_obj = output.pointer; 236 if (out_obj->type != ACPI_TYPE_BUFFER 237 || out_obj->buffer.length != context->cap.length) { 238 acpi_print_osc_error(handle, context, 239 "_OSC evaluation returned wrong type"); 240 status = AE_TYPE; 241 goto out_kfree; 242 } 243 /* Need to ignore the bit0 in result code */ 244 errors = *((u32 *)out_obj->buffer.pointer) & ~(1 << 0); 245 if (errors) { 246 if (errors & OSC_REQUEST_ERROR) 247 acpi_print_osc_error(handle, context, 248 "_OSC request failed"); 249 if (errors & OSC_INVALID_UUID_ERROR) 250 acpi_print_osc_error(handle, context, 251 "_OSC invalid UUID"); 252 if (errors & OSC_INVALID_REVISION_ERROR) 253 acpi_print_osc_error(handle, context, 254 "_OSC invalid revision"); 255 if (errors & OSC_CAPABILITIES_MASK_ERROR) { 256 if (((u32 *)context->cap.pointer)[OSC_QUERY_DWORD] 257 & OSC_QUERY_ENABLE) 258 goto out_success; 259 status = AE_SUPPORT; 260 goto out_kfree; 261 } 262 status = AE_ERROR; 263 goto out_kfree; 264 } 265 out_success: 266 context->ret.length = out_obj->buffer.length; 267 context->ret.pointer = kmemdup(out_obj->buffer.pointer, 268 context->ret.length, GFP_KERNEL); 269 if (!context->ret.pointer) { 270 status = AE_NO_MEMORY; 271 goto out_kfree; 272 } 273 status = AE_OK; 274 275 out_kfree: 276 kfree(output.pointer); 277 return status; 278 } 279 EXPORT_SYMBOL(acpi_run_osc); 280 281 bool osc_sb_apei_support_acked; 282 283 /* 284 * ACPI 6.0 Section 8.4.4.2 Idle State Coordination 285 * OSPM supports platform coordinated low power idle(LPI) states 286 */ 287 bool osc_pc_lpi_support_confirmed; 288 EXPORT_SYMBOL_GPL(osc_pc_lpi_support_confirmed); 289 290 /* 291 * ACPI 6.2 Section 6.2.11.2 'Platform-Wide OSPM Capabilities': 292 * Starting with ACPI Specification 6.2, all _CPC registers can be in 293 * PCC, System Memory, System IO, or Functional Fixed Hardware address 294 * spaces. OSPM support for this more flexible register space scheme is 295 * indicated by the “Flexible Address Space for CPPC Registers” _OSC bit. 296 * 297 * Otherwise (cf ACPI 6.1, s8.4.7.1.1.X), _CPC registers must be in: 298 * - PCC or Functional Fixed Hardware address space if defined 299 * - SystemMemory address space (NULL register) if not defined 300 */ 301 bool osc_cpc_flexible_adr_space_confirmed; 302 EXPORT_SYMBOL_GPL(osc_cpc_flexible_adr_space_confirmed); 303 304 /* 305 * ACPI 6.4 Operating System Capabilities for USB. 306 */ 307 bool osc_sb_native_usb4_support_confirmed; 308 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_support_confirmed); 309 310 bool osc_sb_cppc2_support_acked; 311 312 static u8 sb_uuid_str[] = "0811B06E-4A27-44F9-8D60-3CBBC22E7B48"; 313 static void acpi_bus_osc_negotiate_platform_control(void) 314 { 315 u32 capbuf[2], *capbuf_ret; 316 struct acpi_osc_context context = { 317 .uuid_str = sb_uuid_str, 318 .rev = 1, 319 .cap.length = 8, 320 .cap.pointer = capbuf, 321 }; 322 acpi_handle handle; 323 324 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 325 capbuf[OSC_SUPPORT_DWORD] = OSC_SB_PR3_SUPPORT; /* _PR3 is in use */ 326 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR_AGGREGATOR)) 327 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PAD_SUPPORT; 328 if (IS_ENABLED(CONFIG_ACPI_PROCESSOR)) 329 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PPC_OST_SUPPORT; 330 if (IS_ENABLED(CONFIG_ACPI_THERMAL)) 331 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FAST_THERMAL_SAMPLING_SUPPORT; 332 333 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT; 334 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT; 335 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_OVER_16_PSTATES_SUPPORT; 336 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GED_SUPPORT; 337 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_IRQ_RESOURCE_SOURCE_SUPPORT; 338 if (IS_ENABLED(CONFIG_ACPI_PRMT)) 339 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PRM_SUPPORT; 340 if (IS_ENABLED(CONFIG_ACPI_FFH)) 341 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_FFH_OPR_SUPPORT; 342 343 #ifdef CONFIG_ARM64 344 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 345 #endif 346 #ifdef CONFIG_X86 347 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_GENERIC_INITIATOR_SUPPORT; 348 #endif 349 350 #ifdef CONFIG_ACPI_CPPC_LIB 351 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT; 352 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT; 353 #endif 354 355 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 356 357 if (IS_ENABLED(CONFIG_SCHED_MC_PRIO)) 358 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT; 359 360 if (IS_ENABLED(CONFIG_USB4)) 361 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_NATIVE_USB4_SUPPORT; 362 363 if (!ghes_disable) 364 capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT; 365 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 366 return; 367 368 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 369 return; 370 371 capbuf_ret = context.ret.pointer; 372 if (context.ret.length <= OSC_SUPPORT_DWORD) { 373 kfree(context.ret.pointer); 374 return; 375 } 376 377 /* 378 * Now run _OSC again with query flag clear and with the caps 379 * supported by both the OS and the platform. 