xref: /linux/drivers/acpi/arm64/iort.c (revision ca64d84e93762f4e587e040a44ad9f6089afc777)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 
22 #define IORT_TYPE_MASK(type)	(1 << (type))
23 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
24 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
25 				(1 << ACPI_IORT_NODE_SMMU_V3))
26 
27 struct iort_its_msi_chip {
28 	struct list_head	list;
29 	struct fwnode_handle	*fw_node;
30 	phys_addr_t		base_addr;
31 	u32			translation_id;
32 };
33 
34 struct iort_fwnode {
35 	struct list_head list;
36 	struct acpi_iort_node *iort_node;
37 	struct fwnode_handle *fwnode;
38 };
39 static LIST_HEAD(iort_fwnode_list);
40 static DEFINE_SPINLOCK(iort_fwnode_lock);
41 
42 /**
43  * iort_set_fwnode() - Create iort_fwnode and use it to register
44  *		       iommu data in the iort_fwnode_list
45  *
46  * @node: IORT table node associated with the IOMMU
47  * @fwnode: fwnode associated with the IORT node
48  *
49  * Returns: 0 on success
50  *          <0 on failure
51  */
52 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
53 				  struct fwnode_handle *fwnode)
54 {
55 	struct iort_fwnode *np;
56 
57 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
58 
59 	if (WARN_ON(!np))
60 		return -ENOMEM;
61 
62 	INIT_LIST_HEAD(&np->list);
63 	np->iort_node = iort_node;
64 	np->fwnode = fwnode;
65 
66 	spin_lock(&iort_fwnode_lock);
67 	list_add_tail(&np->list, &iort_fwnode_list);
68 	spin_unlock(&iort_fwnode_lock);
69 
70 	return 0;
71 }
72 
73 /**
74  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
75  *
76  * @node: IORT table node to be looked-up
77  *
78  * Returns: fwnode_handle pointer on success, NULL on failure
79  */
80 static inline struct fwnode_handle *iort_get_fwnode(
81 			struct acpi_iort_node *node)
82 {
83 	struct iort_fwnode *curr;
84 	struct fwnode_handle *fwnode = NULL;
85 
86 	spin_lock(&iort_fwnode_lock);
87 	list_for_each_entry(curr, &iort_fwnode_list, list) {
88 		if (curr->iort_node == node) {
89 			fwnode = curr->fwnode;
90 			break;
91 		}
92 	}
93 	spin_unlock(&iort_fwnode_lock);
94 
95 	return fwnode;
96 }
97 
98 /**
99  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
100  *
101  * @node: IORT table node associated with fwnode to delete
102  */
103 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
104 {
105 	struct iort_fwnode *curr, *tmp;
106 
107 	spin_lock(&iort_fwnode_lock);
108 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
109 		if (curr->iort_node == node) {
110 			list_del(&curr->list);
111 			kfree(curr);
112 			break;
113 		}
114 	}
115 	spin_unlock(&iort_fwnode_lock);
116 }
117 
118 /**
119  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
120  *
121  * @fwnode: fwnode associated with device to be looked-up
122  *
123  * Returns: iort_node pointer on success, NULL on failure
124  */
125 static inline struct acpi_iort_node *iort_get_iort_node(
126 			struct fwnode_handle *fwnode)
127 {
128 	struct iort_fwnode *curr;
129 	struct acpi_iort_node *iort_node = NULL;
130 
131 	spin_lock(&iort_fwnode_lock);
132 	list_for_each_entry(curr, &iort_fwnode_list, list) {
133 		if (curr->fwnode == fwnode) {
134 			iort_node = curr->iort_node;
135 			break;
136 		}
137 	}
138 	spin_unlock(&iort_fwnode_lock);
139 
140 	return iort_node;
141 }
142 
143 typedef acpi_status (*iort_find_node_callback)
144 	(struct acpi_iort_node *node, void *context);
145 
146 /* Root pointer to the mapped IORT table */
147 static struct acpi_table_header *iort_table;
148 
149 static LIST_HEAD(iort_msi_chip_list);
150 static DEFINE_SPINLOCK(iort_msi_chip_lock);
151 
152 /**
153  * iort_register_domain_token() - register domain token along with related
154  * ITS ID and base address to the list from where we can get it back later on.
155  * @trans_id: ITS ID.
156  * @base: ITS base address.
157  * @fw_node: Domain token.
158  *
159  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
160  */
161 int iort_register_domain_token(int trans_id, phys_addr_t base,
162 			       struct fwnode_handle *fw_node)
163 {
164 	struct iort_its_msi_chip *its_msi_chip;
165 
166 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
167 	if (!its_msi_chip)
168 		return -ENOMEM;
169 
170 	its_msi_chip->fw_node = fw_node;
171 	its_msi_chip->translation_id = trans_id;
172 	its_msi_chip->base_addr = base;
173 
174 	spin_lock(&iort_msi_chip_lock);
175 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
176 	spin_unlock(&iort_msi_chip_lock);
177 
178 	return 0;
179 }
180 
181 /**
182  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
183  * @trans_id: ITS ID.
184  *
185  * Returns: none.
186  */
187 void iort_deregister_domain_token(int trans_id)
188 {
189 	struct iort_its_msi_chip *its_msi_chip, *t;
190 
191 	spin_lock(&iort_msi_chip_lock);
192 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
193 		if (its_msi_chip->translation_id == trans_id) {
194 			list_del(&its_msi_chip->list);
195 			kfree(its_msi_chip);
196 			break;
197 		}
198 	}
199 	spin_unlock(&iort_msi_chip_lock);
200 }
201 
202 /**
203  * iort_find_domain_token() - Find domain token based on given ITS ID
204  * @trans_id: ITS ID.
