1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016, Semihalf 4 * Author: Tomasz Nowicki <tn@semihalf.com> 5 * 6 * This file implements early detection/parsing of I/O mapping 7 * reported to OS through firmware via I/O Remapping Table (IORT) 8 * IORT document number: ARM DEN 0049A 9 */ 10 11 #define pr_fmt(fmt) "ACPI: IORT: " fmt 12 13 #include <linux/acpi_iort.h> 14 #include <linux/bitfield.h> 15 #include <linux/iommu.h> 16 #include <linux/kernel.h> 17 #include <linux/list.h> 18 #include <linux/pci.h> 19 #include <linux/platform_device.h> 20 #include <linux/slab.h> 21 #include <linux/dma-map-ops.h> 22 #include "init.h" 23 24 #define IORT_TYPE_MASK(type) (1 << (type)) 25 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) 26 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ 27 (1 << ACPI_IORT_NODE_SMMU_V3)) 28 29 struct iort_its_msi_chip { 30 struct list_head list; 31 struct fwnode_handle *fw_node; 32 phys_addr_t base_addr; 33 u32 translation_id; 34 }; 35 36 struct iort_fwnode { 37 struct list_head list; 38 struct acpi_iort_node *iort_node; 39 struct fwnode_handle *fwnode; 40 }; 41 static LIST_HEAD(iort_fwnode_list); 42 static DEFINE_SPINLOCK(iort_fwnode_lock); 43 44 /** 45 * iort_set_fwnode() - Create iort_fwnode and use it to register 46 * iommu data in the iort_fwnode_list 47 * 48 * @iort_node: IORT table node associated with the IOMMU 49 * @fwnode: fwnode associated with the IORT node 50 * 51 * Returns: 0 on success 52 * <0 on failure 53 */ 54 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, 55 struct fwnode_handle *fwnode) 56 { 57 struct iort_fwnode *np; 58 59 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); 60 61 if (WARN_ON(!np)) 62 return -ENOMEM; 63 64 INIT_LIST_HEAD(&np->list); 65 np->iort_node = iort_node; 66 np->fwnode = fwnode; 67 68 spin_lock(&iort_fwnode_lock); 69 list_add_tail(&np->list, &iort_fwnode_list); 70 spin_unlock(&iort_fwnode_lock); 71 72 return 0; 73 } 74 75 /** 76 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node 77 * 78 * @node: IORT table node to be looked-up 79 * 80 * Returns: fwnode_handle pointer on success, NULL on failure 81 */ 82 static inline struct fwnode_handle *iort_get_fwnode( 83 struct acpi_iort_node *node) 84 { 85 struct iort_fwnode *curr; 86 struct fwnode_handle *fwnode = NULL; 87 88 spin_lock(&iort_fwnode_lock); 89 list_for_each_entry(curr, &iort_fwnode_list, list) { 90 if (curr->iort_node == node) { 91 fwnode = curr->fwnode; 92 break; 93 } 94 } 95 spin_unlock(&iort_fwnode_lock); 96 97 return fwnode; 98 } 99 100 /** 101 * iort_delete_fwnode() - Delete fwnode associated with an IORT node 102 * 103 * @node: IORT table node associated with fwnode to delete 104 */ 105 static inline void iort_delete_fwnode(struct acpi_iort_node *node) 106 { 107 struct iort_fwnode *curr, *tmp; 108 109 spin_lock(&iort_fwnode_lock); 110 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { 111 if (curr->iort_node == node) { 112 list_del(&curr->list); 113 kfree(curr); 114 break; 115 } 116 } 117 spin_unlock(&iort_fwnode_lock); 118 } 119 120 /** 121 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode 122 * 123 * @fwnode: fwnode associated with device to be looked-up 124 * 125 * Returns: iort_node pointer on success, NULL on failure 126 */ 127 static inline struct acpi_iort_node *iort_get_iort_node( 128 struct fwnode_handle *fwnode) 129 { 130 struct iort_fwnode *curr; 131 struct acpi_iort_node *iort_node = NULL; 132 133 spin_lock(&iort_fwnode_lock); 134 list_for_each_entry(curr, &iort_fwnode_list, list) { 135 if (curr->fwnode == fwnode) { 136 iort_node = curr->iort_node; 137 break; 138 } 139 } 140 spin_unlock(&iort_fwnode_lock); 141 142 return iort_node; 143 } 144 145 typedef acpi_status (*iort_find_node_callback) 146 (struct acpi_iort_node *node, void *context); 147 148 /* Root pointer to the mapped IORT table */ 149 static struct acpi_table_header *iort_table; 150 151 static LIST_HEAD(iort_msi_chip_list); 152 static DEFINE_SPINLOCK(iort_msi_chip_lock); 153 154 /** 155 * iort_register_domain_token() - register domain token along with related 156 * ITS ID and base address to the list from where we can get it back later on. 157 * @trans_id: ITS ID. 158 * @base: ITS base address. 159 * @fw_node: Domain token. 160 * 161 * Returns: 0 on success, -ENOMEM if no memory when allocating list element 162 */ 163 int iort_register_domain_token(int trans_id, phys_addr_t base, 164 struct fwnode_handle *fw_node) 165 { 166 struct iort_its_msi_chip *its_msi_chip; 167 168 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); 169 if (!its_msi_chip) 170 return -ENOMEM; 171 172 its_msi_chip->fw_node = fw_node; 173 its_msi_chip->translation_id = trans_id; 174 its_msi_chip->base_addr = base; 175 176 spin_lock(&iort_msi_chip_lock); 177 list_add(&its_msi_chip->list, &iort_msi_chip_list); 178 spin_unlock(&iort_msi_chip_lock); 179 180 return 0; 181 } 182 183 /** 184 * iort_deregister_domain_token() - Deregister domain token based on ITS ID 185 * @trans_id: ITS ID. 186 * 187 * Returns: none. 188 */ 189 void iort_deregister_domain_token(int trans_id) 190 { 191 struct iort_its_msi_chip *its_msi_chip, *t; 192 193 spin_lock(&iort_msi_chip_lock); 194 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { 195 if (its_msi_chip->translation_id == trans_id) { 196 list_del(&its_msi_chip->list); 197 kfree(its_msi_chip); 198 break; 199 } 200 } 201 spin_unlock(&iort_msi_chip_lock); 202 } 203 204 /** 205 * iort_find_domain_token() - Find domain token based on given ITS ID 206 * @trans_id: ITS ID. 207 * 208 * Returns: domain token when find on the list, NULL otherwise 209 */ 210 struct fwnode_handle *iort_find_domain_token(int trans_id) 211 { 212 struct fwnode_handle *fw_node = NULL; 213 struct iort_its_msi_chip *its_msi_chip; 214 215 spin_lock(&iort_msi_chip_lock); 216 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 217 if (its_msi_chip->translation_id == trans_id) { 218 fw_node = its_msi_chip->fw_node; 219 break; 220 } 221 } 222 spin_unlock(&iort_msi_chip_lock); 223 224 return fw_node; 225 } 226 227 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, 228 iort_find_node_callback callback, 229 void *context) 230 { 231 struct acpi_iort_node *iort_node, *iort_end; 232 struct acpi_table_iort *iort; 233 int i; 234 235 if (!iort_table) 236 return NULL; 237 238 /* Get the first IORT node */ 239 iort = (struct acpi_table_iort *)iort_table; 240 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 241 iort->node_offset); 242 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 243 iort_table->length); 244 245 for (i = 0; i < iort->node_count; i++) { 246 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 247 "IORT node pointer overflows, bad table!