xref: /linux/drivers/acpi/arm64/iort.c (revision a6d5f9dca42eab3526e2f73aa5b7df2a5fec2c9d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/iommu.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 
21 #define IORT_TYPE_MASK(type)	(1 << (type))
22 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
23 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
24 				(1 << ACPI_IORT_NODE_SMMU_V3))
25 
26 struct iort_its_msi_chip {
27 	struct list_head	list;
28 	struct fwnode_handle	*fw_node;
29 	phys_addr_t		base_addr;
30 	u32			translation_id;
31 };
32 
33 struct iort_fwnode {
34 	struct list_head list;
35 	struct acpi_iort_node *iort_node;
36 	struct fwnode_handle *fwnode;
37 };
38 static LIST_HEAD(iort_fwnode_list);
39 static DEFINE_SPINLOCK(iort_fwnode_lock);
40 
41 /**
42  * iort_set_fwnode() - Create iort_fwnode and use it to register
43  *		       iommu data in the iort_fwnode_list
44  *
45  * @node: IORT table node associated with the IOMMU
46  * @fwnode: fwnode associated with the IORT node
47  *
48  * Returns: 0 on success
49  *          <0 on failure
50  */
51 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
52 				  struct fwnode_handle *fwnode)
53 {
54 	struct iort_fwnode *np;
55 
56 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
57 
58 	if (WARN_ON(!np))
59 		return -ENOMEM;
60 
61 	INIT_LIST_HEAD(&np->list);
62 	np->iort_node = iort_node;
63 	np->fwnode = fwnode;
64 
65 	spin_lock(&iort_fwnode_lock);
66 	list_add_tail(&np->list, &iort_fwnode_list);
67 	spin_unlock(&iort_fwnode_lock);
68 
69 	return 0;
70 }
71 
72 /**
73  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
74  *
75  * @node: IORT table node to be looked-up
76  *
77  * Returns: fwnode_handle pointer on success, NULL on failure
78  */
79 static inline struct fwnode_handle *iort_get_fwnode(
80 			struct acpi_iort_node *node)
81 {
82 	struct iort_fwnode *curr;
83 	struct fwnode_handle *fwnode = NULL;
84 
85 	spin_lock(&iort_fwnode_lock);
86 	list_for_each_entry(curr, &iort_fwnode_list, list) {
87 		if (curr->iort_node == node) {
88 			fwnode = curr->fwnode;
89 			break;
90 		}
91 	}
92 	spin_unlock(&iort_fwnode_lock);
93 
94 	return fwnode;
95 }
96 
97 /**
98  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
99  *
100  * @node: IORT table node associated with fwnode to delete
101  */
102 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
103 {
104 	struct iort_fwnode *curr, *tmp;
105 
106 	spin_lock(&iort_fwnode_lock);
107 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
108 		if (curr->iort_node == node) {
109 			list_del(&curr->list);
110 			kfree(curr);
111 			break;
112 		}
113 	}
114 	spin_unlock(&iort_fwnode_lock);
115 }
116 
117 /**
118  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
119  *
120  * @fwnode: fwnode associated with device to be looked-up
121  *
122  * Returns: iort_node pointer on success, NULL on failure
123  */
124 static inline struct acpi_iort_node *iort_get_iort_node(
125 			struct fwnode_handle *fwnode)
126 {
127 	struct iort_fwnode *curr;
128 	struct acpi_iort_node *iort_node = NULL;
129 
130 	spin_lock(&iort_fwnode_lock);
131 	list_for_each_entry(curr, &iort_fwnode_list, list) {
132 		if (curr->fwnode == fwnode) {
133 			iort_node = curr->iort_node;
134 			break;
135 		}
136 	}
137 	spin_unlock(&iort_fwnode_lock);
138 
139 	return iort_node;
140 }
141 
142 typedef acpi_status (*iort_find_node_callback)
143 	(struct acpi_iort_node *node, void *context);
144 
145 /* Root pointer to the mapped IORT table */
146 static struct acpi_table_header *iort_table;
147 
148 static LIST_HEAD(iort_msi_chip_list);
149 static DEFINE_SPINLOCK(iort_msi_chip_lock);
150 
151 /**
152  * iort_register_domain_token() - register domain token along with related
153  * ITS ID and base address to the list from where we can get it back later on.
154  * @trans_id: ITS ID.
155  * @base: ITS base address.
156  * @fw_node: Domain token.
157  *
158  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
159  */
160 int iort_register_domain_token(int trans_id, phys_addr_t base,
161 			       struct fwnode_handle *fw_node)
162 {
163 	struct iort_its_msi_chip *its_msi_chip;
164 
165 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
166 	if (!its_msi_chip)
167 		return -ENOMEM;
168 
169 	its_msi_chip->fw_node = fw_node;
170 	its_msi_chip->translation_id = trans_id;
171 	its_msi_chip->base_addr = base;
172 
173 	spin_lock(&iort_msi_chip_lock);
174 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
175 	spin_unlock(&iort_msi_chip_lock);
176 
177 	return 0;
178 }
179 
180 /**
181  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
182  * @trans_id: ITS ID.
183  *
184  * Returns: none.
185  */
186 void iort_deregister_domain_token(int trans_id)
187 {
188 	struct iort_its_msi_chip *its_msi_chip, *t;
189 
190 	spin_lock(&iort_msi_chip_lock);
191 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
192 		if (its_msi_chip->translation_id == trans_id) {
193 			list_del(&its_msi_chip->list);
194 			kfree(its_msi_chip);
195 			break;
196 		}
197 	}
198 	spin_unlock(&iort_msi_chip_lock);
199 }
200 
201 /**
202  * iort_find_domain_token() - Find domain token based on given ITS ID
203  * @trans_id: ITS ID.
