xref: /linux/drivers/acpi/arm64/iort.c (revision a0fa0b63131b0d8f4eff22d5b66e796ecb064dfe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 
23 #define IORT_TYPE_MASK(type)	(1 << (type))
24 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
25 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
26 				(1 << ACPI_IORT_NODE_SMMU_V3))
27 
28 struct iort_its_msi_chip {
29 	struct list_head	list;
30 	struct fwnode_handle	*fw_node;
31 	phys_addr_t		base_addr;
32 	u32			translation_id;
33 };
34 
35 struct iort_fwnode {
36 	struct list_head list;
37 	struct acpi_iort_node *iort_node;
38 	struct fwnode_handle *fwnode;
39 };
40 static LIST_HEAD(iort_fwnode_list);
41 static DEFINE_SPINLOCK(iort_fwnode_lock);
42 
43 /**
44  * iort_set_fwnode() - Create iort_fwnode and use it to register
45  *		       iommu data in the iort_fwnode_list
46  *
47  * @iort_node: IORT table node associated with the IOMMU
48  * @fwnode: fwnode associated with the IORT node
49  *
50  * Returns: 0 on success
51  *          <0 on failure
52  */
53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
54 				  struct fwnode_handle *fwnode)
55 {
56 	struct iort_fwnode *np;
57 
58 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
59 
60 	if (WARN_ON(!np))
61 		return -ENOMEM;
62 
63 	INIT_LIST_HEAD(&np->list);
64 	np->iort_node = iort_node;
65 	np->fwnode = fwnode;
66 
67 	spin_lock(&iort_fwnode_lock);
68 	list_add_tail(&np->list, &iort_fwnode_list);
69 	spin_unlock(&iort_fwnode_lock);
70 
71 	return 0;
72 }
73 
74 /**
75  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
76  *
77  * @node: IORT table node to be looked-up
78  *
79  * Returns: fwnode_handle pointer on success, NULL on failure
80  */
81 static inline struct fwnode_handle *iort_get_fwnode(
82 			struct acpi_iort_node *node)
83 {
84 	struct iort_fwnode *curr;
85 	struct fwnode_handle *fwnode = NULL;
86 
87 	spin_lock(&iort_fwnode_lock);
88 	list_for_each_entry(curr, &iort_fwnode_list, list) {
89 		if (curr->iort_node == node) {
90 			fwnode = curr->fwnode;
91 			break;
92 		}
93 	}
94 	spin_unlock(&iort_fwnode_lock);
95 
96 	return fwnode;
97 }
98 
99 /**
100  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
101  *
102  * @node: IORT table node associated with fwnode to delete
103  */
104 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
105 {
106 	struct iort_fwnode *curr, *tmp;
107 
108 	spin_lock(&iort_fwnode_lock);
109 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
110 		if (curr->iort_node == node) {
111 			list_del(&curr->list);
112 			kfree(curr);
113 			break;
114 		}
115 	}
116 	spin_unlock(&iort_fwnode_lock);
117 }
118 
119 /**
120  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
121  *
122  * @fwnode: fwnode associated with device to be looked-up
123  *
124  * Returns: iort_node pointer on success, NULL on failure
125  */
126 static inline struct acpi_iort_node *iort_get_iort_node(
127 			struct fwnode_handle *fwnode)
128 {
129 	struct iort_fwnode *curr;
130 	struct acpi_iort_node *iort_node = NULL;
131 
132 	spin_lock(&iort_fwnode_lock);
133 	list_for_each_entry(curr, &iort_fwnode_list, list) {
134 		if (curr->fwnode == fwnode) {
135 			iort_node = curr->iort_node;
136 			break;
137 		}
138 	}
139 	spin_unlock(&iort_fwnode_lock);
140 
141 	return iort_node;
142 }
143 
144 typedef acpi_status (*iort_find_node_callback)
145 	(struct acpi_iort_node *node, void *context);
146 
147 /* Root pointer to the mapped IORT table */
148 static struct acpi_table_header *iort_table;
149 
150 static LIST_HEAD(iort_msi_chip_list);
151 static DEFINE_SPINLOCK(iort_msi_chip_lock);
152 
153 /**
154  * iort_register_domain_token() - register domain token along with related
155  * ITS ID and base address to the list from where we can get it back later on.
156  * @trans_id: ITS ID.
157  * @base: ITS base address.
158  * @fw_node: Domain token.
159  *
160  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
161  */
162 int iort_register_domain_token(int trans_id, phys_addr_t base,
163 			       struct fwnode_handle *fw_node)
164 {
165 	struct iort_its_msi_chip *its_msi_chip;
166 
167 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
168 	if (!its_msi_chip)
169 		return -ENOMEM;
170 
171 	its_msi_chip->fw_node = fw_node;
172 	its_msi_chip->translation_id = trans_id;
173 	its_msi_chip->base_addr = base;
174 
175 	spin_lock(&iort_msi_chip_lock);
176 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
177 	spin_unlock(&iort_msi_chip_lock);
178 
179 	return 0;
180 }
181 
182 /**
183  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
184  * @trans_id: ITS ID.
185  *
186  * Returns: none.
187  */
188 void iort_deregister_domain_token(int trans_id)
189 {
190 	struct iort_its_msi_chip *its_msi_chip, *t;
191 
192 	spin_lock(&iort_msi_chip_lock);
193 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
194 		if (its_msi_chip->translation_id == trans_id) {
195 			list_del(&its_msi_chip->list);
196 			kfree(its_msi_chip);
197 			break;
198 		}
199 	}
200 	spin_unlock(&iort_msi_chip_lock);
201 }
202 
203 /**
204  * iort_find_domain_token() - Find domain token based on given ITS ID
205  * @trans_id: ITS ID.
206  *
207  * Returns: domain token when find on the list, NULL otherwise
208  */
209 struct fwnode_handle *iort_find_domain_token(int trans_id)
210 {
211 	struct fwnode_handle *fw_node = NULL;
212 	struct iort_its_msi_chip *its_msi_chip;
213 
214 	spin_lock(&iort_msi_chip_lock);
215 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
216 		if (its_msi_chip->translation_id == trans_id) {
217 			fw_node = its_msi_chip->fw_node;
218 			break;
219 		}
220 	}
221 	spin_unlock(&iort_msi_chip_lock);
222 
223 	return fw_node;
224 }
225 
226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
227 					     iort_find_node_callback callback,
228 					     void *context)
229 {
230 	struct acpi_iort_node *iort_node, *iort_end;
231 	struct acpi_table_iort *iort;
232 	int i;
233 
234 	if (!iort_table)
235 		return NULL;
236 
237 	/* Get the first IORT node */
238 	iort = (struct acpi_table_iort *)iort_table;
239 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
240 				 iort->node_offset);
241 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
242 				iort_table->length);
243 
244 	for (i = 0; i < iort->node_count; i++) {
245 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
246 			       "IORT node pointer overflows, bad table!\n"))
247 			return NULL;
248 
249 		if (iort_node->type == type &&
250 		    ACPI_SUCCESS(callback(iort_node, context)))
251 			return iort_node;
252 
253 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
254 					 iort_node->length);
255 	}
256 
257 	return NULL;
258 }
259 
260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
261 					    void *context)
262 {
263 	struct device *dev = context;
264 	acpi_status status = AE_NOT_FOUND;
265 
266 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
267 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
268 		struct acpi_device *adev;
269 		struct acpi_iort_named_component *ncomp;
270 		struct device *nc_dev = dev;
271 
272 		/*
273 		 * Walk the device tree to find a device with an
274 		 * ACPI companion; there is no point in scanning
275 		 * IORT for a device matching a named component if
276 		 * the device does not have an ACPI companion to
277 		 * start with.