380 */ 381 capbuf[OSC_QUERY_DWORD] = 0; 382 capbuf[OSC_SUPPORT_DWORD] = capbuf_ret[OSC_SUPPORT_DWORD]; 383 kfree(context.ret.pointer); 384 385 if (ACPI_FAILURE(acpi_run_osc(handle, &context))) 386 return; 387 388 capbuf_ret = context.ret.pointer; 389 if (context.ret.length > OSC_SUPPORT_DWORD) { 390 #ifdef CONFIG_ACPI_CPPC_LIB 391 osc_sb_cppc2_support_acked = capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPCV2_SUPPORT; 392 #endif 393 394 osc_sb_apei_support_acked = 395 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_APEI_SUPPORT; 396 osc_pc_lpi_support_confirmed = 397 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_PCLPI_SUPPORT; 398 osc_sb_native_usb4_support_confirmed = 399 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_NATIVE_USB4_SUPPORT; 400 osc_cpc_flexible_adr_space_confirmed = 401 capbuf_ret[OSC_SUPPORT_DWORD] & OSC_SB_CPC_FLEXIBLE_ADR_SPACE; 402 } 403 404 kfree(context.ret.pointer); 405 } 406 407 /* 408 * Native control of USB4 capabilities. If any of the tunneling bits is 409 * set it means OS is in control and we use software based connection 410 * manager. 411 */ 412 u32 osc_sb_native_usb4_control; 413 EXPORT_SYMBOL_GPL(osc_sb_native_usb4_control); 414 415 static void acpi_bus_decode_usb_osc(const char *msg, u32 bits) 416 { 417 pr_info("%s USB3%c DisplayPort%c PCIe%c XDomain%c\n", msg, 418 (bits & OSC_USB_USB3_TUNNELING) ? '+' : '-', 419 (bits & OSC_USB_DP_TUNNELING) ? '+' : '-', 420 (bits & OSC_USB_PCIE_TUNNELING) ? '+' : '-', 421 (bits & OSC_USB_XDOMAIN) ? '+' : '-'); 422 } 423 424 static u8 sb_usb_uuid_str[] = "23A0D13A-26AB-486C-9C5F-0FFA525A575A"; 425 static void acpi_bus_osc_negotiate_usb_control(void) 426 { 427 u32 capbuf[3], *capbuf_ret; 428 struct acpi_osc_context context = { 429 .uuid_str = sb_usb_uuid_str, 430 .rev = 1, 431 .cap.length = sizeof(capbuf), 432 .cap.pointer = capbuf, 433 }; 434 acpi_handle handle; 435 acpi_status status; 436 u32 control; 437 438 if (!osc_sb_native_usb4_support_confirmed) 439 return; 440 441 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle))) 442 return; 443 444 control = OSC_USB_USB3_TUNNELING | OSC_USB_DP_TUNNELING | 445 OSC_USB_PCIE_TUNNELING | OSC_USB_XDOMAIN; 446 447 /* 448 * Run _OSC first with query bit set, trying to get control over 449 * all tunneling. The platform can then clear out bits in the 450 * control dword that it does not want to grant to the OS. 451 */ 452 capbuf[OSC_QUERY_DWORD] = OSC_QUERY_ENABLE; 453 capbuf[OSC_SUPPORT_DWORD] = 0; 454 capbuf[OSC_CONTROL_DWORD] = control; 455 456 status = acpi_run_osc(handle, &context); 457 if (ACPI_FAILURE(status)) 458 return; 459 460 if (context.ret.length != sizeof(capbuf)) { 461 pr_info("USB4 _OSC: returned invalid length buffer\n"); 462 goto out_free; 463 } 464 465 /* 466 * Run _OSC again now with query bit clear and the control dword 467 * matching what the platform granted (which may not have all 468 * the control bits set). 469 */ 470 capbuf_ret = context.ret.pointer; 471 472 capbuf[OSC_QUERY_DWORD] = 0; 473 capbuf[OSC_CONTROL_DWORD] = capbuf_ret[OSC_CONTROL_DWORD]; 474 475 kfree(context.ret.pointer); 476 477 status = acpi_run_osc(handle, &context); 478 if (ACPI_FAILURE(status)) 479 return; 480 481 if (context.ret.length != sizeof(capbuf)) { 482 pr_info("USB4 _OSC: returned invalid length buffer\n"); 483 goto out_free; 484 } 485 486 osc_sb_native_usb4_control = 487 control & acpi_osc_ctx_get_pci_control(&context); 488 489 acpi_bus_decode_usb_osc("USB4 _OSC: OS supports", control); 490 acpi_bus_decode_usb_osc("USB4 _OSC: OS controls", 491 osc_sb_native_usb4_control); 492 493 out_free: 494 kfree(context.ret.pointer); 495 } 496 497 /* -------------------------------------------------------------------------- 498 Notification Handling 499 -------------------------------------------------------------------------- */ 500 501 /** 502 * acpi_bus_notify - Global system-level (0x00-0x7F) notifications handler 503 * @handle: Target ACPI object. 504 * @type: Notification type. 505 * @data: Ignored. 506 * 507 * This only handles notifications related to device hotplug. 