1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016, Semihalf 4 * Author: Tomasz Nowicki <tn@semihalf.com> 5 * 6 * This file implements early detection/parsing of I/O mapping 7 * reported to OS through firmware via I/O Remapping Table (IORT) 8 * IORT document number: ARM DEN 0049A 9 */ 10 11 #define pr_fmt(fmt) "ACPI: IORT: " fmt 12 13 #include <linux/acpi_iort.h> 14 #include <linux/bitfield.h> 15 #include <linux/iommu.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/pci.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/dma-map-ops.h> 22 23 #define IORT_TYPE_MASK(type) (1 << (type)) 24 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) 25 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ 26 (1 << ACPI_IORT_NODE_SMMU_V3)) 27 28 struct iort_its_msi_chip { 29 struct list_head list; 30 struct fwnode_handle *fw_node; 31 phys_addr_t base_addr; 32 u32 translation_id; 33 }; 34 35 struct iort_fwnode { 36 struct list_head list; 37 struct acpi_iort_node *iort_node; 38 struct fwnode_handle *fwnode; 39 }; 40 static LIST_HEAD(iort_fwnode_list); 41 static DEFINE_SPINLOCK(iort_fwnode_lock); 42 43 /** 44 * iort_set_fwnode() - Create iort_fwnode and use it to register 45 * iommu data in the iort_fwnode_list 46 * 47 * @iort_node: IORT table node associated with the IOMMU 48 * @fwnode: fwnode associated with the IORT node 49 * 50 * Returns: 0 on success 51 * <0 on failure 52 */ 53 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, 54 struct fwnode_handle *fwnode) 55 { 56 struct iort_fwnode *np; 57 58 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); 59 60 if (WARN_ON(!np)) 61 return -ENOMEM; 62 63 INIT_LIST_HEAD(&np->list); 64 np->iort_node = iort_node; 65 np->fwnode = fwnode; 66 67 spin_lock(&iort_fwnode_lock); 68 list_add_tail(&np->list, &iort_fwnode_list); 69 spin_unlock(&iort_fwnode_lock); 70 71 return 0; 72 } 73 74 /** 75 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node 76 * 77 * @node: IORT table node to be looked-up 78 * 79 * Returns: fwnode_handle pointer on success, NULL on failure 80 */ 81 static inline struct fwnode_handle *iort_get_fwnode( 82 struct acpi_iort_node *node) 83 { 84 struct iort_fwnode *curr; 85 struct fwnode_handle *fwnode = NULL; 86 87 spin_lock(&iort_fwnode_lock); 88 list_for_each_entry(curr, &iort_fwnode_list, list) { 89 if (curr->iort_node == node) { 90 fwnode = curr->fwnode; 91 break; 92 } 93 } 94 spin_unlock(&iort_fwnode_lock); 95 96 return fwnode; 97 } 98 99 /** 100 * iort_delete_fwnode() - Delete fwnode associated with an IORT node 101 * 102 * @node: IORT table node associated with fwnode to delete 103 */ 104 static inline void iort_delete_fwnode(struct acpi_iort_node *node) 105 { 106 struct iort_fwnode *curr, *tmp; 107 108 spin_lock(&iort_fwnode_lock); 109 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { 110 if (curr->iort_node == node) { 111 list_del(&curr->list); 112 kfree(curr); 113 break; 114 } 115 } 116 spin_unlock(&iort_fwnode_lock); 117 } 118 119 /** 120 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode 121 * 122 * @fwnode: fwnode associated with device to be looked-up 123 * 124 * Returns: iort_node pointer on success, NULL on failure 125 */ 126 static inline struct acpi_iort_node *iort_get_iort_node( 127 struct fwnode_handle *fwnode) 128 { 129 struct iort_fwnode *curr; 130 struct acpi_iort_node *iort_node = NULL; 131 132 spin_lock(&iort_fwnode_lock); 133 list_for_each_entry(curr, &iort_fwnode_list, list) { 134 if (curr->fwnode == fwnode) { 135 iort_node = curr->iort_node; 136 break; 137 } 138 } 139 spin_unlock(&iort_fwnode_lock); 140 141 return iort_node; 142 } 143 144 typedef acpi_status (*iort_find_node_callback) 145 (struct acpi_iort_node *node, void *context); 146 147 /* Root pointer to the mapped IORT table */ 148 static struct acpi_table_header *iort_table; 149 150 static LIST_HEAD(iort_msi_chip_list); 151 static DEFINE_SPINLOCK(iort_msi_chip_lock); 152 153 /** 154 * iort_register_domain_token() - register domain token along with related 155 * ITS ID and base address to the list from where we can get it back later on. 156 * @trans_id: ITS ID. 157 * @base: ITS base address. 158 * @fw_node: Domain token. 159 * 160 * Returns: 0 on success, -ENOMEM if no memory when allocating list element 161 */ 162 int iort_register_domain_token(int trans_id, phys_addr_t base, 163 struct fwnode_handle *fw_node) 164 { 165 struct iort_its_msi_chip *its_msi_chip; 166 167 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); 168 if (!its_msi_chip) 169 return -ENOMEM; 170 171 its_msi_chip->fw_node = fw_node; 172 its_msi_chip->translation_id = trans_id; 173 its_msi_chip->base_addr = base; 174 175 spin_lock(&iort_msi_chip_lock); 176 list_add(&its_msi_chip->list, &iort_msi_chip_list); 177 spin_unlock(&iort_msi_chip_lock); 178 179 return 0; 180 } 181 182 /** 183 * iort_deregister_domain_token() - Deregister domain token based on ITS ID 184 * @trans_id: ITS ID. 185 * 186 * Returns: none. 187 */ 188 void iort_deregister_domain_token(int trans_id) 189 { 190 struct iort_its_msi_chip *its_msi_chip, *t; 191 192 spin_lock(&iort_msi_chip_lock); 193 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { 194 if (its_msi_chip->translation_id == trans_id) { 195 list_del(&its_msi_chip->list); 196 kfree(its_msi_chip); 197 break; 198 } 199 } 200 spin_unlock(&iort_msi_chip_lock); 201 } 202 203 /** 204 * iort_find_domain_token() - Find domain token based on given ITS ID 205 * @trans_id: ITS ID. 206 * 207 * Returns: domain token when find on the list, NULL otherwise 208 */ 209 struct fwnode_handle *iort_find_domain_token(int trans_id) 210 { 211 struct fwnode_handle *fw_node = NULL; 212 struct iort_its_msi_chip *its_msi_chip; 213 214 spin_lock(&iort_msi_chip_lock); 215 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 216 if (its_msi_chip->translation_id == trans_id) { 217 fw_node = its_msi_chip->fw_node; 218 break; 219 } 220 } 221 spin_unlock(&iort_msi_chip_lock); 222 223 return fw_node; 224 } 225 226 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, 227 iort_find_node_callback callback, 228 void *context) 229 { 230 struct acpi_iort_node *iort_node, *iort_end; 231 struct acpi_table_iort *iort; 232 int i; 233 234 if (!iort_table) 235 return NULL; 236 237 /* Get the first IORT node */ 238 iort = (struct acpi_table_iort *)iort_table; 239 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 240 iort->node_offset); 241 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 242 iort_table->length); 243 244 for (i = 0; i < iort->node_count; i++) { 245 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 246 "IORT node pointer overflows, bad table!