xref: /linux/drivers/acpi/arm64/iort.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016, Semihalf
4  *	Author: Tomasz Nowicki <tn@semihalf.com>
5  *
6  * This file implements early detection/parsing of I/O mapping
7  * reported to OS through firmware via I/O Remapping Table (IORT)
8  * IORT document number: ARM DEN 0049A
9  */
10 
11 #define pr_fmt(fmt)	"ACPI: IORT: " fmt
12 
13 #include <linux/acpi_iort.h>
14 #include <linux/bitfield.h>
15 #include <linux/iommu.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/dma-map-ops.h>
22 #include "init.h"
23 
24 #define IORT_TYPE_MASK(type)	(1 << (type))
25 #define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
26 #define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
27 				(1 << ACPI_IORT_NODE_SMMU_V3))
28 
29 struct iort_its_msi_chip {
30 	struct list_head	list;
31 	struct fwnode_handle	*fw_node;
32 	phys_addr_t		base_addr;
33 	u32			translation_id;
34 };
35 
36 struct iort_fwnode {
37 	struct list_head list;
38 	struct acpi_iort_node *iort_node;
39 	struct fwnode_handle *fwnode;
40 };
41 static LIST_HEAD(iort_fwnode_list);
42 static DEFINE_SPINLOCK(iort_fwnode_lock);
43 
44 /**
45  * iort_set_fwnode() - Create iort_fwnode and use it to register
46  *		       iommu data in the iort_fwnode_list
47  *
48  * @iort_node: IORT table node associated with the IOMMU
49  * @fwnode: fwnode associated with the IORT node
50  *
51  * Returns: 0 on success
52  *          <0 on failure
53  */
54 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
55 				  struct fwnode_handle *fwnode)
56 {
57 	struct iort_fwnode *np;
58 
59 	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
60 
61 	if (WARN_ON(!np))
62 		return -ENOMEM;
63 
64 	INIT_LIST_HEAD(&np->list);
65 	np->iort_node = iort_node;
66 	np->fwnode = fwnode;
67 
68 	spin_lock(&iort_fwnode_lock);
69 	list_add_tail(&np->list, &iort_fwnode_list);
70 	spin_unlock(&iort_fwnode_lock);
71 
72 	return 0;
73 }
74 
75 /**
76  * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
77  *
78  * @node: IORT table node to be looked-up
79  *
80  * Returns: fwnode_handle pointer on success, NULL on failure
81  */
82 static inline struct fwnode_handle *iort_get_fwnode(
83 			struct acpi_iort_node *node)
84 {
85 	struct iort_fwnode *curr;
86 	struct fwnode_handle *fwnode = NULL;
87 
88 	spin_lock(&iort_fwnode_lock);
89 	list_for_each_entry(curr, &iort_fwnode_list, list) {
90 		if (curr->iort_node == node) {
91 			fwnode = curr->fwnode;
92 			break;
93 		}
94 	}
95 	spin_unlock(&iort_fwnode_lock);
96 
97 	return fwnode;
98 }
99 
100 /**
101  * iort_delete_fwnode() - Delete fwnode associated with an IORT node
102  *
103  * @node: IORT table node associated with fwnode to delete
104  */
105 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
106 {
107 	struct iort_fwnode *curr, *tmp;
108 
109 	spin_lock(&iort_fwnode_lock);
110 	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
111 		if (curr->iort_node == node) {
112 			list_del(&curr->list);
113 			kfree(curr);
114 			break;
115 		}
116 	}
117 	spin_unlock(&iort_fwnode_lock);
118 }
119 
120 /**
121  * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
122  *
123  * @fwnode: fwnode associated with device to be looked-up
124  *
125  * Returns: iort_node pointer on success, NULL on failure
126  */
127 static inline struct acpi_iort_node *iort_get_iort_node(
128 			struct fwnode_handle *fwnode)
129 {
130 	struct iort_fwnode *curr;
131 	struct acpi_iort_node *iort_node = NULL;
132 
133 	spin_lock(&iort_fwnode_lock);
134 	list_for_each_entry(curr, &iort_fwnode_list, list) {
135 		if (curr->fwnode == fwnode) {
136 			iort_node = curr->iort_node;
137 			break;
138 		}
139 	}
140 	spin_unlock(&iort_fwnode_lock);
141 
142 	return iort_node;
143 }
144 
145 typedef acpi_status (*iort_find_node_callback)
146 	(struct acpi_iort_node *node, void *context);
147 
148 /* Root pointer to the mapped IORT table */
149 static struct acpi_table_header *iort_table;
150 
151 static LIST_HEAD(iort_msi_chip_list);
152 static DEFINE_SPINLOCK(iort_msi_chip_lock);
153 
154 /**
155  * iort_register_domain_token() - register domain token along with related
156  * ITS ID and base address to the list from where we can get it back later on.
157  * @trans_id: ITS ID.
158  * @base: ITS base address.
159  * @fw_node: Domain token.
160  *
161  * Returns: 0 on success, -ENOMEM if no memory when allocating list element
162  */
163 int iort_register_domain_token(int trans_id, phys_addr_t base,
164 			       struct fwnode_handle *fw_node)
165 {
166 	struct iort_its_msi_chip *its_msi_chip;
167 
168 	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
169 	if (!its_msi_chip)
170 		return -ENOMEM;
171 
172 	its_msi_chip->fw_node = fw_node;
173 	its_msi_chip->translation_id = trans_id;
174 	its_msi_chip->base_addr = base;
175 
176 	spin_lock(&iort_msi_chip_lock);
177 	list_add(&its_msi_chip->list, &iort_msi_chip_list);
178 	spin_unlock(&iort_msi_chip_lock);
179 
180 	return 0;
181 }
182 
183 /**
184  * iort_deregister_domain_token() - Deregister domain token based on ITS ID
185  * @trans_id: ITS ID.
186  *
187  * Returns: none.
188  */
189 void iort_deregister_domain_token(int trans_id)
190 {
191 	struct iort_its_msi_chip *its_msi_chip, *t;
192 
193 	spin_lock(&iort_msi_chip_lock);
194 	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
195 		if (its_msi_chip->translation_id == trans_id) {
196 			list_del(&its_msi_chip->list);
197 			kfree(its_msi_chip);
198 			break;
199 		}
200 	}
201 	spin_unlock(&iort_msi_chip_lock);
202 }
203 
204 /**
205  * iort_find_domain_token() - Find domain token based on given ITS ID
206  * @trans_id: ITS ID.
207  *
208  * Returns: domain token when find on the list, NULL otherwise
209  */
210 struct fwnode_handle *iort_find_domain_token(int trans_id)
211 {
212 	struct fwnode_handle *fw_node = NULL;
213 	struct iort_its_msi_chip *its_msi_chip;
214 
215 	spin_lock(&iort_msi_chip_lock);
216 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
217 		if (its_msi_chip->translation_id == trans_id) {
218 			fw_node = its_msi_chip->fw_node;
219 			break;
220 		}
221 	}
222 	spin_unlock(&iort_msi_chip_lock);
223 
224 	return fw_node;
225 }
226 
227 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
228 					     iort_find_node_callback callback,
229 					     void *context)
230 {
231 	struct acpi_iort_node *iort_node, *iort_end;
232 	struct acpi_table_iort *iort;
233 	int i;
234 
235 	if (!iort_table)
236 		return NULL;
237 
238 	/* Get the first IORT node */
239 	iort = (struct acpi_table_iort *)iort_table;
240 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
241 				 iort->node_offset);
242 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
243 				iort_table->length);
244 
245 	for (i = 0; i < iort->node_count; i++) {
246 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
247 			       "IORT node pointer overflows, bad table!\n"))
248 			return NULL;
249 
250 		if (iort_node->type == type &&
251 		    ACPI_SUCCESS(callback(iort_node, context)))
252 			return iort_node;
253 
254 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
255 					 iort_node->length);
256 	}
257 
258 	return NULL;
259 }
260 
261 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
262 					    void *context)
263 {
264 	struct device *dev = context;
265 	acpi_status status = AE_NOT_FOUND;
266 
267 	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
268 		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
269 		struct acpi_device *adev;
270 		struct acpi_iort_named_component *ncomp;
271 		struct device *nc_dev = dev;
272 
273 		/*
274 		 * Walk the device tree to find a device with an
275 		 * ACPI companion; there is no point in scanning
276 		 * IORT for a device matching a named component if
277 		 * the device does not have an ACPI companion to
278 		 * start with.