508 */ 509 static void acpi_bus_notify(acpi_handle handle, u32 type, void *data) 510 { 511 struct acpi_device *adev; 512 513 switch (type) { 514 case ACPI_NOTIFY_BUS_CHECK: 515 acpi_handle_debug(handle, "ACPI_NOTIFY_BUS_CHECK event\n"); 516 break; 517 518 case ACPI_NOTIFY_DEVICE_CHECK: 519 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK event\n"); 520 break; 521 522 case ACPI_NOTIFY_DEVICE_WAKE: 523 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_WAKE event\n"); 524 return; 525 526 case ACPI_NOTIFY_EJECT_REQUEST: 527 acpi_handle_debug(handle, "ACPI_NOTIFY_EJECT_REQUEST event\n"); 528 break; 529 530 case ACPI_NOTIFY_DEVICE_CHECK_LIGHT: 531 acpi_handle_debug(handle, "ACPI_NOTIFY_DEVICE_CHECK_LIGHT event\n"); 532 /* TBD: Exactly what does 'light' mean? */ 533 return; 534 535 case ACPI_NOTIFY_FREQUENCY_MISMATCH: 536 acpi_handle_err(handle, "Device cannot be configured due " 537 "to a frequency mismatch\n"); 538 return; 539 540 case ACPI_NOTIFY_BUS_MODE_MISMATCH: 541 acpi_handle_err(handle, "Device cannot be configured due " 542 "to a bus mode mismatch\n"); 543 return; 544 545 case ACPI_NOTIFY_POWER_FAULT: 546 acpi_handle_err(handle, "Device has suffered a power fault\n"); 547 return; 548 549 default: 550 acpi_handle_debug(handle, "Unknown event type 0x%x\n", type); 551 return; 552 } 553 554 adev = acpi_get_acpi_dev(handle); 555 556 if (adev && ACPI_SUCCESS(acpi_hotplug_schedule(adev, type))) 557 return; 558 559 acpi_put_acpi_dev(adev); 560 561 acpi_evaluate_ost(handle, type, ACPI_OST_SC_NON_SPECIFIC_FAILURE, NULL); 562 } 563 564 static void acpi_notify_device(acpi_handle handle, u32 event, void *data) 565 { 566 struct acpi_device *device = data; 567 struct acpi_driver *acpi_drv = to_acpi_driver(device->dev.driver); 568 569 acpi_drv->ops.notify(device, event); 570 } 571 572 static int acpi_device_install_notify_handler(struct acpi_device *device, 573 struct acpi_driver *acpi_drv) 574 { 575 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 576 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 577 acpi_status status; 578 579 status = acpi_install_notify_handler(device->handle, type, 580 acpi_notify_device, device); 581 if (ACPI_FAILURE(status)) 582 return -EINVAL; 583 584 return 0; 585 } 586 587 static void acpi_device_remove_notify_handler(struct acpi_device *device, 588 struct acpi_driver *acpi_drv) 589 { 590 u32 type = acpi_drv->flags & ACPI_DRIVER_ALL_NOTIFY_EVENTS ? 591 ACPI_ALL_NOTIFY : ACPI_DEVICE_NOTIFY; 592 593 acpi_remove_notify_handler(device->handle, type, 594 acpi_notify_device); 595 596 acpi_os_wait_events_complete(); 597 } 598 599 int acpi_dev_install_notify_handler(struct acpi_device *adev, 600 u32 handler_type, 601 acpi_notify_handler handler, void *context) 602 { 603 acpi_status status; 604 605 status = acpi_install_notify_handler(adev->handle, handler_type, 606 handler, context); 607 if (ACPI_FAILURE(status)) 608 return -ENODEV; 609 610 return 0; 611 } 612 EXPORT_SYMBOL_GPL(acpi_dev_install_notify_handler); 613 614 void acpi_dev_remove_notify_handler(struct acpi_device *adev, 615 u32 handler_type, 616 acpi_notify_handler handler) 617 { 618 acpi_remove_notify_handler(adev->handle, handler_type, handler); 619 acpi_os_wait_events_complete(); 620 } 621 EXPORT_SYMBOL_GPL(acpi_dev_remove_notify_handler); 622 623 /* Handle events targeting \_SB device (at present only graceful shutdown) */ 624 625 #define ACPI_SB_NOTIFY_SHUTDOWN_REQUEST 0x81 626 #define ACPI_SB_INDICATE_INTERVAL 10000 627 628 static void sb_notify_work(struct work_struct *dummy) 629 { 630 acpi_handle sb_handle; 631 632 orderly_poweroff(true); 633 634 /* 635 * After initiating graceful shutdown, the ACPI spec requires OSPM 636 * to evaluate _OST method once every 10seconds to indicate that 637 * the shutdown is in progress 638 */ 639 acpi_get_handle(NULL, "\\_SB", &sb_handle); 640 while (1) { 641 pr_info("Graceful shutdown in progress.\n"); 642 acpi_evaluate_ost(sb_handle, ACPI_OST_EC_OSPM_SHUTDOWN, 643 ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS, NULL); 644 msleep(ACPI_SB_INDICATE_INTERVAL); 645 } 646 } 647 648 static void acpi_sb_notify(acpi_handle handle, u32 event, void *data) 649 { 650 static DECLARE_WORK(acpi_sb_work, sb_notify_work); 651 652 if (event == ACPI_SB_NOTIFY_SHUTDOWN_REQUEST) { 653 if (!work_busy(&acpi_sb_work)) 654 schedule_work(&acpi_sb_work); 655 } else { 656 pr_warn("event %x is not supported by \\_SB device\n", event); 657 } 658 } 659 660 static int __init acpi_setup_sb_notify_handler(void) 661 { 662 acpi_handle sb_handle; 663 664 if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &sb_handle))) 665 return -ENXIO; 666 667 if (ACPI_FAILURE(acpi_install_notify_handler(sb_handle, ACPI_DEVICE_NOTIFY, 668 acpi_sb_notify, NULL))) 669 return -EINVAL; 670 671 return 0; 672 } 673 674 /* -------------------------------------------------------------------------- 675 Device Matching 676 -------------------------------------------------------------------------- */ 677 678 /** 679 * acpi_get_first_physical_node - Get first physical node of an ACPI device 