\n")) 247 return NULL; 248 249 if (iort_node->type == type && 250 ACPI_SUCCESS(callback(iort_node, context))) 251 return iort_node; 252 253 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 254 iort_node->length); 255 } 256 257 return NULL; 258 } 259 260 static acpi_status iort_match_node_callback(struct acpi_iort_node *node, 261 void *context) 262 { 263 struct device *dev = context; 264 acpi_status status = AE_NOT_FOUND; 265 266 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { 267 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 268 struct acpi_device *adev; 269 struct acpi_iort_named_component *ncomp; 270 struct device *nc_dev = dev; 271 272 /* 273 * Walk the device tree to find a device with an 274 * ACPI companion; there is no point in scanning 275 * IORT for a device matching a named component if 276 * the device does not have an ACPI companion to 277 * start with. 278 */ 279 do { 280 adev = ACPI_COMPANION(nc_dev); 281 if (adev) 282 break; 283 284 nc_dev = nc_dev->parent; 285 } while (nc_dev); 286 287 if (!adev) 288 goto out; 289 290 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); 291 if (ACPI_FAILURE(status)) { 292 dev_warn(nc_dev, "Can't get device full path name\n"); 293 goto out; 294 } 295 296 ncomp = (struct acpi_iort_named_component *)node->node_data; 297 status = !strcmp(ncomp->device_name, buf.pointer) ? 298 AE_OK : AE_NOT_FOUND; 299 acpi_os_free(buf.pointer); 300 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 301 struct acpi_iort_root_complex *pci_rc; 302 struct pci_bus *bus; 303 304 bus = to_pci_bus(dev); 305 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 306 307 /* 308 * It is assumed that PCI segment numbers maps one-to-one 309 * with root complexes. Each segment number can represent only 310 * one root complex. 311 */ 312 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? 313 AE_OK : AE_NOT_FOUND; 314 } 315 out: 316 return status; 317 } 318 319 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, 320 u32 *rid_out, bool check_overlap) 321 { 322 /* Single mapping does not care for input id */ 323 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 324 if (type == ACPI_IORT_NODE_NAMED_COMPONENT || 325 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 326 *rid_out = map->output_base; 327 return 0; 328 } 329 330 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", 331 map, type); 332 return -ENXIO; 333 } 334 335 if (rid_in < map->input_base || 336 (rid_in > map->input_base + map->id_count)) 337 return -ENXIO; 338 339 if (check_overlap) { 340 /* 341 * We already found a mapping for this input ID at the end of 342 * another region. If it coincides with the start of this 343 * region, we assume the prior match was due to the off-by-1 344 * issue mentioned below, and allow it to be superseded. 345 * Otherwise, things are *really* broken, and we just disregard 346 * duplicate matches entirely to retain compatibility. 347 */ 348 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", 349 map, rid_in); 350 if (rid_in != map->input_base) 351 return -ENXIO; 352 353 pr_err(FW_BUG "applying workaround.\n"); 354 } 355 356 *rid_out = map->output_base + (rid_in - map->input_base); 357 358 /* 359 * Due to confusion regarding the meaning of the id_count field (which 360 * carries the number of IDs *minus 1*), we may have to disregard this 361 * match if it is at the end of the range, and overlaps with the start 362 * of another one. 363 */ 364 if (map->id_count > 0 && rid_in == map->input_base + map->id_count) 365 return -EAGAIN; 366 return 0; 367 } 368 369 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, 370 u32 *id_out, int index) 371 { 372 struct acpi_iort_node *parent; 373 struct acpi_iort_id_mapping *map; 374 375 if (!node->mapping_offset || !node->mapping_count || 376 index >= node->mapping_count) 377 return NULL; 378 379 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 380 node->mapping_offset + index * sizeof(*map)); 381 382 /* Firmware bug! */ 383 if (!map->output_reference) { 384 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 385 node, node->type); 386 return NULL; 387 } 388 389 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 390 map->output_reference); 391 392 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 393 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || 394 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || 395 node->type == ACPI_IORT_NODE_SMMU_V3 || 396 node->type == ACPI_IORT_NODE_PMCG) { 397 *id_out = map->output_base; 398 return parent; 399 } 400 } 401 402 return NULL; 403 } 404 405 static int iort_get_id_mapping_index(struct acpi_iort_node *node) 406 { 407 struct acpi_iort_smmu_v3 *smmu; 408 struct acpi_iort_pmcg *pmcg; 409 410 switch (node->type) { 411 case ACPI_IORT_NODE_SMMU_V3: 412 /* 413 * SMMUv3 dev ID mapping index was introduced in revision 1 414 * table, not available in revision 0 415 */ 416 if (node->revision < 1) 417 return -EINVAL; 418 419 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 420 /* 421 * ID mapping index is only ignored if all interrupts are 422 * GSIV based 423 */ 424 if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv 425 && smmu->sync_gsiv) 426 return -EINVAL; 427 428 if (smmu->id_mapping_index >= node->mapping_count) { 429 