279 		 */
280 		do {
281 			adev = ACPI_COMPANION(nc_dev);
282 			if (adev)
283 				break;
284 
285 			nc_dev = nc_dev->parent;
286 		} while (nc_dev);
287 
288 		if (!adev)
289 			goto out;
290 
291 		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
292 		if (ACPI_FAILURE(status)) {
293 			dev_warn(nc_dev, "Can't get device full path name\n");
294 			goto out;
295 		}
296 
297 		ncomp = (struct acpi_iort_named_component *)node->node_data;
298 		status = !strcmp(ncomp->device_name, buf.pointer) ?
299 							AE_OK : AE_NOT_FOUND;
300 		acpi_os_free(buf.pointer);
301 	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
302 		struct acpi_iort_root_complex *pci_rc;
303 		struct pci_bus *bus;
304 
305 		bus = to_pci_bus(dev);
306 		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
307 
308 		/*
309 		 * It is assumed that PCI segment numbers maps one-to-one
310 		 * with root complexes. Each segment number can represent only
311 		 * one root complex.
312 		 */
313 		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
314 							AE_OK : AE_NOT_FOUND;
315 	}
316 out:
317 	return status;
318 }
319 
320 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
321 		       u32 *rid_out, bool check_overlap)
322 {
323 	/* Single mapping does not care for input id */
324 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
325 		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
326 		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
327 			*rid_out = map->output_base;
328 			return 0;
329 		}
330 
331 		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
332 			map, type);
333 		return -ENXIO;
334 	}
335 
336 	if (rid_in < map->input_base ||
337 	    (rid_in > map->input_base + map->id_count))
338 		return -ENXIO;
339 
340 	if (check_overlap) {
341 		/*
342 		 * We already found a mapping for this input ID at the end of
343 		 * another region. If it coincides with the start of this
344 		 * region, we assume the prior match was due to the off-by-1
345 		 * issue mentioned below, and allow it to be superseded.
346 		 * Otherwise, things are *really* broken, and we just disregard
347 		 * duplicate matches entirely to retain compatibility.
348 		 */
349 		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
350 		       map, rid_in);
351 		if (rid_in != map->input_base)
352 			return -ENXIO;
353 
354 		pr_err(FW_BUG "applying workaround.\n");
355 	}
356 
357 	*rid_out = map->output_base + (rid_in - map->input_base);
358 
359 	/*
360 	 * Due to confusion regarding the meaning of the id_count field (which
361 	 * carries the number of IDs *minus 1*), we may have to disregard this
362 	 * match if it is at the end of the range, and overlaps with the start
363 	 * of another one.
364 	 */
365 	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
366 		return -EAGAIN;
367 	return 0;
368 }
369 
370 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
371 					       u32 *id_out, int index)
372 {
373 	struct acpi_iort_node *parent;
374 	struct acpi_iort_id_mapping *map;
375 
376 	if (!node->mapping_offset || !node->mapping_count ||
377 				     index >= node->mapping_count)
378 		return NULL;
379 
380 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
381 			   node->mapping_offset + index * sizeof(*map));
382 
383 	/* Firmware bug! */
384 	if (!map->output_reference) {
385 		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
386 		       node, node->type);
387 		return NULL;
388 	}
389 
390 	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
391 			       map->output_reference);
392 
393 	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
394 		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
395 		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
396 		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
397 		    node->type == ACPI_IORT_NODE_PMCG) {
398 			*id_out = map->output_base;
399 			return parent;
400 		}
401 	}
402 
403 	return NULL;
404 }
405 
406 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
407 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
408 #endif
409 
410 static int iort_get_id_mapping_index(struct acpi_iort_node *node)
411 {
412 	struct acpi_iort_smmu_v3 *smmu;
413 	struct acpi_iort_pmcg *pmcg;
414 
415 	switch (node->type) {
416 	case ACPI_IORT_NODE_SMMU_V3:
417 		/*
418 		 * SMMUv3 dev ID mapping index was introduced in revision 1
419 		 * table, not available in revision 0
420 		 */
421 		if (node->revision < 1)
422 			return -EINVAL;
423 
424 		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
425 		/*
426 		 * Until IORT E.e (node rev. 5), the ID mapping index was
427 		 * defined to be valid unless all interrupts are GSIV-based.
428 		 */
429 		if (node->revision < 5) {
430 			if (smmu->event_gsiv && smmu->pri_gsiv &&
431 			    smmu->gerr_gsiv && smmu->sync_gsiv)
432 				return -EINVAL;
433 		} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
434 			return -EINVAL;
435 		}
436 
437 		if (smmu->id_mapping_index >= node->mapping_count) {
438 			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
439 			       node, node->type);
440 			return -EINVAL;
441 		}
442 
443 		return smmu->id_mapping_index;
444 	case ACPI_IORT_NODE_PMCG:
445 		pmcg = (struct acpi_iort_pmcg *)node->node_data;
446 		if (pmcg->overflow_gsiv || node->mapping_count == 0)
447 			return -EINVAL;
448 
449 		return 0;
450 	default:
451 		return -EINVAL;
452 	}
453 }
454 
455 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
456 					       u32 id_in, u32 *id_out,
457 					       u8 type_mask)
458 {
459 	u32 id = id_in;
460 
461 	/* Parse the ID mapping tree to find specified node type */
462 	while (node) {
463 		struct acpi_iort_id_mapping *map;
464 		int i, index, rc = 0;
465 		u32 out_ref = 0, map_id = id;
466 
467 		if (IORT_TYPE_MASK(node->type) & type_mask) {
468 			if (id_out)
469 				*id_out = id;
470 			return node;
471 		}
472 
473 		if (!node->mapping_offset || !node->mapping_count)
474 			goto fail_map;
475 
476 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
477 				   node->mapping_offset);
478 
479 		/* Firmware bug! */
480 		if (!map->output_reference) {
481 			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
482 			       node, node->type);
483 			goto fail_map;
484 		}
485 
486 		/*
487 		 * Get the special ID mapping index (if any) and skip its
488 		 * associated ID map to prevent erroneous multi-stage
489 		 * IORT ID translations.
490 		 */
491 		index = iort_get_id_mapping_index(node);
492 
493 		/* Do the ID translation */
494 		for (i = 0; i < node->mapping_count; i++, map++) {
495 			/* if it is special mapping index, skip it */
496 			if (i == index)
497 				continue;
498 
499 			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
500 			if (!rc)
501 				break;
502 			if (rc == -EAGAIN)
503 				out_ref = map->output_reference;
504 		}
505 
506 		if (i == node->mapping_count && !out_ref)
507 			goto fail_map;
508 
509 		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
510 				    rc ? out_ref : map->output_reference);
511 	}
512 
513 fail_map:
514 	/* Map input ID to output ID unchanged on mapping failure */
515 	if (id_out)
516 		*id_out = id_in;
517 
518 	return NULL;
519 }
520 
521 static struct acpi_iort_node *iort_node_map_platform_id(
522 		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
523 		int index)
524 {
525 	struct acpi_iort_node *parent;
526 	u32 id;
527 
528 	/* step 1: retrieve the initial dev id */
529 	parent = iort_node_get_id(node, &id, index);
530 	if (!parent)
531 		return NULL;
532 
533 	/*
534 	 * optional step 2: map the initial dev id if its parent is not
535 	 * the target type we want, map it again for the use cases such
536 	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
537 	 * return the initial dev id and its parent pointer directly.