680 * @adev: ACPI device in question 681 * 682 * Return: First physical node of ACPI device @adev 683 */ 684 struct device *acpi_get_first_physical_node(struct acpi_device *adev) 685 { 686 struct mutex *physical_node_lock = &adev->physical_node_lock; 687 struct device *phys_dev; 688 689 mutex_lock(physical_node_lock); 690 if (list_empty(&adev->physical_node_list)) { 691 phys_dev = NULL; 692 } else { 693 const struct acpi_device_physical_node *node; 694 695 node = list_first_entry(&adev->physical_node_list, 696 struct acpi_device_physical_node, node); 697 698 phys_dev = node->dev; 699 } 700 mutex_unlock(physical_node_lock); 701 return phys_dev; 702 } 703 EXPORT_SYMBOL_GPL(acpi_get_first_physical_node); 704 705 static struct acpi_device *acpi_primary_dev_companion(struct acpi_device *adev, 706 const struct device *dev) 707 { 708 const struct device *phys_dev = acpi_get_first_physical_node(adev); 709 710 return phys_dev && phys_dev == dev ? adev : NULL; 711 } 712 713 /** 714 * acpi_device_is_first_physical_node - Is given dev first physical node 715 * @adev: ACPI companion device 716 * @dev: Physical device to check 717 * 718 * Function checks if given @dev is the first physical devices attached to 719 * the ACPI companion device. This distinction is needed in some cases 720 * where the same companion device is shared between many physical devices. 721 * 722 * Note that the caller have to provide valid @adev pointer. 723 */ 724 bool acpi_device_is_first_physical_node(struct acpi_device *adev, 725 const struct device *dev) 726 { 727 return !!acpi_primary_dev_companion(adev, dev); 728 } 729 730 /* 731 * acpi_companion_match() - Can we match via ACPI companion device 732 * @dev: Device in question 733 * 734 * Check if the given device has an ACPI companion and if that companion has 735 * a valid list of PNP IDs, and if the device is the first (primary) physical 736 * device associated with it. Return the companion pointer if that's the case 737 * or NULL otherwise. 738 * 739 * If multiple physical devices are attached to a single ACPI companion, we need 740 * to be careful. The usage scenario for this kind of relationship is that all 741 * of the physical devices in question use resources provided by the ACPI 742 * companion. A typical case is an MFD device where all the sub-devices share 743 * the parent's ACPI companion. In such cases we can only allow the primary 744 * (first) physical device to be matched with the help of the companion's PNP 745 * IDs. 746 * 747 * Additional physical devices sharing the ACPI companion can still use 748 * resources available from it but they will be matched normally using functions 749 * provided by their bus types (and analogously for their modalias). 750 */ 751 const struct acpi_device *acpi_companion_match(const struct device *dev) 752 { 753 struct acpi_device *adev; 754 755 adev = ACPI_COMPANION(dev); 756 if (!adev) 757 return NULL; 758 759 if (list_empty(&adev->pnp.ids)) 760 return NULL; 761 762 return acpi_primary_dev_companion(adev, dev); 763 } 764 765 /** 766 * acpi_of_match_device - Match device object using the "compatible" property. 767 * @adev: ACPI device object to match. 768 * @of_match_table: List of device IDs to match against. 769 * @of_id: OF ID if matched 770 * 771 * If @dev has an ACPI companion which has ACPI_DT_NAMESPACE_HID in its list of 772 * identifiers and a _DSD object with the "compatible" property, use that 773 * property to match against the given list of identifiers. 774 */ 775 static bool acpi_of_match_device(const struct acpi_device *adev, 776 const struct of_device_id *of_match_table, 777 const struct of_device_id **of_id) 778 { 779 const union acpi_object *of_compatible, *obj; 780 int i, nval; 781 782 if (!adev) 783 return false; 784 785 of_compatible = adev->data.of_compatible; 786 if (!of_match_table || !of_compatible) 787 return false; 788 789 if (of_compatible->type == ACPI_TYPE_PACKAGE) { 790 nval = of_compatible->package.count; 791 obj = of_compatible->package.elements; 792 } else { /* Must be ACPI_TYPE_STRING. */ 793 nval = 1; 794 obj = of_compatible; 795 } 796 /* Now we can look for the driver DT compatible strings */ 797 for (i = 0; i < nval; i++, obj++) { 798 const struct of_device_id *id; 799 800 for (id = of_match_table; id->compatible[0]; id++) 801 if (!strcasecmp(obj->string.pointer, id->compatible)) { 802 if (of_id) 803 *of_id = id; 804 return true; 805 } 806 } 807 808 return false; 809 } 810 811 static bool acpi_of_modalias(struct acpi_device *adev, 812 char *modalias, size_t len) 813 { 814 const union acpi_object *of_compatible; 815 const union acpi_object *obj; 816 const char *str, *chr; 817 818 of_compatible = adev->data.of_compatible; 819 if (!of_compatible) 820 return false; 821 822 if (of_compatible->type == ACPI_TYPE_PACKAGE) 823 obj = of_compatible->package.elements; 824 else /* Must be ACPI_TYPE_STRING. */ 825 obj = of_compatible; 826 827 str = obj->string.pointer; 828 chr = strchr(str, ','); 829 strscpy(modalias, chr ? chr + 1 : str, len); 830 831 return true; 832 } 833 834 /** 835 * acpi_set_modalias - Set modalias using "compatible" property or supplied ID 836 * @adev: ACPI device object to match 837 * @default_id: ID string to use as default if no compatible string found 838 * @modalias: Pointer to buffer that modalias value will be copied into 839 * @len: Length of modalias buffer 840 * 841 * This is a counterpart of of_alias_from_compatible() for struct acpi_device 842 * objects. If there is a compatible string for @adev, it will be copied to 843 * @modalias with the vendor prefix stripped; otherwise, @default_id will be 844 * used. 845 */ 846 void acpi_set_modalias(struct acpi_device *adev, const char *default_id, 847 char *modalias, size_t len) 848 { 849 if (!acpi_of_modalias(adev, modalias, len)) 850 strscpy(modalias, default_id, len); 851 } 852 EXPORT_SYMBOL_GPL(acpi_set_modalias); 853 854 static bool __acpi_match_device_cls(const struct acpi_device_id *id, 855 struct acpi_hardware_id *hwid) 856 { 857 int i, msk, byte_shift; 858 char buf[3]; 859 860 if (!id->cls) 861 return false; 862 863 /* Apply class-code bitmask, before checking each class-code byte */ 864 for (i = 1; i <= 3; i++) { 865 byte_shift = 8 * (3 - i); 866 msk = (id->cls_msk >> byte_shift) & 0xFF; 867 if (!msk) 868 continue; 869 870 sprintf(buf, "%02x", (id->cls >> byte_shift) & msk); 871 if (strncmp(buf, &hwid->id[(i - 1) * 2], 2)) 872 return false; 873 } 874 return true; 875 } 876 877 static bool __acpi_match_device(const struct acpi_device *device, 878 const struct acpi_device_id *acpi_ids, 879 const struct of_device_id *of_ids, 880 const struct acpi_device_id **acpi_id, 881 const struct of_device_id **of_id) 882 { 883 const struct acpi_device_id *id; 884 struct acpi_hardware_id *hwid; 885 886 /* 887 * If the device is not present, it is unnecessary to load device 888 * driver for it. 889 */ 890 if (!device || !device->status.present) 891 return false; 892 893 list_for_each_entry(hwid, &device->pnp.ids, list) { 894 /* First, check the ACPI/PNP IDs provided by the caller. */ 895 if (acpi_ids) { 896 for (id = acpi_ids; id->id[0] || id->cls; id++) { 897 if (id->id[0] && !strcmp((char *)id->id, hwid->id)) 898 goto out_acpi_match; 899 if (id->cls && __acpi_match_device_cls(id, hwid)) 900 goto out_acpi_match; 901 } 902 } 903 904 /* 905 * Next, check ACPI_DT_NAMESPACE_HID and try to match the 906 * "compatible" property if found. 907 */ 908 if (!strcmp(ACPI_DT_NAMESPACE_HID, hwid->id)) 909 return acpi_of_match_device(device, of_ids, of_id); 910 } 911 return false; 912 913 out_acpi_match: 914 if (acpi_id) 915 *acpi_id = id; 916 return true; 917 } 918 919 /** 920 * acpi_match_acpi_device - Match an ACPI device against a given list of ACPI IDs 921 * @ids: Array of struct acpi_device_id objects to match against. 922 * @adev: The ACPI device pointer to match. 923 * 924 * Match the ACPI device @adev against a given list of ACPI IDs @ids. 925 * 926 * Return: 927 * a pointer to the first matching ACPI ID on success or %NULL on failure. 928 */ 929 const struct acpi_device_id *acpi_match_acpi_device(const struct acpi_device_id *ids, 930 const struct acpi_device *adev) 931 { 932 const struct acpi_device_id *id = NULL; 933 934 __acpi_match_device(adev, ids, NULL, &id, NULL); 935 return id; 936 } 937 EXPORT_SYMBOL_GPL(acpi_match_acpi_device); 938 939 /** 940 * acpi_match_device - Match a struct device against a given list of ACPI IDs 941 * @ids: Array of struct acpi_device_id object to match against. 942 * @dev: The device structure to match. 943 * 944 * Check if @dev has a valid ACPI handle and if there is a struct acpi_device 945 * object for that handle and use that object to match against a given list of 946 * device IDs. 947 * 948 * Return a pointer to the first matching ID on success or %NULL on failure. 949 */ 950 const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, 951 const struct device *dev) 952 { 953 return acpi_match_acpi_device(ids, acpi_companion_match(dev)); 954 } 955 EXPORT_SYMBOL_GPL(acpi_match_device); 956 957 static const void *acpi_of_device_get_match_data(const struct device *dev) 958 { 959 struct acpi_device *adev = ACPI_COMPANION(dev); 960 const struct of_device_id *match = NULL; 961 962 if (!acpi_of_match_device(adev, dev->driver->of_match_table, &match)) 963 return NULL; 964 965 return match->data; 966 } 967 968 const void *acpi_device_get_match_data(const struct device *dev) 969 { 970 const struct acpi_device_id *acpi_ids = dev->driver->acpi_match_table; 971 const struct acpi_device_id *match; 972 973 if (!acpi_ids) 974 return acpi_of_device_get_match_data(dev); 975 976 match = acpi_match_device(acpi_ids, dev); 977 if (!match) 978 return NULL; 979 980 return (const void *)match->driver_data; 981 } 982 EXPORT_SYMBOL_GPL(acpi_device_get_match_data); 983 984 int acpi_match_device_ids(struct acpi_device *device, 985 const struct acpi_device_id *ids) 986 { 987 return __acpi_match_device(device, ids, NULL, NULL, NULL) ? 