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", 430 node, node->type); 431 return -EINVAL; 432 } 433 434 return smmu->id_mapping_index; 435 case ACPI_IORT_NODE_PMCG: 436 pmcg = (struct acpi_iort_pmcg *)node->node_data; 437 if (pmcg->overflow_gsiv || node->mapping_count == 0) 438 return -EINVAL; 439 440 return 0; 441 default: 442 return -EINVAL; 443 } 444 } 445 446 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, 447 u32 id_in, u32 *id_out, 448 u8 type_mask) 449 { 450 u32 id = id_in; 451 452 /* Parse the ID mapping tree to find specified node type */ 453 while (node) { 454 struct acpi_iort_id_mapping *map; 455 int i, index, rc = 0; 456 u32 out_ref = 0, map_id = id; 457 458 if (IORT_TYPE_MASK(node->type) & type_mask) { 459 if (id_out) 460 *id_out = id; 461 return node; 462 } 463 464 if (!node->mapping_offset || !node->mapping_count) 465 goto fail_map; 466 467 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 468 node->mapping_offset); 469 470 /* Firmware bug! */ 471 if (!map->output_reference) { 472 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 473 node, node->type); 474 goto fail_map; 475 } 476 477 /* 478 * Get the special ID mapping index (if any) and skip its 479 * associated ID map to prevent erroneous multi-stage 480 * IORT ID translations. 481 */ 482 index = iort_get_id_mapping_index(node); 483 484 /* Do the ID translation */ 485 for (i = 0; i < node->mapping_count; i++, map++) { 486 /* if it is special mapping index, skip it */ 487 if (i == index) 488 continue; 489 490 rc = iort_id_map(map, node->type, map_id, &id, out_ref); 491 if (!rc) 492 break; 493 if (rc == -EAGAIN) 494 out_ref = map->output_reference; 495 } 496 497 if (i == node->mapping_count && !out_ref) 498 goto fail_map; 499 500 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 501 rc ? out_ref : map->output_reference); 502 } 503 504 fail_map: 505 /* Map input ID to output ID unchanged on mapping failure */ 506 if (id_out) 507 *id_out = id_in; 508 509 return NULL; 510 } 511 512 static struct acpi_iort_node *iort_node_map_platform_id( 513 struct acpi_iort_node *node, u32 *id_out, u8 type_mask, 514 int index) 515 { 516 struct acpi_iort_node *parent; 517 u32 id; 518 519 /* step 1: retrieve the initial dev id */ 520 parent = iort_node_get_id(node, &id, index); 521 if (!parent) 522 return NULL; 523 524 /* 525 * optional step 2: map the initial dev id if its parent is not 526 * the target type we want, map it again for the use cases such 527 * as NC (named component) -> SMMU -> ITS. If the type is matched, 528 * return the initial dev id and its parent pointer directly. 529 */ 530 if (!(IORT_TYPE_MASK(parent->type) & type_mask)) 531 parent = iort_node_map_id(parent, id, id_out, type_mask); 532 else 533 if (id_out) 534 *id_out = id; 535 536 return parent; 537 } 538 539 static struct acpi_iort_node *iort_find_dev_node(struct device *dev) 540 { 541 struct pci_bus *pbus; 542 543 if (!dev_is_pci(dev)) { 544 struct acpi_iort_node *node; 545 /* 546 * scan iort_fwnode_list to see if it's an iort platform 547 * device (such as SMMU, PMCG),its iort node already cached 548 * and associated with fwnode when iort platform devices 549 * were initialized. 550 */ 551 node = iort_get_iort_node(dev->fwnode); 552 if (node) 553 return node; 554 /* 555 * if not, then it should be a platform device defined in 556 * DSDT/SSDT (with Named Component node in IORT) 557 */ 558 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 559 iort_match_node_callback, dev); 560 } 561 562 pbus = to_pci_dev(dev)->bus; 563 564 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 565 iort_match_node_callback, &pbus->dev); 566 } 567 568 /** 569 * iort_msi_map_id() - Map a MSI input ID for a device 570 * @dev: The device for which the mapping is to be done. 571 * @input_id: The device input ID. 572 * 573 * Returns: mapped MSI ID on success, input ID otherwise 574 */ 575 u32 iort_msi_map_id(struct device *dev, u32 input_id) 576 { 577 struct acpi_iort_node *node; 578 u32 dev_id; 579 580 node = iort_find_dev_node(dev); 581 if (!node) 582 return input_id; 583 584 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE); 585 return dev_id; 586 } 587 588 /** 589 * iort_pmsi_get_dev_id() - Get the device id for a device 590 * @dev: The device for which the mapping is to be done. 591 * @dev_id: The device ID found. 592 * 593 * Returns: 0 for successful find a dev id, -ENODEV on error 594 */ 595 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) 596 { 597 int i, index; 598 struct acpi_iort_node *node; 599 600 node = iort_find_dev_node(dev); 601 if (!node) 602 return -ENODEV; 603 604 index = iort_get_id_mapping_index(node); 605 /* if there is a valid index, go get the dev_id directly */ 606 if (index >= 0) { 607 if (iort_node_get_id(node, dev_id, index)) 608 return 0; 609 } else { 610 for (i = 0; i < node->mapping_count; i++) { 611 if (iort_node_map_platform_id(node, dev_id, 612 IORT_MSI_TYPE, i)) 613 return 0; 614 } 615 } 616 617 return -ENODEV; 618 } 619 620 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) 621 { 622 struct iort_its_msi_chip *its_msi_chip; 623 int ret = -ENODEV; 624 625 spin_lock(&iort_msi_chip_lock); 626 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 627 if (its_msi_chip->translation_id == its_id) { 628 *base = its_msi_chip->base_addr; 629 ret = 0; 630 break; 631 } 632 } 633 spin_unlock(&iort_msi_chip_lock); 634 635 return ret; 636 } 637 638 /** 639 * iort_dev_find_its_id() - Find the ITS identifier for a device 640 * @dev: The device. 641 * @id: Device's ID 642 * @idx: Index of the ITS identifier list. 643 * @its_id: ITS identifier. 