278 		 */
279 		do {
280 			adev = ACPI_COMPANION(nc_dev);
281 			if (adev)
282 				break;
283 
284 			nc_dev = nc_dev->parent;
285 		} while (nc_dev);
286 
287 		if (!adev)
288 			goto out;
289 
290 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
291 		if (ACPI_FAILURE(status)) {
292 			dev_warn(nc_dev, "Can't get device full path name\n");
293 			goto out;
294 		}
295 
296 		ncomp = (struct acpi_iort_named_component *)node->node_data;
297 		status = !strcmp(ncomp->device_name, buf.pointer) ?
298 							AE_OK : AE_NOT_FOUND;
299 		acpi_os_free(buf.pointer);
300 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
301 		struct acpi_iort_root_complex *pci_rc;
302 		struct pci_bus *bus;
303 
304 		bus = to_pci_bus(dev);
305 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
306 
307 		/*
308 		 * It is assumed that PCI segment numbers maps one-to-one
309 		 * with root complexes. Each segment number can represent only
310 		 * one root complex.
311 		 */
312 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
313 							AE_OK : AE_NOT_FOUND;
314 	}
315 out:
316 	return status;
317 }
318 
319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
320 		       u32 *rid_out, bool check_overlap)
321 {
322 	/* Single mapping does not care for input id */
323 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
324 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
325 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
326 			*rid_out = map->output_base;
327 			return 0;
328 		}
329 
330 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
331 			map, type);
332 		return -ENXIO;
333 	}
334 
335 	if (rid_in < map->input_base ||
336 	    (rid_in > map->input_base + map->id_count))
337 		return -ENXIO;
338 
339 	if (check_overlap) {
340 		/*
341 		 * We already found a mapping for this input ID at the end of
342 		 * another region. If it coincides with the start of this
343 		 * region, we assume the prior match was due to the off-by-1
344 		 * issue mentioned below, and allow it to be superseded.
345 		 * Otherwise, things are *really* broken, and we just disregard
346 		 * duplicate matches entirely to retain compatibility.
347 		 */
348 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
349 		       map, rid_in);
350 		if (rid_in != map->input_base)
351 			return -ENXIO;
352 
353 		pr_err(FW_BUG "applying workaround.\n");
354 	}
355 
356 	*rid_out = map->output_base + (rid_in - map->input_base);
357 
358 	/*
359 	 * Due to confusion regarding the meaning of the id_count field (which
360 	 * carries the number of IDs *minus 1*), we may have to disregard this
361 	 * match if it is at the end of the range, and overlaps with the start
362 	 * of another one.
363 	 */
364 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
365 		return -EAGAIN;
366 	return 0;
367 }
368 
369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
370 					       u32 *id_out, int index)
371 {
372 	struct acpi_iort_node *parent;
373 	struct acpi_iort_id_mapping *map;
374 
375 	if (!node->mapping_offset || !node->mapping_count ||
376 				     index >= node->mapping_count)
377 		return NULL;
378 
379 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
380 			   node->mapping_offset + index * sizeof(*map));
381 
382 	/* Firmware bug! */
383 	if (!map->output_reference) {
384 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
385 		       node, node->type);
386 		return NULL;
387 	}
388 
389 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
390 			       map->output_reference);
391 
392 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
393 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
394 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
395 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
396 		    node->type == ACPI_IORT_NODE_PMCG) {
397 			*id_out = map->output_base;
398 			return parent;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
405 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
406 {
407 	struct acpi_iort_smmu_v3 *smmu;
408 	struct acpi_iort_pmcg *pmcg;
409 
410 	switch (node->type) {
411 	case ACPI_IORT_NODE_SMMU_V3:
412 		/*
413 		 * SMMUv3 dev ID mapping index was introduced in revision 1
414 		 * table, not available in revision 0
415 		 */
416 		if (node->revision < 1)
417 			return -EINVAL;
418 
419 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
420 		/*
421 		 * ID mapping index is only ignored if all interrupts are
422 		 * GSIV based
423 		 */
424 		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
425 		    && smmu->sync_gsiv)
426 			return -EINVAL;
427 
428 		if (smmu->id_mapping_index >= node->mapping_count) {
429 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
430 			       node, node->type);
431 			return -EINVAL;
432 		}
433 
434 		return smmu->id_mapping_index;
435 	case ACPI_IORT_NODE_PMCG:
436 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
437 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
438 			return -EINVAL;
439 
440 		return 0;
441 	default:
442 		return -EINVAL;
443 	}
444 }
445 
446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
447 					       u32 id_in, u32 *id_out,
448 					       u8 type_mask)
449 {
450 	u32 id = id_in;
451 
452 	/* Parse the ID mapping tree to find specified node type */
453 	while (node) {
454 		struct acpi_iort_id_mapping *map;
455 		int i, index, rc = 0;
456 		u32 out_ref = 0, map_id = id;
457 
458 		if (IORT_TYPE_MASK(node->type) & type_mask) {
459 			if (id_out)
460 				*id_out = id;
461 			return node;
462 		}
463 
464 		if (!node->mapping_offset || !node->mapping_count)
465 			goto fail_map;
466 
467 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
468 				   node->mapping_offset);
469 
470 		/* Firmware bug! */
471 		if (!map->output_reference) {
472 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
473 			       node, node->type);
474 			goto fail_map;
475 		}
476 
477 		/*
478 		 * Get the special ID mapping index (if any) and skip its
479 		 * associated ID map to prevent erroneous multi-stage
480 		 * IORT ID translations.
481 		 */
482 		index = iort_get_id_mapping_index(node);
483 
484 		/* Do the ID translation */
485 		for (i = 0; i < node->mapping_count; i++, map++) {
486 			/* if it is special mapping index, skip it */
487 			if (i == index)
488 				continue;
489 
490 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
491 			if (!rc)
492 				break;
493 			if (rc == -EAGAIN)
494 				out_ref = map->output_reference;
495 		}
496 
497 		if (i == node->mapping_count && !out_ref)
498 			goto fail_map;
499 
500 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
501 				    rc ? out_ref : map->output_reference);
502 	}
503 
504 fail_map:
505 	/* Map input ID to output ID unchanged on mapping failure */
506 	if (id_out)
507 		*id_out = id_in;
508 
509 	return NULL;
510 }
511 
512 static struct acpi_iort_node *iort_node_map_platform_id(
513 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
514 		int index)
515 {
516 	struct acpi_iort_node *parent;
517 	u32 id;
518 
519 	/* step 1: retrieve the initial dev id */
520 	parent = iort_node_get_id(node, &id, index);
521 	if (!parent)
522 		return NULL;
523 
524 	/*
525 	 * optional step 2: map the initial dev id if its parent is not
526 	 * the target type we want, map it again for the use cases such
527 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
528 	 * return the initial dev id and its parent pointer directly.