0 : -ENOENT; 988 } 989 EXPORT_SYMBOL(acpi_match_device_ids); 990 991 bool acpi_driver_match_device(struct device *dev, 992 const struct device_driver *drv) 993 { 994 const struct acpi_device_id *acpi_ids = drv->acpi_match_table; 995 const struct of_device_id *of_ids = drv->of_match_table; 996 997 if (!acpi_ids) 998 return acpi_of_match_device(ACPI_COMPANION(dev), of_ids, NULL); 999 1000 return __acpi_match_device(acpi_companion_match(dev), acpi_ids, of_ids, NULL, NULL); 1001 } 1002 EXPORT_SYMBOL_GPL(acpi_driver_match_device); 1003 1004 /* -------------------------------------------------------------------------- 1005 ACPI Driver Management 1006 -------------------------------------------------------------------------- */ 1007 1008 /** 1009 * __acpi_bus_register_driver - register a driver with the ACPI bus 1010 * @driver: driver being registered 1011 * @owner: owning module/driver 1012 * 1013 * Registers a driver with the ACPI bus. Searches the namespace for all 1014 * devices that match the driver's criteria and binds. Returns zero for 1015 * success or a negative error status for failure. 1016 */ 1017 int __acpi_bus_register_driver(struct acpi_driver *driver, struct module *owner) 1018 { 1019 if (acpi_disabled) 1020 return -ENODEV; 1021 driver->drv.name = driver->name; 1022 driver->drv.bus = &acpi_bus_type; 1023 driver->drv.owner = owner; 1024 1025 return driver_register(&driver->drv); 1026 } 1027 1028 EXPORT_SYMBOL(__acpi_bus_register_driver); 1029 1030 /** 1031 * acpi_bus_unregister_driver - unregisters a driver with the ACPI bus 1032 * @driver: driver to unregister 1033 * 1034 * Unregisters a driver with the ACPI bus. Searches the namespace for all 1035 * devices that match the driver's criteria and unbinds. 1036 */ 1037 void acpi_bus_unregister_driver(struct acpi_driver *driver) 1038 { 1039 driver_unregister(&driver->drv); 1040 } 1041 1042 EXPORT_SYMBOL(acpi_bus_unregister_driver); 1043 1044 /* -------------------------------------------------------------------------- 1045 ACPI Bus operations 1046 -------------------------------------------------------------------------- */ 1047 1048 static int acpi_bus_match(struct device *dev, struct device_driver *drv) 1049 { 1050 struct acpi_device *acpi_dev = to_acpi_device(dev); 1051 struct acpi_driver *acpi_drv = to_acpi_driver(drv); 1052 1053 return acpi_dev->flags.match_driver 1054 && !acpi_match_device_ids(acpi_dev, acpi_drv->ids); 1055 } 1056 1057 static int acpi_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 1058 { 1059 return __acpi_device_uevent_modalias(to_acpi_device(dev), env); 1060 } 1061 1062 static int acpi_device_probe(struct device *dev) 1063 { 1064 struct acpi_device *acpi_dev = to_acpi_device(dev); 1065 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1066 int ret; 1067 1068 if (acpi_dev->handler && !acpi_is_pnp_device(acpi_dev)) 1069 return -EINVAL; 1070 1071 if (!acpi_drv->ops.add) 1072 return -ENOSYS; 1073 1074 ret = acpi_drv->ops.add(acpi_dev); 1075 if (ret) { 1076 acpi_dev->driver_data = NULL; 1077 return ret; 1078 } 1079 1080 pr_debug("Driver [%s] successfully bound to device [%s]\n", 1081 acpi_drv->name, acpi_dev->pnp.bus_id); 1082 1083 if (acpi_drv->ops.notify) { 1084 ret = acpi_device_install_notify_handler(acpi_dev, acpi_drv); 1085 if (ret) { 1086 if (acpi_drv->ops.remove) 1087 acpi_drv->ops.remove(acpi_dev); 1088 1089 acpi_dev->driver_data = NULL; 1090 return ret; 1091 } 1092 } 1093 1094 pr_debug("Found driver [%s] for device [%s]\n", acpi_drv->name, 1095 acpi_dev->pnp.bus_id); 1096 1097 get_device(dev); 1098 return 0; 1099 } 1100 1101 static void acpi_device_remove(struct device *dev) 1102 { 1103 struct acpi_device *acpi_dev = to_acpi_device(dev); 1104 struct acpi_driver *acpi_drv = to_acpi_driver(dev->driver); 1105 1106 if (acpi_drv->ops.notify) 1107 acpi_device_remove_notify_handler(acpi_dev, acpi_drv); 1108 1109 if (acpi_drv->ops.remove) 1110 acpi_drv->ops.remove(acpi_dev); 1111 1112 acpi_dev->driver_data = NULL; 1113 1114 put_device(dev); 1115 } 1116 1117 const struct bus_type acpi_bus_type = { 1118 .name = "acpi", 1119 .match = acpi_bus_match, 1120 .probe = acpi_device_probe, 1121 .remove = acpi_device_remove, 1122 .uevent = acpi_device_uevent, 1123 }; 1124 1125 int acpi_bus_for_each_dev(int (*fn)(struct device *, void *), void *data) 1126 { 1127 