538 	 */
539 	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
540 		parent = iort_node_map_id(parent, id, id_out, type_mask);
541 	else
542 		if (id_out)
543 			*id_out = id;
544 
545 	return parent;
546 }
547 
548 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
549 {
550 	struct pci_bus *pbus;
551 
552 	if (!dev_is_pci(dev)) {
553 		struct acpi_iort_node *node;
554 		/*
555 		 * scan iort_fwnode_list to see if it's an iort platform
556 		 * device (such as SMMU, PMCG),its iort node already cached
557 		 * and associated with fwnode when iort platform devices
558 		 * were initialized.
559 		 */
560 		node = iort_get_iort_node(dev->fwnode);
561 		if (node)
562 			return node;
563 		/*
564 		 * if not, then it should be a platform device defined in
565 		 * DSDT/SSDT (with Named Component node in IORT)
566 		 */
567 		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
568 				      iort_match_node_callback, dev);
569 	}
570 
571 	pbus = to_pci_dev(dev)->bus;
572 
573 	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
574 			      iort_match_node_callback, &pbus->dev);
575 }
576 
577 /**
578  * iort_msi_map_id() - Map a MSI input ID for a device
579  * @dev: The device for which the mapping is to be done.
580  * @input_id: The device input ID.
581  *
582  * Returns: mapped MSI ID on success, input ID otherwise
583  */
584 u32 iort_msi_map_id(struct device *dev, u32 input_id)
585 {
586 	struct acpi_iort_node *node;
587 	u32 dev_id;
588 
589 	node = iort_find_dev_node(dev);
590 	if (!node)
591 		return input_id;
592 
593 	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
594 	return dev_id;
595 }
596 
597 /**
598  * iort_pmsi_get_dev_id() - Get the device id for a device
599  * @dev: The device for which the mapping is to be done.
600  * @dev_id: The device ID found.
601  *
602  * Returns: 0 for successful find a dev id, -ENODEV on error
603  */
604 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
605 {
606 	int i, index;
607 	struct acpi_iort_node *node;
608 
609 	node = iort_find_dev_node(dev);
610 	if (!node)
611 		return -ENODEV;
612 
613 	index = iort_get_id_mapping_index(node);
614 	/* if there is a valid index, go get the dev_id directly */
615 	if (index >= 0) {
616 		if (iort_node_get_id(node, dev_id, index))
617 			return 0;
618 	} else {
619 		for (i = 0; i < node->mapping_count; i++) {
620 			if (iort_node_map_platform_id(node, dev_id,
621 						      IORT_MSI_TYPE, i))
622 				return 0;
623 		}
624 	}
625 
626 	return -ENODEV;
627 }
628 
629 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
630 {
631 	struct iort_its_msi_chip *its_msi_chip;
632 	int ret = -ENODEV;
633 
634 	spin_lock(&iort_msi_chip_lock);
635 	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
636 		if (its_msi_chip->translation_id == its_id) {
637 			*base = its_msi_chip->base_addr;
638 			ret = 0;
639 			break;
640 		}
641 	}
642 	spin_unlock(&iort_msi_chip_lock);
643 
644 	return ret;
645 }
646 
647 /**
648  * iort_dev_find_its_id() - Find the ITS identifier for a device
649  * @dev: The device.
650  * @id: Device's ID
651  * @idx: Index of the ITS identifier list.
652  * @its_id: ITS identifier.
653  *
654  * Returns: 0 on success, appropriate error value otherwise
655  */
656 static int iort_dev_find_its_id(struct device *dev, u32 id,
657 				unsigned int idx, int *its_id)
658 {
659 	struct acpi_iort_its_group *its;
660 	struct acpi_iort_node *node;
661 
662 	node = iort_find_dev_node(dev);
663 	if (!node)
664 		return -ENXIO;
665 
666 	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
667 	if (!node)
668 		return -ENXIO;
669 
670 	/* Move to ITS specific data */
671 	its = (struct acpi_iort_its_group *)node->node_data;
672 	if (idx >= its->its_count) {
673 		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
674 			idx, its->its_count);
675 		return -ENXIO;
676 	}
677 
678 	*its_id = its->identifiers[idx];
679 	return 0;
680 }
681 
682 /**
683  * iort_get_device_domain() - Find MSI domain related to a device
684  * @dev: The device.
685  * @id: Requester ID for the device.
686  * @bus_token: irq domain bus token.
687  *
688  * Returns: the MSI domain for this device, NULL otherwise
689  */
690 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
691 					  enum irq_domain_bus_token bus_token)
692 {
693 	struct fwnode_handle *handle;
694 	int its_id;
695 
696 	if (iort_dev_find_its_id(dev, id, 0, &its_id))
697 		return NULL;
698 
699 	handle = iort_find_domain_token(its_id);
700 	if (!handle)
701 		return NULL;
702 
703 	return irq_find_matching_fwnode(handle, bus_token);
704 }
705 
706 static void iort_set_device_domain(struct device *dev,
707 				   struct acpi_iort_node *node)
708 {
709 	struct acpi_iort_its_group *its;
710 	struct acpi_iort_node *msi_parent;
711 	struct acpi_iort_id_mapping *map;
712 	struct fwnode_handle *iort_fwnode;
713 	struct irq_domain *domain;
714 	int index;
715 
716 	index = iort_get_id_mapping_index(node);
717 	if (index < 0)
718 		return;
719 
720 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
721 			   node->mapping_offset + index * sizeof(*map));
722 
723 	/* Firmware bug! */
724 	if (!map->output_reference ||
725 	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
726 		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
727 		       node, node->type);
728 		return;
729 	}
730 
731 	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
732 				  map->output_reference);
733 
734 	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
735 		return;
736 
737 	/* Move to ITS specific data */
738 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
739 
740 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
741 	if (!iort_fwnode)
742 		return;
743 
744 	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
745 	if (domain)
746 		dev_set_msi_domain(dev, domain);
747 }
748 
749 /**
750  * iort_get_platform_device_domain() - Find MSI domain related to a
751  * platform device
752  * @dev: the dev pointer associated with the platform device
753  *
754  * Returns: the MSI domain for this device, NULL otherwise
755  */
756 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
757 {
758 	struct acpi_iort_node *node, *msi_parent = NULL;
759 	struct fwnode_handle *iort_fwnode;
760 	struct acpi_iort_its_group *its;
761 	int i;
762 
763 	/* find its associated iort node */
764 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
765 			      iort_match_node_callback, dev);
766 	if (!node)
767 		return NULL;
768 
769 	/* then find its msi parent node */
770 	for (i = 0; i < node->mapping_count; i++) {
771 		msi_parent = iort_node_map_platform_id(node, NULL,
772 						       IORT_MSI_TYPE, i);
773 		if (msi_parent)
774 			break;
775 	}
776 
777 	if (!msi_parent)
778 		return NULL;
779 
780 	/* Move to ITS specific data */
781 	its = (struct acpi_iort_its_group *)msi_parent->node_data;
782 
783 	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
784 	if (!iort_fwnode)
785 		return NULL;
786 
787 	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
788 }
789 
790 void acpi_configure_pmsi_domain(struct device *dev)
791 {
792 	struct irq_domain *msi_domain;
793 
794 	msi_domain = iort_get_platform_device_domain(dev);
795 	if (msi_domain)
796 		dev_set_msi_domain(dev, msi_domain);
797 }
798 
799 #ifdef CONFIG_IOMMU_API
800 static void iort_rmr_free(struct device *dev,
801 			  struct iommu_resv_region *region)
802 {
803 	struct iommu_iort_rmr_data *rmr_data;
804 
805 	rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
806 	kfree(rmr_data->sids);
807 	kfree(rmr_data);
808 }
809 
810 static struct iommu_iort_rmr_data *iort_rmr_alloc(
811 					struct acpi_iort_rmr_desc *rmr_desc,