\n")) 248 return NULL; 249 250 if (iort_node->type == type && 251 ACPI_SUCCESS(callback(iort_node, context))) 252 return iort_node; 253 254 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 255 iort_node->length); 256 } 257 258 return NULL; 259 } 260 261 static acpi_status iort_match_node_callback(struct acpi_iort_node *node, 262 void *context) 263 { 264 struct device *dev = context; 265 acpi_status status = AE_NOT_FOUND; 266 267 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { 268 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; 269 struct acpi_device *adev; 270 struct acpi_iort_named_component *ncomp; 271 struct device *nc_dev = dev; 272 273 /* 274 * Walk the device tree to find a device with an 275 * ACPI companion; there is no point in scanning 276 * IORT for a device matching a named component if 277 * the device does not have an ACPI companion to 278 * start with. 279 */ 280 do { 281 adev = ACPI_COMPANION(nc_dev); 282 if (adev) 283 break; 284 285 nc_dev = nc_dev->parent; 286 } while (nc_dev); 287 288 if (!adev) 289 goto out; 290 291 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); 292 if (ACPI_FAILURE(status)) { 293 dev_warn(nc_dev, "Can't get device full path name\n"); 294 goto out; 295 } 296 297 ncomp = (struct acpi_iort_named_component *)node->node_data; 298 status = !strcmp(ncomp->device_name, buf.pointer) ? 299 AE_OK : AE_NOT_FOUND; 300 acpi_os_free(buf.pointer); 301 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 302 struct acpi_iort_root_complex *pci_rc; 303 struct pci_bus *bus; 304 305 bus = to_pci_bus(dev); 306 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 307 308 /* 309 * It is assumed that PCI segment numbers maps one-to-one 310 * with root complexes. Each segment number can represent only 311 * one root complex. 312 */ 313 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? 314 AE_OK : AE_NOT_FOUND; 315 } 316 out: 317 return status; 318 } 319 320 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, 321 u32 *rid_out, bool check_overlap) 322 { 323 /* Single mapping does not care for input id */ 324 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 325 if (type == ACPI_IORT_NODE_NAMED_COMPONENT || 326 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 327 *rid_out = map->output_base; 328 return 0; 329 } 330 331 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", 332 map, type); 333 return -ENXIO; 334 } 335 336 if (rid_in < map->input_base || 337 (rid_in > map->input_base + map->id_count)) 338 return -ENXIO; 339 340 if (check_overlap) { 341 /* 342 * We already found a mapping for this input ID at the end of 343 * another region. If it coincides with the start of this 344 * region, we assume the prior match was due to the off-by-1 345 * issue mentioned below, and allow it to be superseded. 346 * Otherwise, things are *really* broken, and we just disregard 347 * duplicate matches entirely to retain compatibility. 348 */ 349 pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", 350 map, rid_in); 351 if (rid_in != map->input_base) 352 return -ENXIO; 353 354 pr_err(FW_BUG "applying workaround.\n"); 355 } 356 357 *rid_out = map->output_base + (rid_in - map->input_base); 358 359 /* 360 * Due to confusion regarding the meaning of the id_count field (which 361 * carries the number of IDs *minus 1*), we may have to disregard this 362 * match if it is at the end of the range, and overlaps with the start 363 * of another one. 364 */ 365 if (map->id_count > 0 && rid_in == map->input_base + map->id_count) 366 return -EAGAIN; 367 return 0; 368 } 369 370 static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, 371 u32 *id_out, int index) 372 { 373 struct acpi_iort_node *parent; 374 struct acpi_iort_id_mapping *map; 375 376 if (!node->mapping_offset || !node->mapping_count || 377 index >= node->mapping_count) 378 return NULL; 379 380 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 381 node->mapping_offset + index * sizeof(*map)); 382 383 /* Firmware bug! */ 384 if (!map->output_reference) { 385 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 386 node, node->type); 387 return NULL; 388 } 389 390 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 391 map->output_reference); 392 393 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { 394 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || 395 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || 396 node->type == ACPI_IORT_NODE_SMMU_V3 || 397 node->type == ACPI_IORT_NODE_PMCG) { 398 *id_out = map->output_base; 399 return parent; 400 } 401 } 402 403 return NULL; 404 } 405 406 #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID 407 #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4) 408 #endif 409 410 static int iort_get_id_mapping_index(struct acpi_iort_node *node) 411 { 412 struct acpi_iort_smmu_v3 *smmu; 413 struct acpi_iort_pmcg *pmcg; 414 415 switch (node->type) { 416 case ACPI_IORT_NODE_SMMU_V3: 417 /* 418 * SMMUv3 dev ID mapping index was introduced in revision 1 419 * table, not available in revision 0 420 */ 421 if (node->revision < 1) 422 return -EINVAL; 423 424 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 425 /* 426 * Until IORT E.e (node rev. 5), the ID mapping index was 427 * defined to be valid unless all interrupts are GSIV-based. 