205  *
206  * Returns: domain token when find on the list, NULL otherwise
207  */
208 struct fwnode_handle *iort_find_domain_token(int trans_id)
209 {
210 	struct fwnode_handle *fw_node = NULL;
211 	struct iort_its_msi_chip *its_msi_chip;
212 
213 	spin_lock(&iort_msi_chip_lock);
214 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
215 		if (its_msi_chip->translation_id == trans_id) {
216 			fw_node = its_msi_chip->fw_node;
217 			break;
218 		}
219 	}
220 	spin_unlock(&iort_msi_chip_lock);
221 
222 	return fw_node;
223 }
224 
225 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
226 					     iort_find_node_callback callback,
227 					     void *context)
228 {
229 	struct acpi_iort_node *iort_node, *iort_end;
230 	struct acpi_table_iort *iort;
231 	int i;
232 
233 	if (!iort_table)
234 		return NULL;
235 
236 	/* Get the first IORT node */
237 	iort = (struct acpi_table_iort *)iort_table;
238 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
239 				 iort->node_offset);
240 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
241 				iort_table->length);
242 
243 	for (i = 0; i < iort->node_count; i++) {
244 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
245 			       "IORT node pointer overflows, bad table!\n"))
246 			return NULL;
247 
248 		if (iort_node->type == type &&
249 		    ACPI_SUCCESS(callback(iort_node, context)))
250 			return iort_node;
251 
252 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
253 					 iort_node->length);
254 	}
255 
256 	return NULL;
257 }
258 
259 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
260 					    void *context)
261 {
262 	struct device *dev = context;
263 	acpi_status status = AE_NOT_FOUND;
264 
265 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
266 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
267 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
268 		struct acpi_iort_named_component *ncomp;
269 
270 		if (!adev)
271 			goto out;
272 
273 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
274 		if (ACPI_FAILURE(status)) {
275 			dev_warn(dev, "Can't get device full path name\n");
276 			goto out;
277 		}
278 
279 		ncomp = (struct acpi_iort_named_component *)node->node_data;
280 		status = !strcmp(ncomp->device_name, buf.pointer) ?
281 							AE_OK : AE_NOT_FOUND;
282 		acpi_os_free(buf.pointer);
283 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
284 		struct acpi_iort_root_complex *pci_rc;
285 		struct pci_bus *bus;
286 
287 		bus = to_pci_bus(dev);
288 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
289 
290 		/*
291 		 * It is assumed that PCI segment numbers maps one-to-one
292 		 * with root complexes. Each segment number can represent only
293 		 * one root complex.
294 		 */
295 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
296 							AE_OK : AE_NOT_FOUND;
297 	}
298 out:
299 	return status;
300 }
301 
302 struct iort_workaround_oem_info {
303 	char oem_id[ACPI_OEM_ID_SIZE + 1];
304 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
305 	u32 oem_revision;
306 };
307 
308 static bool apply_id_count_workaround;
309 
310 static struct iort_workaround_oem_info wa_info[] __initdata = {
311 	{
312 		.oem_id		= "HISI  ",
313 		.oem_table_id	= "HIP07   ",
314 		.oem_revision	= 0,
315 	}, {
316 		.oem_id		= "HISI  ",
317 		.oem_table_id	= "HIP08   ",
318 		.oem_revision	= 0,
319 	}
320 };
321 
322 static void __init
323 iort_check_id_count_workaround(struct acpi_table_header *tbl)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
328 		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
329 		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
330 		    wa_info[i].oem_revision == tbl->oem_revision) {
331 			apply_id_count_workaround = true;
332 			pr_warn(FW_BUG "ID count for ID mapping entry is wrong, applying workaround\n");
333 			break;
334 		}
335 	}
336 }
337 
338 static inline u32 iort_get_map_max(struct acpi_iort_id_mapping *map)
339 {
340 	u32 map_max = map->input_base + map->id_count;
341 
342 	/*
343 	 * The IORT specification revision D (Section 3, table 4, page 9) says
344 	 * Number of IDs = The number of IDs in the range minus one, but the
345 	 * IORT code ignored the "minus one", and some firmware did that too,
346 	 * so apply a workaround here to keep compatible with both the spec
347 	 * compliant and non-spec compliant firmwares.
348 	 */
349 	if (apply_id_count_workaround)
350 		map_max--;
351 
352 	return map_max;
353 }
354 
355 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
356 		       u32 *rid_out)
357 {
358 	/* Single mapping does not care for input id */
359 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
360 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
361 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
362 			*rid_out = map->output_base;
363 			return 0;
364 		}
365 
366 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
367 			map, type);
368 		return -ENXIO;
369 	}
370 
371 	if (rid_in < map->input_base || rid_in > iort_get_map_max(map))
372 		return -ENXIO;
373 
374 	*rid_out = map->output_base + (rid_in - map->input_base);
375 	return 0;
376 }
377 
378 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
379 					       u32 *id_out, int index)
380 {
381 	struct acpi_iort_node *parent;
382 	struct acpi_iort_id_mapping *map;
383 
384 	if (!node->mapping_offset || !node->mapping_count ||
385 				     index >= node->mapping_count)
386 		return NULL;
387 
388 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
389 			   node->mapping_offset + index * sizeof(*map));
390 
391 	/* Firmware bug! */
392 	if (!map->output_reference) {
393 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
394 		       node, node->type);
395 		return NULL;
396 	}
397 
398 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
399 			       map->output_reference);
400 
401 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
402 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
403 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
404 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
405 		    node->type == ACPI_IORT_NODE_PMCG) {
406 			*id_out = map->output_base;
407 			return parent;
408 		}
409 	}
410 
411 	return NULL;
412 }
413 
414 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
415 {
416 	struct acpi_iort_smmu_v3 *smmu;
417 
418 	switch (node->type) {
419 	case ACPI_IORT_NODE_SMMU_V3:
420 		/*
421 		 * SMMUv3 dev ID mapping index was introduced in revision 1
422 		 * table, not available in revision 0
423 		 */
424 		if (node->revision < 1)
425 			return -EINVAL;
426 
427 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
428 		/*
429 		 * ID mapping index is only ignored if all interrupts are
430 		 * GSIV based
431 		 */
432 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
433 		    && smmu->sync_gsiv)
434 			return -EINVAL;
435 
436 		if (smmu->id_mapping_index >= node->mapping_count) {
437 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
438 			       node, node->type);
439 			return -EINVAL;
440 		}
441 
442 		return smmu->id_mapping_index;
443 	case ACPI_IORT_NODE_PMCG:
444 		return 0;
445 	default:
446 		return -EINVAL;
447 	}
448 }
449 
450 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
451 					       u32 id_in, u32 *id_out,
452 					       u8 type_mask)
453 {
454 	u32 id = id_in;
455 
456 	/* Parse the ID mapping tree to find specified node type */
457 	while (node) {
458 		struct acpi_iort_id_mapping *map;
459 		int i, index;
460 
461 		if (IORT_TYPE_MASK(node->type) & type_mask) {
462 			if (id_out)
463 				*id_out = id;
464 			return node;
465 		}
466 
467 		if (!node->mapping_offset || !node->mapping_count)
468 			goto fail_map;
469 
470 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
471 				   node->mapping_offset);
472 
473 		/* Firmware bug! */
474 		if (!map->output_reference) {
475 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
476 			       node, node->type);
477 			goto fail_map;
478 		}
479 
480 		/*
481 		 * Get the special ID mapping index (if any) and skip its
482 		 * associated ID map to prevent erroneous multi-stage
483 		 * IORT ID translations.