812 					int prot, enum iommu_resv_type type,
813 					u32 *sids, u32 num_sids)
814 {
815 	struct iommu_iort_rmr_data *rmr_data;
816 	struct iommu_resv_region *region;
817 	u32 *sids_copy;
818 	u64 addr = rmr_desc->base_address, size = rmr_desc->length;
819 
820 	rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
821 	if (!rmr_data)
822 		return NULL;
823 
824 	/* Create a copy of SIDs array to associate with this rmr_data */
825 	sids_copy = kmemdup_array(sids, num_sids, sizeof(*sids), GFP_KERNEL);
826 	if (!sids_copy) {
827 		kfree(rmr_data);
828 		return NULL;
829 	}
830 	rmr_data->sids = sids_copy;
831 	rmr_data->num_sids = num_sids;
832 
833 	if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
834 		/* PAGE align base addr and size */
835 		addr &= PAGE_MASK;
836 		size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
837 
838 		pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
839 		       rmr_desc->base_address,
840 		       rmr_desc->base_address + rmr_desc->length - 1,
841 		       addr, addr + size - 1);
842 	}
843 
844 	region = &rmr_data->rr;
845 	INIT_LIST_HEAD(&region->list);
846 	region->start = addr;
847 	region->length = size;
848 	region->prot = prot;
849 	region->type = type;
850 	region->free = iort_rmr_free;
851 
852 	return rmr_data;
853 }
854 
855 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
856 					u32 count)
857 {
858 	int i, j;
859 
860 	for (i = 0; i < count; i++) {
861 		u64 end, start = desc[i].base_address, length = desc[i].length;
862 
863 		if (!length) {
864 			pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
865 			       start);
866 			continue;
867 		}
868 
869 		end = start + length - 1;
870 
871 		/* Check for address overlap */
872 		for (j = i + 1; j < count; j++) {
873 			u64 e_start = desc[j].base_address;
874 			u64 e_end = e_start + desc[j].length - 1;
875 
876 			if (start <= e_end && end >= e_start)
877 				pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
878 				       start, end);
879 		}
880 	}
881 }
882 
883 /*
884  * Please note, we will keep the already allocated RMR reserve
885  * regions in case of a memory allocation failure.
886  */
887 static void iort_get_rmrs(struct acpi_iort_node *node,
888 			  struct acpi_iort_node *smmu,
889 			  u32 *sids, u32 num_sids,
890 			  struct list_head *head)
891 {
892 	struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
893 	struct acpi_iort_rmr_desc *rmr_desc;
894 	int i;
895 
896 	rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
897 				rmr->rmr_offset);
898 
899 	iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
900 
901 	for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
902 		struct iommu_iort_rmr_data *rmr_data;
903 		enum iommu_resv_type type;
904 		int prot = IOMMU_READ | IOMMU_WRITE;
905 
906 		if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
907 			type = IOMMU_RESV_DIRECT_RELAXABLE;
908 		else
909 			type = IOMMU_RESV_DIRECT;
910 
911 		if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
912 			prot |= IOMMU_PRIV;
913 
914 		/* Attributes 0x00 - 0x03 represents device memory */
915 		if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
916 				ACPI_IORT_RMR_ATTR_DEVICE_GRE)
917 			prot |= IOMMU_MMIO;
918 		else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
919 				ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
920 			prot |= IOMMU_CACHE;
921 
922 		rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
923 					  sids, num_sids);
924 		if (!rmr_data)
925 			return;
926 
927 		list_add_tail(&rmr_data->rr.list, head);
928 	}
929 }
930 
931 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
932 				u32 new_count)
933 {
934 	u32 *new_sids;
935 	u32 total_count = count + new_count;
936 	int i;
937 
938 	new_sids = krealloc_array(sids, count + new_count,
939 				  sizeof(*new_sids), GFP_KERNEL);
940 	if (!new_sids)
941 		return NULL;
942 
943 	for (i = count; i < total_count; i++)
944 		new_sids[i] = id_start++;
945 
946 	return new_sids;
947 }
948 
949 static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
950 			     u32 id_count)
951 {
952 	int i;
953 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
954 
955 	/*
956 	 * Make sure the kernel has preserved the boot firmware PCIe
957 	 * configuration. This is required to ensure that the RMR PCIe
958 	 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
959 	 */
960 	if (dev_is_pci(dev)) {
961 		struct pci_dev *pdev = to_pci_dev(dev);
962 		struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
963 
964 		if (!host->preserve_config)
965 			return false;
966 	}
967 
968 	for (i = 0; i < fwspec->num_ids; i++) {
969 		if (fwspec->ids[i] >= id_start &&
970 		    fwspec->ids[i] <= id_start + id_count)
971 			return true;
972 	}
973 
974 	return false;
975 }
976 
977 static void iort_node_get_rmr_info(struct acpi_iort_node *node,
978 				   struct acpi_iort_node *iommu,
979 				   struct device *dev, struct list_head *head)
980 {
981 	struct acpi_iort_node *smmu = NULL;
982 	struct acpi_iort_rmr *rmr;
983 	struct acpi_iort_id_mapping *map;
984 	u32 *sids = NULL;
985 	u32 num_sids = 0;
986 	int i;
987 
988 	if (!node->mapping_offset || !node->mapping_count) {
989 		pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
990 		       node);
991 		return;
992 	}
993 
994 	rmr = (struct acpi_iort_rmr *)node->node_data;
995 	if (!rmr->rmr_offset || !rmr->rmr_count)
996 		return;
997 
998 	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
999 			   node->mapping_offset);
1000 
1001 	/*
1002 	 * Go through the ID mappings and see if we have a match for SMMU
1003 	 * and dev(if !NULL). If found, get the sids for the Node.
1004 	 * Please note, id_count is equal to the number of IDs  in the
1005 	 * range minus one.
1006 	 */
1007 	for (i = 0; i < node->mapping_count; i++, map++) {
1008 		struct acpi_iort_node *parent;
1009 
1010 		parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1011 				      map->output_reference);
1012 		if (parent != iommu)
1013 			continue;
1014 
1015 		/* If dev is valid, check RMR node corresponds to the dev SID */
1016 		if (dev && !iort_rmr_has_dev(dev, map->output_base,
1017 					     map->id_count))
1018 			continue;
1019 
1020 		/* Retrieve SIDs associated with the Node. */
1021 		sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1022 					   map->id_count + 1);
1023 		if (!sids)
1024 			return;
1025 
1026 		num_sids += map->id_count + 1;
1027 	}
1028 
1029 	if (!sids)
1030 		return;
1031 
1032 	iort_get_rmrs(node, smmu, sids, num_sids, head);
1033 	kfree(sids);
1034 }
1035 
1036 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1037 			   struct list_head *head)
1038 {
1039 	struct acpi_table_iort *iort;
1040 	struct acpi_iort_node *iort_node, *iort_end;
1041 	int i;
1042 
1043 	/* Only supports ARM DEN 0049E.d onwards */
1044 	if (iort_table->revision < 5)
1045 		return;
1046 
1047 	iort = (struct acpi_table_iort *)iort_table;
1048 
1049 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1050 				 iort->node_offset);
1051 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052 				iort_table->length);
1053 
1054 	for (i = 0; i < iort->node_count; i++) {
1055 		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1056 			       "IORT node pointer overflows, bad table!\n"))
1057 			return;
1058 
1059 		if (iort_node->type == ACPI_IORT_NODE_RMR)
1060 			iort_node_get_rmr_info(iort_node, iommu, dev, head);
1061 
1062 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1063 					 iort_node->length);
1064 	}
1065 }
1066 
1067 /*
1068  * Populate the RMR list associated with a given IOMMU and dev(if provided).