428 */ 429 if (node->revision < 5) { 430 if (smmu->event_gsiv && smmu->pri_gsiv && 431 smmu->gerr_gsiv && smmu->sync_gsiv) 432 return -EINVAL; 433 } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) { 434 return -EINVAL; 435 } 436 437 if (smmu->id_mapping_index >= node->mapping_count) { 438 pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", 439 node, node->type); 440 return -EINVAL; 441 } 442 443 return smmu->id_mapping_index; 444 case ACPI_IORT_NODE_PMCG: 445 pmcg = (struct acpi_iort_pmcg *)node->node_data; 446 if (pmcg->overflow_gsiv || node->mapping_count == 0) 447 return -EINVAL; 448 449 return 0; 450 default: 451 return -EINVAL; 452 } 453 } 454 455 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, 456 u32 id_in, u32 *id_out, 457 u8 type_mask) 458 { 459 u32 id = id_in; 460 461 /* Parse the ID mapping tree to find specified node type */ 462 while (node) { 463 struct acpi_iort_id_mapping *map; 464 int i, index, rc = 0; 465 u32 out_ref = 0, map_id = id; 466 467 if (IORT_TYPE_MASK(node->type) & type_mask) { 468 if (id_out) 469 *id_out = id; 470 return node; 471 } 472 473 if (!node->mapping_offset || !node->mapping_count) 474 goto fail_map; 475 476 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 477 node->mapping_offset); 478 479 /* Firmware bug! */ 480 if (!map->output_reference) { 481 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", 482 node, node->type); 483 goto fail_map; 484 } 485 486 /* 487 * Get the special ID mapping index (if any) and skip its 488 * associated ID map to prevent erroneous multi-stage 489 * IORT ID translations. 490 */ 491 index = iort_get_id_mapping_index(node); 492 493 /* Do the ID translation */ 494 for (i = 0; i < node->mapping_count; i++, map++) { 495 /* if it is special mapping index, skip it */ 496 if (i == index) 497 continue; 498 499 rc = iort_id_map(map, node->type, map_id, &id, out_ref); 500 if (!rc) 501 break; 502 if (rc == -EAGAIN) 503 out_ref = map->output_reference; 504 } 505 506 if (i == node->mapping_count && !out_ref) 507 goto fail_map; 508 509 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 510 rc ? out_ref : map->output_reference); 511 } 512 513 fail_map: 514 /* Map input ID to output ID unchanged on mapping failure */ 515 if (id_out) 516 *id_out = id_in; 517 518 return NULL; 519 } 520 521 static struct acpi_iort_node *iort_node_map_platform_id( 522 struct acpi_iort_node *node, u32 *id_out, u8 type_mask, 523 int index) 524 { 525 struct acpi_iort_node *parent; 526 u32 id; 527 528 /* step 1: retrieve the initial dev id */ 529 parent = iort_node_get_id(node, &id, index); 530 if (!parent) 531 return NULL; 532 533 /* 534 * optional step 2: map the initial dev id if its parent is not 535 * the target type we want, map it again for the use cases such 536 * as NC (named component) -> SMMU -> ITS. If the type is matched, 537 * return the initial dev id and its parent pointer directly. 538 */ 539 if (!(IORT_TYPE_MASK(parent->type) & type_mask)) 540 parent = iort_node_map_id(parent, id, id_out, type_mask); 541 else 542 if (id_out) 543 *id_out = id; 544 545 return parent; 546 } 547 548 static struct acpi_iort_node *iort_find_dev_node(struct device *dev) 549 { 550 struct pci_bus *pbus; 551 552 if (!dev_is_pci(dev)) { 553 struct acpi_iort_node *node; 554 /* 555 * scan iort_fwnode_list to see if it's an iort platform 556 * device (such as SMMU, PMCG),its iort node already cached 557 * and associated with fwnode when iort platform devices 558 * were initialized. 559 */ 560 node = iort_get_iort_node(dev->fwnode); 561 if (node) 562 return node; 563 /* 564 * if not, then it should be a platform device defined in 565 * DSDT/SSDT (with Named Component node in IORT) 566 */ 567 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 568 iort_match_node_callback, dev); 569 } 570 571 pbus = to_pci_dev(dev)->bus; 572 573 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 574 iort_match_node_callback, &pbus->dev); 575 } 576 577 /** 578 * iort_msi_map_id() - Map a MSI input ID for a device 579 * @dev: The device for which the mapping is to be done. 580 * @input_id: The device input ID. 581 * 582 * Returns: mapped MSI ID on success, input ID otherwise 583 */ 584 u32 iort_msi_map_id(struct device *dev, u32 input_id) 585 { 586 struct acpi_iort_node *node; 587 u32 dev_id; 588 589 node = iort_find_dev_node(dev); 590 if (!node) 591 return input_id; 592 593 iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE); 594 return dev_id; 595 } 596 597 /** 598 * iort_pmsi_get_dev_id() - Get the device id for a device 599 * @dev: The device for which the mapping is to be done. 600 * @dev_id: The device ID found. 601 * 602 * Returns: 0 for successful find a dev id, -ENODEV on error 603 */ 604 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) 605 { 606 int i, index; 607 struct acpi_iort_node *node; 608 609 node = iort_find_dev_node(dev); 610 if (!node) 611 return -ENODEV; 612 613 index = iort_get_id_mapping_index(node); 614 /* if there is a valid index, go get the dev_id directly */ 615 if (index >= 0) { 616 if (iort_node_get_id(node, dev_id, index)) 617 return 0; 618 } else { 619 for (i = 0; i < node->mapping_count; i++) { 620 if (iort_node_map_platform_id(node, dev_id, 621 IORT_MSI_TYPE, i)) 622 return 0; 623 } 624 } 625 626 return -ENODEV; 627 } 628 629 static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) 630 { 631 struct iort_its_msi_chip *its_msi_chip; 632 int ret = -ENODEV; 633 634 spin_lock(&iort_msi_chip_lock); 635 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { 636 if (its_msi_chip->translation_id == its_id) { 637 *base = its_msi_chip->base_addr; 638 ret = 0; 639 break; 640 } 641 } 642 spin_unlock(&iort_msi_chip_lock); 643 644 return ret; 645 } 646 647 /** 648 * iort_dev_find_its_id() - Find the ITS identifier for a device 649 * @dev: The device. 650 * @id: Device's ID 651 * @idx: Index of the ITS identifier list. 652 * @its_id: ITS identifier. 