204  *
205  * Returns: domain token when find on the list, NULL otherwise
206  */
207 struct fwnode_handle *iort_find_domain_token(int trans_id)
208 {
209 	struct fwnode_handle *fw_node = NULL;
210 	struct iort_its_msi_chip *its_msi_chip;
211 
212 	spin_lock(&iort_msi_chip_lock);
213 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
214 		if (its_msi_chip->translation_id == trans_id) {
215 			fw_node = its_msi_chip->fw_node;
216 			break;
217 		}
218 	}
219 	spin_unlock(&iort_msi_chip_lock);
220 
221 	return fw_node;
222 }
223 
224 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
225 					     iort_find_node_callback callback,
226 					     void *context)
227 {
228 	struct acpi_iort_node *iort_node, *iort_end;
229 	struct acpi_table_iort *iort;
230 	int i;
231 
232 	if (!iort_table)
233 		return NULL;
234 
235 	/* Get the first IORT node */
236 	iort = (struct acpi_table_iort *)iort_table;
237 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
238 				 iort->node_offset);
239 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
240 				iort_table->length);
241 
242 	for (i = 0; i < iort->node_count; i++) {
243 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
244 			       "IORT node pointer overflows, bad table!\n"))
245 			return NULL;
246 
247 		if (iort_node->type == type &&
248 		    ACPI_SUCCESS(callback(iort_node, context)))
249 			return iort_node;
250 
251 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
252 					 iort_node->length);
253 	}
254 
255 	return NULL;
256 }
257 
258 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
259 					    void *context)
260 {
261 	struct device *dev = context;
262 	acpi_status status = AE_NOT_FOUND;
263 
264 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
265 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
266 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
267 		struct acpi_iort_named_component *ncomp;
268 
269 		if (!adev)
270 			goto out;
271 
272 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
273 		if (ACPI_FAILURE(status)) {
274 			dev_warn(dev, "Can't get device full path name\n");
275 			goto out;
276 		}
277 
278 		ncomp = (struct acpi_iort_named_component *)node->node_data;
279 		status = !strcmp(ncomp->device_name, buf.pointer) ?
280 							AE_OK : AE_NOT_FOUND;
281 		acpi_os_free(buf.pointer);
282 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
283 		struct acpi_iort_root_complex *pci_rc;
284 		struct pci_bus *bus;
285 
286 		bus = to_pci_bus(dev);
287 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
288 
289 		/*
290 		 * It is assumed that PCI segment numbers maps one-to-one
291 		 * with root complexes. Each segment number can represent only
292 		 * one root complex.
293 		 */
294 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
295 							AE_OK : AE_NOT_FOUND;
296 	}
297 out:
298 	return status;
299 }
300 
301 struct iort_workaround_oem_info {
302 	char oem_id[ACPI_OEM_ID_SIZE + 1];
303 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
304 	u32 oem_revision;
305 };
306 
307 static bool apply_id_count_workaround;
308 
309 static struct iort_workaround_oem_info wa_info[] __initdata = {
310 	{
311 		.oem_id		= "HISI  ",
312 		.oem_table_id	= "HIP07   ",
313 		.oem_revision	= 0,
314 	}, {
315 		.oem_id		= "HISI  ",
316 		.oem_table_id	= "HIP08   ",
317 		.oem_revision	= 0,
318 	}
319 };
320 
321 static void __init
322 iort_check_id_count_workaround(struct acpi_table_header *tbl)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
327 		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
328 		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
329 		    wa_info[i].oem_revision == tbl->oem_revision) {
330 			apply_id_count_workaround = true;
331 			pr_warn(FW_BUG "ID count for ID mapping entry is wrong, applying workaround\n");
332 			break;
333 		}
334 	}
335 }
336 
337 static inline u32 iort_get_map_max(struct acpi_iort_id_mapping *map)
338 {
339 	u32 map_max = map->input_base + map->id_count;
340 
341 	/*
342 	 * The IORT specification revision D (Section 3, table 4, page 9) says
343 	 * Number of IDs = The number of IDs in the range minus one, but the
344 	 * IORT code ignored the "minus one", and some firmware did that too,
345 	 * so apply a workaround here to keep compatible with both the spec
346 	 * compliant and non-spec compliant firmwares.
347 	 */
348 	if (apply_id_count_workaround)
349 		map_max--;
350 
351 	return map_max;
352 }
353 
354 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
355 		       u32 *rid_out)
356 {
357 	/* Single mapping does not care for input id */
358 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
359 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
360 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
361 			*rid_out = map->output_base;
362 			return 0;
363 		}
364 
365 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
366 			map, type);
367 		return -ENXIO;
368 	}
369 
370 	if (rid_in < map->input_base || rid_in > iort_get_map_max(map))
371 		return -ENXIO;
372 
373 	*rid_out = map->output_base + (rid_in - map->input_base);
374 	return 0;
375 }
376 
377 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
378 					       u32 *id_out, int index)
379 {
380 	struct acpi_iort_node *parent;
381 	struct acpi_iort_id_mapping *map;
382 
383 	if (!node->mapping_offset || !node->mapping_count ||
384 				     index >= node->mapping_count)
385 		return NULL;
386 
387 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
388 			   node->mapping_offset + index * sizeof(*map));
389 
390 	/* Firmware bug! */
391 	if (!map->output_reference) {
392 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
393 		       node, node->type);
394 		return NULL;
395 	}
396 
397 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
398 			       map->output_reference);
399 
400 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
401 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
402 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
403 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
404 		    node->type == ACPI_IORT_NODE_PMCG) {
405 			*id_out = map->output_base;
406 			return parent;
407 		}
408 	}
409 
410 	return NULL;
411 }
412 
413 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
414 {
415 	struct acpi_iort_smmu_v3 *smmu;
416 
417 	switch (node->type) {
418 	case ACPI_IORT_NODE_SMMU_V3:
419 		/*
420 		 * SMMUv3 dev ID mapping index was introduced in revision 1
421 		 * table, not available in revision 0
422 		 */
423 		if (node->revision < 1)
424 			return -EINVAL;
425 
426 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
427 		/*
428 		 * ID mapping index is only ignored if all interrupts are
429 		 * GSIV based
430 		 */
431 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
432 		    && smmu->sync_gsiv)
433 			return -EINVAL;
434 
435 		if (smmu->id_mapping_index >= node->mapping_count) {
436 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
437 			       node, node->type);
438 			return -EINVAL;
439 		}
440 
441 		return smmu->id_mapping_index;
442 	case ACPI_IORT_NODE_PMCG:
443 		return 0;
444 	default:
445 		return -EINVAL;
446 	}
447 }
448 
449 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
450 					       u32 id_in, u32 *id_out,
451 					       u8 type_mask)
452 {
453 	u32 id = id_in;
454 
455 	/* Parse the ID mapping tree to find specified node type */
456 	while (node) {
457 		struct acpi_iort_id_mapping *map;
458 		int i, index;
459 
460 		if (IORT_TYPE_MASK(node->type) & type_mask) {
461 			if (id_out)
462 				*id_out = id;
463 			return node;
464 		}
465 
466 		if (!node->mapping_offset || !node->mapping_count)
467 			goto fail_map;
468 
469 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
470 				   node->mapping_offset);
471 
472 		/* Firmware bug! */
473 		if (!map->output_reference) {
474 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
475 			       node, node->type);
476 			goto fail_map;
477 		}
478 
479 		/*
480 		 * Get the special ID mapping index (if any) and skip its
481 		 * associated ID map to prevent erroneous multi-stage
482 		 * IORT ID translations.