529 	 */
530 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
531 		parent = iort_node_map_id(parent, id, id_out, type_mask);
532 	else
533 		if (id_out)
534 			*id_out = id;
535 
536 	return parent;
537 }
538 
539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
540 {
541 	struct pci_bus *pbus;
542 
543 	if (!dev_is_pci(dev)) {
544 		struct acpi_iort_node *node;
545 		/*
546 		 * scan iort_fwnode_list to see if it's an iort platform
547 		 * device (such as SMMU, PMCG),its iort node already cached
548 		 * and associated with fwnode when iort platform devices
549 		 * were initialized.
550 		 */
551 		node = iort_get_iort_node(dev->fwnode);
552 		if (node)
553 			return node;
554 		/*
555 		 * if not, then it should be a platform device defined in
556 		 * DSDT/SSDT (with Named Component node in IORT)
557 		 */
558 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
559 				      iort_match_node_callback, dev);
560 	}
561 
562 	pbus = to_pci_dev(dev)->bus;
563 
564 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
565 			      iort_match_node_callback, &pbus->dev);
566 }
567 
568 /**
569  * iort_msi_map_id() - Map a MSI input ID for a device
570  * @dev: The device for which the mapping is to be done.
571  * @input_id: The device input ID.
572  *
573  * Returns: mapped MSI ID on success, input ID otherwise
574  */
575 u32 iort_msi_map_id(struct device *dev, u32 input_id)
576 {
577 	struct acpi_iort_node *node;
578 	u32 dev_id;
579 
580 	node = iort_find_dev_node(dev);
581 	if (!node)
582 		return input_id;
583 
584 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
585 	return dev_id;
586 }
587 
588 /**
589  * iort_pmsi_get_dev_id() - Get the device id for a device
590  * @dev: The device for which the mapping is to be done.
591  * @dev_id: The device ID found.
592  *
593  * Returns: 0 for successful find a dev id, -ENODEV on error
594  */
595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
596 {
597 	int i, index;
598 	struct acpi_iort_node *node;
599 
600 	node = iort_find_dev_node(dev);
601 	if (!node)
602 		return -ENODEV;
603 
604 	index = iort_get_id_mapping_index(node);
605 	/* if there is a valid index, go get the dev_id directly */
606 	if (index >= 0) {
607 		if (iort_node_get_id(node, dev_id, index))
608 			return 0;
609 	} else {
610 		for (i = 0; i < node->mapping_count; i++) {
611 			if (iort_node_map_platform_id(node, dev_id,
612 						      IORT_MSI_TYPE, i))
613 				return 0;
614 		}
615 	}
616 
617 	return -ENODEV;
618 }
619 
620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
621 {
622 	struct iort_its_msi_chip *its_msi_chip;
623 	int ret = -ENODEV;
624 
625 	spin_lock(&iort_msi_chip_lock);
626 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
627 		if (its_msi_chip->translation_id == its_id) {
628 			*base = its_msi_chip->base_addr;
629 			ret = 0;
630 			break;
631 		}
632 	}
633 	spin_unlock(&iort_msi_chip_lock);
634 
635 	return ret;
636 }
637 
638 /**
639  * iort_dev_find_its_id() - Find the ITS identifier for a device
640  * @dev: The device.
641  * @id: Device's ID
642  * @idx: Index of the ITS identifier list.
643  * @its_id: ITS identifier.
644  *
645  * Returns: 0 on success, appropriate error value otherwise
646  */
647 static int iort_dev_find_its_id(struct device *dev, u32 id,
648 				unsigned int idx, int *its_id)
649 {
650 	struct acpi_iort_its_group *its;
651 	struct acpi_iort_node *node;
652 
653 	node = iort_find_dev_node(dev);
654 	if (!node)
655 		return -ENXIO;
656 
657 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
658 	if (!node)
659 		return -ENXIO;
660 
661 	/* Move to ITS specific data */
662 	its = (struct acpi_iort_its_group *)node->node_data;
663 	if (idx >= its->its_count) {
664 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
665 			idx, its->its_count);
666 		return -ENXIO;
667 	}
668 
669 	*its_id = its->identifiers[idx];
670 	return 0;
671 }
672 
673 /**
674  * iort_get_device_domain() - Find MSI domain related to a device
675  * @dev: The device.
676  * @id: Requester ID for the device.
677  * @bus_token: irq domain bus token.
678  *
679  * Returns: the MSI domain for this device, NULL otherwise
680  */
681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
682 					  enum irq_domain_bus_token bus_token)
683 {
684 	struct fwnode_handle *handle;
685 	int its_id;
686 
687 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
688 		return NULL;
689 
690 	handle = iort_find_domain_token(its_id);
691 	if (!handle)
692 		return NULL;
693 
694 	return irq_find_matching_fwnode(handle, bus_token);
695 }
696 
697 static void iort_set_device_domain(struct device *dev,
698 				   struct acpi_iort_node *node)
699 {
700 	struct acpi_iort_its_group *its;
701 	struct acpi_iort_node *msi_parent;
702 	struct acpi_iort_id_mapping *map;
703 	struct fwnode_handle *iort_fwnode;
704 	struct irq_domain *domain;
705 	int index;
706 
707 	index = iort_get_id_mapping_index(node);
708 	if (index < 0)
709 		return;
710 
711 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
712 			   node->mapping_offset + index * sizeof(*map));
713 
714 	/* Firmware bug! */
715 	if (!map->output_reference ||
716 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
717 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
718 		       node, node->type);
719 		return;
720 	}
721 
722 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
723 				  map->output_reference);
724 
725 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
726 		return;
727 
728 	/* Move to ITS specific data */
729 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
730 
731 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
732 	if (!iort_fwnode)
733 		return;
734 
735 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
736 	if (domain)
737 		dev_set_msi_domain(dev, domain);
738 }
739 
740 /**
741  * iort_get_platform_device_domain() - Find MSI domain related to a
742  * platform device
743  * @dev: the dev pointer associated with the platform device
744  *
745  * Returns: the MSI domain for this device, NULL otherwise
746  */
747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
748 {
749 	struct acpi_iort_node *node, *msi_parent = NULL;
750 	struct fwnode_handle *iort_fwnode;
751 	struct acpi_iort_its_group *its;
752 	int i;
753 
754 	/* find its associated iort node */
755 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
756 			      iort_match_node_callback, dev);
757 	if (!node)
758 		return NULL;
759 
760 	/* then find its msi parent node */
761 	for (i = 0; i < node->mapping_count; i++) {
762 		msi_parent = iort_node_map_platform_id(node, NULL,
763 						       IORT_MSI_TYPE, i);
764 		if (msi_parent)
765 			break;
766 	}
767 
768 	if (!msi_parent)
769 		return NULL;
770 
771 	/* Move to ITS specific data */
772 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
773 
774 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
775 	if (!iort_fwnode)
776 		return NULL;
777 
778 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
779 }
780 
781 void acpi_configure_pmsi_domain(struct device *dev)
782 {
783 	struct irq_domain *msi_domain;
784 
785 	msi_domain = iort_get_platform_device_domain(dev);
786 	if (msi_domain)
787 		dev_set_msi_domain(dev, msi_domain);
788 }
789 
790 #ifdef CONFIG_IOMMU_API
791 static void iort_rmr_free(struct device *dev,
792 			  struct iommu_resv_region *region)
793 {
794 	struct iommu_iort_rmr_data *rmr_data;
795 
796 	rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
797 	kfree(rmr_data->sids);
798 	kfree(rmr_data);
799 }
800 
801 static struct iommu_iort_rmr_data *iort_rmr_alloc(
802 					struct acpi_iort_rmr_desc *rmr_desc,