644 * 645 * Returns: 0 on success, appropriate error value otherwise 646 */ 647 static int iort_dev_find_its_id(struct device *dev, u32 id, 648 unsigned int idx, int *its_id) 649 { 650 struct acpi_iort_its_group *its; 651 struct acpi_iort_node *node; 652 653 node = iort_find_dev_node(dev); 654 if (!node) 655 return -ENXIO; 656 657 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE); 658 if (!node) 659 return -ENXIO; 660 661 /* Move to ITS specific data */ 662 its = (struct acpi_iort_its_group *)node->node_data; 663 if (idx >= its->its_count) { 664 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", 665 idx, its->its_count); 666 return -ENXIO; 667 } 668 669 *its_id = its->identifiers[idx]; 670 return 0; 671 } 672 673 /** 674 * iort_get_device_domain() - Find MSI domain related to a device 675 * @dev: The device. 676 * @id: Requester ID for the device. 677 * @bus_token: irq domain bus token. 678 * 679 * Returns: the MSI domain for this device, NULL otherwise 680 */ 681 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id, 682 enum irq_domain_bus_token bus_token) 683 { 684 struct fwnode_handle *handle; 685 int its_id; 686 687 if (iort_dev_find_its_id(dev, id, 0, &its_id)) 688 return NULL; 689 690 handle = iort_find_domain_token(its_id); 691 if (!handle) 692 return NULL; 693 694 return irq_find_matching_fwnode(handle, bus_token); 695 } 696 697 static void iort_set_device_domain(struct device *dev, 698 struct acpi_iort_node *node) 699 { 700 struct acpi_iort_its_group *its; 701 struct acpi_iort_node *msi_parent; 702 struct acpi_iort_id_mapping *map; 703 struct fwnode_handle *iort_fwnode; 704 struct irq_domain *domain; 705 int index; 706 707 index = iort_get_id_mapping_index(node); 708 if (index < 0) 709 return; 710 711 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 712 node->mapping_offset + index * sizeof(*map)); 713 714 /* Firmware bug! */ 715 if (!map->output_reference || 716 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { 717 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", 718 node, node->type); 719 return; 720 } 721 722 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 723 map->output_reference); 724 725 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) 726 return; 727 728 /* Move to ITS specific data */ 729 its = (struct acpi_iort_its_group *)msi_parent->node_data; 730 731 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 732 if (!iort_fwnode) 733 return; 734 735 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 736 if (domain) 737 dev_set_msi_domain(dev, domain); 738 } 739 740 /** 741 * iort_get_platform_device_domain() - Find MSI domain related to a 742 * platform device 743 * @dev: the dev pointer associated with the platform device 744 * 745 * Returns: the MSI domain for this device, NULL otherwise 746 */ 747 static struct irq_domain *iort_get_platform_device_domain(struct device *dev) 748 { 749 struct acpi_iort_node *node, *msi_parent = NULL; 750 struct fwnode_handle *iort_fwnode; 751 struct acpi_iort_its_group *its; 752 int i; 753 754 /* find its associated iort node */ 755 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 756 iort_match_node_callback, dev); 757 if (!node) 758 return NULL; 759 760 /* then find its msi parent node */ 761 for (i = 0; i < node->mapping_count; i++) { 762 msi_parent = iort_node_map_platform_id(node, NULL, 763 IORT_MSI_TYPE, i); 764 if (msi_parent) 765 break; 766 } 767 768 if (!msi_parent) 769 return NULL; 770 771 /* Move to ITS specific data */ 772 its = (struct acpi_iort_its_group *)msi_parent->node_data; 773 774 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 775 if (!iort_fwnode) 776 return NULL; 777 778 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 779 } 780 781 void acpi_configure_pmsi_domain(struct device *dev) 782 { 783 struct irq_domain *msi_domain; 784 785 msi_domain = iort_get_platform_device_domain(dev); 786 if (msi_domain) 787 dev_set_msi_domain(dev, msi_domain); 788 } 789 790 #ifdef CONFIG_IOMMU_API 791 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) 792 { 793 struct acpi_iort_node *iommu; 794 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 795 796 iommu = iort_get_iort_node(fwspec->iommu_fwnode); 797 798 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { 799 struct acpi_iort_smmu_v3 *smmu; 800 801 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; 802 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) 803 return iommu; 804 } 805 806 return NULL; 807 } 808 809 /** 810 * iort_iommu_msi_get_resv_regions - Reserved region driver helper 811 * @dev: Device from iommu_get_resv_regions() 812 * @head: Reserved region list from iommu_get_resv_regions() 813 * 814 * Returns: Number of msi reserved regions on success (0 if platform 815 * doesn't require the reservation or no associated msi regions), 816 * appropriate error value otherwise. The ITS interrupt translation 817 * spaces (ITS_base + SZ_64K, SZ_64K) associated with the device 818 * are the msi reserved regions. 819 */ 820 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head) 821 { 822 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 823 struct acpi_iort_its_group *its; 824 struct acpi_iort_node *iommu_node, *its_node = NULL; 825 int i, resv = 0; 826 827 iommu_node = iort_get_msi_resv_iommu(dev); 828 if (!iommu_node) 829 return 0; 830 831 /* 832 * Current logic to reserve ITS regions relies on HW topologies 833 * where a given PCI or named component maps its IDs to only one 834 * ITS group; if a PCI or named component can map its IDs to 835 * different ITS groups through IORT mappings this function has 836 * to be reworked to ensure we reserve regions for all ITS groups 837 * a given PCI or named component may map IDs to. 838 */ 839 840 for (i = 0; i < fwspec->num_ids; i++) { 841 its_node = iort_node_map_id(iommu_node, 842 fwspec->ids[i], 843 NULL, IORT_MSI_TYPE); 844 if (its_node) 845 break; 846 } 847 848 if (!its_node) 849 return 0; 850 851 /* Move to ITS specific data */ 852 its = (struct acpi_iort_its_group *)its_node->node_data; 853 854 for (i = 0; i < its->its_count; i++) { 855 phys_addr_t base; 856 857 if (!iort_find_its_base(its->identifiers[i], &base)) { 858 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 859 struct iommu_resv_region *region; 860 861 