483 		 */
484 		index = iort_get_id_mapping_index(node);
485 
486 		/* Do the ID translation */
487 		for (i = 0; i < node->mapping_count; i++, map++) {
488 			/* if it is special mapping index, skip it */
489 			if (i == index)
490 				continue;
491 
492 			if (!iort_id_map(map, node->type, id, &id))
493 				break;
494 		}
495 
496 		if (i == node->mapping_count)
497 			goto fail_map;
498 
499 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
500 				    map->output_reference);
501 	}
502 
503 fail_map:
504 	/* Map input ID to output ID unchanged on mapping failure */
505 	if (id_out)
506 		*id_out = id_in;
507 
508 	return NULL;
509 }
510 
511 static struct acpi_iort_node *iort_node_map_platform_id(
512 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
513 		int index)
514 {
515 	struct acpi_iort_node *parent;
516 	u32 id;
517 
518 	/* step 1: retrieve the initial dev id */
519 	parent = iort_node_get_id(node, &id, index);
520 	if (!parent)
521 		return NULL;
522 
523 	/*
524 	 * optional step 2: map the initial dev id if its parent is not
525 	 * the target type we want, map it again for the use cases such
526 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
527 	 * return the initial dev id and its parent pointer directly.
528 	 */
529 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
530 		parent = iort_node_map_id(parent, id, id_out, type_mask);
531 	else
532 		if (id_out)
533 			*id_out = id;
534 
535 	return parent;
536 }
537 
538 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
539 {
540 	struct pci_bus *pbus;
541 
542 	if (!dev_is_pci(dev)) {
543 		struct acpi_iort_node *node;
544 		/*
545 		 * scan iort_fwnode_list to see if it's an iort platform
546 		 * device (such as SMMU, PMCG),its iort node already cached
547 		 * and associated with fwnode when iort platform devices
548 		 * were initialized.
549 		 */
550 		node = iort_get_iort_node(dev->fwnode);
551 		if (node)
552 			return node;
553 
554 		/*
555 		 * if not, then it should be a platform device defined in
556 		 * DSDT/SSDT (with Named Component node in IORT)
557 		 */
558 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 				      iort_match_node_callback, dev);
560 	}
561 
562 	/* Find a PCI root bus */
563 	pbus = to_pci_dev(dev)->bus;
564 	while (!pci_is_root_bus(pbus))
565 		pbus = pbus->parent;
566 
567 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
568 			      iort_match_node_callback, &pbus->dev);
569 }
570 
571 /**
572  * iort_msi_map_rid() - Map a MSI requester ID for a device
573  * @dev: The device for which the mapping is to be done.
574  * @req_id: The device requester ID.
575  *
576  * Returns: mapped MSI RID on success, input requester ID otherwise
577  */
578 u32 iort_msi_map_rid(struct device *dev, u32 req_id)
579 {
580 	struct acpi_iort_node *node;
581 	u32 dev_id;
582 
583 	node = iort_find_dev_node(dev);
584 	if (!node)
585 		return req_id;
586 
587 	iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE);
588 	return dev_id;
589 }
590 
591 /**
592  * iort_pmsi_get_dev_id() - Get the device id for a device
593  * @dev: The device for which the mapping is to be done.
594  * @dev_id: The device ID found.
595  *
596  * Returns: 0 for successful find a dev id, -ENODEV on error
597  */
598 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
599 {
600 	int i, index;
601 	struct acpi_iort_node *node;
602 
603 	node = iort_find_dev_node(dev);
604 	if (!node)
605 		return -ENODEV;
606 
607 	index = iort_get_id_mapping_index(node);
608 	/* if there is a valid index, go get the dev_id directly */
609 	if (index >= 0) {
610 		if (iort_node_get_id(node, dev_id, index))
611 			return 0;
612 	} else {
613 		for (i = 0; i < node->mapping_count; i++) {
614 			if (iort_node_map_platform_id(node, dev_id,
615 						      IORT_MSI_TYPE, i))
616 				return 0;
617 		}
618 	}
619 
620 	return -ENODEV;
621 }
622 
623 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
624 {
625 	struct iort_its_msi_chip *its_msi_chip;
626 	int ret = -ENODEV;
627 
628 	spin_lock(&iort_msi_chip_lock);
629 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
630 		if (its_msi_chip->translation_id == its_id) {
631 			*base = its_msi_chip->base_addr;
632 			ret = 0;
633 			break;
634 		}
635 	}
636 	spin_unlock(&iort_msi_chip_lock);
637 
638 	return ret;
639 }
640 
641 /**
642  * iort_dev_find_its_id() - Find the ITS identifier for a device
643  * @dev: The device.
644  * @req_id: Device's requester ID
645  * @idx: Index of the ITS identifier list.
646  * @its_id: ITS identifier.