484 		 */
485 		index = iort_get_id_mapping_index(node);
486 
487 		/* Do the ID translation */
488 		for (i = 0; i < node->mapping_count; i++, map++) {
489 			/* if it is special mapping index, skip it */
490 			if (i == index)
491 				continue;
492 
493 			if (!iort_id_map(map, node->type, id, &id))
494 				break;
495 		}
496 
497 		if (i == node->mapping_count)
498 			goto fail_map;
499 
500 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 				    map->output_reference);
502 	}
503 
504 fail_map:
505 	/* Map input ID to output ID unchanged on mapping failure */
506 	if (id_out)
507 		*id_out = id_in;
508 
509 	return NULL;
510 }
511 
512 static struct acpi_iort_node *iort_node_map_platform_id(
513 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 		int index)
515 {
516 	struct acpi_iort_node *parent;
517 	u32 id;
518 
519 	/* step 1: retrieve the initial dev id */
520 	parent = iort_node_get_id(node, &id, index);
521 	if (!parent)
522 		return NULL;
523 
524 	/*
525 	 * optional step 2: map the initial dev id if its parent is not
526 	 * the target type we want, map it again for the use cases such
527 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 	 * return the initial dev id and its parent pointer directly.
529 	 */
530 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 		parent = iort_node_map_id(parent, id, id_out, type_mask);
532 	else
533 		if (id_out)
534 			*id_out = id;
535 
536 	return parent;
537 }
538 
539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 	struct pci_bus *pbus;
542 
543 	if (!dev_is_pci(dev)) {
544 		struct acpi_iort_node *node;
545 		/*
546 		 * scan iort_fwnode_list to see if it's an iort platform
547 		 * device (such as SMMU, PMCG),its iort node already cached
548 		 * and associated with fwnode when iort platform devices
549 		 * were initialized.
550 		 */
551 		node = iort_get_iort_node(dev->fwnode);
552 		if (node)
553 			return node;
554 
555 		/*
556 		 * if not, then it should be a platform device defined in
557 		 * DSDT/SSDT (with Named Component node in IORT)
558 		 */
559 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
560 				      iort_match_node_callback, dev);
561 	}
562 
563 	/* Find a PCI root bus */
564 	pbus = to_pci_dev(dev)->bus;
565 	while (!pci_is_root_bus(pbus))
566 		pbus = pbus->parent;
567 
568 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
569 			      iort_match_node_callback, &pbus->dev);
570 }
571 
572 /**
573  * iort_msi_map_rid() - Map a MSI requester ID for a device
574  * @dev: The device for which the mapping is to be done.
575  * @req_id: The device requester ID.
576  *
577  * Returns: mapped MSI RID on success, input requester ID otherwise
578  */
579 u32 iort_msi_map_rid(struct device *dev, u32 req_id)
580 {
581 	struct acpi_iort_node *node;
582 	u32 dev_id;
583 
584 	node = iort_find_dev_node(dev);
585 	if (!node)
586 		return req_id;
587 
588 	iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE);
589 	return dev_id;
590 }
591 
592 /**
593  * iort_pmsi_get_dev_id() - Get the device id for a device
594  * @dev: The device for which the mapping is to be done.
595  * @dev_id: The device ID found.
596  *
597  * Returns: 0 for successful find a dev id, -ENODEV on error
598  */
599 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
600 {
601 	int i, index;
602 	struct acpi_iort_node *node;
603 
604 	node = iort_find_dev_node(dev);
605 	if (!node)
606 		return -ENODEV;
607 
608 	index = iort_get_id_mapping_index(node);
609 	/* if there is a valid index, go get the dev_id directly */
610 	if (index >= 0) {
611 		if (iort_node_get_id(node, dev_id, index))
612 			return 0;
613 	} else {
614 		for (i = 0; i < node->mapping_count; i++) {
615 			if (iort_node_map_platform_id(node, dev_id,
616 						      IORT_MSI_TYPE, i))
617 				return 0;
618 		}
619 	}
620 
621 	return -ENODEV;
622 }
623 
624 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
625 {
626 	struct iort_its_msi_chip *its_msi_chip;
627 	int ret = -ENODEV;
628 
629 	spin_lock(&iort_msi_chip_lock);
630 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
631 		if (its_msi_chip->translation_id == its_id) {
632 			*base = its_msi_chip->base_addr;
633 			ret = 0;
634 			break;
635 		}
636 	}
637 	spin_unlock(&iort_msi_chip_lock);
638 
639 	return ret;
640 }
641 
642 /**
643  * iort_dev_find_its_id() - Find the ITS identifier for a device
644  * @dev: The device.
645  * @req_id: Device's requester ID
646  * @idx: Index of the ITS identifier list.
647  * @its_id: ITS identifier.