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, 862 prot, IOMMU_RESV_MSI); 863 if (region) { 864 list_add_tail(®ion->list, head); 865 resv++; 866 } 867 } 868 } 869 870 return (resv == its->its_count) ? resv : -ENODEV; 871 } 872 873 static inline bool iort_iommu_driver_enabled(u8 type) 874 { 875 switch (type) { 876 case ACPI_IORT_NODE_SMMU_V3: 877 return IS_ENABLED(CONFIG_ARM_SMMU_V3); 878 case ACPI_IORT_NODE_SMMU: 879 return IS_ENABLED(CONFIG_ARM_SMMU); 880 default: 881 pr_warn("IORT node type %u does not describe an SMMU\n", type); 882 return false; 883 } 884 } 885 886 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) 887 { 888 struct acpi_iort_root_complex *pci_rc; 889 890 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 891 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; 892 } 893 894 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, 895 u32 streamid) 896 { 897 const struct iommu_ops *ops; 898 struct fwnode_handle *iort_fwnode; 899 900 if (!node) 901 return -ENODEV; 902 903 iort_fwnode = iort_get_fwnode(node); 904 if (!iort_fwnode) 905 return -ENODEV; 906 907 /* 908 * If the ops look-up fails, this means that either 909 * the SMMU drivers have not been probed yet or that 910 * the SMMU drivers are not built in the kernel; 911 * Depending on whether the SMMU drivers are built-in 912 * in the kernel or not, defer the IOMMU configuration 913 * or just abort it. 914 */ 915 ops = iommu_ops_from_fwnode(iort_fwnode); 916 if (!ops) 917 return iort_iommu_driver_enabled(node->type) ? 918 -EPROBE_DEFER : -ENODEV; 919 920 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops); 921 } 922 923 struct iort_pci_alias_info { 924 struct device *dev; 925 struct acpi_iort_node *node; 926 }; 927 928 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) 929 { 930 struct iort_pci_alias_info *info = data; 931 struct acpi_iort_node *parent; 932 u32 streamid; 933 934 parent = iort_node_map_id(info->node, alias, &streamid, 935 IORT_IOMMU_TYPE); 936 return iort_iommu_xlate(info->dev, parent, streamid); 937 } 938 939 static void iort_named_component_init(struct device *dev, 940 struct acpi_iort_node *node) 941 { 942 struct property_entry props[3] = {}; 943 struct acpi_iort_named_component *nc; 944 945 nc = (struct acpi_iort_named_component *)node->node_data; 946 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits", 947 FIELD_GET(ACPI_IORT_NC_PASID_BITS, 948 nc->node_flags)); 949 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED) 950 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall"); 951 952 if (device_create_managed_software_node(dev, props, NULL)) 953 dev_warn(dev, "Could not add device properties\n"); 954 } 955 956 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node) 957 { 958 struct acpi_iort_node *parent; 959 int err = -ENODEV, i = 0; 960 u32 streamid = 0; 961 962 do { 963 964 parent = iort_node_map_platform_id(node, &streamid, 965 IORT_IOMMU_TYPE, 966 i++); 967 968 if (parent) 969 err = iort_iommu_xlate(dev, parent, streamid); 970 } while (parent && !err); 971 972 return err; 973 } 974 975 static int iort_nc_iommu_map_id(struct device *dev, 976 struct acpi_iort_node *node, 977 const u32 *in_id) 978 { 979 struct acpi_iort_node *parent; 980 u32 streamid; 981 982 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE); 983 if (parent) 984 return iort_iommu_xlate(dev, parent, streamid); 985 986 return -ENODEV; 987 } 988 989 990 /** 991 * iort_iommu_configure_id - Set-up IOMMU configuration for a device. 992 * 993 * @dev: device to configure 994 * @id_in: optional input id const value pointer 995 * 996 * Returns: 0 on success, <0 on failure 997 */ 998 int iort_iommu_configure_id(struct device *dev, const u32 *id_in) 999 { 1000 struct acpi_iort_node *node; 1001 int err = -ENODEV; 1002 1003 if (dev_is_pci(dev)) { 1004 struct iommu_fwspec *fwspec; 1005 struct pci_bus *bus = to_pci_dev(dev)->bus; 1006 struct iort_pci_alias_info info = { .dev = dev }; 1007 1008 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1009 iort_match_node_callback, &bus->dev); 1010 if (!node) 1011 return -ENODEV; 1012 1013 info.node = node; 1014 err = pci_for_each_dma_alias(to_pci_dev(dev), 1015 iort_pci_iommu_init, &info); 1016 1017 fwspec = dev_iommu_fwspec_get(dev); 1018 if (fwspec && iort_pci_rc_supports_ats(node)) 1019 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; 1020 } else { 1021 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1022 iort_match_node_callback, dev); 1023 if (!node) 1024 return -ENODEV; 1025 1026 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) : 1027 iort_nc_iommu_map(dev, node); 1028 1029 if (!err) 1030 iort_named_component_init(dev, node); 1031 } 1032 1033 return err; 1034 } 1035 1036 #else 1037 int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head) 1038 { return 0; } 1039 int iort_iommu_configure_id(struct device *dev, const u32 *input_id) 1040 { return -ENODEV; } 1041 #endif 1042 1043 static int nc_dma_get_range(struct device *dev, u64 *size) 1044 { 1045 struct acpi_iort_node *node; 1046 struct acpi_iort_named_component *ncomp; 1047 1048 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1049 iort_match_node_callback, dev); 1050 if (!node) 1051 return -ENODEV; 1052 1053 ncomp = (struct acpi_iort_named_component *)node->node_data; 1054 1055 if (!ncomp->memory_address_limit) { 1056 pr_warn(FW_BUG "Named component missing memory address limit\n"); 1057 return -EINVAL; 1058 } 1059 1060 *size = ncomp->memory_address_limit >= 64 ? U64_MAX : 1061 1ULL<<ncomp->memory_address_limit; 1062 1063 return 0; 1064 } 1065 1066 static int rc_dma_get_range(struct device *dev, u64 *size) 1067 { 1068 struct acpi_iort_node *node; 1069 struct acpi_iort_root_complex *rc; 1070 struct pci_bus *pbus = to_pci_dev(dev)->bus; 1071 1072 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1073 iort_match_node_callback, &pbus->dev); 1074 if (!node || node->revision < 1) 1075 return -ENODEV; 1076 1077 rc = (struct acpi_iort_root_complex *)node->node_data; 1078 1079 if (!rc->memory_address_limit) { 1080 pr_warn(FW_BUG "Root complex missing memory address limit\n"); 1081 return -EINVAL; 1082 } 1083 1084 *size = rc->memory_address_limit >= 64 ? U64_MAX : 1085 1ULL<<rc->memory_address_limit; 1086 1087 return 0; 1088 } 1089 1090 /** 1091 * iort_dma_get_ranges() - Look up DMA addressing limit for the device 1092 * @dev: device to lookup 1093 * @size: DMA range size result pointer 1094 * 1095 * Return: 0 on success, an error otherwise. 