647  *
648  * Returns: 0 on success, appropriate error value otherwise
649  */
650 static int iort_dev_find_its_id(struct device *dev, u32 req_id,
651 				unsigned int idx, int *its_id)
652 {
653 	struct acpi_iort_its_group *its;
654 	struct acpi_iort_node *node;
655 
656 	node = iort_find_dev_node(dev);
657 	if (!node)
658 		return -ENXIO;
659 
660 	node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE);
661 	if (!node)
662 		return -ENXIO;
663 
664 	/* Move to ITS specific data */
665 	its = (struct acpi_iort_its_group *)node->node_data;
666 	if (idx >= its->its_count) {
667 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
668 			idx, its->its_count);
669 		return -ENXIO;
670 	}
671 
672 	*its_id = its->identifiers[idx];
673 	return 0;
674 }
675 
676 /**
677  * iort_get_device_domain() - Find MSI domain related to a device
678  * @dev: The device.
679  * @req_id: Requester ID for the device.
680  *
681  * Returns: the MSI domain for this device, NULL otherwise
682  */
683 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
684 {
685 	struct fwnode_handle *handle;
686 	int its_id;
687 
688 	if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
689 		return NULL;
690 
691 	handle = iort_find_domain_token(its_id);
692 	if (!handle)
693 		return NULL;
694 
695 	return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
696 }
697 
698 static void iort_set_device_domain(struct device *dev,
699 				   struct acpi_iort_node *node)
700 {
701 	struct acpi_iort_its_group *its;
702 	struct acpi_iort_node *msi_parent;
703 	struct acpi_iort_id_mapping *map;
704 	struct fwnode_handle *iort_fwnode;
705 	struct irq_domain *domain;
706 	int index;
707 
708 	index = iort_get_id_mapping_index(node);
709 	if (index < 0)
710 		return;
711 
712 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
713 			   node->mapping_offset + index * sizeof(*map));
714 
715 	/* Firmware bug! */
716 	if (!map->output_reference ||
717 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
718 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
719 		       node, node->type);
720 		return;
721 	}
722 
723 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
724 				  map->output_reference);
725 
726 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
727 		return;
728 
729 	/* Move to ITS specific data */
730 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
731 
732 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
733 	if (!iort_fwnode)
734 		return;
735 
736 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
737 	if (domain)
738 		dev_set_msi_domain(dev, domain);
739 }
740 
741 /**
742  * iort_get_platform_device_domain() - Find MSI domain related to a
743  * platform device
744  * @dev: the dev pointer associated with the platform device
745  *
746  * Returns: the MSI domain for this device, NULL otherwise
747  */
748 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
749 {
750 	struct acpi_iort_node *node, *msi_parent = NULL;
751 	struct fwnode_handle *iort_fwnode;
752 	struct acpi_iort_its_group *its;
753 	int i;
754 
755 	/* find its associated iort node */
756 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
757 			      iort_match_node_callback, dev);
758 	if (!node)
759 		return NULL;
760 
761 	/* then find its msi parent node */
762 	for (i = 0; i < node->mapping_count; i++) {
763 		msi_parent = iort_node_map_platform_id(node, NULL,
764 						       IORT_MSI_TYPE, i);
765 		if (msi_parent)
766 			break;
767 	}
768 
769 	if (!msi_parent)
770 		return NULL;
771 
772 	/* Move to ITS specific data */
773 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
774 
775 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
776 	if (!iort_fwnode)
777 		return NULL;
778 
779 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
780 }
781 
782 void acpi_configure_pmsi_domain(struct device *dev)
783 {
784 	struct irq_domain *msi_domain;
785 
786 	msi_domain = iort_get_platform_device_domain(dev);
787 	if (msi_domain)
788 		dev_set_msi_domain(dev, msi_domain);
789 }
790 
791 static int __maybe_unused __get_pci_rid(struct pci_dev *pdev, u16 alias,
792 					void *data)
793 {
794 	u32 *rid = data;
795 
796 	*rid = alias;
797 	return 0;
798 }
799 
800 #ifdef CONFIG_IOMMU_API
801 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
802 {
803 	struct acpi_iort_node *iommu;
804 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
805 
806 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
807 
808 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
809 		struct acpi_iort_smmu_v3 *smmu;
810 
811 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
812 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
813 			return iommu;
814 	}
815 
816 	return NULL;
817 }
818 
819 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
820 {
821 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
822 
823 	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
824 }
825 
826 static inline int iort_add_device_replay(const struct iommu_ops *ops,
827 					 struct device *dev)
828 {
829 	int err = 0;
830 
831 	if (dev->bus && !device_iommu_mapped(dev))
832 		err = iommu_probe_device(dev);
833 
834 	return err;
835 }
836 
837 /**
838  * iort_iommu_msi_get_resv_regions - Reserved region driver helper
839  * @dev: Device from iommu_get_resv_regions()
840  * @head: Reserved region list from iommu_get_resv_regions()
841  *
842  * Returns: Number of msi reserved regions on success (0 if platform
843  *          doesn't require the reservation or no associated msi regions),
844  *          appropriate error value otherwise. The ITS interrupt translation
845  *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
846  *          are the msi reserved regions.
847  */
848 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
849 {
850 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
851 	struct acpi_iort_its_group *its;
852 	struct acpi_iort_node *iommu_node, *its_node = NULL;
853 	int i, resv = 0;
854 
855 	iommu_node = iort_get_msi_resv_iommu(dev);
856 	if (!iommu_node)
857 		return 0;
858 
859 	/*
860 	 * Current logic to reserve ITS regions relies on HW topologies
861 	 * where a given PCI or named component maps its IDs to only one
862 	 * ITS group; if a PCI or named component can map its IDs to
863 	 * different ITS groups through IORT mappings this function has
864 	 * to be reworked to ensure we reserve regions for all ITS groups
865 	 * a given PCI or named component may map IDs to.