1069  * If dev is NULL, the function populates all the RMRs associated with the
1070  * given IOMMU.
1071  */
1072 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1073 					    struct device *dev,
1074 					    struct list_head *head)
1075 {
1076 	struct acpi_iort_node *iommu;
1077 
1078 	iommu = iort_get_iort_node(iommu_fwnode);
1079 	if (!iommu)
1080 		return;
1081 
1082 	iort_find_rmrs(iommu, dev, head);
1083 }
1084 
1085 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1086 {
1087 	struct acpi_iort_node *iommu;
1088 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1089 
1090 	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1091 
1092 	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1093 		struct acpi_iort_smmu_v3 *smmu;
1094 
1095 		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1096 		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1097 			return iommu;
1098 	}
1099 
1100 	return NULL;
1101 }
1102 
1103 /*
1104  * Retrieve platform specific HW MSI reserve regions.
1105  * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1106  * associated with the device are the HW MSI reserved regions.
1107  */
1108 static void iort_iommu_msi_get_resv_regions(struct device *dev,
1109 					    struct list_head *head)
1110 {
1111 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1112 	struct acpi_iort_its_group *its;
1113 	struct acpi_iort_node *iommu_node, *its_node = NULL;
1114 	int i;
1115 
1116 	iommu_node = iort_get_msi_resv_iommu(dev);
1117 	if (!iommu_node)
1118 		return;
1119 
1120 	/*
1121 	 * Current logic to reserve ITS regions relies on HW topologies
1122 	 * where a given PCI or named component maps its IDs to only one
1123 	 * ITS group; if a PCI or named component can map its IDs to
1124 	 * different ITS groups through IORT mappings this function has
1125 	 * to be reworked to ensure we reserve regions for all ITS groups
1126 	 * a given PCI or named component may map IDs to.
1127 	 */
1128 
1129 	for (i = 0; i < fwspec->num_ids; i++) {
1130 		its_node = iort_node_map_id(iommu_node,
1131 					fwspec->ids[i],
1132 					NULL, IORT_MSI_TYPE);
1133 		if (its_node)
1134 			break;
1135 	}
1136 
1137 	if (!its_node)
1138 		return;
1139 
1140 	/* Move to ITS specific data */
1141 	its = (struct acpi_iort_its_group *)its_node->node_data;
1142 
1143 	for (i = 0; i < its->its_count; i++) {
1144 		phys_addr_t base;
1145 
1146 		if (!iort_find_its_base(its->identifiers[i], &base)) {
1147 			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1148 			struct iommu_resv_region *region;
1149 
1150 			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1151 							 prot, IOMMU_RESV_MSI,
1152 							 GFP_KERNEL);
1153 			if (region)
1154 				list_add_tail(&region->list, head);
1155 		}
1156 	}
1157 }
1158 
1159 /**
1160  * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1161  * @dev: Device from iommu_get_resv_regions()
1162  * @head: Reserved region list from iommu_get_resv_regions()
1163  */
1164 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1165 {
1166 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1167 
1168 	iort_iommu_msi_get_resv_regions(dev, head);
1169 	iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1170 }
1171 
1172 /**
1173  * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1174  *                     associated StreamIDs information.
1175  * @iommu_fwnode: fwnode associated with IOMMU
1176  * @head: Resereved region list
1177  */
1178 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1179 		       struct list_head *head)
1180 {
1181 	iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1182 }
1183 EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1184 
1185 /**
1186  * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1187  * @iommu_fwnode: fwnode associated with IOMMU
1188  * @head: Resereved region list
1189  */
1190 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1191 		       struct list_head *head)
1192 {
1193 	struct iommu_resv_region *entry, *next;
1194 
1195 	list_for_each_entry_safe(entry, next, head, list)
1196 		entry->free(NULL, entry);
1197 }
1198 EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1199 
1200 static inline bool iort_iommu_driver_enabled(u8 type)
1201 {
1202 	switch (type) {
1203 	case ACPI_IORT_NODE_SMMU_V3:
1204 		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1205 	case ACPI_IORT_NODE_SMMU:
1206 		return IS_ENABLED(CONFIG_ARM_SMMU);
1207 	default:
1208 		pr_warn("IORT node type %u does not describe an SMMU\n", type);
1209 		return false;
1210 	}
1211 }
1212 
1213 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
1214 {
1215 	struct acpi_iort_root_complex *pci_rc;
1216 
1217 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1218 	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
1219 }
1220 
1221 static bool iort_pci_rc_supports_canwbs(struct acpi_iort_node *node)
1222 {
1223 	struct acpi_iort_memory_access *memory_access;
1224 	struct acpi_iort_root_complex *pci_rc;
1225 
1226 	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1227 	memory_access =
1228 		(struct acpi_iort_memory_access *)&pci_rc->memory_properties;
1229 	return memory_access->memory_flags & ACPI_IORT_MF_CANWBS;
1230 }
1231 
1232 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1233 			    u32 streamid)
1234 {
1235 	struct fwnode_handle *iort_fwnode;
1236 
1237 	/* If there's no SMMU driver at all, give up now */
1238 	if (!node || !iort_iommu_driver_enabled(node->type))
1239 		return -ENODEV;
1240 
1241 	iort_fwnode = iort_get_fwnode(node);
1242 	if (!iort_fwnode)
1243 		return -ENODEV;
1244 
1245 	/*
1246 	 * If the SMMU drivers are enabled but not loaded/probed
1247 	 * yet, this will defer.