653 * 654 * Returns: 0 on success, appropriate error value otherwise 655 */ 656 static int iort_dev_find_its_id(struct device *dev, u32 id, 657 unsigned int idx, int *its_id) 658 { 659 struct acpi_iort_its_group *its; 660 struct acpi_iort_node *node; 661 662 node = iort_find_dev_node(dev); 663 if (!node) 664 return -ENXIO; 665 666 node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE); 667 if (!node) 668 return -ENXIO; 669 670 /* Move to ITS specific data */ 671 its = (struct acpi_iort_its_group *)node->node_data; 672 if (idx >= its->its_count) { 673 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", 674 idx, its->its_count); 675 return -ENXIO; 676 } 677 678 *its_id = its->identifiers[idx]; 679 return 0; 680 } 681 682 /** 683 * iort_get_device_domain() - Find MSI domain related to a device 684 * @dev: The device. 685 * @id: Requester ID for the device. 686 * @bus_token: irq domain bus token. 687 * 688 * Returns: the MSI domain for this device, NULL otherwise 689 */ 690 struct irq_domain *iort_get_device_domain(struct device *dev, u32 id, 691 enum irq_domain_bus_token bus_token) 692 { 693 struct fwnode_handle *handle; 694 int its_id; 695 696 if (iort_dev_find_its_id(dev, id, 0, &its_id)) 697 return NULL; 698 699 handle = iort_find_domain_token(its_id); 700 if (!handle) 701 return NULL; 702 703 return irq_find_matching_fwnode(handle, bus_token); 704 } 705 706 static void iort_set_device_domain(struct device *dev, 707 struct acpi_iort_node *node) 708 { 709 struct acpi_iort_its_group *its; 710 struct acpi_iort_node *msi_parent; 711 struct acpi_iort_id_mapping *map; 712 struct fwnode_handle *iort_fwnode; 713 struct irq_domain *domain; 714 int index; 715 716 index = iort_get_id_mapping_index(node); 717 if (index < 0) 718 return; 719 720 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 721 node->mapping_offset + index * sizeof(*map)); 722 723 /* Firmware bug! */ 724 if (!map->output_reference || 725 !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { 726 pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", 727 node, node->type); 728 return; 729 } 730 731 msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 732 map->output_reference); 733 734 if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) 735 return; 736 737 /* Move to ITS specific data */ 738 its = (struct acpi_iort_its_group *)msi_parent->node_data; 739 740 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 741 if (!iort_fwnode) 742 return; 743 744 domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 745 if (domain) 746 dev_set_msi_domain(dev, domain); 747 } 748 749 /** 750 * iort_get_platform_device_domain() - Find MSI domain related to a 751 * platform device 752 * @dev: the dev pointer associated with the platform device 753 * 754 * Returns: the MSI domain for this device, NULL otherwise 755 */ 756 static struct irq_domain *iort_get_platform_device_domain(struct device *dev) 757 { 758 struct acpi_iort_node *node, *msi_parent = NULL; 759 struct fwnode_handle *iort_fwnode; 760 struct acpi_iort_its_group *its; 761 int i; 762 763 /* find its associated iort node */ 764 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 765 iort_match_node_callback, dev); 766 if (!node) 767 return NULL; 768 769 /* then find its msi parent node */ 770 for (i = 0; i < node->mapping_count; i++) { 771 msi_parent = iort_node_map_platform_id(node, NULL, 772 IORT_MSI_TYPE, i); 773 if (msi_parent) 774 break; 775 } 776 777 if (!msi_parent) 778 return NULL; 779 780 /* Move to ITS specific data */ 781 its = (struct acpi_iort_its_group *)msi_parent->node_data; 782 783 iort_fwnode = iort_find_domain_token(its->identifiers[0]); 784 if (!iort_fwnode) 785 return NULL; 786 787 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); 788 } 789 790 void acpi_configure_pmsi_domain(struct device *dev) 791 { 792 struct irq_domain *msi_domain; 793 794 msi_domain = iort_get_platform_device_domain(dev); 795 if (msi_domain) 796 dev_set_msi_domain(dev, msi_domain); 797 } 798 799 #ifdef CONFIG_IOMMU_API 800 static void iort_rmr_free(struct device *dev, 801 struct iommu_resv_region *region) 802 { 803 struct iommu_iort_rmr_data *rmr_data; 804 805 rmr_data = container_of(region, struct iommu_iort_rmr_data, rr); 806 kfree(rmr_data->sids); 807 kfree(rmr_data); 808 } 809 810 static struct iommu_iort_rmr_data *iort_rmr_alloc( 811 struct acpi_iort_rmr_desc *rmr_desc, 812 int prot, enum iommu_resv_type type, 813 u32 *sids, u32 num_sids) 814 { 815 struct iommu_iort_rmr_data *rmr_data; 816 struct iommu_resv_region *region; 817 u32 *sids_copy; 818 u64 addr = rmr_desc->base_address, size = rmr_desc->length; 819 820 rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL); 821 if (!rmr_data) 822 return NULL; 823 824 /* Create a copy of SIDs array to associate with this rmr_data */ 825 sids_copy = kmemdup_array(sids, num_sids, sizeof(*sids), GFP_KERNEL); 826 if (!sids_copy) { 827 kfree(rmr_data); 828 return NULL; 829 } 830 rmr_data->sids = sids_copy; 831 rmr_data->num_sids = num_sids; 832 833 if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) { 834 /* PAGE align base addr and size */ 835 addr &= PAGE_MASK; 836 size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address)); 837 838 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n", 839 rmr_desc->base_address, 840 rmr_desc->base_address + rmr_desc->length - 1, 841 addr, addr + size - 1); 842 } 843 844 region = &rmr_data->rr; 845 INIT_LIST_HEAD(®ion->list); 846 region->start = addr; 847 region->length = size; 848 region->prot = prot; 849 region->type = type; 850 region->free = iort_rmr_free; 851 852 return rmr_data; 853 } 854 855 static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc, 856 u32 count) 857 { 858 int i, j; 859 860 for (i = 0; i < count; i++) { 861 u64 end, start = desc[i].base_address, length = desc[i].length; 862 863 if (!length) { 864 pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n", 865 start); 866 continue; 867 } 868 869 end = start + length - 1; 870 871 /* Check for address overlap */ 872 for (j = i + 1; j < count; j++) { 873 u64 e_start = desc[j].base_address; 874 u64 e_end = e_start + desc[j].length - 1; 875 876 if (start <= e_end && end >= e_start) 877 pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n", 878 start, end); 879 } 880 } 881 } 882 883 /* 884 * Please note, we will keep the already allocated RMR reserve 885 * regions in case of a memory allocation failure. 