866 	 */
867 
868 	for (i = 0; i < fwspec->num_ids; i++) {
869 		its_node = iort_node_map_id(iommu_node,
870 					fwspec->ids[i],
871 					NULL, IORT_MSI_TYPE);
872 		if (its_node)
873 			break;
874 	}
875 
876 	if (!its_node)
877 		return 0;
878 
879 	/* Move to ITS specific data */
880 	its = (struct acpi_iort_its_group *)its_node->node_data;
881 
882 	for (i = 0; i < its->its_count; i++) {
883 		phys_addr_t base;
884 
885 		if (!iort_find_its_base(its->identifiers[i], &base)) {
886 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
887 			struct iommu_resv_region *region;
888 
889 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
890 							 prot, IOMMU_RESV_MSI);
891 			if (region) {
892 				list_add_tail(&region->list, head);
893 				resv++;
894 			}
895 		}
896 	}
897 
898 	return (resv == its->its_count) ? resv : -ENODEV;
899 }
900 
901 static inline bool iort_iommu_driver_enabled(u8 type)
902 {
903 	switch (type) {
904 	case ACPI_IORT_NODE_SMMU_V3:
905 		return IS_BUILTIN(CONFIG_ARM_SMMU_V3);
906 	case ACPI_IORT_NODE_SMMU:
907 		return IS_BUILTIN(CONFIG_ARM_SMMU);
908 	default:
909 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
910 		return false;
911 	}
912 }
913 
914 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
915 			       struct fwnode_handle *fwnode,
916 			       const struct iommu_ops *ops)
917 {
918 	int ret = iommu_fwspec_init(dev, fwnode, ops);
919 
920 	if (!ret)
921 		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
922 
923 	return ret;
924 }
925 
926 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
927 {
928 	struct acpi_iort_root_complex *pci_rc;
929 
930 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
931 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
932 }
933 
934 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
935 			    u32 streamid)
936 {
937 	const struct iommu_ops *ops;
938 	struct fwnode_handle *iort_fwnode;
939 
940 	if (!node)
941 		return -ENODEV;
942 
943 	iort_fwnode = iort_get_fwnode(node);
944 	if (!iort_fwnode)
945 		return -ENODEV;
946 
947 	/*
948 	 * If the ops look-up fails, this means that either
949 	 * the SMMU drivers have not been probed yet or that
950 	 * the SMMU drivers are not built in the kernel;
951 	 * Depending on whether the SMMU drivers are built-in
952 	 * in the kernel or not, defer the IOMMU configuration
953 	 * or just abort it.
954 	 */
955 	ops = iommu_ops_from_fwnode(iort_fwnode);
956 	if (!ops)
957 		return iort_iommu_driver_enabled(node->type) ?
958 		       -EPROBE_DEFER : -ENODEV;
959 
960 	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
961 }
962 
963 struct iort_pci_alias_info {
964 	struct device *dev;
965 	struct acpi_iort_node *node;
966 };
967 
968 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
969 {
970 	struct iort_pci_alias_info *info = data;
971 	struct acpi_iort_node *parent;
972 	u32 streamid;
973 
974 	parent = iort_node_map_id(info->node, alias, &streamid,
975 				  IORT_IOMMU_TYPE);
976 	return iort_iommu_xlate(info->dev, parent, streamid);
977 }
978 
979 /**
980  * iort_iommu_configure - Set-up IOMMU configuration for a device.
981  *
982  * @dev: device to configure
983  *
984  * Returns: iommu_ops pointer on configuration success
985  *          NULL on configuration failure
986  */
987 const struct iommu_ops *iort_iommu_configure(struct device *dev)
988 {
989 	struct acpi_iort_node *node, *parent;
990 	const struct iommu_ops *ops;
991 	u32 streamid = 0;
992 	int err = -ENODEV;
993 
994 	/*
995 	 * If we already translated the fwspec there
996 	 * is nothing left to do, return the iommu_ops.
997 	 */
998 	ops = iort_fwspec_iommu_ops(dev);
999 	if (ops)
1000 		return ops;
1001 
1002 	if (dev_is_pci(dev)) {
1003 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1004 		struct iort_pci_alias_info info = { .dev = dev };
1005 
1006 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1007 				      iort_match_node_callback, &bus->dev);
1008 		if (!node)
1009 			return NULL;
1010 
1011 		info.node = node;
1012 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1013 					     iort_pci_iommu_init, &info);
1014 
1015 		if (!err && iort_pci_rc_supports_ats(node))
1016 			dev->iommu_fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1017 	} else {
1018 		int i = 0;
1019 
1020 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1021 				      iort_match_node_callback, dev);
1022 		if (!node)
1023 			return NULL;
1024 
1025 		do {
1026 			parent = iort_node_map_platform_id(node, &streamid,
1027 							   IORT_IOMMU_TYPE,
1028 							   i++);
1029 
1030 			if (parent)
1031 				err = iort_iommu_xlate(dev, parent, streamid);
1032 		} while (parent && !err);
1033 	}
1034 
1035 	/*
1036 	 * If we have reason to believe the IOMMU driver missed the initial
1037 	 * add_device callback for dev, replay it to get things in order.
1038 	 */
1039 	if (!err) {
1040 		ops = iort_fwspec_iommu_ops(dev);
1041 		err = iort_add_device_replay(ops, dev);
1042 	}
1043 
1044 	/* Ignore all other errors apart from EPROBE_DEFER */
1045 	if (err == -EPROBE_DEFER) {
1046 		ops = ERR_PTR(err);
1047 	} else if (err) {
1048 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1049 		ops = NULL;
1050 	}
1051 
1052 	return ops;
1053 }
1054 #else
1055 static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
1056 { return NULL; }
1057 static inline int iort_add_device_replay(const struct iommu_ops *ops,
1058 					 struct device *dev)
1059 { return 0; }
1060 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1061 { return 0; }
1062 const struct iommu_ops *iort_iommu_configure(struct device *dev)
1063 { return NULL; }
1064 #endif
1065 
1066 static int nc_dma_get_range(struct device *dev, u64 *size)
1067 {
1068 	struct acpi_iort_node *node;
1069 	struct acpi_iort_named_component *ncomp;
1070 
1071 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1072 			      iort_match_node_callback, dev);
1073 	if (!node)
1074 		return -ENODEV;
1075 
1076 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1077 
1078 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1079 			1ULL<<ncomp->memory_address_limit;
1080 
1081 	return 0;
1082 }
1083 
1084 static int rc_dma_get_range(struct device *dev, u64 *size)
1085 {
1086 	struct acpi_iort_node *node;
1087 	struct acpi_iort_root_complex *rc;
1088 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1089 
1090 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1091 			      iort_match_node_callback, &pbus->dev);
1092 	if (!node || node->revision < 1)
1093 		return -ENODEV;
1094 
1095 	rc = (struct acpi_iort_root_complex *)node->node_data;
1096 
1097 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1098 			1ULL<<rc->memory_address_limit;
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * iort_dma_setup() - Set-up device DMA parameters.