1248 	 */
1249 	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode);
1250 }
1251 
1252 struct iort_pci_alias_info {
1253 	struct device *dev;
1254 	struct acpi_iort_node *node;
1255 };
1256 
1257 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1258 {
1259 	struct iort_pci_alias_info *info = data;
1260 	struct acpi_iort_node *parent;
1261 	u32 streamid;
1262 
1263 	parent = iort_node_map_id(info->node, alias, &streamid,
1264 				  IORT_IOMMU_TYPE);
1265 	return iort_iommu_xlate(info->dev, parent, streamid);
1266 }
1267 
1268 static void iort_named_component_init(struct device *dev,
1269 				      struct acpi_iort_node *node)
1270 {
1271 	struct property_entry props[3] = {};
1272 	struct acpi_iort_named_component *nc;
1273 
1274 	nc = (struct acpi_iort_named_component *)node->node_data;
1275 	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1276 				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1277 						nc->node_flags));
1278 	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1279 		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1280 
1281 	if (device_create_managed_software_node(dev, props, NULL))
1282 		dev_warn(dev, "Could not add device properties\n");
1283 }
1284 
1285 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1286 {
1287 	struct acpi_iort_node *parent;
1288 	int err = -ENODEV, i = 0;
1289 	u32 streamid = 0;
1290 
1291 	do {
1292 
1293 		parent = iort_node_map_platform_id(node, &streamid,
1294 						   IORT_IOMMU_TYPE,
1295 						   i++);
1296 
1297 		if (parent)
1298 			err = iort_iommu_xlate(dev, parent, streamid);
1299 	} while (parent && !err);
1300 
1301 	return err;
1302 }
1303 
1304 static int iort_nc_iommu_map_id(struct device *dev,
1305 				struct acpi_iort_node *node,
1306 				const u32 *in_id)
1307 {
1308 	struct acpi_iort_node *parent;
1309 	u32 streamid;
1310 
1311 	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1312 	if (parent)
1313 		return iort_iommu_xlate(dev, parent, streamid);
1314 
1315 	return -ENODEV;
1316 }
1317 
1318 
1319 /**
1320  * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1321  *
1322  * @dev: device to configure
1323  * @id_in: optional input id const value pointer
1324  *
1325  * Returns: 0 on success, <0 on failure
1326  */
1327 int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
1328 {
1329 	struct acpi_iort_node *node;
1330 	int err = -ENODEV;
1331 
1332 	if (dev_is_pci(dev)) {
1333 		struct iommu_fwspec *fwspec;
1334 		struct pci_bus *bus = to_pci_dev(dev)->bus;
1335 		struct iort_pci_alias_info info = { .dev = dev };
1336 
1337 		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1338 				      iort_match_node_callback, &bus->dev);
1339 		if (!node)
1340 			return -ENODEV;
1341 
1342 		info.node = node;
1343 		err = pci_for_each_dma_alias(to_pci_dev(dev),
1344 					     iort_pci_iommu_init, &info);
1345 
1346 		fwspec = dev_iommu_fwspec_get(dev);
1347 		if (fwspec && iort_pci_rc_supports_ats(node))
1348 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1349 		if (fwspec && iort_pci_rc_supports_canwbs(node))
1350 			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_CANWBS;
1351 	} else {
1352 		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1353 				      iort_match_node_callback, dev);
1354 		if (!node)
1355 			return -ENODEV;
1356 
1357 		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1358 			      iort_nc_iommu_map(dev, node);
1359 
1360 		if (!err)
1361 			iort_named_component_init(dev, node);
1362 	}
1363 
1364 	return err;
1365 }
1366 
1367 #else
1368 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1369 { }
1370 int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1371 { return -ENODEV; }
1372 #endif
1373 
1374 static int nc_dma_get_range(struct device *dev, u64 *limit)
1375 {
1376 	struct acpi_iort_node *node;
1377 	struct acpi_iort_named_component *ncomp;
1378 
1379 	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1380 			      iort_match_node_callback, dev);
1381 	if (!node)
1382 		return -ENODEV;
1383 
1384 	ncomp = (struct acpi_iort_named_component *)node->node_data;
1385 
1386 	if (!ncomp->memory_address_limit) {
1387 		pr_warn(FW_BUG "Named component missing memory address limit\n");
1388 		return -EINVAL;
1389 	}
1390 
1391 	*limit = ncomp->memory_address_limit >= 64 ? U64_MAX :
1392 			(1ULL << ncomp->memory_address_limit) - 1;
1393 
1394 	return 0;
1395 }
1396 
1397 static int rc_dma_get_range(struct device *dev, u64 *limit)
1398 {
1399 	struct acpi_iort_node *node;
1400 	struct acpi_iort_root_complex *rc;
1401 	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1402 
1403 	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1404 			      iort_match_node_callback, &pbus->dev);
1405 	if (!node || node->revision < 1)
1406 		return -ENODEV;
1407 
1408 	rc = (struct acpi_iort_root_complex *)node->node_data;
1409 
1410 	if (!rc->memory_address_limit) {
1411 		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1412 		return -EINVAL;
1413 	}
1414 
1415 	*limit = rc->memory_address_limit >= 64 ? U64_MAX :
1416 			(1ULL << rc->memory_address_limit) - 1;
1417 
1418 	return 0;
1419 }
1420 
1421 /**
1422  * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1423  * @dev: device to lookup
1424  * @limit: DMA limit result pointer
1425  *
1426  * Return: 0 on success, an error otherwise.
1427  */
1428 int iort_dma_get_ranges(struct device *dev, u64 *limit)
1429 {
1430 	if (dev_is_pci(dev))
1431 		return rc_dma_get_range(dev, limit);
1432 	else
1433 		return nc_dma_get_range(dev, limit);
1434 }
1435 
1436 static void __init acpi_iort_register_irq(int hwirq, const char *name,
1437 					  int trigger,
1438 					  struct resource *res)
1439 {
1440 	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1441 				    ACPI_ACTIVE_HIGH);
1442 
1443 	if (irq <= 0) {
1444 		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1445 								      name);
1446 		return;
1447 	}
1448 
1449 	res->start = irq;
1450 	res->end = irq;
1451 	res->flags = IORESOURCE_IRQ;
1452 	res->name = name;
1453 }
1454 
1455 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1456 {
1457 	struct acpi_iort_smmu_v3 *smmu;
1458 	/* Always present mem resource */
1459 	int num_res = 1;
1460 
1461 	/* Retrieve SMMUv3 specific data */
1462 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1463 
1464 	if (smmu->event_gsiv)
1465 		num_res++;
1466 
1467 	if (smmu->pri_gsiv)
1468 		num_res++;
1469 
1470 	if (smmu->gerr_gsiv)
1471 		num_res++;
1472 
1473 	if (smmu->sync_gsiv)
1474 		num_res++;
1475 
1476 	return num_res;
1477 }
1478 
1479 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1480 {
1481 	/*
1482 	 * Cavium ThunderX2 implementation doesn't not support unique
1483 	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1484 	 */
1485 	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1486 		return false;
1487 
1488 	/*
1489 	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1490 	 * SPI numbers here.
1491 	 */
1492 	return smmu->event_gsiv == smmu->pri_gsiv &&
1493 	       smmu->event_gsiv == smmu->gerr_gsiv &&
1494 	       smmu->event_gsiv == smmu->sync_gsiv;
1495 }
1496 
1497 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1498 {
1499 	/*
1500 	 * Override the size, for Cavium ThunderX2 implementation
1501 	 * which doesn't support the page 1 SMMU register space.
1502 	 */
1503 	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1504 		return SZ_64K;
1505 
1506 	return SZ_128K;
1507 }
1508 
1509 static void __init arm_smmu_v3_init_resources(struct resource *res,
1510 					      struct acpi_iort_node *node)
1511 {
1512 	struct acpi_iort_smmu_v3 *smmu;
1513 	int num_res = 0;
1514 
1515 	/* Retrieve SMMUv3 specific data */
1516 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1517 
1518 	res[num_res].start = smmu->base_address;
1519 	res[num_res].end = smmu->base_address +
1520 				arm_smmu_v3_resource_size(smmu) - 1;
1521 	res[num_res].flags = IORESOURCE_MEM;
1522 
1523 	num_res++;
1524 	if (arm_smmu_v3_is_combined_irq(smmu)) {
1525 		if (smmu->event_gsiv)
1526 			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1527 					       ACPI_EDGE_SENSITIVE,
1528 					       &res[num_res++]);
1529 	} else {
1530 
1531 		if (smmu->event_gsiv)
1532 			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1533 					       ACPI_EDGE_SENSITIVE,
1534 					       &res[num_res++]);
1535 
1536 		if (smmu->pri_gsiv)
1537 			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1538 					       ACPI_EDGE_SENSITIVE,
1539 					       &res[num_res++]);
1540 
1541 		if (smmu->gerr_gsiv)
1542 			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1543 					       ACPI_EDGE_SENSITIVE,
1544 					       &res[num_res++]);
1545 
1546 		if (smmu->sync_gsiv)
1547 			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1548 					       ACPI_EDGE_SENSITIVE,
1549 					       &res[num_res++]);
1550 	}
1551 }
1552 
1553 static void __init arm_smmu_v3_dma_configure(struct device *dev,
1554 					     struct acpi_iort_node *node)
1555 {
1556 	struct acpi_iort_smmu_v3 *smmu;
1557 	enum dev_dma_attr attr;
1558 
1559 	/* Retrieve SMMUv3 specific data */
1560 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1561 
1562 	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1563 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1564 
1565 	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1566 	dev->dma_mask = &dev->coherent_dma_mask;
1567 
1568 	/* Configure DMA for the page table walker */
1569 	acpi_dma_configure(dev, attr);
1570 }
1571 
1572 #if defined(CONFIG_ACPI_NUMA)
1573 /*
1574  * set numa proximity domain for smmuv3 device
1575  */
1576 static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1577 					      struct acpi_iort_node *node)
1578 {
1579 	struct acpi_iort_smmu_v3 *smmu;
1580 
1581 	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1582 	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1583 		int dev_node = pxm_to_node(smmu->pxm);
1584 
1585 		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1586 			return -EINVAL;
1587 
1588 		set_dev_node(dev, dev_node);
1589 		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1590 			smmu->base_address,
1591 			smmu->pxm);
1592 	}
1593 	return 0;
1594 }
1595 #else
1596 #define arm_smmu_v3_set_proximity NULL
1597 #endif
1598 
1599 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1600 {
1601 	struct acpi_iort_smmu *smmu;
1602 
1603 	/* Retrieve SMMU specific data */
1604 	smmu = (struct acpi_iort_smmu *)node->node_data;
1605 
1606 	/*
1607 	 * Only consider the global fault interrupt and ignore the
1608 	 * configuration access interrupt.