1096 */ 1097 int iort_dma_get_ranges(struct device *dev, u64 *size) 1098 { 1099 if (dev_is_pci(dev)) 1100 return rc_dma_get_range(dev, size); 1101 else 1102 return nc_dma_get_range(dev, size); 1103 } 1104 1105 static void __init acpi_iort_register_irq(int hwirq, const char *name, 1106 int trigger, 1107 struct resource *res) 1108 { 1109 int irq = acpi_register_gsi(NULL, hwirq, trigger, 1110 ACPI_ACTIVE_HIGH); 1111 1112 if (irq <= 0) { 1113 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, 1114 name); 1115 return; 1116 } 1117 1118 res->start = irq; 1119 res->end = irq; 1120 res->flags = IORESOURCE_IRQ; 1121 res->name = name; 1122 } 1123 1124 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) 1125 { 1126 struct acpi_iort_smmu_v3 *smmu; 1127 /* Always present mem resource */ 1128 int num_res = 1; 1129 1130 /* Retrieve SMMUv3 specific data */ 1131 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1132 1133 if (smmu->event_gsiv) 1134 num_res++; 1135 1136 if (smmu->pri_gsiv) 1137 num_res++; 1138 1139 if (smmu->gerr_gsiv) 1140 num_res++; 1141 1142 if (smmu->sync_gsiv) 1143 num_res++; 1144 1145 return num_res; 1146 } 1147 1148 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) 1149 { 1150 /* 1151 * Cavium ThunderX2 implementation doesn't not support unique 1152 * irq line. Use single irq line for all the SMMUv3 interrupts. 1153 */ 1154 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1155 return false; 1156 1157 /* 1158 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking 1159 * SPI numbers here. 1160 */ 1161 return smmu->event_gsiv == smmu->pri_gsiv && 1162 smmu->event_gsiv == smmu->gerr_gsiv && 1163 smmu->event_gsiv == smmu->sync_gsiv; 1164 } 1165 1166 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) 1167 { 1168 /* 1169 * Override the size, for Cavium ThunderX2 implementation 1170 * which doesn't support the page 1 SMMU register space. 1171 */ 1172 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1173 return SZ_64K; 1174 1175 return SZ_128K; 1176 } 1177 1178 static void __init arm_smmu_v3_init_resources(struct resource *res, 1179 struct acpi_iort_node *node) 1180 { 1181 struct acpi_iort_smmu_v3 *smmu; 1182 int num_res = 0; 1183 1184 /* Retrieve SMMUv3 specific data */ 1185 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1186 1187 res[num_res].start = smmu->base_address; 1188 res[num_res].end = smmu->base_address + 1189 arm_smmu_v3_resource_size(smmu) - 1; 1190 res[num_res].flags = IORESOURCE_MEM; 1191 1192 num_res++; 1193 if (arm_smmu_v3_is_combined_irq(smmu)) { 1194 if (smmu->event_gsiv) 1195 acpi_iort_register_irq(smmu->event_gsiv, "combined", 1196 ACPI_EDGE_SENSITIVE, 1197 &res[num_res++]); 1198 } else { 1199 1200 if (smmu->event_gsiv) 1201 acpi_iort_register_irq(smmu->event_gsiv, "eventq", 1202 ACPI_EDGE_SENSITIVE, 1203 &res[num_res++]); 1204 1205 if (smmu->pri_gsiv) 1206 acpi_iort_register_irq(smmu->pri_gsiv, "priq", 1207 ACPI_EDGE_SENSITIVE, 1208 &res[num_res++]); 1209 1210 if (smmu->gerr_gsiv) 1211 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", 1212 ACPI_EDGE_SENSITIVE, 1213 &res[num_res++]); 1214 1215 if (smmu->sync_gsiv) 1216 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", 1217 ACPI_EDGE_SENSITIVE, 1218 &res[num_res++]); 1219 } 1220 } 1221 1222 static void __init arm_smmu_v3_dma_configure(struct device *dev, 1223 struct acpi_iort_node *node) 1224 { 1225 struct acpi_iort_smmu_v3 *smmu; 1226 enum dev_dma_attr attr; 1227 1228 /* Retrieve SMMUv3 specific data */ 1229 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1230 1231 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? 1232 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1233 1234 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ 1235 dev->dma_mask = &dev->coherent_dma_mask; 1236 1237 /* Configure DMA for the page table walker */ 1238 acpi_dma_configure(dev, attr); 1239 } 1240 1241 #if defined(CONFIG_ACPI_NUMA) 1242 /* 1243 * set numa proximity domain for smmuv3 device 1244 */ 1245 static int __init arm_smmu_v3_set_proximity(struct device *dev, 1246 struct acpi_iort_node *node) 1247 { 1248 struct acpi_iort_smmu_v3 *smmu; 1249 1250 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1251 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { 1252 int dev_node = pxm_to_node(smmu->pxm); 1253 1254 if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) 1255 return -EINVAL; 1256 1257 set_dev_node(dev, dev_node); 1258 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", 1259 smmu->base_address, 1260 smmu->pxm); 1261 } 1262 return 0; 1263 } 1264 #else 1265 #define arm_smmu_v3_set_proximity NULL 1266 #endif 1267 1268 static int __init arm_smmu_count_resources(struct acpi_iort_node *node) 1269 { 1270 struct acpi_iort_smmu *smmu; 1271 1272 /* Retrieve SMMU specific data */ 1273 smmu = (struct acpi_iort_smmu *)node->node_data; 1274 1275 /* 1276 * Only consider the global fault interrupt and ignore the 1277 * configuration access interrupt. 1278 * 1279 * MMIO address and global fault interrupt resources are always 1280 * present so add them to the context interrupt count as a static 1281 * value. 