886 */ 887 static void iort_get_rmrs(struct acpi_iort_node *node, 888 struct acpi_iort_node *smmu, 889 u32 *sids, u32 num_sids, 890 struct list_head *head) 891 { 892 struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data; 893 struct acpi_iort_rmr_desc *rmr_desc; 894 int i; 895 896 rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node, 897 rmr->rmr_offset); 898 899 iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count); 900 901 for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) { 902 struct iommu_iort_rmr_data *rmr_data; 903 enum iommu_resv_type type; 904 int prot = IOMMU_READ | IOMMU_WRITE; 905 906 if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED) 907 type = IOMMU_RESV_DIRECT_RELAXABLE; 908 else 909 type = IOMMU_RESV_DIRECT; 910 911 if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE) 912 prot |= IOMMU_PRIV; 913 914 /* Attributes 0x00 - 0x03 represents device memory */ 915 if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <= 916 ACPI_IORT_RMR_ATTR_DEVICE_GRE) 917 prot |= IOMMU_MMIO; 918 else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) == 919 ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB) 920 prot |= IOMMU_CACHE; 921 922 rmr_data = iort_rmr_alloc(rmr_desc, prot, type, 923 sids, num_sids); 924 if (!rmr_data) 925 return; 926 927 list_add_tail(&rmr_data->rr.list, head); 928 } 929 } 930 931 static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start, 932 u32 new_count) 933 { 934 u32 *new_sids; 935 u32 total_count = count + new_count; 936 int i; 937 938 new_sids = krealloc_array(sids, count + new_count, 939 sizeof(*new_sids), GFP_KERNEL); 940 if (!new_sids) { 941 kfree(sids); 942 return NULL; 943 } 944 945 for (i = count; i < total_count; i++) 946 new_sids[i] = id_start++; 947 948 return new_sids; 949 } 950 951 static bool iort_rmr_has_dev(struct device *dev, u32 id_start, 952 u32 id_count) 953 { 954 int i; 955 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 956 957 /* 958 * Make sure the kernel has preserved the boot firmware PCIe 959 * configuration. This is required to ensure that the RMR PCIe 960 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5). 961 */ 962 if (dev_is_pci(dev)) { 963 struct pci_dev *pdev = to_pci_dev(dev); 964 struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus); 965 966 if (!host->preserve_config) 967 return false; 968 } 969 970 for (i = 0; i < fwspec->num_ids; i++) { 971 if (fwspec->ids[i] >= id_start && 972 fwspec->ids[i] <= id_start + id_count) 973 return true; 974 } 975 976 return false; 977 } 978 979 static void iort_node_get_rmr_info(struct acpi_iort_node *node, 980 struct acpi_iort_node *iommu, 981 struct device *dev, struct list_head *head) 982 { 983 struct acpi_iort_node *smmu = NULL; 984 struct acpi_iort_rmr *rmr; 985 struct acpi_iort_id_mapping *map; 986 u32 *sids = NULL; 987 u32 num_sids = 0; 988 int i; 989 990 if (!node->mapping_offset || !node->mapping_count) { 991 pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n", 992 node); 993 return; 994 } 995 996 rmr = (struct acpi_iort_rmr *)node->node_data; 997 if (!rmr->rmr_offset || !rmr->rmr_count) 998 return; 999 1000 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, 1001 node->mapping_offset); 1002 1003 /* 1004 * Go through the ID mappings and see if we have a match for SMMU 1005 * and dev(if !NULL). If found, get the sids for the Node. 1006 * Please note, id_count is equal to the number of IDs in the 1007 * range minus one. 1008 */ 1009 for (i = 0; i < node->mapping_count; i++, map++) { 1010 struct acpi_iort_node *parent; 1011 1012 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, 1013 map->output_reference); 1014 if (parent != iommu) 1015 continue; 1016 1017 /* If dev is valid, check RMR node corresponds to the dev SID */ 1018 if (dev && !iort_rmr_has_dev(dev, map->output_base, 1019 map->id_count)) 1020 continue; 1021 1022 /* Retrieve SIDs associated with the Node. */ 1023 sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base, 1024 map->id_count + 1); 1025 if (!sids) 1026 return; 1027 1028 num_sids += map->id_count + 1; 1029 } 1030 1031 if (!sids) 1032 return; 1033 1034 iort_get_rmrs(node, smmu, sids, num_sids, head); 1035 kfree(sids); 1036 } 1037 1038 static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev, 1039 struct list_head *head) 1040 { 1041 struct acpi_table_iort *iort; 1042 struct acpi_iort_node *iort_node, *iort_end; 1043 int i; 1044 1045 /* Only supports ARM DEN 0049E.d onwards */ 1046 if (iort_table->revision < 5) 1047 return; 1048 1049 iort = (struct acpi_table_iort *)iort_table; 1050 1051 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1052 iort->node_offset); 1053 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1054 iort_table->length); 1055 1056 for (i = 0; i < iort->node_count; i++) { 1057 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, 1058 "IORT node pointer overflows, bad table!\n")) 1059 return; 1060 1061 if (iort_node->type == ACPI_IORT_NODE_RMR) 1062 iort_node_get_rmr_info(iort_node, iommu, dev, head); 1063 1064 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1065 iort_node->length); 1066 } 1067 } 1068 1069 /* 1070 * Populate the RMR list associated with a given IOMMU and dev(if provided). 1071 * If dev is NULL, the function populates all the RMRs associated with the 1072 * given IOMMU. 1073 */ 1074 static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode, 1075 struct device *dev, 1076 struct list_head *head) 1077 { 1078 struct acpi_iort_node *iommu; 1079 1080 iommu = iort_get_iort_node(iommu_fwnode); 1081 if (!iommu) 1082 return; 1083 1084 iort_find_rmrs(iommu, dev, head); 1085 } 1086 1087 static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) 1088 { 1089 struct acpi_iort_node *iommu; 1090 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1091 1092 iommu = iort_get_iort_node(fwspec->iommu_fwnode); 1093 1094 if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { 1095 struct acpi_iort_smmu_v3 *smmu; 1096 1097 smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; 1098 if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) 1099 return iommu; 1100 } 1101 1102 return NULL; 1103 } 1104 1105 /* 1106 * Retrieve platform specific HW MSI reserve regions. 