648  *
649  * Returns: 0 on success, appropriate error value otherwise
650  */
651 static int iort_dev_find_its_id(struct device *dev, u32 req_id,
652 				unsigned int idx, int *its_id)
653 {
654 	struct acpi_iort_its_group *its;
655 	struct acpi_iort_node *node;
656 
657 	node = iort_find_dev_node(dev);
658 	if (!node)
659 		return -ENXIO;
660 
661 	node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE);
662 	if (!node)
663 		return -ENXIO;
664 
665 	/* Move to ITS specific data */
666 	its = (struct acpi_iort_its_group *)node->node_data;
667 	if (idx >= its->its_count) {
668 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
669 			idx, its->its_count);
670 		return -ENXIO;
671 	}
672 
673 	*its_id = its->identifiers[idx];
674 	return 0;
675 }
676 
677 /**
678  * iort_get_device_domain() - Find MSI domain related to a device
679  * @dev: The device.
680  * @req_id: Requester ID for the device.
681  *
682  * Returns: the MSI domain for this device, NULL otherwise
683  */
684 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
685 {
686 	struct fwnode_handle *handle;
687 	int its_id;
688 
689 	if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
690 		return NULL;
691 
692 	handle = iort_find_domain_token(its_id);
693 	if (!handle)
694 		return NULL;
695 
696 	return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
697 }
698 
699 static void iort_set_device_domain(struct device *dev,
700 				   struct acpi_iort_node *node)
701 {
702 	struct acpi_iort_its_group *its;
703 	struct acpi_iort_node *msi_parent;
704 	struct acpi_iort_id_mapping *map;
705 	struct fwnode_handle *iort_fwnode;
706 	struct irq_domain *domain;
707 	int index;
708 
709 	index = iort_get_id_mapping_index(node);
710 	if (index < 0)
711 		return;
712 
713 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
714 			   node->mapping_offset + index * sizeof(*map));
715 
716 	/* Firmware bug! */
717 	if (!map->output_reference ||
718 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
719 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
720 		       node, node->type);
721 		return;
722 	}
723 
724 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
725 				  map->output_reference);
726 
727 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
728 		return;
729 
730 	/* Move to ITS specific data */
731 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
732 
733 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
734 	if (!iort_fwnode)
735 		return;
736 
737 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
738 	if (domain)
739 		dev_set_msi_domain(dev, domain);
740 }
741 
742 /**
743  * iort_get_platform_device_domain() - Find MSI domain related to a
744  * platform device
745  * @dev: the dev pointer associated with the platform device
746  *
747  * Returns: the MSI domain for this device, NULL otherwise
748  */
749 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
750 {
751 	struct acpi_iort_node *node, *msi_parent = NULL;
752 	struct fwnode_handle *iort_fwnode;
753 	struct acpi_iort_its_group *its;
754 	int i;
755 
756 	/* find its associated iort node */
757 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
758 			      iort_match_node_callback, dev);
759 	if (!node)
760 		return NULL;
761 
762 	/* then find its msi parent node */
763 	for (i = 0; i < node->mapping_count; i++) {
764 		msi_parent = iort_node_map_platform_id(node, NULL,
765 						       IORT_MSI_TYPE, i);
766 		if (msi_parent)
767 			break;
768 	}
769 
770 	if (!msi_parent)
771 		return NULL;
772 
773 	/* Move to ITS specific data */
774 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
775 
776 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
777 	if (!iort_fwnode)
778 		return NULL;
779 
780 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
781 }
782 
783 void acpi_configure_pmsi_domain(struct device *dev)
784 {
785 	struct irq_domain *msi_domain;
786 
787 	msi_domain = iort_get_platform_device_domain(dev);
788 	if (msi_domain)
789 		dev_set_msi_domain(dev, msi_domain);
790 }
791 
792 static int __maybe_unused __get_pci_rid(struct pci_dev *pdev, u16 alias,
793 					void *data)
794 {
795 	u32 *rid = data;
796 
797 	*rid = alias;
798 	return 0;
799 }
800 
801 #ifdef CONFIG_IOMMU_API
802 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
803 {
804 	struct acpi_iort_node *iommu;
805 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
806 
807 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
808 
809 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
810 		struct acpi_iort_smmu_v3 *smmu;
811 
812 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
813 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
814 			return iommu;
815 	}
816 
817 	return NULL;
818 }
819 
820 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
821 {
822 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
823 
824 	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
825 }
826 
827 static inline int iort_add_device_replay(const struct iommu_ops *ops,
828 					 struct device *dev)
829 {
830 	int err = 0;
831 
832 	if (dev->bus && !device_iommu_mapped(dev))
833 		err = iommu_probe_device(dev);
834 
835 	return err;
836 }
837 
838 /**
839  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
840  * @dev: Device from iommu_get_resv_regions()
841  * @head: Reserved region list from iommu_get_resv_regions()
842  *
843  * Returns: Number of msi reserved regions on success (0 if platform
844  *          doesn't require the reservation or no associated msi regions),
845  *          appropriate error value otherwise. The ITS interrupt translation
846  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
847  *          are the msi reserved regions.
848  */
849 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
850 {
851 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
852 	struct acpi_iort_its_group *its;
853 	struct acpi_iort_node *iommu_node, *its_node = NULL;
854 	int i, resv = 0;
855 
856 	iommu_node = iort_get_msi_resv_iommu(dev);
857 	if (!iommu_node)
858 		return 0;
859 
860 	/*
861 	 * Current logic to reserve ITS regions relies on HW topologies
862 	 * where a given PCI or named component maps its IDs to only one
863 	 * ITS group; if a PCI or named component can map its IDs to
864 	 * different ITS groups through IORT mappings this function has
865 	 * to be reworked to ensure we reserve regions for all ITS groups
866 	 * a given PCI or named component may map IDs to.