1609 	 *
1610 	 * MMIO address and global fault interrupt resources are always
1611 	 * present so add them to the context interrupt count as a static
1612 	 * value.
1613 	 */
1614 	return smmu->context_interrupt_count + 2;
1615 }
1616 
1617 static void __init arm_smmu_init_resources(struct resource *res,
1618 					   struct acpi_iort_node *node)
1619 {
1620 	struct acpi_iort_smmu *smmu;
1621 	int i, hw_irq, trigger, num_res = 0;
1622 	u64 *ctx_irq, *glb_irq;
1623 
1624 	/* Retrieve SMMU specific data */
1625 	smmu = (struct acpi_iort_smmu *)node->node_data;
1626 
1627 	res[num_res].start = smmu->base_address;
1628 	res[num_res].end = smmu->base_address + smmu->span - 1;
1629 	res[num_res].flags = IORESOURCE_MEM;
1630 	num_res++;
1631 
1632 	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1633 	/* Global IRQs */
1634 	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1635 	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1636 
1637 	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1638 				     &res[num_res++]);
1639 
1640 	/* Context IRQs */
1641 	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1642 	for (i = 0; i < smmu->context_interrupt_count; i++) {
1643 		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1644 		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1645 
1646 		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1647 				       &res[num_res++]);
1648 	}
1649 }
1650 
1651 static void __init arm_smmu_dma_configure(struct device *dev,
1652 					  struct acpi_iort_node *node)
1653 {
1654 	struct acpi_iort_smmu *smmu;
1655 	enum dev_dma_attr attr;
1656 
1657 	/* Retrieve SMMU specific data */
1658 	smmu = (struct acpi_iort_smmu *)node->node_data;
1659 
1660 	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1661 			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1662 
1663 	/* We expect the dma masks to be equivalent for SMMU set-ups */
1664 	dev->dma_mask = &dev->coherent_dma_mask;
1665 
1666 	/* Configure DMA for the page table walker */
1667 	acpi_dma_configure(dev, attr);
1668 }
1669 
1670 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1671 {
1672 	struct acpi_iort_pmcg *pmcg;
1673 
1674 	/* Retrieve PMCG specific data */
1675 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1676 
1677 	/*
1678 	 * There are always 2 memory resources.
1679 	 * If the overflow_gsiv is present then add that for a total of 3.
1680 	 */
1681 	return pmcg->overflow_gsiv ? 3 : 2;
1682 }
1683 
1684 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1685 						   struct acpi_iort_node *node)
1686 {
1687 	struct acpi_iort_pmcg *pmcg;
1688 
1689 	/* Retrieve PMCG specific data */
1690 	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1691 
1692 	res[0].start = pmcg->page0_base_address;
1693 	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1694 	res[0].flags = IORESOURCE_MEM;
1695 	/*
1696 	 * The initial version in DEN0049C lacked a way to describe register
1697 	 * page 1, which makes it broken for most PMCG implementations; in
1698 	 * that case, just let the driver fail gracefully if it expects to
1699 	 * find a second memory resource.
1700 	 */
1701 	if (node->revision > 0) {
1702 		res[1].start = pmcg->page1_base_address;
1703 		res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1704 		res[1].flags = IORESOURCE_MEM;
1705 	}
1706 
1707 	if (pmcg->overflow_gsiv)
1708 		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1709 				       ACPI_EDGE_SENSITIVE, &res[2]);
1710 }
1711 
1712 static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1713 	/* HiSilicon Hip08 Platform */
1714 	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1715 	 "Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1716 	/* HiSilicon Hip09 Platform */
1717 	{"HISI  ", "HIP09   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1718 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1719 	{"HISI  ", "HIP09A  ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1720 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1721 	/* HiSilicon Hip10/11 Platform uses the same SMMU IP with Hip09 */
1722 	{"HISI  ", "HIP10   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1723 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1724 	{"HISI  ", "HIP10C  ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1725 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1726 	{"HISI  ", "HIP11   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1727 	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1728 	{ }
1729 };
1730 
1731 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1732 {
1733 	u32 model;
1734 	int idx;
1735 
1736 	idx = acpi_match_platform_list(pmcg_plat_info);
1737 	if (idx >= 0)
1738 		model = pmcg_plat_info[idx].data;
1739 	else
1740 		model = IORT_SMMU_V3_PMCG_GENERIC;
1741 
1742 	return platform_device_add_data(pdev, &model, sizeof(model));
1743 }
1744 
1745 struct iort_dev_config {
1746 	const char *name;
1747 	int (*dev_init)(struct acpi_iort_node *node);
1748 	void (*dev_dma_configure)(struct device *dev,
1749 				  struct acpi_iort_node *node);
1750 	int (*dev_count_resources)(struct acpi_iort_node *node);
1751 	void (*dev_init_resources)(struct resource *res,
1752 				     struct acpi_iort_node *node);
1753 	int (*dev_set_proximity)(struct device *dev,
1754 				    struct acpi_iort_node *node);
1755 	int (*dev_add_platdata)(struct platform_device *pdev);
1756 };
1757 
1758 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1759 	.name = "arm-smmu-v3",
1760 	.dev_dma_configure = arm_smmu_v3_dma_configure,
1761 	.dev_count_resources = arm_smmu_v3_count_resources,
1762 	.dev_init_resources = arm_smmu_v3_init_resources,
1763 	.dev_set_proximity = arm_smmu_v3_set_proximity,
1764 };
1765 
1766 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1767 	.name = "arm-smmu",
1768 	.dev_dma_configure = arm_smmu_dma_configure,
1769 	.dev_count_resources = arm_smmu_count_resources,
1770 	.dev_init_resources = arm_smmu_init_resources,
1771 };
1772 
1773 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1774 	.name = "arm-smmu-v3-pmcg",
1775 	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1776 	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1777 	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1778 };
1779 
1780 static __init const struct iort_dev_config *iort_get_dev_cfg(
1781 			struct acpi_iort_node *node)
1782 {
1783 	switch (node->type) {
1784 	case ACPI_IORT_NODE_SMMU_V3:
1785 		return &iort_arm_smmu_v3_cfg;
1786 	case ACPI_IORT_NODE_SMMU:
1787 		return &iort_arm_smmu_cfg;
1788 	case ACPI_IORT_NODE_PMCG:
1789 		return &iort_arm_smmu_v3_pmcg_cfg;
1790 	default:
1791 		return NULL;
1792 	}
1793 }
1794 
1795 /**
1796  * iort_add_platform_device() - Allocate a platform device for IORT node
1797  * @node: Pointer to device ACPI IORT node
1798  * @ops: Pointer to IORT device config struct
1799  *
1800  * Returns: 0 on success, <0 failure
1801  */
1802 static int __init iort_add_platform_device(struct acpi_iort_node *node,
1803 					   const struct iort_dev_config *ops)
1804 {
1805 	struct fwnode_handle *fwnode;
1806 	struct platform_device *pdev;
1807 	struct resource *r;
1808 	int ret, count;
1809 
1810 	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1811 	if (!pdev)
1812 		return -ENOMEM;
1813 
1814 	if (ops->dev_set_proximity) {
1815 		ret = ops->dev_set_proximity(&pdev->dev, node);
1816 		if (ret)
1817 			goto dev_put;
1818 	}
1819 
1820 	count = ops->dev_count_resources(node);
1821 
1822 	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1823 	if (!r) {
1824 		ret = -ENOMEM;
1825 		goto dev_put;
1826 	}
1827 
1828 	ops->dev_init_resources(r, node);
1829 
1830 	ret = platform_device_add_resources(pdev, r, count);
1831 	/*
1832 	 * Resources are duplicated in platform_device_add_resources,
1833 	 * free their allocated memory
1834 	 */
1835 	kfree(r);
1836 
1837 	if (ret)
1838 		goto dev_put;
1839 
1840 	/*
1841 	 * Platform devices based on PMCG nodes uses platform_data to
1842 	 * pass the hardware model info to the driver. For others, add
1843 	 * a copy of IORT node pointer to platform_data to be used to
1844 	 * retrieve IORT data information.