1107 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K) 1108 * associated with the device are the HW MSI reserved regions. 1109 */ 1110 static void iort_iommu_msi_get_resv_regions(struct device *dev, 1111 struct list_head *head) 1112 { 1113 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1114 struct acpi_iort_its_group *its; 1115 struct acpi_iort_node *iommu_node, *its_node = NULL; 1116 int i; 1117 1118 iommu_node = iort_get_msi_resv_iommu(dev); 1119 if (!iommu_node) 1120 return; 1121 1122 /* 1123 * Current logic to reserve ITS regions relies on HW topologies 1124 * where a given PCI or named component maps its IDs to only one 1125 * ITS group; if a PCI or named component can map its IDs to 1126 * different ITS groups through IORT mappings this function has 1127 * to be reworked to ensure we reserve regions for all ITS groups 1128 * a given PCI or named component may map IDs to. 1129 */ 1130 1131 for (i = 0; i < fwspec->num_ids; i++) { 1132 its_node = iort_node_map_id(iommu_node, 1133 fwspec->ids[i], 1134 NULL, IORT_MSI_TYPE); 1135 if (its_node) 1136 break; 1137 } 1138 1139 if (!its_node) 1140 return; 1141 1142 /* Move to ITS specific data */ 1143 its = (struct acpi_iort_its_group *)its_node->node_data; 1144 1145 for (i = 0; i < its->its_count; i++) { 1146 phys_addr_t base; 1147 1148 if (!iort_find_its_base(its->identifiers[i], &base)) { 1149 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; 1150 struct iommu_resv_region *region; 1151 1152 region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, 1153 prot, IOMMU_RESV_MSI, 1154 GFP_KERNEL); 1155 if (region) 1156 list_add_tail(®ion->list, head); 1157 } 1158 } 1159 } 1160 1161 /** 1162 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions. 1163 * @dev: Device from iommu_get_resv_regions() 1164 * @head: Reserved region list from iommu_get_resv_regions() 1165 */ 1166 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1167 { 1168 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1169 1170 iort_iommu_msi_get_resv_regions(dev, head); 1171 iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head); 1172 } 1173 1174 /** 1175 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with 1176 * associated StreamIDs information. 1177 * @iommu_fwnode: fwnode associated with IOMMU 1178 * @head: Resereved region list 1179 */ 1180 void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode, 1181 struct list_head *head) 1182 { 1183 iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head); 1184 } 1185 EXPORT_SYMBOL_GPL(iort_get_rmr_sids); 1186 1187 /** 1188 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions. 1189 * @iommu_fwnode: fwnode associated with IOMMU 1190 * @head: Resereved region list 1191 */ 1192 void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode, 1193 struct list_head *head) 1194 { 1195 struct iommu_resv_region *entry, *next; 1196 1197 list_for_each_entry_safe(entry, next, head, list) 1198 entry->free(NULL, entry); 1199 } 1200 EXPORT_SYMBOL_GPL(iort_put_rmr_sids); 1201 1202 static inline bool iort_iommu_driver_enabled(u8 type) 1203 { 1204 switch (type) { 1205 case ACPI_IORT_NODE_SMMU_V3: 1206 return IS_ENABLED(CONFIG_ARM_SMMU_V3); 1207 case ACPI_IORT_NODE_SMMU: 1208 return IS_ENABLED(CONFIG_ARM_SMMU); 1209 default: 1210 pr_warn("IORT node type %u does not describe an SMMU\n", type); 1211 return false; 1212 } 1213 } 1214 1215 static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) 1216 { 1217 struct acpi_iort_root_complex *pci_rc; 1218 1219 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 1220 return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; 1221 } 1222 1223 static bool iort_pci_rc_supports_canwbs(struct acpi_iort_node *node) 1224 { 1225 struct acpi_iort_memory_access *memory_access; 1226 struct acpi_iort_root_complex *pci_rc; 1227 1228 pci_rc = (struct acpi_iort_root_complex *)node->node_data; 1229 memory_access = 1230 (struct acpi_iort_memory_access *)&pci_rc->memory_properties; 1231 return memory_access->memory_flags & ACPI_IORT_MF_CANWBS; 1232 } 1233 1234 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, 1235 u32 streamid) 1236 { 1237 struct fwnode_handle *iort_fwnode; 1238 1239 /* If there's no SMMU driver at all, give up now */ 1240 if (!node || !iort_iommu_driver_enabled(node->type)) 1241 return -ENODEV; 1242 1243 iort_fwnode = iort_get_fwnode(node); 1244 if (!iort_fwnode) 1245 return -ENODEV; 1246 1247 /* 1248 * If the SMMU drivers are enabled but not loaded/probed 1249 * yet, this will defer. 1250 */ 1251 return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode); 1252 } 1253 1254 struct iort_pci_alias_info { 1255 struct device *dev; 1256 struct acpi_iort_node *node; 1257 }; 1258 1259 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) 1260 { 1261 struct iort_pci_alias_info *info = data; 1262 struct acpi_iort_node *parent; 1263 u32 streamid; 1264 1265 parent = iort_node_map_id(info->node, alias, &streamid, 1266 IORT_IOMMU_TYPE); 1267 return iort_iommu_xlate(info->dev, parent, streamid); 1268 } 1269 1270 static void iort_named_component_init(struct device *dev, 1271 struct acpi_iort_node *node) 1272 { 1273 struct property_entry props[3] = {}; 1274 struct acpi_iort_named_component *nc; 1275 1276 nc = (struct acpi_iort_named_component *)node->node_data; 1277 props[0] = PROPERTY_ENTRY_U32("pasid-num-bits", 1278 FIELD_GET(ACPI_IORT_NC_PASID_BITS, 1279 nc->node_flags)); 1280 if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED) 1281 props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall"); 1282 1283 if (device_create_managed_software_node(dev, props, NULL)) 1284 