867 	 */
868 
869 	for (i = 0; i < fwspec->num_ids; i++) {
870 		its_node = iort_node_map_id(iommu_node,
871 					fwspec->ids[i],
872 					NULL, IORT_MSI_TYPE);
873 		if (its_node)
874 			break;
875 	}
876 
877 	if (!its_node)
878 		return 0;
879 
880 	/* Move to ITS specific data */
881 	its = (struct acpi_iort_its_group *)its_node->node_data;
882 
883 	for (i = 0; i < its->its_count; i++) {
884 		phys_addr_t base;
885 
886 		if (!iort_find_its_base(its->identifiers[i], &base)) {
887 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
888 			struct iommu_resv_region *region;
889 
890 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
891 							 prot, IOMMU_RESV_MSI);
892 			if (region) {
893 				list_add_tail(&region->list, head);
894 				resv++;
895 			}
896 		}
897 	}
898 
899 	return (resv == its->its_count) ? resv : -ENODEV;
900 }
901 
902 static inline bool iort_iommu_driver_enabled(u8 type)
903 {
904 	switch (type) {
905 	case ACPI_IORT_NODE_SMMU_V3:
906 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
907 	case ACPI_IORT_NODE_SMMU:
908 		return IS_ENABLED(CONFIG_ARM_SMMU);
909 	default:
910 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
911 		return false;
912 	}
913 }
914 
915 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
916 			       struct fwnode_handle *fwnode,
917 			       const struct iommu_ops *ops)
918 {
919 	int ret = iommu_fwspec_init(dev, fwnode, ops);
920 
921 	if (!ret)
922 		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
923 
924 	return ret;
925 }
926 
927 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
928 {
929 	struct acpi_iort_root_complex *pci_rc;
930 
931 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
932 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
933 }
934 
935 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
936 			    u32 streamid)
937 {
938 	const struct iommu_ops *ops;
939 	struct fwnode_handle *iort_fwnode;
940 
941 	if (!node)
942 		return -ENODEV;
943 
944 	iort_fwnode = iort_get_fwnode(node);
945 	if (!iort_fwnode)
946 		return -ENODEV;
947 
948 	/*
949 	 * If the ops look-up fails, this means that either
950 	 * the SMMU drivers have not been probed yet or that
951 	 * the SMMU drivers are not built in the kernel;
952 	 * Depending on whether the SMMU drivers are built-in
953 	 * in the kernel or not, defer the IOMMU configuration
954 	 * or just abort it.
955 	 */
956 	ops = iommu_ops_from_fwnode(iort_fwnode);
957 	if (!ops)
958 		return iort_iommu_driver_enabled(node->type) ?
959 		       -EPROBE_DEFER : -ENODEV;
960 
961 	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
962 }
963 
964 struct iort_pci_alias_info {
965 	struct device *dev;
966 	struct acpi_iort_node *node;
967 };
968 
969 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
970 {
971 	struct iort_pci_alias_info *info = data;
972 	struct acpi_iort_node *parent;
973 	u32 streamid;
974 
975 	parent = iort_node_map_id(info->node, alias, &streamid,
976 				  IORT_IOMMU_TYPE);
977 	return iort_iommu_xlate(info->dev, parent, streamid);
978 }
979 
980 static void iort_named_component_init(struct device *dev,
981 				      struct acpi_iort_node *node)
982 {
983 	struct acpi_iort_named_component *nc;
984 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
985 
986 	if (!fwspec)
987 		return;
988 
989 	nc = (struct acpi_iort_named_component *)node->node_data;
990 	fwspec->num_pasid_bits = FIELD_GET(ACPI_IORT_NC_PASID_BITS,
991 					   nc->node_flags);
992 }
993 
994 /**
995  * iort_iommu_configure - Set-up IOMMU configuration for a device.
996  *
997  * @dev: device to configure
998  *
999  * Returns: iommu_ops pointer on configuration success
1000  *          NULL on configuration failure
1001  */
1002 const struct iommu_ops *iort_iommu_configure(struct device *dev)
1003 {
1004 	struct acpi_iort_node *node, *parent;
1005 	const struct iommu_ops *ops;
1006 	u32 streamid = 0;
1007 	int err = -ENODEV;
1008 
1009 	/*
1010 	 * If we already translated the fwspec there
1011 	 * is nothing left to do, return the iommu_ops.
1012 	 */
1013 	ops = iort_fwspec_iommu_ops(dev);
1014 	if (ops)
1015 		return ops;
1016 
1017 	if (dev_is_pci(dev)) {
1018 		struct iommu_fwspec *fwspec;
1019 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1020 		struct iort_pci_alias_info info = { .dev = dev };
1021 
1022 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1023 				      iort_match_node_callback, &bus->dev);
1024 		if (!node)
1025 			return NULL;
1026 
1027 		info.node = node;
1028 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1029 					     iort_pci_iommu_init, &info);
1030 
1031 		fwspec = dev_iommu_fwspec_get(dev);
1032 		if (fwspec && iort_pci_rc_supports_ats(node))
1033 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1034 	} else {
1035 		int i = 0;
1036 
1037 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1038 				      iort_match_node_callback, dev);
1039 		if (!node)
1040 			return NULL;
1041 
1042 		do {
1043 			parent = iort_node_map_platform_id(node, &streamid,
1044 							   IORT_IOMMU_TYPE,
1045 							   i++);
1046 
1047 			if (parent)
1048 				err = iort_iommu_xlate(dev, parent, streamid);
1049 		} while (parent && !err);
1050 
1051 		if (!err)
1052 			iort_named_component_init(dev, node);
1053 	}
1054 
1055 	/*
1056 	 * If we have reason to believe the IOMMU driver missed the initial
1057 	 * add_device callback for dev, replay it to get things in order.
1058 	 */
1059 	if (!err) {
1060 		ops = iort_fwspec_iommu_ops(dev);
1061 		err = iort_add_device_replay(ops, dev);
1062 	}
1063 
1064 	/* Ignore all other errors apart from EPROBE_DEFER */
1065 	if (err == -EPROBE_DEFER) {
1066 		ops = ERR_PTR(err);
1067 	} else if (err) {
1068 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1069 		ops = NULL;
1070 	}
1071 
1072 	return ops;
1073 }
1074 #else
1075 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
1076 { return NULL; }
1077 static inline int iort_add_device_replay(const struct iommu_ops *ops,
1078 					 struct device *dev)
1079 { return 0; }
1080 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1081 { return 0; }
1082 const struct iommu_ops *iort_iommu_configure(struct device *dev)
1083 { return NULL; }
1084 #endif
1085 
1086 static int nc_dma_get_range(struct device *dev, u64 *size)
1087 {
1088 	struct acpi_iort_node *node;
1089 	struct acpi_iort_named_component *ncomp;
1090 
1091 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1092 			      iort_match_node_callback, dev);
1093 	if (!node)
1094 		return -ENODEV;
1095 
1096 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1097 
1098 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1099 			1ULL<<ncomp->memory_address_limit;
1100 
1101 	return 0;
1102 }
1103 
1104 static int rc_dma_get_range(struct device *dev, u64 *size)
1105 {
1106 	struct acpi_iort_node *node;
1107 	struct acpi_iort_root_complex *rc;
1108 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1109 
1110 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1111 			      iort_match_node_callback, &pbus->dev);
1112 	if (!node || node->revision < 1)
1113 		return -ENODEV;
1114 
1115 	rc = (struct acpi_iort_root_complex *)node->node_data;
1116 
1117 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1118 			1ULL<<rc->memory_address_limit;
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * iort_dma_setup() - Set-up device DMA parameters.