803 					int prot, enum iommu_resv_type type,
804 					u32 *sids, u32 num_sids)
805 {
806 	struct iommu_iort_rmr_data *rmr_data;
807 	struct iommu_resv_region *region;
808 	u32 *sids_copy;
809 	u64 addr = rmr_desc->base_address, size = rmr_desc->length;
810 
811 	rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
812 	if (!rmr_data)
813 		return NULL;
814 
815 	/* Create a copy of SIDs array to associate with this rmr_data */
816 	sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL);
817 	if (!sids_copy) {
818 		kfree(rmr_data);
819 		return NULL;
820 	}
821 	rmr_data->sids = sids_copy;
822 	rmr_data->num_sids = num_sids;
823 
824 	if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
825 		/* PAGE align base addr and size */
826 		addr &= PAGE_MASK;
827 		size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
828 
829 		pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
830 		       rmr_desc->base_address,
831 		       rmr_desc->base_address + rmr_desc->length - 1,
832 		       addr, addr + size - 1);
833 	}
834 
835 	region = &rmr_data->rr;
836 	INIT_LIST_HEAD(&region->list);
837 	region->start = addr;
838 	region->length = size;
839 	region->prot = prot;
840 	region->type = type;
841 	region->free = iort_rmr_free;
842 
843 	return rmr_data;
844 }
845 
846 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
847 					u32 count)
848 {
849 	int i, j;
850 
851 	for (i = 0; i < count; i++) {
852 		u64 end, start = desc[i].base_address, length = desc[i].length;
853 
854 		if (!length) {
855 			pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
856 			       start);
857 			continue;
858 		}
859 
860 		end = start + length - 1;
861 
862 		/* Check for address overlap */
863 		for (j = i + 1; j < count; j++) {
864 			u64 e_start = desc[j].base_address;
865 			u64 e_end = e_start + desc[j].length - 1;
866 
867 			if (start <= e_end && end >= e_start)
868 				pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
869 				       start, end);
870 		}
871 	}
872 }
873 
874 /*
875  * Please note, we will keep the already allocated RMR reserve
876  * regions in case of a memory allocation failure.
877  */
878 static void iort_get_rmrs(struct acpi_iort_node *node,
879 			  struct acpi_iort_node *smmu,
880 			  u32 *sids, u32 num_sids,
881 			  struct list_head *head)
882 {
883 	struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
884 	struct acpi_iort_rmr_desc *rmr_desc;
885 	int i;
886 
887 	rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
888 				rmr->rmr_offset);
889 
890 	iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
891 
892 	for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
893 		struct iommu_iort_rmr_data *rmr_data;
894 		enum iommu_resv_type type;
895 		int prot = IOMMU_READ | IOMMU_WRITE;
896 
897 		if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
898 			type = IOMMU_RESV_DIRECT_RELAXABLE;
899 		else
900 			type = IOMMU_RESV_DIRECT;
901 
902 		if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
903 			prot |= IOMMU_PRIV;
904 
905 		/* Attributes 0x00 - 0x03 represents device memory */
906 		if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
907 				ACPI_IORT_RMR_ATTR_DEVICE_GRE)
908 			prot |= IOMMU_MMIO;
909 		else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
910 				ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
911 			prot |= IOMMU_CACHE;
912 
913 		rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
914 					  sids, num_sids);
915 		if (!rmr_data)
916 			return;
917 
918 		list_add_tail(&rmr_data->rr.list, head);
919 	}
920 }
921 
922 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
923 				u32 new_count)
924 {
925 	u32 *new_sids;
926 	u32 total_count = count + new_count;
927 	int i;
928 
929 	new_sids = krealloc_array(sids, count + new_count,
930 				  sizeof(*new_sids), GFP_KERNEL);
931 	if (!new_sids)
932 		return NULL;
933 
934 	for (i = count; i < total_count; i++)
935 		new_sids[i] = id_start++;
936 
937 	return new_sids;
938 }
939 
940 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
941 			     u32 id_count)
942 {
943 	int i;
944 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
945 
946 	/*
947 	 * Make sure the kernel has preserved the boot firmware PCIe
948 	 * configuration. This is required to ensure that the RMR PCIe
949 	 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
950 	 */
951 	if (dev_is_pci(dev)) {
952 		struct pci_dev *pdev = to_pci_dev(dev);
953 		struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
954 
955 		if (!host->preserve_config)
956 			return false;
957 	}
958 
959 	for (i = 0; i < fwspec->num_ids; i++) {
960 		if (fwspec->ids[i] >= id_start &&
961 		    fwspec->ids[i] <= id_start + id_count)
962 			return true;
963 	}
964 
965 	return false;
966 }
967 
968 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
969 				   struct acpi_iort_node *iommu,
970 				   struct device *dev, struct list_head *head)
971 {
972 	struct acpi_iort_node *smmu = NULL;
973 	struct acpi_iort_rmr *rmr;
974 	struct acpi_iort_id_mapping *map;
975 	u32 *sids = NULL;
976 	u32 num_sids = 0;
977 	int i;
978 
979 	if (!node->mapping_offset || !node->mapping_count) {
980 		pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
981 		       node);
982 		return;
983 	}
984 
985 	rmr = (struct acpi_iort_rmr *)node->node_data;
986 	if (!rmr->rmr_offset || !rmr->rmr_count)
987 		return;
988 
989 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
990 			   node->mapping_offset);
991 
992 	/*
993 	 * Go through the ID mappings and see if we have a match for SMMU
994 	 * and dev(if !NULL). If found, get the sids for the Node.
995 	 * Please note, id_count is equal to the number of IDs  in the
996 	 * range minus one.
997 	 */
998 	for (i = 0; i < node->mapping_count; i++, map++) {
999 		struct acpi_iort_node *parent;
1000 
1001 		if (!map->id_count)
1002 			continue;
1003 
1004 		parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1005 				      map->output_reference);
1006 		if (parent != iommu)
1007 			continue;
1008 
1009 		/* If dev is valid, check RMR node corresponds to the dev SID */
1010 		if (dev && !iort_rmr_has_dev(dev, map->output_base,
1011 					     map->id_count))
1012 			continue;
1013 
1014 		/* Retrieve SIDs associated with the Node. */
1015 		sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1016 					   map->id_count + 1);
1017 		if (!sids)
1018 			return;
1019 
1020 		num_sids += map->id_count + 1;
1021 	}
1022 
1023 	if (!sids)
1024 		return;
1025 
1026 	iort_get_rmrs(node, smmu, sids, num_sids, head);
1027 	kfree(sids);
1028 }
1029 
1030 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1031 			   struct list_head *head)
1032 {
1033 	struct acpi_table_iort *iort;
1034 	struct acpi_iort_node *iort_node, *iort_end;
1035 	int i;
1036 
1037 	/* Only supports ARM DEN 0049E.d onwards */
1038 	if (iort_table->revision < 5)
1039 		return;
1040 
1041 	iort = (struct acpi_table_iort *)iort_table;
1042 
1043 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1044 				 iort->node_offset);
1045 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1046 				iort_table->length);
1047 
1048 	for (i = 0; i < iort->node_count; i++) {
1049 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1050 			       "IORT node pointer overflows, bad table!\n"))
1051 			return;
1052 
1053 		if (iort_node->type == ACPI_IORT_NODE_RMR)
1054 			iort_node_get_rmr_info(iort_node, iommu, dev, head);
1055 
1056 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1057 					 iort_node->length);
1058 	}
1059 }
1060 
1061 /*
1062  * Populate the RMR list associated with a given IOMMU and dev(if provided).