dev_warn(dev, "Could not add device properties\n"); 1285 } 1286 1287 static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node) 1288 { 1289 struct acpi_iort_node *parent; 1290 int err = -ENODEV, i = 0; 1291 u32 streamid = 0; 1292 1293 do { 1294 1295 parent = iort_node_map_platform_id(node, &streamid, 1296 IORT_IOMMU_TYPE, 1297 i++); 1298 1299 if (parent) 1300 err = iort_iommu_xlate(dev, parent, streamid); 1301 } while (parent && !err); 1302 1303 return err; 1304 } 1305 1306 static int iort_nc_iommu_map_id(struct device *dev, 1307 struct acpi_iort_node *node, 1308 const u32 *in_id) 1309 { 1310 struct acpi_iort_node *parent; 1311 u32 streamid; 1312 1313 parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE); 1314 if (parent) 1315 return iort_iommu_xlate(dev, parent, streamid); 1316 1317 return -ENODEV; 1318 } 1319 1320 1321 /** 1322 * iort_iommu_configure_id - Set-up IOMMU configuration for a device. 1323 * 1324 * @dev: device to configure 1325 * @id_in: optional input id const value pointer 1326 * 1327 * Returns: 0 on success, <0 on failure 1328 */ 1329 int iort_iommu_configure_id(struct device *dev, const u32 *id_in) 1330 { 1331 struct acpi_iort_node *node; 1332 int err = -ENODEV; 1333 1334 if (dev_is_pci(dev)) { 1335 struct iommu_fwspec *fwspec; 1336 struct pci_bus *bus = to_pci_dev(dev)->bus; 1337 struct iort_pci_alias_info info = { .dev = dev }; 1338 1339 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1340 iort_match_node_callback, &bus->dev); 1341 if (!node) 1342 return -ENODEV; 1343 1344 info.node = node; 1345 err = pci_for_each_dma_alias(to_pci_dev(dev), 1346 iort_pci_iommu_init, &info); 1347 1348 fwspec = dev_iommu_fwspec_get(dev); 1349 if (fwspec && iort_pci_rc_supports_ats(node)) 1350 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; 1351 if (fwspec && iort_pci_rc_supports_canwbs(node)) 1352 fwspec->flags |= IOMMU_FWSPEC_PCI_RC_CANWBS; 1353 } else { 1354 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1355 iort_match_node_callback, dev); 1356 if (!node) 1357 return -ENODEV; 1358 1359 err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) : 1360 iort_nc_iommu_map(dev, node); 1361 1362 if (!err) 1363 iort_named_component_init(dev, node); 1364 } 1365 1366 return err; 1367 } 1368 1369 #else 1370 void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) 1371 { } 1372 int iort_iommu_configure_id(struct device *dev, const u32 *input_id) 1373 { return -ENODEV; } 1374 #endif 1375 1376 static int nc_dma_get_range(struct device *dev, u64 *limit) 1377 { 1378 struct acpi_iort_node *node; 1379 struct acpi_iort_named_component *ncomp; 1380 1381 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, 1382 iort_match_node_callback, dev); 1383 if (!node) 1384 return -ENODEV; 1385 1386 ncomp = (struct acpi_iort_named_component *)node->node_data; 1387 1388 if (!ncomp->memory_address_limit) { 1389 pr_warn(FW_BUG "Named component missing memory address limit\n"); 1390 return -EINVAL; 1391 } 1392 1393 *limit = ncomp->memory_address_limit >= 64 ? U64_MAX : 1394 (1ULL << ncomp->memory_address_limit) - 1; 1395 1396 return 0; 1397 } 1398 1399 static int rc_dma_get_range(struct device *dev, u64 *limit) 1400 { 1401 struct acpi_iort_node *node; 1402 struct acpi_iort_root_complex *rc; 1403 struct pci_bus *pbus = to_pci_dev(dev)->bus; 1404 1405 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, 1406 iort_match_node_callback, &pbus->dev); 1407 if (!node || node->revision < 1) 1408 return -ENODEV; 1409 1410 rc = (struct acpi_iort_root_complex *)node->node_data; 1411 1412 if (!rc->memory_address_limit) { 1413 pr_warn(FW_BUG "Root complex missing memory address limit\n"); 1414 return -EINVAL; 1415 } 1416 1417 *limit = rc->memory_address_limit >= 64 ? U64_MAX : 1418 (1ULL << rc->memory_address_limit) - 1; 1419 1420 return 0; 1421 } 1422 1423 /** 1424 * iort_dma_get_ranges() - Look up DMA addressing limit for the device 1425 * @dev: device to lookup 1426 * @limit: DMA limit result pointer 1427 * 1428 * Return: 0 on success, an error otherwise. 1429 */ 1430 int iort_dma_get_ranges(struct device *dev, u64 *limit) 1431 { 1432 if (dev_is_pci(dev)) 1433 return rc_dma_get_range(dev, limit); 1434 else 1435 return nc_dma_get_range(dev, limit); 1436 } 1437 1438 static void __init acpi_iort_register_irq(int hwirq, const char *name, 1439 int trigger, 1440 struct resource *res) 1441 { 1442 int irq = acpi_register_gsi(NULL, hwirq, trigger, 1443 ACPI_ACTIVE_HIGH); 1444 1445 if (irq <= 0) { 1446 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, 1447 name); 1448 return; 1449 } 1450 1451 res->start = irq; 1452 res->end = irq; 1453 res->flags = IORESOURCE_IRQ; 1454 res->name = name; 1455 } 1456 1457 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) 1458 { 1459 struct acpi_iort_smmu_v3 *smmu; 1460 /* Always present mem resource */ 1461 int num_res = 1; 1462 1463 /* Retrieve SMMUv3 specific data */ 1464 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1465 1466 if (smmu->event_gsiv) 1467 num_res++; 1468 1469 if (smmu->pri_gsiv) 1470 num_res++; 1471 1472 if (smmu->gerr_gsiv) 1473 num_res++; 1474 1475 if (smmu->sync_gsiv) 1476 num_res++; 1477 1478 return num_res; 1479 } 1480 1481 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) 1482 { 1483 /* 1484 * Cavium ThunderX2 implementation doesn't not support unique 1485 * irq line. Use single irq line for all the SMMUv3 interrupts. 1486 */ 1487 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1488 return false; 1489 1490 /* 1491 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking 1492 * SPI numbers here. 1493 */ 1494 return smmu->event_gsiv == smmu->pri_gsiv && 1495 smmu->event_gsiv == smmu->gerr_gsiv && 1496 smmu->event_gsiv == smmu->sync_gsiv; 1497 } 1498 1499 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) 1500 { 1501 /* 1502 * Override the size, for Cavium ThunderX2 implementation 1503 * which doesn't support the page 1 SMMU register space. 