1125  *
1126  * @dev: device to configure
1127  * @dma_addr: device DMA address result pointer
1128  * @size: DMA range size result pointer
1129  */
1130 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1131 {
1132 	u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1133 	int ret;
1134 
1135 	/*
1136 	 * If @dev is expected to be DMA-capable then the bus code that created
1137 	 * it should have initialised its dma_mask pointer by this point. For
1138 	 * now, we'll continue the legacy behaviour of coercing it to the
1139 	 * coherent mask if not, but we'll no longer do so quietly.
1140 	 */
1141 	if (!dev->dma_mask) {
1142 		dev_warn(dev, "DMA mask not set\n");
1143 		dev->dma_mask = &dev->coherent_dma_mask;
1144 	}
1145 
1146 	if (dev->coherent_dma_mask)
1147 		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1148 	else
1149 		size = 1ULL << 32;
1150 
1151 	if (dev_is_pci(dev)) {
1152 		ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1153 		if (ret == -ENODEV)
1154 			ret = rc_dma_get_range(dev, &size);
1155 	} else {
1156 		ret = nc_dma_get_range(dev, &size);
1157 	}
1158 
1159 	if (!ret) {
1160 		/*
1161 		 * Limit coherent and dma mask based on size retrieved from
1162 		 * firmware.
1163 		 */
1164 		end = dmaaddr + size - 1;
1165 		mask = DMA_BIT_MASK(ilog2(end) + 1);
1166 		dev->bus_dma_limit = end;
1167 		dev->coherent_dma_mask = mask;
1168 		*dev->dma_mask = mask;
1169 	}
1170 
1171 	*dma_addr = dmaaddr;
1172 	*dma_size = size;
1173 
1174 	dev->dma_pfn_offset = PFN_DOWN(offset);
1175 	dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
1176 }
1177 
1178 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1179 					  int trigger,
1180 					  struct resource *res)
1181 {
1182 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1183 				    ACPI_ACTIVE_HIGH);
1184 
1185 	if (irq <= 0) {
1186 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1187 								      name);
1188 		return;
1189 	}
1190 
1191 	res->start = irq;
1192 	res->end = irq;
1193 	res->flags = IORESOURCE_IRQ;
1194 	res->name = name;
1195 }
1196 
1197 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1198 {
1199 	struct acpi_iort_smmu_v3 *smmu;
1200 	/* Always present mem resource */
1201 	int num_res = 1;
1202 
1203 	/* Retrieve SMMUv3 specific data */
1204 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1205 
1206 	if (smmu->event_gsiv)
1207 		num_res++;
1208 
1209 	if (smmu->pri_gsiv)
1210 		num_res++;
1211 
1212 	if (smmu->gerr_gsiv)
1213 		num_res++;
1214 
1215 	if (smmu->sync_gsiv)
1216 		num_res++;
1217 
1218 	return num_res;
1219 }
1220 
1221 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1222 {
1223 	/*
1224 	 * Cavium ThunderX2 implementation doesn't not support unique
1225 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1226 	 */
1227 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1228 		return false;
1229 
1230 	/*
1231 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1232 	 * SPI numbers here.
1233 	 */
1234 	return smmu->event_gsiv == smmu->pri_gsiv &&
1235 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1236 	       smmu->event_gsiv == smmu->sync_gsiv;
1237 }
1238 
1239 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1240 {
1241 	/*
1242 	 * Override the size, for Cavium ThunderX2 implementation
1243 	 * which doesn't support the page 1 SMMU register space.
1244 	 */
1245 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1246 		return SZ_64K;
1247 
1248 	return SZ_128K;
1249 }
1250 
1251 static void __init arm_smmu_v3_init_resources(struct resource *res,
1252 					      struct acpi_iort_node *node)
1253 {
1254 	struct acpi_iort_smmu_v3 *smmu;
1255 	int num_res = 0;
1256 
1257 	/* Retrieve SMMUv3 specific data */
1258 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1259 
1260 	res[num_res].start = smmu->base_address;
1261 	res[num_res].end = smmu->base_address +
1262 				arm_smmu_v3_resource_size(smmu) - 1;
1263 	res[num_res].flags = IORESOURCE_MEM;
1264 
1265 	num_res++;
1266 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1267 		if (smmu->event_gsiv)
1268 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1269 					       ACPI_EDGE_SENSITIVE,
1270 					       &res[num_res++]);
1271 	} else {
1272 
1273 		if (smmu->event_gsiv)
1274 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1275 					       ACPI_EDGE_SENSITIVE,
1276 					       &res[num_res++]);
1277 
1278 		if (smmu->pri_gsiv)
1279 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1280 					       ACPI_EDGE_SENSITIVE,
1281 					       &res[num_res++]);
1282 
1283 		if (smmu->gerr_gsiv)
1284 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1285 					       ACPI_EDGE_SENSITIVE,
1286 					       &res[num_res++]);
1287 
1288 		if (smmu->sync_gsiv)
1289 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1290 					       ACPI_EDGE_SENSITIVE,
1291 					       &res[num_res++]);
1292 	}
1293 }
1294 
1295 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1296 					     struct acpi_iort_node *node)
1297 {
1298 	struct acpi_iort_smmu_v3 *smmu;
1299 	enum dev_dma_attr attr;
1300 
1301 	/* Retrieve SMMUv3 specific data */
1302 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1303 
1304 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1305 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1306 
1307 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1308 	dev->dma_mask = &dev->coherent_dma_mask;
1309 
1310 	/* Configure DMA for the page table walker */
1311 	acpi_dma_configure(dev, attr);
1312 }
1313 
1314 #if defined(CONFIG_ACPI_NUMA)
1315 /*
1316  * set numa proximity domain for smmuv3 device
1317  */
1318 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1319 					      struct acpi_iort_node *node)
1320 {
1321 	struct acpi_iort_smmu_v3 *smmu;
1322 
1323 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1324 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1325 		int dev_node = acpi_map_pxm_to_node(smmu->pxm);
1326 
1327 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1328 			return -EINVAL;
1329 
1330 		set_dev_node(dev, dev_node);
1331 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1332 			smmu->base_address,
1333 			smmu->pxm);
1334 	}
1335 	return 0;
1336 }
1337 #else
1338 #define arm_smmu_v3_set_proximity NULL
1339 #endif
1340 
1341 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1342 {
1343 	struct acpi_iort_smmu *smmu;
1344 
1345 	/* Retrieve SMMU specific data */
1346 	smmu = (struct acpi_iort_smmu *)node->node_data;
1347 
1348 	/*
1349 	 * Only consider the global fault interrupt and ignore the
1350 	 * configuration access interrupt.