1063  * If dev is NULL, the function populates all the RMRs associated with the
1064  * given IOMMU.
1065  */
1066 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1067 					    struct device *dev,
1068 					    struct list_head *head)
1069 {
1070 	struct acpi_iort_node *iommu;
1071 
1072 	iommu = iort_get_iort_node(iommu_fwnode);
1073 	if (!iommu)
1074 		return;
1075 
1076 	iort_find_rmrs(iommu, dev, head);
1077 }
1078 
1079 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1080 {
1081 	struct acpi_iort_node *iommu;
1082 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1083 
1084 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1085 
1086 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1087 		struct acpi_iort_smmu_v3 *smmu;
1088 
1089 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1090 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1091 			return iommu;
1092 	}
1093 
1094 	return NULL;
1095 }
1096 
1097 /*
1098  * Retrieve platform specific HW MSI reserve regions.
1099  * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1100  * associated with the device are the HW MSI reserved regions.
1101  */
1102 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1103 					    struct list_head *head)
1104 {
1105 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1106 	struct acpi_iort_its_group *its;
1107 	struct acpi_iort_node *iommu_node, *its_node = NULL;
1108 	int i;
1109 
1110 	iommu_node = iort_get_msi_resv_iommu(dev);
1111 	if (!iommu_node)
1112 		return;
1113 
1114 	/*
1115 	 * Current logic to reserve ITS regions relies on HW topologies
1116 	 * where a given PCI or named component maps its IDs to only one
1117 	 * ITS group; if a PCI or named component can map its IDs to
1118 	 * different ITS groups through IORT mappings this function has
1119 	 * to be reworked to ensure we reserve regions for all ITS groups
1120 	 * a given PCI or named component may map IDs to.
1121 	 */
1122 
1123 	for (i = 0; i < fwspec->num_ids; i++) {
1124 		its_node = iort_node_map_id(iommu_node,
1125 					fwspec->ids[i],
1126 					NULL, IORT_MSI_TYPE);
1127 		if (its_node)
1128 			break;
1129 	}
1130 
1131 	if (!its_node)
1132 		return;
1133 
1134 	/* Move to ITS specific data */
1135 	its = (struct acpi_iort_its_group *)its_node->node_data;
1136 
1137 	for (i = 0; i < its->its_count; i++) {
1138 		phys_addr_t base;
1139 
1140 		if (!iort_find_its_base(its->identifiers[i], &base)) {
1141 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1142 			struct iommu_resv_region *region;
1143 
1144 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1145 							 prot, IOMMU_RESV_MSI,
1146 							 GFP_KERNEL);
1147 			if (region)
1148 				list_add_tail(&region->list, head);
1149 		}
1150 	}
1151 }
1152 
1153 /**
1154  * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1155  * @dev: Device from iommu_get_resv_regions()
1156  * @head: Reserved region list from iommu_get_resv_regions()
1157  */
1158 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1159 {
1160 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1161 
1162 	iort_iommu_msi_get_resv_regions(dev, head);
1163 	iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1164 }
1165 
1166 /**
1167  * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1168  *                     associated StreamIDs information.
1169  * @iommu_fwnode: fwnode associated with IOMMU
1170  * @head: Resereved region list
1171  */
1172 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1173 		       struct list_head *head)
1174 {
1175 	iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1176 }
1177 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1178 
1179 /**
1180  * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1181  * @iommu_fwnode: fwnode associated with IOMMU
1182  * @head: Resereved region list
1183  */
1184 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1185 		       struct list_head *head)
1186 {
1187 	struct iommu_resv_region *entry, *next;
1188 
1189 	list_for_each_entry_safe(entry, next, head, list)
1190 		entry->free(NULL, entry);
1191 }
1192 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1193 
1194 static inline bool iort_iommu_driver_enabled(u8 type)
1195 {
1196 	switch (type) {
1197 	case ACPI_IORT_NODE_SMMU_V3:
1198 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1199 	case ACPI_IORT_NODE_SMMU:
1200 		return IS_ENABLED(CONFIG_ARM_SMMU);
1201 	default:
1202 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
1203 		return false;
1204 	}
1205 }
1206 
1207 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1208 {
1209 	struct acpi_iort_root_complex *pci_rc;
1210 
1211 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1212 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1213 }
1214 
1215 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1216 			    u32 streamid)
1217 {
1218 	const struct iommu_ops *ops;
1219 	struct fwnode_handle *iort_fwnode;
1220 
1221 	if (!node)
1222 		return -ENODEV;
1223 
1224 	iort_fwnode = iort_get_fwnode(node);
1225 	if (!iort_fwnode)
1226 		return -ENODEV;
1227 
1228 	/*
1229 	 * If the ops look-up fails, this means that either
1230 	 * the SMMU drivers have not been probed yet or that
1231 	 * the SMMU drivers are not built in the kernel;
1232 	 * Depending on whether the SMMU drivers are built-in
1233 	 * in the kernel or not, defer the IOMMU configuration
1234 	 * or just abort it.
1235 	 */
1236 	ops = iommu_ops_from_fwnode(iort_fwnode);
1237 	if (!ops)
1238 		return iort_iommu_driver_enabled(node->type) ?