return bus_for_each_dev(&acpi_bus_type, NULL, data, fn); 1128 } 1129 EXPORT_SYMBOL_GPL(acpi_bus_for_each_dev); 1130 1131 struct acpi_dev_walk_context { 1132 int (*fn)(struct acpi_device *, void *); 1133 void *data; 1134 }; 1135 1136 static int acpi_dev_for_one_check(struct device *dev, void *context) 1137 { 1138 struct acpi_dev_walk_context *adwc = context; 1139 1140 if (dev->bus != &acpi_bus_type) 1141 return 0; 1142 1143 return adwc->fn(to_acpi_device(dev), adwc->data); 1144 } 1145 EXPORT_SYMBOL_GPL(acpi_dev_for_each_child); 1146 1147 int acpi_dev_for_each_child(struct acpi_device *adev, 1148 int (*fn)(struct acpi_device *, void *), void *data) 1149 { 1150 struct acpi_dev_walk_context adwc = { 1151 .fn = fn, 1152 .data = data, 1153 }; 1154 1155 return device_for_each_child(&adev->dev, &adwc, acpi_dev_for_one_check); 1156 } 1157 1158 int acpi_dev_for_each_child_reverse(struct acpi_device *adev, 1159 int (*fn)(struct acpi_device *, void *), 1160 void *data) 1161 { 1162 struct acpi_dev_walk_context adwc = { 1163 .fn = fn, 1164 .data = data, 1165 }; 1166 1167 return device_for_each_child_reverse(&adev->dev, &adwc, acpi_dev_for_one_check); 1168 } 1169 1170 /* -------------------------------------------------------------------------- 1171 Initialization/Cleanup 1172 -------------------------------------------------------------------------- */ 1173 1174 static int __init acpi_bus_init_irq(void) 1175 { 1176 acpi_status status; 1177 char *message = NULL; 1178 1179 1180 /* 1181 * Let the system know what interrupt model we are using by 1182 * evaluating the \_PIC object, if exists. 1183 */ 1184 1185 switch (acpi_irq_model) { 1186 case ACPI_IRQ_MODEL_PIC: 1187 message = "PIC"; 1188 break; 1189 case ACPI_IRQ_MODEL_IOAPIC: 1190 message = "IOAPIC"; 1191 break; 1192 case ACPI_IRQ_MODEL_IOSAPIC: 1193 message = "IOSAPIC"; 1194 break; 1195 case ACPI_IRQ_MODEL_GIC: 1196 message = "GIC"; 1197 break; 1198 case ACPI_IRQ_MODEL_PLATFORM: 1199 message = "platform specific model"; 1200 break; 1201 case ACPI_IRQ_MODEL_LPIC: 1202 message = "LPIC"; 1203 break; 1204 default: 1205 pr_info("Unknown interrupt routing model\n"); 1206 return -ENODEV; 1207 } 1208 1209 pr_info("Using %s for interrupt routing\n", message); 1210 1211 status = acpi_execute_simple_method(NULL, "\\_PIC", acpi_irq_model); 1212 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 1213 pr_info("_PIC evaluation failed: %s\n", acpi_format_exception(status)); 1214 return -ENODEV; 1215 } 1216 1217 return 0; 1218 } 1219 1220 /** 1221 * acpi_early_init - Initialize ACPICA and populate the ACPI namespace. 1222 * 1223 * The ACPI tables are accessible after this, but the handling of events has not 1224 * been initialized and the global lock is not available yet, so AML should not 1225 * be executed at this point. 1226 * 1227 * Doing this before switching the EFI runtime services to virtual mode allows 1228 * the EfiBootServices memory to be freed slightly earlier on boot. 1229 */ 1230 void __init acpi_early_init(void) 1231 { 1232 acpi_status status; 1233 1234 if (acpi_disabled) 1235 return; 1236 1237 pr_info("Core revision %08x\n", ACPI_CA_VERSION); 1238 1239 /* enable workarounds, unless strict ACPI spec. compliance */ 1240 if (!acpi_strict) 1241 acpi_gbl_enable_interpreter_slack = TRUE; 1242 1243 acpi_permanent_mmap = true; 1244 1245 #ifdef CONFIG_X86 1246 /* 1247 * If the machine falls into the DMI check table, 1248 * DSDT will be copied to memory. 1249 * Note that calling dmi_check_system() here on other architectures 1250 * would not be OK because only x86 initializes dmi early enough. 1251 * Thankfully only x86 systems need such quirks for now. 1252 */ 1253 dmi_check_system(dsdt_dmi_table); 1254 #endif 1255 1256 status = acpi_reallocate_root_table(); 1257 if (ACPI_FAILURE(status)) { 1258 pr_err("Unable to reallocate ACPI tables\n"); 1259 goto error0; 1260 } 1261 1262 status = acpi_initialize_subsystem(); 1263 if (ACPI_FAILURE(status)) { 1264 pr_err("Unable to initialize the ACPI Interpreter\n"); 1265 goto error0; 1266 } 1267 1268 #ifdef CONFIG_X86 1269 if (!acpi_ioapic) { 1270 /* compatible (0) means level (3) */ 1271 if (!(acpi_sci_flags & ACPI_MADT_TRIGGER_MASK)) { 1272 acpi_sci_flags &= ~ACPI_MADT_TRIGGER_MASK; 1273 acpi_sci_flags |= ACPI_MADT_TRIGGER_LEVEL; 1274 } 1275 /* Set PIC-mode SCI trigger type */ 1276 acpi_pic_sci_set_trigger(acpi_gbl_FADT.sci_interrupt, 1277 (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2); 1278 } else { 1279 /* 1280 * now that acpi_gbl_FADT is initialized, 1281 * update it with result from INT_SRC_OVR parsing 1282 */ 1283 acpi_gbl_FADT.sci_interrupt = acpi_sci_override_gsi; 1284 } 1285 #endif 1286 return; 1287 1288 error0: 1289 disable_acpi(); 1290 } 1291 1292 /** 1293 * acpi_subsystem_init - Finalize the early initialization of ACPI. 1294 * 1295 * Switch over the platform to the ACPI mode (if possible). 