1351 	 *
1352 	 * MMIO address and global fault interrupt resources are always
1353 	 * present so add them to the context interrupt count as a static
1354 	 * value.
1355 	 */
1356 	return smmu->context_interrupt_count + 2;
1357 }
1358 
1359 static void __init arm_smmu_init_resources(struct resource *res,
1360 					   struct acpi_iort_node *node)
1361 {
1362 	struct acpi_iort_smmu *smmu;
1363 	int i, hw_irq, trigger, num_res = 0;
1364 	u64 *ctx_irq, *glb_irq;
1365 
1366 	/* Retrieve SMMU specific data */
1367 	smmu = (struct acpi_iort_smmu *)node->node_data;
1368 
1369 	res[num_res].start = smmu->base_address;
1370 	res[num_res].end = smmu->base_address + smmu->span - 1;
1371 	res[num_res].flags = IORESOURCE_MEM;
1372 	num_res++;
1373 
1374 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1375 	/* Global IRQs */
1376 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1377 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1378 
1379 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1380 				     &res[num_res++]);
1381 
1382 	/* Context IRQs */
1383 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1384 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1385 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1386 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1387 
1388 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1389 				       &res[num_res++]);
1390 	}
1391 }
1392 
1393 static void __init arm_smmu_dma_configure(struct device *dev,
1394 					  struct acpi_iort_node *node)
1395 {
1396 	struct acpi_iort_smmu *smmu;
1397 	enum dev_dma_attr attr;
1398 
1399 	/* Retrieve SMMU specific data */
1400 	smmu = (struct acpi_iort_smmu *)node->node_data;
1401 
1402 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1403 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1404 
1405 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1406 	dev->dma_mask = &dev->coherent_dma_mask;
1407 
1408 	/* Configure DMA for the page table walker */
1409 	acpi_dma_configure(dev, attr);
1410 }
1411 
1412 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1413 {
1414 	struct acpi_iort_pmcg *pmcg;
1415 
1416 	/* Retrieve PMCG specific data */
1417 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1418 
1419 	/*
1420 	 * There are always 2 memory resources.
1421 	 * If the overflow_gsiv is present then add that for a total of 3.
1422 	 */
1423 	return pmcg->overflow_gsiv ? 3 : 2;
1424 }
1425 
1426 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1427 						   struct acpi_iort_node *node)
1428 {
1429 	struct acpi_iort_pmcg *pmcg;
1430 
1431 	/* Retrieve PMCG specific data */
1432 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1433 
1434 	res[0].start = pmcg->page0_base_address;
1435 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1436 	res[0].flags = IORESOURCE_MEM;
1437 	res[1].start = pmcg->page1_base_address;
1438 	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1439 	res[1].flags = IORESOURCE_MEM;
1440 
1441 	if (pmcg->overflow_gsiv)
1442 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1443 				       ACPI_EDGE_SENSITIVE, &res[2]);
1444 }
1445 
1446 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1447 	/* HiSilicon Hip08 Platform */
1448 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1449 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1450 	{ }
1451 };
1452 
1453 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1454 {
1455 	u32 model;
1456 	int idx;
1457 
1458 	idx = acpi_match_platform_list(pmcg_plat_info);
1459 	if (idx >= 0)
1460 		model = pmcg_plat_info[idx].data;
1461 	else
1462 		model = IORT_SMMU_V3_PMCG_GENERIC;
1463 
1464 	return platform_device_add_data(pdev, &model, sizeof(model));
1465 }
1466 
1467 struct iort_dev_config {
1468 	const char *name;
1469 	int (*dev_init)(struct acpi_iort_node *node);
1470 	void (*dev_dma_configure)(struct device *dev,
1471 				  struct acpi_iort_node *node);
1472 	int (*dev_count_resources)(struct acpi_iort_node *node);
1473 	void (*dev_init_resources)(struct resource *res,
1474 				     struct acpi_iort_node *node);
1475 	int (*dev_set_proximity)(struct device *dev,
1476 				    struct acpi_iort_node *node);
1477 	int (*dev_add_platdata)(struct platform_device *pdev);
1478 };
1479 
1480 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1481 	.name = "arm-smmu-v3",
1482 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1483 	.dev_count_resources = arm_smmu_v3_count_resources,
1484 	.dev_init_resources = arm_smmu_v3_init_resources,
1485 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1486 };
1487 
1488 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1489 	.name = "arm-smmu",
1490 	.dev_dma_configure = arm_smmu_dma_configure,
1491 	.dev_count_resources = arm_smmu_count_resources,
1492 	.dev_init_resources = arm_smmu_init_resources,
1493 };
1494 
1495 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1496 	.name = "arm-smmu-v3-pmcg",
1497 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1498 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1499 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1500 };
1501 
1502 static __init const struct iort_dev_config *iort_get_dev_cfg(
1503 			struct acpi_iort_node *node)
1504 {
1505 	switch (node->type) {
1506 	case ACPI_IORT_NODE_SMMU_V3:
1507 		return &iort_arm_smmu_v3_cfg;
1508 	case ACPI_IORT_NODE_SMMU:
1509 		return &iort_arm_smmu_cfg;
1510 	case ACPI_IORT_NODE_PMCG:
1511 		return &iort_arm_smmu_v3_pmcg_cfg;
1512 	default:
1513 		return NULL;
1514 	}
1515 }
1516 
1517 /**
1518  * iort_add_platform_device() - Allocate a platform device for IORT node
1519  * @node: Pointer to device ACPI IORT node
1520  *
1521  * Returns: 0 on success, <0 failure
1522  */
1523 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1524 					   const struct iort_dev_config *ops)
1525 {
1526 	struct fwnode_handle *fwnode;
1527 	struct platform_device *pdev;
1528 	struct resource *r;
1529 	int ret, count;
1530 
1531 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1532 	if (!pdev)
1533 		return -ENOMEM;
1534 
1535 	if (ops->dev_set_proximity) {
1536 		ret = ops->dev_set_proximity(&pdev->dev, node);
1537 		if (ret)
1538 			goto dev_put;
1539 	}
1540 
1541 	count = ops->dev_count_resources(node);
1542 
1543 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1544 	if (!r) {
1545 		ret = -ENOMEM;
1546 		goto dev_put;
1547 	}
1548 
1549 	ops->dev_init_resources(r, node);
1550 
1551 	ret = platform_device_add_resources(pdev, r, count);
1552 	/*
1553 	 * Resources are duplicated in platform_device_add_resources,
1554 	 * free their allocated memory
1555 	 */
1556 	kfree(r);
1557 
1558 	if (ret)
1559 		goto dev_put;
1560 
1561 	/*
1562 	 * Platform devices based on PMCG nodes uses platform_data to
1563 	 * pass the hardware model info to the driver. For others, add
1564 	 * a copy of IORT node pointer to platform_data to be used to
1565 	 * retrieve IORT data information.
1566 	 */
1567 	if (ops->dev_add_platdata)
1568 		ret = ops->dev_add_platdata(pdev);
1569 	else
1570 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1571 
1572 	if (ret)
1573 		goto dev_put;
1574 
1575 	fwnode = iort_get_fwnode(node);
1576 
1577 	if (!fwnode) {
1578 		ret = -ENODEV;
1579 		goto dev_put;
1580 	}
1581 
1582 	pdev->dev.fwnode = fwnode;
1583 
1584 	if (ops->dev_dma_configure)
1585 		ops->dev_dma_configure(&pdev->dev, node);
1586 
1587 	iort_set_device_domain(&pdev->dev, node);
1588 
1589 	ret = platform_device_add(pdev);
1590 	if (ret)
1591 		goto dma_deconfigure;
1592 
1593 	return 0;
1594 
1595 dma_deconfigure:
1596 	arch_teardown_dma_ops(&pdev->dev);
1597 dev_put:
1598 	platform_device_put(pdev);
1599 
1600 	return ret;
1601 }
1602 
1603 #ifdef CONFIG_PCI
1604 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1605 {
1606 	static bool acs_enabled __initdata;
1607 
1608 	if (acs_enabled)
1609 		return;
1610 
1611 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1612 		struct acpi_iort_node *parent;
1613 		struct acpi_iort_id_mapping *map;
1614 		int i;
1615 
1616 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1617 				   iort_node->mapping_offset);
1618 
1619 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1620 			if (!map->output_reference)
1621 				continue;
1622 
1623 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1624 					iort_table,  map->output_reference);
1625 			/*
1626 			 * If we detect a RC->SMMU mapping, make sure
1627 			 * we enable ACS on the system.
1628 			 */
1629 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1630 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1631 				pci_request_acs();
1632 				acs_enabled = true;
1633 				return;
1634 			}
1635 		}
1636 	}
1637 }
1638 #else
1639 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1640 #endif
1641 
1642 static void __init iort_init_platform_devices(void)
1643 {
1644 	struct acpi_iort_node *iort_node, *iort_end;
1645 	struct acpi_table_iort *iort;
1646 	struct fwnode_handle *fwnode;
1647 	int i, ret;
1648 	const struct iort_dev_config *ops;
1649 
1650 	/*
1651 	 * iort_table and iort both point to the start of IORT table, but
1652 	 * have different struct types
1653 	 */
1654 	iort = (struct acpi_table_iort *)iort_table;
1655 
1656 	/* Get the first IORT node */
1657 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1658 				 iort->node_offset);
1659 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1660 				iort_table->length);
1661 
1662 	for (i = 0; i < iort->node_count; i++) {
1663 		if (iort_node >= iort_end) {
1664 			pr_err("iort node pointer overflows, bad table\n");
1665 			return;
1666 		}
1667 
1668 		iort_enable_acs(iort_node);
1669 
1670 		ops = iort_get_dev_cfg(iort_node);
1671 		if (ops) {
1672 			fwnode = acpi_alloc_fwnode_static();
1673 			if (!fwnode)
1674 				return;
1675 
1676 			iort_set_fwnode(iort_node, fwnode);
1677 
1678 			ret = iort_add_platform_device(iort_node, ops);
1679 			if (ret) {
1680 				iort_delete_fwnode(iort_node);
1681 				acpi_free_fwnode_static(fwnode);
1682 				return;
1683 			}
1684 		}
1685 
1686 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1687 					 iort_node->length);
1688 	}
1689 }
1690 
1691 void __init acpi_iort_init(void)
1692 {
1693 	acpi_status status;
1694 
1695 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1696 	if (ACPI_FAILURE(status)) {
1697 		if (status != AE_NOT_FOUND) {
1698 			const char *msg = acpi_format_exception(status);
1699 
1700 			pr_err("Failed to get table, %s\n", msg);
1701 		}
1702 
1703 		return;
1704 	}
1705 
1706 	iort_check_id_count_workaround(iort_table);
1707 	iort_init_platform_devices();
1708 }
1709