1239 		       -EPROBE_DEFER : -ENODEV;
1240 
1241 	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops);
1242 }
1243 
1244 struct iort_pci_alias_info {
1245 	struct device *dev;
1246 	struct acpi_iort_node *node;
1247 };
1248 
1249 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1250 {
1251 	struct iort_pci_alias_info *info = data;
1252 	struct acpi_iort_node *parent;
1253 	u32 streamid;
1254 
1255 	parent = iort_node_map_id(info->node, alias, &streamid,
1256 				  IORT_IOMMU_TYPE);
1257 	return iort_iommu_xlate(info->dev, parent, streamid);
1258 }
1259 
1260 static void iort_named_component_init(struct device *dev,
1261 				      struct acpi_iort_node *node)
1262 {
1263 	struct property_entry props[3] = {};
1264 	struct acpi_iort_named_component *nc;
1265 
1266 	nc = (struct acpi_iort_named_component *)node->node_data;
1267 	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1268 				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1269 						nc->node_flags));
1270 	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1271 		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1272 
1273 	if (device_create_managed_software_node(dev, props, NULL))
1274 		dev_warn(dev, "Could not add device properties\n");
1275 }
1276 
1277 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1278 {
1279 	struct acpi_iort_node *parent;
1280 	int err = -ENODEV, i = 0;
1281 	u32 streamid = 0;
1282 
1283 	do {
1284 
1285 		parent = iort_node_map_platform_id(node, &streamid,
1286 						   IORT_IOMMU_TYPE,
1287 						   i++);
1288 
1289 		if (parent)
1290 			err = iort_iommu_xlate(dev, parent, streamid);
1291 	} while (parent && !err);
1292 
1293 	return err;
1294 }
1295 
1296 static int iort_nc_iommu_map_id(struct device *dev,
1297 				struct acpi_iort_node *node,
1298 				const u32 *in_id)
1299 {
1300 	struct acpi_iort_node *parent;
1301 	u32 streamid;
1302 
1303 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1304 	if (parent)
1305 		return iort_iommu_xlate(dev, parent, streamid);
1306 
1307 	return -ENODEV;
1308 }
1309 
1310 
1311 /**
1312  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1313  *
1314  * @dev: device to configure
1315  * @id_in: optional input id const value pointer
1316  *
1317  * Returns: 0 on success, <0 on failure
1318  */
1319 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1320 {
1321 	struct acpi_iort_node *node;
1322 	int err = -ENODEV;
1323 
1324 	if (dev_is_pci(dev)) {
1325 		struct iommu_fwspec *fwspec;
1326 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1327 		struct iort_pci_alias_info info = { .dev = dev };
1328 
1329 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1330 				      iort_match_node_callback, &bus->dev);
1331 		if (!node)
1332 			return -ENODEV;
1333 
1334 		info.node = node;
1335 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1336 					     iort_pci_iommu_init, &info);
1337 
1338 		fwspec = dev_iommu_fwspec_get(dev);
1339 		if (fwspec && iort_pci_rc_supports_ats(node))
1340 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1341 	} else {
1342 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1343 				      iort_match_node_callback, dev);
1344 		if (!node)
1345 			return -ENODEV;
1346 
1347 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1348 			      iort_nc_iommu_map(dev, node);
1349 
1350 		if (!err)
1351 			iort_named_component_init(dev, node);
1352 	}
1353 
1354 	return err;
1355 }
1356 
1357 #else
1358 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1359 { }
1360 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1361 { return -ENODEV; }
1362 #endif
1363 
1364 static int nc_dma_get_range(struct device *dev, u64 *size)
1365 {
1366 	struct acpi_iort_node *node;
1367 	struct acpi_iort_named_component *ncomp;
1368 
1369 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1370 			      iort_match_node_callback, dev);
1371 	if (!node)
1372 		return -ENODEV;
1373 
1374 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1375 
1376 	if (!ncomp->memory_address_limit) {
1377 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1378 		return -EINVAL;
1379 	}
1380 
1381 	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1382 			1ULL<<ncomp->memory_address_limit;
1383 
1384 	return 0;
1385 }
1386 
1387 static int rc_dma_get_range(struct device *dev, u64 *size)
1388 {
1389 	struct acpi_iort_node *node;
1390 	struct acpi_iort_root_complex *rc;
1391 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1392 
1393 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1394 			      iort_match_node_callback, &pbus->dev);
1395 	if (!node || node->revision < 1)
1396 		return -ENODEV;
1397 
1398 	rc = (struct acpi_iort_root_complex *)node->node_data;
1399 
1400 	if (!rc->memory_address_limit) {
1401 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1402 		return -EINVAL;
1403 	}
1404 
1405 	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1406 			1ULL<<rc->memory_address_limit;
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1413  * @dev: device to lookup
1414  * @size: DMA range size result pointer
1415  *
1416  * Return: 0 on success, an error otherwise.
1417  */
1418 int iort_dma_get_ranges(struct device *dev, u64 *size)
1419 {
1420 	if (dev_is_pci(dev))
1421 		return rc_dma_get_range(dev, size);
1422 	else
1423 		return nc_dma_get_range(dev, size);
1424 }
1425 
1426 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1427 					  int trigger,
1428 					  struct resource *res)
1429 {
1430 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1431 				    ACPI_ACTIVE_HIGH);
1432 
1433 	if (irq <= 0) {
1434 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1435 								      name);
1436 		return;
1437 	}
1438 
1439 	res->start = irq;
1440 	res->end = irq;
1441 	res->flags = IORESOURCE_IRQ;
1442 	res->name = name;
1443 }
1444 
1445 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1446 {
1447 	struct acpi_iort_smmu_v3 *smmu;
1448 	/* Always present mem resource */
1449 	int num_res = 1;
1450 
1451 	/* Retrieve SMMUv3 specific data */
1452 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1453 
1454 	if (smmu->event_gsiv)
1455 		num_res++;
1456 
1457 	if (smmu->pri_gsiv)
1458 		num_res++;
1459 
1460 	if (smmu->gerr_gsiv)
1461 		num_res++;
1462 
1463 	if (smmu->sync_gsiv)
1464 		num_res++;
1465 
1466 	return num_res;
1467 }
1468 
1469 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1470 {
1471 	/*
1472 	 * Cavium ThunderX2 implementation doesn't not support unique
1473 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1474 	 */
1475 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1476 		return false;
1477 
1478 	/*
1479 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1480 	 * SPI numbers here.
1481 	 */
1482 	return smmu->event_gsiv == smmu->pri_gsiv &&
1483 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1484 	       smmu->event_gsiv == smmu->sync_gsiv;
1485 }
1486 
1487 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1488 {
1489 	/*
1490 	 * Override the size, for Cavium ThunderX2 implementation
1491 	 * which doesn't support the page 1 SMMU register space.
1492 	 */
1493 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1494 		return SZ_64K;
1495 
1496 	return SZ_128K;
1497 }
1498 
1499 static void __init arm_smmu_v3_init_resources(struct resource *res,
1500 					      struct acpi_iort_node *node)
1501 {
1502 	struct acpi_iort_smmu_v3 *smmu;
1503 	int num_res = 0;
1504 
1505 	/* Retrieve SMMUv3 specific data */
1506 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1507 
1508 	res[num_res].start = smmu->base_address;
1509 	res[num_res].end = smmu->base_address +
1510 				arm_smmu_v3_resource_size(smmu) - 1;
1511 	res[num_res].flags = IORESOURCE_MEM;
1512 
1513 	num_res++;
1514 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1515 		if (smmu->event_gsiv)
1516 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1517 					       ACPI_EDGE_SENSITIVE,
1518 					       &res[num_res++]);
1519 	} else {
1520 
1521 		if (smmu->event_gsiv)
1522 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1523 					       ACPI_EDGE_SENSITIVE,
1524 					       &res[num_res++]);
1525 
1526 		if (smmu->pri_gsiv)
1527 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1528 					       ACPI_EDGE_SENSITIVE,
1529 					       &res[num_res++]);
1530 
1531 		if (smmu->gerr_gsiv)
1532 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1533 					       ACPI_EDGE_SENSITIVE,
1534 					       &res[num_res++]);
1535 
1536 		if (smmu->sync_gsiv)
1537 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1538 					       ACPI_EDGE_SENSITIVE,
1539 					       &res[num_res++]);
1540 	}
1541 }
1542 
1543 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1544 					     struct acpi_iort_node *node)
1545 {
1546 	struct acpi_iort_smmu_v3 *smmu;
1547 	enum dev_dma_attr attr;
1548 
1549 	/* Retrieve SMMUv3 specific data */
1550 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1551 
1552 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1553 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1554 
1555 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1556 	dev->dma_mask = &dev->coherent_dma_mask;
1557 
1558 	/* Configure DMA for the page table walker */
1559 	acpi_dma_configure(dev, attr);
1560 }
1561 
1562 #if defined(CONFIG_ACPI_NUMA)
1563 /*
1564  * set numa proximity domain for smmuv3 device
1565  */
1566 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1567 					      struct acpi_iort_node *node)
1568 {
1569 	struct acpi_iort_smmu_v3 *smmu;
1570 
1571 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1572 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1573 		int dev_node = pxm_to_node(smmu->pxm);
1574 
1575 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1576 			return -EINVAL;
1577 
1578 		set_dev_node(dev, dev_node);
1579 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1580 			smmu->base_address,
1581 			smmu->pxm);
1582 	}
1583 	return 0;
1584 }
1585 #else
1586 #define arm_smmu_v3_set_proximity NULL
1587 #endif
1588 
1589 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1590 {
1591 	struct acpi_iort_smmu *smmu;
1592 
1593 	/* Retrieve SMMU specific data */
1594 	smmu = (struct acpi_iort_smmu *)node->node_data;
1595 
1596 	/*
1597 	 * Only consider the global fault interrupt and ignore the
1598 	 * configuration access interrupt.