1282 */ 1283 return smmu->context_interrupt_count + 2; 1284 } 1285 1286 static void __init arm_smmu_init_resources(struct resource *res, 1287 struct acpi_iort_node *node) 1288 { 1289 struct acpi_iort_smmu *smmu; 1290 int i, hw_irq, trigger, num_res = 0; 1291 u64 *ctx_irq, *glb_irq; 1292 1293 /* Retrieve SMMU specific data */ 1294 smmu = (struct acpi_iort_smmu *)node->node_data; 1295 1296 res[num_res].start = smmu->base_address; 1297 res[num_res].end = smmu->base_address + smmu->span - 1; 1298 res[num_res].flags = IORESOURCE_MEM; 1299 num_res++; 1300 1301 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); 1302 /* Global IRQs */ 1303 hw_irq = IORT_IRQ_MASK(glb_irq[0]); 1304 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); 1305 1306 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, 1307 &res[num_res++]); 1308 1309 /* Context IRQs */ 1310 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); 1311 for (i = 0; i < smmu->context_interrupt_count; i++) { 1312 hw_irq = IORT_IRQ_MASK(ctx_irq[i]); 1313 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); 1314 1315 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, 1316 &res[num_res++]); 1317 } 1318 } 1319 1320 static void __init arm_smmu_dma_configure(struct device *dev, 1321 struct acpi_iort_node *node) 1322 { 1323 struct acpi_iort_smmu *smmu; 1324 enum dev_dma_attr attr; 1325 1326 /* Retrieve SMMU specific data */ 1327 smmu = (struct acpi_iort_smmu *)node->node_data; 1328 1329 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? 1330 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1331 1332 /* We expect the dma masks to be equivalent for SMMU set-ups */ 1333 dev->dma_mask = &dev->coherent_dma_mask; 1334 1335 /* Configure DMA for the page table walker */ 1336 acpi_dma_configure(dev, attr); 1337 } 1338 1339 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) 1340 { 1341 struct acpi_iort_pmcg *pmcg; 1342 1343 /* Retrieve PMCG specific data */ 1344 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1345 1346 /* 1347 * There are always 2 memory resources. 1348 * If the overflow_gsiv is present then add that for a total of 3. 1349 */ 1350 return pmcg->overflow_gsiv ? 3 : 2; 1351 } 1352 1353 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, 1354 struct acpi_iort_node *node) 1355 { 1356 struct acpi_iort_pmcg *pmcg; 1357 1358 /* Retrieve PMCG specific data */ 1359 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1360 1361 res[0].start = pmcg->page0_base_address; 1362 res[0].end = pmcg->page0_base_address + SZ_4K - 1; 1363 res[0].flags = IORESOURCE_MEM; 1364 /* 1365 * The initial version in DEN0049C lacked a way to describe register 1366 * page 1, which makes it broken for most PMCG implementations; in 1367 * that case, just let the driver fail gracefully if it expects to 1368 * find a second memory resource. 1369 */ 1370 if (node->revision > 0) { 1371 res[1].start = pmcg->page1_base_address; 1372 res[1].end = pmcg->page1_base_address + SZ_4K - 1; 1373 res[1].flags = IORESOURCE_MEM; 1374 } 1375 1376 if (pmcg->overflow_gsiv) 1377 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", 1378 ACPI_EDGE_SENSITIVE, &res[2]); 1379 } 1380 1381 static struct acpi_platform_list pmcg_plat_info[] __initdata = { 1382 /* HiSilicon Hip08 Platform */ 1383 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1384 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08}, 1385 { } 1386 }; 1387 1388 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) 1389 { 1390 u32 model; 1391 int idx; 1392 1393 idx = acpi_match_platform_list(pmcg_plat_info); 1394 if (idx >= 0) 1395 model = pmcg_plat_info[idx].data; 1396 else 1397 model = IORT_SMMU_V3_PMCG_GENERIC; 1398 1399 return platform_device_add_data(pdev, &model, sizeof(model)); 1400 } 1401 1402 struct iort_dev_config { 1403 const char *name; 1404 int (*dev_init)(struct acpi_iort_node *node); 1405 void (*dev_dma_configure)(struct device *dev, 1406 struct acpi_iort_node *node); 1407 int (*dev_count_resources)(struct acpi_iort_node *node); 1408 void (*dev_init_resources)(struct resource *res, 1409 struct acpi_iort_node *node); 1410 int (*dev_set_proximity)(struct device *dev, 1411 struct acpi_iort_node *node); 1412 int (*dev_add_platdata)(struct platform_device *pdev); 1413 }; 1414 1415 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { 1416 .name = "arm-smmu-v3", 1417 .dev_dma_configure = arm_smmu_v3_dma_configure, 1418 .dev_count_resources = arm_smmu_v3_count_resources, 1419 .dev_init_resources = arm_smmu_v3_init_resources, 1420 .dev_set_proximity = arm_smmu_v3_set_proximity, 1421 }; 1422 1423 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { 1424 .name = "arm-smmu", 1425 .dev_dma_configure = arm_smmu_dma_configure, 1426 .dev_count_resources = arm_smmu_count_resources, 1427 .dev_init_resources = arm_smmu_init_resources, 1428 }; 1429 1430 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { 1431 .name = "arm-smmu-v3-pmcg", 1432 .dev_count_resources = arm_smmu_v3_pmcg_count_resources, 1433 .dev_init_resources = arm_smmu_v3_pmcg_init_resources, 1434 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, 1435 }; 1436 1437 static __init const struct iort_dev_config *iort_get_dev_cfg( 1438 struct acpi_iort_node *node) 1439 { 1440 switch (node->type) { 1441 case ACPI_IORT_NODE_SMMU_V3: 1442 return &iort_arm_smmu_v3_cfg; 1443 case ACPI_IORT_NODE_SMMU: 1444 return &iort_arm_smmu_cfg; 1445 case ACPI_IORT_NODE_PMCG: 1446 return &iort_arm_smmu_v3_pmcg_cfg; 1447 default: 1448 return NULL; 1449 } 1450 } 1451 1452 /** 1453 * iort_add_platform_device() - Allocate a platform device for IORT node 1454 * @node: Pointer to device ACPI IORT node 1455 * @ops: Pointer to IORT device config struct 1456 * 1457 * Returns: 0 on success, <0 failure 1458 */ 1459 static int __init iort_add_platform_device(struct acpi_iort_node *node, 1460 const struct iort_dev_config *ops) 1461 { 1462 struct fwnode_handle *fwnode; 1463 struct platform_device *pdev; 1464 struct resource *r; 1465 int ret, count; 1466 1467 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); 1468 if (!pdev) 1469 return -ENOMEM; 1470 1471 if (ops->dev_set_proximity) { 1472 ret = ops->dev_set_proximity(&pdev->dev, node); 1473 if (ret) 1474 goto dev_put; 1475 } 1476 1477 count = ops->dev_count_resources(node); 1478 1479 r = kcalloc(count, sizeof(*r), GFP_KERNEL); 1480 if (!r) { 1481 ret = -ENOMEM; 1482 goto dev_put; 1483 } 1484 1485 ops->dev_init_resources(r, node); 1486 1487 ret = platform_device_add_resources(pdev, r, count); 1488 /* 1489 * Resources are duplicated in platform_device_add_resources, 1490 * free their allocated memory 1491 */ 1492 kfree(r); 1493 1494 if (ret) 1495 goto dev_put; 1496 1497 /* 1498 * Platform devices based on PMCG nodes uses platform_data to 1499 * pass the hardware model info to the driver. For others, add 1500 * a copy of IORT node pointer to platform_data to be used to 1501 * retrieve IORT data information. 