1296 * 1297 * Doing this too early is generally unsafe, but at the same time it needs to be 1298 * done before all things that really depend on ACPI. The right spot appears to 1299 * be before finalizing the EFI initialization. 1300 */ 1301 void __init acpi_subsystem_init(void) 1302 { 1303 acpi_status status; 1304 1305 if (acpi_disabled) 1306 return; 1307 1308 status = acpi_enable_subsystem(~ACPI_NO_ACPI_ENABLE); 1309 if (ACPI_FAILURE(status)) { 1310 pr_err("Unable to enable ACPI\n"); 1311 disable_acpi(); 1312 } else { 1313 /* 1314 * If the system is using ACPI then we can be reasonably 1315 * confident that any regulators are managed by the firmware 1316 * so tell the regulator core it has everything it needs to 1317 * know. 1318 */ 1319 regulator_has_full_constraints(); 1320 } 1321 } 1322 1323 static acpi_status acpi_bus_table_handler(u32 event, void *table, void *context) 1324 { 1325 if (event == ACPI_TABLE_EVENT_LOAD) 1326 acpi_scan_table_notify(); 1327 1328 return acpi_sysfs_table_handler(event, table, context); 1329 } 1330 1331 static int __init acpi_bus_init(void) 1332 { 1333 int result; 1334 acpi_status status; 1335 1336 acpi_os_initialize1(); 1337 1338 status = acpi_load_tables(); 1339 if (ACPI_FAILURE(status)) { 1340 pr_err("Unable to load the System Description Tables\n"); 1341 goto error1; 1342 } 1343 1344 /* 1345 * ACPI 2.0 requires the EC driver to be loaded and work before the EC 1346 * device is found in the namespace. 1347 * 1348 * This is accomplished by looking for the ECDT table and getting the EC 1349 * parameters out of that. 1350 * 1351 * Do that before calling acpi_initialize_objects() which may trigger EC 1352 * address space accesses. 1353 */ 1354 acpi_ec_ecdt_probe(); 1355 1356 status = acpi_enable_subsystem(ACPI_NO_ACPI_ENABLE); 1357 if (ACPI_FAILURE(status)) { 1358 pr_err("Unable to start the ACPI Interpreter\n"); 1359 goto error1; 1360 } 1361 1362 status = acpi_initialize_objects(ACPI_FULL_INITIALIZATION); 1363 if (ACPI_FAILURE(status)) { 1364 pr_err("Unable to initialize ACPI objects\n"); 1365 goto error1; 1366 } 1367 1368 /* 1369 * _OSC method may exist in module level code, 1370 * so it must be run after ACPI_FULL_INITIALIZATION 1371 */ 1372 acpi_bus_osc_negotiate_platform_control(); 1373 acpi_bus_osc_negotiate_usb_control(); 1374 1375 /* 1376 * _PDC control method may load dynamic SSDT tables, 1377 * and we need to install the table handler before that. 1378 */ 1379 status = acpi_install_table_handler(acpi_bus_table_handler, NULL); 1380 1381 acpi_sysfs_init(); 1382 1383 acpi_early_processor_control_setup(); 1384 1385 /* 1386 * Maybe EC region is required at bus_scan/acpi_get_devices. So it 1387 * is necessary to enable it as early as possible. 1388 */ 1389 acpi_ec_dsdt_probe(); 1390 1391 pr_info("Interpreter enabled\n"); 1392 1393 /* Initialize sleep structures */ 1394 acpi_sleep_init(); 1395 1396 /* 1397 * Get the system interrupt model and evaluate \_PIC. 1398 */ 1399 result = acpi_bus_init_irq(); 1400 if (result) 1401 goto error1; 1402 1403 /* 1404 * Register the for all standard device notifications. 1405 */ 1406 status = 1407 acpi_install_notify_handler(ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, 1408 &acpi_bus_notify, NULL); 1409 if (ACPI_FAILURE(status)) { 1410 pr_err("Unable to register for system notifications\n"); 1411 goto error1; 1412 } 1413 1414 /* 1415 * Create the top ACPI proc directory 1416 */ 1417 acpi_root_dir = proc_mkdir(ACPI_BUS_FILE_ROOT, NULL); 1418 1419 result = bus_register(&acpi_bus_type); 1420 if (!result) 1421 return 0; 1422 1423 /* Mimic structured exception handling */ 1424 error1: 1425 acpi_terminate(); 1426 return -ENODEV; 1427 } 1428 1429 struct kobject *acpi_kobj; 1430 EXPORT_SYMBOL_GPL(acpi_kobj); 1431 1432 static int __init acpi_init(void) 1433 { 1434 int result; 1435 1436 if (acpi_disabled) { 1437 pr_info("Interpreter disabled.\n"); 1438 return -ENODEV; 1439 } 1440 1441 acpi_kobj = kobject_create_and_add("acpi", firmware_kobj); 1442 if (!acpi_kobj) 1443 pr_debug("%s: kset create error\n", __func__); 1444 1445 init_prmt(); 1446 acpi_init_pcc(); 1447 result = acpi_bus_init(); 1448 if (result) { 1449 kobject_put(acpi_kobj); 1450 disable_acpi(); 1451 return result; 1452 } 1453 acpi_init_ffh(); 1454 1455 pci_mmcfg_late_init(); 1456 acpi_viot_early_init(); 1457 acpi_hest_init(); 1458 acpi_ghes_init(); 1459 acpi_arm_init(); 1460 acpi_scan_init(); 1461 acpi_ec_init(); 1462 acpi_debugfs_init(); 1463 acpi_sleep_proc_init(); 1464 acpi_wakeup_device_init(); 1465 acpi_debugger_init(); 1466 acpi_setup_sb_notify_handler(); 1467 acpi_viot_init(); 1468 return 0; 1469 } 1470 1471 subsys_initcall(acpi_init); 1472