1599 	 *
1600 	 * MMIO address and global fault interrupt resources are always
1601 	 * present so add them to the context interrupt count as a static
1602 	 * value.
1603 	 */
1604 	return smmu->context_interrupt_count + 2;
1605 }
1606 
1607 static void __init arm_smmu_init_resources(struct resource *res,
1608 					   struct acpi_iort_node *node)
1609 {
1610 	struct acpi_iort_smmu *smmu;
1611 	int i, hw_irq, trigger, num_res = 0;
1612 	u64 *ctx_irq, *glb_irq;
1613 
1614 	/* Retrieve SMMU specific data */
1615 	smmu = (struct acpi_iort_smmu *)node->node_data;
1616 
1617 	res[num_res].start = smmu->base_address;
1618 	res[num_res].end = smmu->base_address + smmu->span - 1;
1619 	res[num_res].flags = IORESOURCE_MEM;
1620 	num_res++;
1621 
1622 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1623 	/* Global IRQs */
1624 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1625 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1626 
1627 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1628 				     &res[num_res++]);
1629 
1630 	/* Context IRQs */
1631 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1632 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1633 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1634 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1635 
1636 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1637 				       &res[num_res++]);
1638 	}
1639 }
1640 
1641 static void __init arm_smmu_dma_configure(struct device *dev,
1642 					  struct acpi_iort_node *node)
1643 {
1644 	struct acpi_iort_smmu *smmu;
1645 	enum dev_dma_attr attr;
1646 
1647 	/* Retrieve SMMU specific data */
1648 	smmu = (struct acpi_iort_smmu *)node->node_data;
1649 
1650 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1651 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1652 
1653 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1654 	dev->dma_mask = &dev->coherent_dma_mask;
1655 
1656 	/* Configure DMA for the page table walker */
1657 	acpi_dma_configure(dev, attr);
1658 }
1659 
1660 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1661 {
1662 	struct acpi_iort_pmcg *pmcg;
1663 
1664 	/* Retrieve PMCG specific data */
1665 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1666 
1667 	/*
1668 	 * There are always 2 memory resources.
1669 	 * If the overflow_gsiv is present then add that for a total of 3.
1670 	 */
1671 	return pmcg->overflow_gsiv ? 3 : 2;
1672 }
1673 
1674 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1675 						   struct acpi_iort_node *node)
1676 {
1677 	struct acpi_iort_pmcg *pmcg;
1678 
1679 	/* Retrieve PMCG specific data */
1680 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1681 
1682 	res[0].start = pmcg->page0_base_address;
1683 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1684 	res[0].flags = IORESOURCE_MEM;
1685 	/*
1686 	 * The initial version in DEN0049C lacked a way to describe register
1687 	 * page 1, which makes it broken for most PMCG implementations; in
1688 	 * that case, just let the driver fail gracefully if it expects to
1689 	 * find a second memory resource.
1690 	 */
1691 	if (node->revision > 0) {
1692 		res[1].start = pmcg->page1_base_address;
1693 		res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1694 		res[1].flags = IORESOURCE_MEM;
1695 	}
1696 
1697 	if (pmcg->overflow_gsiv)
1698 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1699 				       ACPI_EDGE_SENSITIVE, &res[2]);
1700 }
1701 
1702 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1703 	/* HiSilicon Hip08 Platform */
1704 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1705 	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
1706 	{ }
1707 };
1708 
1709 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1710 {
1711 	u32 model;
1712 	int idx;
1713 
1714 	idx = acpi_match_platform_list(pmcg_plat_info);
1715 	if (idx >= 0)
1716 		model = pmcg_plat_info[idx].data;
1717 	else
1718 		model = IORT_SMMU_V3_PMCG_GENERIC;
1719 
1720 	return platform_device_add_data(pdev, &model, sizeof(model));
1721 }
1722 
1723 struct iort_dev_config {
1724 	const char *name;
1725 	int (*dev_init)(struct acpi_iort_node *node);
1726 	void (*dev_dma_configure)(struct device *dev,
1727 				  struct acpi_iort_node *node);
1728 	int (*dev_count_resources)(struct acpi_iort_node *node);
1729 	void (*dev_init_resources)(struct resource *res,
1730 				     struct acpi_iort_node *node);
1731 	int (*dev_set_proximity)(struct device *dev,
1732 				    struct acpi_iort_node *node);
1733 	int (*dev_add_platdata)(struct platform_device *pdev);
1734 };
1735 
1736 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1737 	.name = "arm-smmu-v3",
1738 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1739 	.dev_count_resources = arm_smmu_v3_count_resources,
1740 	.dev_init_resources = arm_smmu_v3_init_resources,
1741 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1742 };
1743 
1744 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1745 	.name = "arm-smmu",
1746 	.dev_dma_configure = arm_smmu_dma_configure,
1747 	.dev_count_resources = arm_smmu_count_resources,
1748 	.dev_init_resources = arm_smmu_init_resources,
1749 };
1750 
1751 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1752 	.name = "arm-smmu-v3-pmcg",
1753 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1754 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1755 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1756 };
1757 
1758 static __init const struct iort_dev_config *iort_get_dev_cfg(
1759 			struct acpi_iort_node *node)
1760 {
1761 	switch (node->type) {
1762 	case ACPI_IORT_NODE_SMMU_V3:
1763 		return &iort_arm_smmu_v3_cfg;
1764 	case ACPI_IORT_NODE_SMMU:
1765 		return &iort_arm_smmu_cfg;
1766 	case ACPI_IORT_NODE_PMCG:
1767 		return &iort_arm_smmu_v3_pmcg_cfg;
1768 	default:
1769 		return NULL;
1770 	}
1771 }
1772 
1773 /**
1774  * iort_add_platform_device() - Allocate a platform device for IORT node
1775  * @node: Pointer to device ACPI IORT node
1776  * @ops: Pointer to IORT device config struct
1777  *
1778  * Returns: 0 on success, <0 failure
1779  */
1780 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1781 					   const struct iort_dev_config *ops)
1782 {
1783 	struct fwnode_handle *fwnode;
1784 	struct platform_device *pdev;
1785 	struct resource *r;
1786 	int ret, count;
1787 
1788 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1789 	if (!pdev)
1790 		return -ENOMEM;
1791 
1792 	if (ops->dev_set_proximity) {
1793 		ret = ops->dev_set_proximity(&pdev->dev, node);
1794 		if (ret)
1795 			goto dev_put;
1796 	}
1797 
1798 	count = ops->dev_count_resources(node);
1799 
1800 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1801 	if (!r) {
1802 		ret = -ENOMEM;
1803 		goto dev_put;
1804 	}
1805 
1806 	ops->dev_init_resources(r, node);
1807 
1808 	ret = platform_device_add_resources(pdev, r, count);
1809 	/*
1810 	 * Resources are duplicated in platform_device_add_resources,
1811 	 * free their allocated memory
1812 	 */
1813 	kfree(r);
1814 
1815 	if (ret)
1816 		goto dev_put;
1817 
1818 	/*
1819 	 * Platform devices based on PMCG nodes uses platform_data to
1820 	 * pass the hardware model info to the driver. For others, add
1821 	 * a copy of IORT node pointer to platform_data to be used to
1822 	 * retrieve IORT data information.