1502 */ 1503 if (ops->dev_add_platdata) 1504 ret = ops->dev_add_platdata(pdev); 1505 else 1506 ret = platform_device_add_data(pdev, &node, sizeof(node)); 1507 1508 if (ret) 1509 goto dev_put; 1510 1511 fwnode = iort_get_fwnode(node); 1512 1513 if (!fwnode) { 1514 ret = -ENODEV; 1515 goto dev_put; 1516 } 1517 1518 pdev->dev.fwnode = fwnode; 1519 1520 if (ops->dev_dma_configure) 1521 ops->dev_dma_configure(&pdev->dev, node); 1522 1523 iort_set_device_domain(&pdev->dev, node); 1524 1525 ret = platform_device_add(pdev); 1526 if (ret) 1527 goto dma_deconfigure; 1528 1529 return 0; 1530 1531 dma_deconfigure: 1532 arch_teardown_dma_ops(&pdev->dev); 1533 dev_put: 1534 platform_device_put(pdev); 1535 1536 return ret; 1537 } 1538 1539 #ifdef CONFIG_PCI 1540 static void __init iort_enable_acs(struct acpi_iort_node *iort_node) 1541 { 1542 static bool acs_enabled __initdata; 1543 1544 if (acs_enabled) 1545 return; 1546 1547 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 1548 struct acpi_iort_node *parent; 1549 struct acpi_iort_id_mapping *map; 1550 int i; 1551 1552 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, 1553 iort_node->mapping_offset); 1554 1555 for (i = 0; i < iort_node->mapping_count; i++, map++) { 1556 if (!map->output_reference) 1557 continue; 1558 1559 parent = ACPI_ADD_PTR(struct acpi_iort_node, 1560 iort_table, map->output_reference); 1561 /* 1562 * If we detect a RC->SMMU mapping, make sure 1563 * we enable ACS on the system. 1564 */ 1565 if ((parent->type == ACPI_IORT_NODE_SMMU) || 1566 (parent->type == ACPI_IORT_NODE_SMMU_V3)) { 1567 pci_request_acs(); 1568 acs_enabled = true; 1569 return; 1570 } 1571 } 1572 } 1573 } 1574 #else 1575 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } 1576 #endif 1577 1578 static void __init iort_init_platform_devices(void) 1579 { 1580 struct acpi_iort_node *iort_node, *iort_end; 1581 struct acpi_table_iort *iort; 1582 struct fwnode_handle *fwnode; 1583 int i, ret; 1584 const struct iort_dev_config *ops; 1585 1586 /* 1587 * iort_table and iort both point to the start of IORT table, but 1588 * have different struct types 1589 */ 1590 iort = (struct acpi_table_iort *)iort_table; 1591 1592 /* Get the first IORT node */ 1593 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1594 iort->node_offset); 1595 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1596 iort_table->length); 1597 1598 for (i = 0; i < iort->node_count; i++) { 1599 if (iort_node >= iort_end) { 1600 pr_err("iort node pointer overflows, bad table\n"); 1601 return; 1602 } 1603 1604 iort_enable_acs(iort_node); 1605 1606 ops = iort_get_dev_cfg(iort_node); 1607 if (ops) { 1608 fwnode = acpi_alloc_fwnode_static(); 1609 if (!fwnode) 1610 return; 1611 1612 iort_set_fwnode(iort_node, fwnode); 1613 1614 ret = iort_add_platform_device(iort_node, ops); 1615 if (ret) { 1616 iort_delete_fwnode(iort_node); 1617 acpi_free_fwnode_static(fwnode); 1618 return; 1619 } 1620 } 1621 1622 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1623 iort_node->length); 1624 } 1625 } 1626 1627 void __init acpi_iort_init(void) 1628 { 1629 acpi_status status; 1630 1631 /* iort_table will be used at runtime after the iort init, 1632 * so we don't need to call acpi_put_table() to release 1633 * the IORT table mapping. 1634 */ 1635 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); 1636 if (ACPI_FAILURE(status)) { 1637 if (status != AE_NOT_FOUND) { 1638 const char *msg = acpi_format_exception(status); 1639 1640 pr_err("Failed to get table, %s\n", msg); 1641 } 1642 1643 return; 1644 } 1645 1646 iort_init_platform_devices(); 1647 } 1648 1649 #ifdef CONFIG_ZONE_DMA 1650 /* 1651 * Extract the highest CPU physical address accessible to all DMA masters in 1652 * the system. PHYS_ADDR_MAX is returned when no constrained device is found. 1653 */ 1654 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void) 1655 { 1656 phys_addr_t limit = PHYS_ADDR_MAX; 1657 struct acpi_iort_node *node, *end; 1658 struct acpi_table_iort *iort; 1659 acpi_status status; 1660 int i; 1661 1662 if (acpi_disabled) 1663 return limit; 1664 1665 status = acpi_get_table(ACPI_SIG_IORT, 0, 1666 (struct acpi_table_header **)&iort); 1667 if (ACPI_FAILURE(status)) 1668 return limit; 1669 1670 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset); 1671 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length); 1672 1673 for (i = 0; i < iort->node_count; i++) { 1674 if (node >= end) 1675 break; 1676 1677 switch (node->type) { 1678 struct acpi_iort_named_component *ncomp; 1679 struct acpi_iort_root_complex *rc; 1680 phys_addr_t local_limit; 1681 1682 case ACPI_IORT_NODE_NAMED_COMPONENT: 1683 ncomp = (struct acpi_iort_named_component *)node->node_data; 1684 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit); 1685 limit = min_not_zero(limit, local_limit); 1686 break; 1687 1688 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: 1689 if (node->revision < 1) 1690 break; 1691 1692 rc = (struct acpi_iort_root_complex *)node->node_data; 1693 local_limit = DMA_BIT_MASK(rc->memory_address_limit); 1694 limit = min_not_zero(limit, local_limit); 1695 break; 1696 } 1697 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length); 1698 } 1699 acpi_put_table(&iort->header); 1700 return limit; 1701 } 1702 #endif 1703