1105  *
1106  * @dev: device to configure
1107  * @dma_addr: device DMA address result pointer
1108  * @size: DMA range size result pointer
1109  */
1110 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1111 {
1112 	u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1113 	int ret;
1114 
1115 	/*
1116 	 * If @dev is expected to be DMA-capable then the bus code that created
1117 	 * it should have initialised its dma_mask pointer by this point. For
1118 	 * now, we'll continue the legacy behaviour of coercing it to the
1119 	 * coherent mask if not, but we'll no longer do so quietly.
1120 	 */
1121 	if (!dev->dma_mask) {
1122 		dev_warn(dev, "DMA mask not set\n");
1123 		dev->dma_mask = &dev->coherent_dma_mask;
1124 	}
1125 
1126 	if (dev->coherent_dma_mask)
1127 		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1128 	else
1129 		size = 1ULL << 32;
1130 
1131 	if (dev_is_pci(dev)) {
1132 		ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1133 		if (ret == -ENODEV)
1134 			ret = rc_dma_get_range(dev, &size);
1135 	} else {
1136 		ret = nc_dma_get_range(dev, &size);
1137 	}
1138 
1139 	if (!ret) {
1140 		/*
1141 		 * Limit coherent and dma mask based on size retrieved from
1142 		 * firmware.
1143 		 */
1144 		end = dmaaddr + size - 1;
1145 		mask = DMA_BIT_MASK(ilog2(end) + 1);
1146 		dev->bus_dma_limit = end;
1147 		dev->coherent_dma_mask = mask;
1148 		*dev->dma_mask = mask;
1149 	}
1150 
1151 	*dma_addr = dmaaddr;
1152 	*dma_size = size;
1153 
1154 	dev->dma_pfn_offset = PFN_DOWN(offset);
1155 	dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
1156 }
1157 
1158 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1159 					  int trigger,
1160 					  struct resource *res)
1161 {
1162 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1163 				    ACPI_ACTIVE_HIGH);
1164 
1165 	if (irq <= 0) {
1166 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1167 								      name);
1168 		return;
1169 	}
1170 
1171 	res->start = irq;
1172 	res->end = irq;
1173 	res->flags = IORESOURCE_IRQ;
1174 	res->name = name;
1175 }
1176 
1177 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1178 {
1179 	struct acpi_iort_smmu_v3 *smmu;
1180 	/* Always present mem resource */
1181 	int num_res = 1;
1182 
1183 	/* Retrieve SMMUv3 specific data */
1184 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1185 
1186 	if (smmu->event_gsiv)
1187 		num_res++;
1188 
1189 	if (smmu->pri_gsiv)
1190 		num_res++;
1191 
1192 	if (smmu->gerr_gsiv)
1193 		num_res++;
1194 
1195 	if (smmu->sync_gsiv)
1196 		num_res++;
1197 
1198 	return num_res;
1199 }
1200 
1201 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1202 {
1203 	/*
1204 	 * Cavium ThunderX2 implementation doesn't not support unique
1205 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1206 	 */
1207 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1208 		return false;
1209 
1210 	/*
1211 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1212 	 * SPI numbers here.
1213 	 */
1214 	return smmu->event_gsiv == smmu->pri_gsiv &&
1215 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1216 	       smmu->event_gsiv == smmu->sync_gsiv;
1217 }
1218 
1219 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1220 {
1221 	/*
1222 	 * Override the size, for Cavium ThunderX2 implementation
1223 	 * which doesn't support the page 1 SMMU register space.
1224 	 */
1225 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1226 		return SZ_64K;
1227 
1228 	return SZ_128K;
1229 }
1230 
1231 static void __init arm_smmu_v3_init_resources(struct resource *res,
1232 					      struct acpi_iort_node *node)
1233 {
1234 	struct acpi_iort_smmu_v3 *smmu;
1235 	int num_res = 0;
1236 
1237 	/* Retrieve SMMUv3 specific data */
1238 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1239 
1240 	res[num_res].start = smmu->base_address;
1241 	res[num_res].end = smmu->base_address +
1242 				arm_smmu_v3_resource_size(smmu) - 1;
1243 	res[num_res].flags = IORESOURCE_MEM;
1244 
1245 	num_res++;
1246 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1247 		if (smmu->event_gsiv)
1248 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1249 					       ACPI_EDGE_SENSITIVE,
1250 					       &res[num_res++]);
1251 	} else {
1252 
1253 		if (smmu->event_gsiv)
1254 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1255 					       ACPI_EDGE_SENSITIVE,
1256 					       &res[num_res++]);
1257 
1258 		if (smmu->pri_gsiv)
1259 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1260 					       ACPI_EDGE_SENSITIVE,
1261 					       &res[num_res++]);
1262 
1263 		if (smmu->gerr_gsiv)
1264 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1265 					       ACPI_EDGE_SENSITIVE,
1266 					       &res[num_res++]);
1267 
1268 		if (smmu->sync_gsiv)
1269 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1270 					       ACPI_EDGE_SENSITIVE,
1271 					       &res[num_res++]);
1272 	}
1273 }
1274 
1275 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1276 					     struct acpi_iort_node *node)
1277 {
1278 	struct acpi_iort_smmu_v3 *smmu;
1279 	enum dev_dma_attr attr;
1280 
1281 	/* Retrieve SMMUv3 specific data */
1282 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1283 
1284 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1285 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1286 
1287 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1288 	dev->dma_mask = &dev->coherent_dma_mask;
1289 
1290 	/* Configure DMA for the page table walker */
1291 	acpi_dma_configure(dev, attr);
1292 }
1293 
1294 #if defined(CONFIG_ACPI_NUMA)
1295 /*
1296  * set numa proximity domain for smmuv3 device
1297  */
1298 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1299 					      struct acpi_iort_node *node)
1300 {
1301 	struct acpi_iort_smmu_v3 *smmu;
1302 
1303 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1304 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1305 		int dev_node = acpi_map_pxm_to_node(smmu->pxm);
1306 
1307 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1308 			return -EINVAL;
1309 
1310 		set_dev_node(dev, dev_node);
1311 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1312 			smmu->base_address,
1313 			smmu->pxm);
1314 	}
1315 	return 0;
1316 }
1317 #else
1318 #define arm_smmu_v3_set_proximity NULL
1319 #endif
1320 
1321 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1322 {
1323 	struct acpi_iort_smmu *smmu;
1324 
1325 	/* Retrieve SMMU specific data */
1326 	smmu = (struct acpi_iort_smmu *)node->node_data;
1327 
1328 	/*
1329 	 * Only consider the global fault interrupt and ignore the
1330 	 * configuration access interrupt.