1823 	 */
1824 	if (ops->dev_add_platdata)
1825 		ret = ops->dev_add_platdata(pdev);
1826 	else
1827 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1828 
1829 	if (ret)
1830 		goto dev_put;
1831 
1832 	fwnode = iort_get_fwnode(node);
1833 
1834 	if (!fwnode) {
1835 		ret = -ENODEV;
1836 		goto dev_put;
1837 	}
1838 
1839 	pdev->dev.fwnode = fwnode;
1840 
1841 	if (ops->dev_dma_configure)
1842 		ops->dev_dma_configure(&pdev->dev, node);
1843 
1844 	iort_set_device_domain(&pdev->dev, node);
1845 
1846 	ret = platform_device_add(pdev);
1847 	if (ret)
1848 		goto dma_deconfigure;
1849 
1850 	return 0;
1851 
1852 dma_deconfigure:
1853 	arch_teardown_dma_ops(&pdev->dev);
1854 dev_put:
1855 	platform_device_put(pdev);
1856 
1857 	return ret;
1858 }
1859 
1860 #ifdef CONFIG_PCI
1861 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1862 {
1863 	static bool acs_enabled __initdata;
1864 
1865 	if (acs_enabled)
1866 		return;
1867 
1868 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1869 		struct acpi_iort_node *parent;
1870 		struct acpi_iort_id_mapping *map;
1871 		int i;
1872 
1873 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1874 				   iort_node->mapping_offset);
1875 
1876 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1877 			if (!map->output_reference)
1878 				continue;
1879 
1880 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1881 					iort_table,  map->output_reference);
1882 			/*
1883 			 * If we detect a RC->SMMU mapping, make sure
1884 			 * we enable ACS on the system.
1885 			 */
1886 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1887 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1888 				pci_request_acs();
1889 				acs_enabled = true;
1890 				return;
1891 			}
1892 		}
1893 	}
1894 }
1895 #else
1896 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1897 #endif
1898 
1899 static void __init iort_init_platform_devices(void)
1900 {
1901 	struct acpi_iort_node *iort_node, *iort_end;
1902 	struct acpi_table_iort *iort;
1903 	struct fwnode_handle *fwnode;
1904 	int i, ret;
1905 	const struct iort_dev_config *ops;
1906 
1907 	/*
1908 	 * iort_table and iort both point to the start of IORT table, but
1909 	 * have different struct types
1910 	 */
1911 	iort = (struct acpi_table_iort *)iort_table;
1912 
1913 	/* Get the first IORT node */
1914 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1915 				 iort->node_offset);
1916 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1917 				iort_table->length);
1918 
1919 	for (i = 0; i < iort->node_count; i++) {
1920 		if (iort_node >= iort_end) {
1921 			pr_err("iort node pointer overflows, bad table\n");
1922 			return;
1923 		}
1924 
1925 		iort_enable_acs(iort_node);
1926 
1927 		ops = iort_get_dev_cfg(iort_node);
1928 		if (ops) {
1929 			fwnode = acpi_alloc_fwnode_static();
1930 			if (!fwnode)
1931 				return;
1932 
1933 			iort_set_fwnode(iort_node, fwnode);
1934 
1935 			ret = iort_add_platform_device(iort_node, ops);
1936 			if (ret) {
1937 				iort_delete_fwnode(iort_node);
1938 				acpi_free_fwnode_static(fwnode);
1939 				return;
1940 			}
1941 		}
1942 
1943 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1944 					 iort_node->length);
1945 	}
1946 }
1947 
1948 void __init acpi_iort_init(void)
1949 {
1950 	acpi_status status;
1951 
1952 	/* iort_table will be used at runtime after the iort init,
1953 	 * so we don't need to call acpi_put_table() to release
1954 	 * the IORT table mapping.
1955 	 */
1956 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1957 	if (ACPI_FAILURE(status)) {
1958 		if (status != AE_NOT_FOUND) {
1959 			const char *msg = acpi_format_exception(status);
1960 
1961 			pr_err("Failed to get table, %s\n", msg);
1962 		}
1963 
1964 		return;
1965 	}
1966 
1967 	iort_init_platform_devices();
1968 }
1969 
1970 #ifdef CONFIG_ZONE_DMA
1971 /*
1972  * Extract the highest CPU physical address accessible to all DMA masters in
1973  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1974  */
1975 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1976 {
1977 	phys_addr_t limit = PHYS_ADDR_MAX;
1978 	struct acpi_iort_node *node, *end;
1979 	struct acpi_table_iort *iort;
1980 	acpi_status status;
1981 	int i;
1982 
1983 	if (acpi_disabled)
1984 		return limit;
1985 
1986 	status = acpi_get_table(ACPI_SIG_IORT, 0,
1987 				(struct acpi_table_header **)&iort);
1988 	if (ACPI_FAILURE(status))
1989 		return limit;
1990 
1991 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
1992 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
1993 
1994 	for (i = 0; i < iort->node_count; i++) {
1995 		if (node >= end)
1996 			break;
1997 
1998 		switch (node->type) {
1999 			struct acpi_iort_named_component *ncomp;
2000 			struct acpi_iort_root_complex *rc;
2001 			phys_addr_t local_limit;
2002 
2003 		case ACPI_IORT_NODE_NAMED_COMPONENT:
2004 			ncomp = (struct acpi_iort_named_component *)node->node_data;
2005 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2006 			limit = min_not_zero(limit, local_limit);
2007 			break;
2008 
2009 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2010 			if (node->revision < 1)
2011 				break;
2012 
2013 			rc = (struct acpi_iort_root_complex *)node->node_data;
2014 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2015 			limit = min_not_zero(limit, local_limit);
2016 			break;
2017 		}
2018 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2019 	}
2020 	acpi_put_table(&iort->header);
2021 	return limit;
2022 }
2023 #endif
2024