1845 	 */
1846 	if (ops->dev_add_platdata)
1847 		ret = ops->dev_add_platdata(pdev);
1848 	else
1849 		ret = platform_device_add_data(pdev, &node, sizeof(node));
1850 
1851 	if (ret)
1852 		goto dev_put;
1853 
1854 	fwnode = iort_get_fwnode(node);
1855 
1856 	if (!fwnode) {
1857 		ret = -ENODEV;
1858 		goto dev_put;
1859 	}
1860 
1861 	pdev->dev.fwnode = fwnode;
1862 
1863 	if (ops->dev_dma_configure)
1864 		ops->dev_dma_configure(&pdev->dev, node);
1865 
1866 	iort_set_device_domain(&pdev->dev, node);
1867 
1868 	ret = platform_device_add(pdev);
1869 	if (ret)
1870 		goto dma_deconfigure;
1871 
1872 	return 0;
1873 
1874 dma_deconfigure:
1875 	arch_teardown_dma_ops(&pdev->dev);
1876 dev_put:
1877 	platform_device_put(pdev);
1878 
1879 	return ret;
1880 }
1881 
1882 #ifdef CONFIG_PCI
1883 static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1884 {
1885 	static bool acs_enabled __initdata;
1886 
1887 	if (acs_enabled)
1888 		return;
1889 
1890 	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1891 		struct acpi_iort_node *parent;
1892 		struct acpi_iort_id_mapping *map;
1893 		int i;
1894 
1895 		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1896 				   iort_node->mapping_offset);
1897 
1898 		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1899 			if (!map->output_reference)
1900 				continue;
1901 
1902 			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1903 					iort_table,  map->output_reference);
1904 			/*
1905 			 * If we detect a RC->SMMU mapping, make sure
1906 			 * we enable ACS on the system.
1907 			 */
1908 			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1909 				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1910 				pci_request_acs();
1911 				acs_enabled = true;
1912 				return;
1913 			}
1914 		}
1915 	}
1916 }
1917 #else
1918 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1919 #endif
1920 
1921 static void __init iort_init_platform_devices(void)
1922 {
1923 	struct acpi_iort_node *iort_node, *iort_end;
1924 	struct acpi_table_iort *iort;
1925 	struct fwnode_handle *fwnode;
1926 	int i, ret;
1927 	const struct iort_dev_config *ops;
1928 
1929 	/*
1930 	 * iort_table and iort both point to the start of IORT table, but
1931 	 * have different struct types
1932 	 */
1933 	iort = (struct acpi_table_iort *)iort_table;
1934 
1935 	/* Get the first IORT node */
1936 	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1937 				 iort->node_offset);
1938 	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1939 				iort_table->length);
1940 
1941 	for (i = 0; i < iort->node_count; i++) {
1942 		if (iort_node >= iort_end) {
1943 			pr_err("iort node pointer overflows, bad table\n");
1944 			return;
1945 		}
1946 
1947 		iort_enable_acs(iort_node);
1948 
1949 		ops = iort_get_dev_cfg(iort_node);
1950 		if (ops) {
1951 			fwnode = acpi_alloc_fwnode_static();
1952 			if (!fwnode)
1953 				return;
1954 
1955 			iort_set_fwnode(iort_node, fwnode);
1956 
1957 			ret = iort_add_platform_device(iort_node, ops);
1958 			if (ret) {
1959 				iort_delete_fwnode(iort_node);
1960 				acpi_free_fwnode_static(fwnode);
1961 				return;
1962 			}
1963 		}
1964 
1965 		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1966 					 iort_node->length);
1967 	}
1968 }
1969 
1970 void __init acpi_iort_init(void)
1971 {
1972 	acpi_status status;
1973 
1974 	/* iort_table will be used at runtime after the iort init,
1975 	 * so we don't need to call acpi_put_table() to release
1976 	 * the IORT table mapping.
1977 	 */
1978 	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1979 	if (ACPI_FAILURE(status)) {
1980 		if (status != AE_NOT_FOUND) {
1981 			const char *msg = acpi_format_exception(status);
1982 
1983 			pr_err("Failed to get table, %s\n", msg);
1984 		}
1985 
1986 		return;
1987 	}
1988 
1989 	iort_init_platform_devices();
1990 }
1991 
1992 #ifdef CONFIG_ZONE_DMA
1993 /*
1994  * Extract the highest CPU physical address accessible to all DMA masters in
1995  * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1996  */
1997 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1998 {
1999 	phys_addr_t limit = PHYS_ADDR_MAX;
2000 	struct acpi_iort_node *node, *end;
2001 	struct acpi_table_iort *iort;
2002 	acpi_status status;
2003 	int i;
2004 
2005 	if (acpi_disabled)
2006 		return limit;
2007 
2008 	status = acpi_get_table(ACPI_SIG_IORT, 0,
2009 				(struct acpi_table_header **)&iort);
2010 	if (ACPI_FAILURE(status))
2011 		return limit;
2012 
2013 	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2014 	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2015 
2016 	for (i = 0; i < iort->node_count; i++) {
2017 		if (node >= end)
2018 			break;
2019 
2020 		switch (node->type) {
2021 			struct acpi_iort_named_component *ncomp;
2022 			struct acpi_iort_root_complex *rc;
2023 			phys_addr_t local_limit;
2024 
2025 		case ACPI_IORT_NODE_NAMED_COMPONENT:
2026 			ncomp = (struct acpi_iort_named_component *)node->node_data;
2027 			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2028 			limit = min_not_zero(limit, local_limit);
2029 			break;
2030 
2031 		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2032 			if (node->revision < 1)
2033 				break;
2034 
2035 			rc = (struct acpi_iort_root_complex *)node->node_data;
2036 			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2037 			limit = min_not_zero(limit, local_limit);
2038 			break;
2039 		}
2040 		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2041 	}
2042 	acpi_put_table(&iort->header);
2043 	return limit;
2044 }
2045 #endif
2046