1331 	 *
1332 	 * MMIO address and global fault interrupt resources are always
1333 	 * present so add them to the context interrupt count as a static
1334 	 * value.
1335 	 */
1336 	return smmu->context_interrupt_count + 2;
1337 }
1338 
1339 static void __init arm_smmu_init_resources(struct resource *res,
1340 					   struct acpi_iort_node *node)
1341 {
1342 	struct acpi_iort_smmu *smmu;
1343 	int i, hw_irq, trigger, num_res = 0;
1344 	u64 *ctx_irq, *glb_irq;
1345 
1346 	/* Retrieve SMMU specific data */
1347 	smmu = (struct acpi_iort_smmu *)node->node_data;
1348 
1349 	res[num_res].start = smmu->base_address;
1350 	res[num_res].end = smmu->base_address + smmu->span - 1;
1351 	res[num_res].flags = IORESOURCE_MEM;
1352 	num_res++;
1353 
1354 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1355 	/* Global IRQs */
1356 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1357 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1358 
1359 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1360 				     &res[num_res++]);
1361 
1362 	/* Context IRQs */
1363 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1364 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1365 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1366 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1367 
1368 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1369 				       &res[num_res++]);
1370 	}
1371 }
1372 
1373 static void __init arm_smmu_dma_configure(struct device *dev,
1374 					  struct acpi_iort_node *node)
1375 {
1376 	struct acpi_iort_smmu *smmu;
1377 	enum dev_dma_attr attr;
1378 
1379 	/* Retrieve SMMU specific data */
1380 	smmu = (struct acpi_iort_smmu *)node->node_data;
1381 
1382 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1383 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1384 
1385 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1386 	dev->dma_mask = &dev->coherent_dma_mask;
1387 
1388 	/* Configure DMA for the page table walker */
1389 	acpi_dma_configure(dev, attr);
1390 }
1391 
1392 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1393 {
1394 	struct acpi_iort_pmcg *pmcg;
1395 
1396 	/* Retrieve PMCG specific data */
1397 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1398 
1399 	/*
1400 	 * There are always 2 memory resources.
1401 	 * If the overflow_gsiv is present then add that for a total of 3.
1402 	 */
1403 	return pmcg->overflow_gsiv ? 3 : 2;
1404 }
1405 
1406 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1407 						   struct acpi_iort_node *node)
1408 {
1409 	struct acpi_iort_pmcg *pmcg;
1410 
1411 	/* Retrieve PMCG specific data */
1412 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1413 
1414 	res[0].start = pmcg->page0_base_address;
1415 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1416 	res[0].flags = IORESOURCE_MEM;
1417 	res[1].start = pmcg->page1_base_address;
1418 	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1419 	res[1].flags = IORESOURCE_MEM;
1420 
1421 	if (pmcg->overflow_gsiv)
1422 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1423 				       ACPI_EDGE_SENSITIVE, &res[2]);
1424 }
1425 
1426 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1427 	/* HiSilicon Hip08 Platform */
1428 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1429 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1430 	{ }
1431 };
1432 
1433 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1434 {
1435 	u32 model;
1436 	int idx;
1437 
1438 	idx = acpi_match_platform_list(pmcg_plat_info);
1439 	if (idx >= 0)
1440 		model = pmcg_plat_info[idx].data;
1441 	else
1442 		model = IORT_SMMU_V3_PMCG_GENERIC;
1443 
1444 	return platform_device_add_data(pdev, &model, sizeof(model));
1445 }
1446 
1447 struct iort_dev_config {
1448 	const char *name;
1449 	int (*dev_init)(struct acpi_iort_node *node);
1450 	void (*dev_dma_configure)(struct device *dev,
1451 				  struct acpi_iort_node *node);
1452 	int (*dev_count_resources)(struct acpi_iort_node *node);
1453 	void (*dev_init_resources)(struct resource *res,
1454 				     struct acpi_iort_node *node);
1455 	int (*dev_set_proximity)(struct device *dev,
1456 				    struct acpi_iort_node *node);
1457 	int (*dev_add_platdata)(struct platform_device *pdev);
1458 };
1459 
1460 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1461 	.name = "arm-smmu-v3",
1462 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1463 	.dev_count_resources = arm_smmu_v3_count_resources,
1464 	.dev_init_resources = arm_smmu_v3_init_resources,
1465 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1466 };
1467 
1468 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1469 	.name = "arm-smmu",
1470 	.dev_dma_configure = arm_smmu_dma_configure,
1471 	.dev_count_resources = arm_smmu_count_resources,
1472 	.dev_init_resources = arm_smmu_init_resources,
1473 };
1474 
1475 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1476 	.name = "arm-smmu-v3-pmcg",
1477 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1478 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1479 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1480 };
1481 
1482 static __init const struct iort_dev_config *iort_get_dev_cfg(
1483 			struct acpi_iort_node *node)
1484 {
1485 	switch (node->type) {
1486 	case ACPI_IORT_NODE_SMMU_V3:
1487 		return &iort_arm_smmu_v3_cfg;
1488 	case ACPI_IORT_NODE_SMMU:
1489 		return &iort_arm_smmu_cfg;
1490 	case ACPI_IORT_NODE_PMCG:
1491 		return &iort_arm_smmu_v3_pmcg_cfg;
1492 	default:
1493 		return NULL;
1494 	}
1495 }
1496 
1497 /**
1498  * iort_add_platform_device() - Allocate a platform device for IORT node
1499  * @node: Pointer to device ACPI IORT node
1500  *
1501  * Returns: 0 on success, <0 failure
1502  */
1503 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1504 					   const struct iort_dev_config *ops)
1505 {
1506 	struct fwnode_handle *fwnode;
1507 	struct platform_device *pdev;
1508 	struct resource *r;
1509 	int ret, count;
1510 
1511 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1512 	if (!pdev)
1513 		return -ENOMEM;
1514 
1515 	if (ops->dev_set_proximity) {
1516 		ret = ops->dev_set_proximity(&pdev->dev, node);
1517 		if (ret)
1518 			goto dev_put;
1519 	}
1520 
1521 	count = ops->dev_count_resources(node);
1522 
1523 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1524 	if (!r) {
1525 		ret = -ENOMEM;
1526 		goto dev_put;
1527 	}
1528 
1529 	ops->dev_init_resources(r, node);
1530 
1531 	ret = platform_device_add_resources(pdev, r, count);
1532 	/*
1533 	 * Resources are duplicated in platform_device_add_resources,
1534 	 * free their allocated memory
1535 	 */
1536 	kfree(r);
1537 
1538 	if (ret)
1539 		goto dev_put;
1540 
1541 	/*
1542 	 * Platform devices based on PMCG nodes uses platform_data to
1543 	 * pass the hardware model info to the driver. For others, add
1544 	 * a copy of IORT node pointer to platform_data to be used to
1545 	 * retrieve IORT data information.
1546 	 */
1547 	if (ops->dev_add_platdata)
1548 		ret = ops->dev_add_platdata(pdev);
1549 	else
1550 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1551 
1552 	if (ret)
1553 		goto dev_put;
1554 
1555 	fwnode = iort_get_fwnode(node);
1556 
1557 	if (!fwnode) {
1558 		ret = -ENODEV;
1559 		goto dev_put;
1560 	}
1561 
1562 	pdev->dev.fwnode = fwnode;
1563 
1564 	if (ops->dev_dma_configure)
1565 		ops->dev_dma_configure(&pdev->dev, node);
1566 
1567 	iort_set_device_domain(&pdev->dev, node);
1568 
1569 	ret = platform_device_add(pdev);
1570 	if (ret)
1571 		goto dma_deconfigure;
1572 
1573 	return 0;
1574 
1575 dma_deconfigure:
1576 	arch_teardown_dma_ops(&pdev->dev);
1577 dev_put:
1578 	platform_device_put(pdev);
1579 
1580 	return ret;
1581 }
1582 
1583 #ifdef CONFIG_PCI
1584 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1585 {
1586 	static bool acs_enabled __initdata;
1587 
1588 	if (acs_enabled)
1589 		return;
1590 
1591 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1592 		struct acpi_iort_node *parent;
1593 		struct acpi_iort_id_mapping *map;
1594 		int i;
1595 
1596 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1597 				   iort_node->mapping_offset);
1598 
1599 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1600 			if (!map->output_reference)
1601 				continue;
1602 
1603 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1604 					iort_table,  map->output_reference);
1605 			/*
1606 			 * If we detect a RC->SMMU mapping, make sure
1607 			 * we enable ACS on the system.
1608 			 */
1609 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1610 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1611 				pci_request_acs();
1612 				acs_enabled = true;
1613 				return;
1614 			}
1615 		}
1616 	}
1617 }
1618 #else
1619 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1620 #endif
1621 
1622 static void __init iort_init_platform_devices(void)
1623 {
1624 	struct acpi_iort_node *iort_node, *iort_end;
1625 	struct acpi_table_iort *iort;
1626 	struct fwnode_handle *fwnode;
1627 	int i, ret;
1628 	const struct iort_dev_config *ops;
1629 
1630 	/*
1631 	 * iort_table and iort both point to the start of IORT table, but
1632 	 * have different struct types
1633 	 */
1634 	iort = (struct acpi_table_iort *)iort_table;
1635 
1636 	/* Get the first IORT node */
1637 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1638 				 iort->node_offset);
1639 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1640 				iort_table->length);
1641 
1642 	for (i = 0; i < iort->node_count; i++) {
1643 		if (iort_node >= iort_end) {
1644 			pr_err("iort node pointer overflows, bad table\n");
1645 			return;
1646 		}
1647 
1648 		iort_enable_acs(iort_node);
1649 
1650 		ops = iort_get_dev_cfg(iort_node);
1651 		if (ops) {
1652 			fwnode = acpi_alloc_fwnode_static();
1653 			if (!fwnode)
1654 				return;
1655 
1656 			iort_set_fwnode(iort_node, fwnode);
1657 
1658 			ret = iort_add_platform_device(iort_node, ops);
1659 			if (ret) {
1660 				iort_delete_fwnode(iort_node);
1661 				acpi_free_fwnode_static(fwnode);
1662 				return;
1663 			}
1664 		}
1665 
1666 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1667 					 iort_node->length);
1668 	}
1669 }
1670 
1671 void __init acpi_iort_init(void)
1672 {
1673 	acpi_status status;
1674 
1675 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1676 	if (ACPI_FAILURE(status)) {
1677 		if (status != AE_NOT_FOUND) {
1678 			const char *msg = acpi_format_exception(status);
1679 
1680 			pr_err("Failed to get table, %s\n", msg);
1681 		}
1682 
1683 		return;
1684 	}
1685 
1686 	iort_check_id_count_workaround(iort_table);
1687 	iort_init_platform_devices();
1688 }
1689