1504 */ 1505 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) 1506 return SZ_64K; 1507 1508 return SZ_128K; 1509 } 1510 1511 static void __init arm_smmu_v3_init_resources(struct resource *res, 1512 struct acpi_iort_node *node) 1513 { 1514 struct acpi_iort_smmu_v3 *smmu; 1515 int num_res = 0; 1516 1517 /* Retrieve SMMUv3 specific data */ 1518 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1519 1520 res[num_res].start = smmu->base_address; 1521 res[num_res].end = smmu->base_address + 1522 arm_smmu_v3_resource_size(smmu) - 1; 1523 res[num_res].flags = IORESOURCE_MEM; 1524 1525 num_res++; 1526 if (arm_smmu_v3_is_combined_irq(smmu)) { 1527 if (smmu->event_gsiv) 1528 acpi_iort_register_irq(smmu->event_gsiv, "combined", 1529 ACPI_EDGE_SENSITIVE, 1530 &res[num_res++]); 1531 } else { 1532 1533 if (smmu->event_gsiv) 1534 acpi_iort_register_irq(smmu->event_gsiv, "eventq", 1535 ACPI_EDGE_SENSITIVE, 1536 &res[num_res++]); 1537 1538 if (smmu->pri_gsiv) 1539 acpi_iort_register_irq(smmu->pri_gsiv, "priq", 1540 ACPI_EDGE_SENSITIVE, 1541 &res[num_res++]); 1542 1543 if (smmu->gerr_gsiv) 1544 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", 1545 ACPI_EDGE_SENSITIVE, 1546 &res[num_res++]); 1547 1548 if (smmu->sync_gsiv) 1549 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", 1550 ACPI_EDGE_SENSITIVE, 1551 &res[num_res++]); 1552 } 1553 } 1554 1555 static void __init arm_smmu_v3_dma_configure(struct device *dev, 1556 struct acpi_iort_node *node) 1557 { 1558 struct acpi_iort_smmu_v3 *smmu; 1559 enum dev_dma_attr attr; 1560 1561 /* Retrieve SMMUv3 specific data */ 1562 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1563 1564 attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? 1565 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1566 1567 /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ 1568 dev->dma_mask = &dev->coherent_dma_mask; 1569 1570 /* Configure DMA for the page table walker */ 1571 acpi_dma_configure(dev, attr); 1572 } 1573 1574 #if defined(CONFIG_ACPI_NUMA) 1575 /* 1576 * set numa proximity domain for smmuv3 device 1577 */ 1578 static int __init arm_smmu_v3_set_proximity(struct device *dev, 1579 struct acpi_iort_node *node) 1580 { 1581 struct acpi_iort_smmu_v3 *smmu; 1582 1583 smmu = (struct acpi_iort_smmu_v3 *)node->node_data; 1584 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { 1585 int dev_node = pxm_to_node(smmu->pxm); 1586 1587 if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) 1588 return -EINVAL; 1589 1590 set_dev_node(dev, dev_node); 1591 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", 1592 smmu->base_address, 1593 smmu->pxm); 1594 } 1595 return 0; 1596 } 1597 #else 1598 #define arm_smmu_v3_set_proximity NULL 1599 #endif 1600 1601 static int __init arm_smmu_count_resources(struct acpi_iort_node *node) 1602 { 1603 struct acpi_iort_smmu *smmu; 1604 1605 /* Retrieve SMMU specific data */ 1606 smmu = (struct acpi_iort_smmu *)node->node_data; 1607 1608 /* 1609 * Only consider the global fault interrupt and ignore the 1610 * configuration access interrupt. 1611 * 1612 * MMIO address and global fault interrupt resources are always 1613 * present so add them to the context interrupt count as a static 1614 * value. 1615 */ 1616 return smmu->context_interrupt_count + 2; 1617 } 1618 1619 static void __init arm_smmu_init_resources(struct resource *res, 1620 struct acpi_iort_node *node) 1621 { 1622 struct acpi_iort_smmu *smmu; 1623 int i, hw_irq, trigger, num_res = 0; 1624 u64 *ctx_irq, *glb_irq; 1625 1626 /* Retrieve SMMU specific data */ 1627 smmu = (struct acpi_iort_smmu *)node->node_data; 1628 1629 res[num_res].start = smmu->base_address; 1630 res[num_res].end = smmu->base_address + smmu->span - 1; 1631 res[num_res].flags = IORESOURCE_MEM; 1632 num_res++; 1633 1634 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); 1635 /* Global IRQs */ 1636 hw_irq = IORT_IRQ_MASK(glb_irq[0]); 1637 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); 1638 1639 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, 1640 &res[num_res++]); 1641 1642 /* Context IRQs */ 1643 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); 1644 for (i = 0; i < smmu->context_interrupt_count; i++) { 1645 hw_irq = IORT_IRQ_MASK(ctx_irq[i]); 1646 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); 1647 1648 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, 1649 &res[num_res++]); 1650 } 1651 } 1652 1653 static void __init arm_smmu_dma_configure(struct device *dev, 1654 struct acpi_iort_node *node) 1655 { 1656 struct acpi_iort_smmu *smmu; 1657 enum dev_dma_attr attr; 1658 1659 /* Retrieve SMMU specific data */ 1660 smmu = (struct acpi_iort_smmu *)node->node_data; 1661 1662 attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? 1663 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; 1664 1665 /* We expect the dma masks to be equivalent for SMMU set-ups */ 1666 dev->dma_mask = &dev->coherent_dma_mask; 1667 1668 /* Configure DMA for the page table walker */ 1669 acpi_dma_configure(dev, attr); 1670 } 1671 1672 static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) 1673 { 1674 struct acpi_iort_pmcg *pmcg; 1675 1676 /* Retrieve PMCG specific data */ 1677 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1678 1679 /* 1680 * There are always 2 memory resources. 1681 * If the overflow_gsiv is present then add that for a total of 3. 1682 */ 1683 return pmcg->overflow_gsiv ? 3 : 2; 1684 } 1685 1686 static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, 1687 struct acpi_iort_node *node) 1688 { 1689 struct acpi_iort_pmcg *pmcg; 1690 1691 /* Retrieve PMCG specific data */ 1692 pmcg = (struct acpi_iort_pmcg *)node->node_data; 1693 1694 res[0].start = pmcg->page0_base_address; 1695 res[0].end = pmcg->page0_base_address + SZ_4K - 1; 1696 res[0].flags = IORESOURCE_MEM; 1697 /* 1698 * The initial version in DEN0049C lacked a way to describe register 1699 * page 1, which makes it broken for most PMCG implementations; in 1700 * that case, just let the driver fail gracefully if it expects to 1701 * find a second memory resource. 1702 */ 1703 if (node->revision > 0) { 1704 res[1].start = pmcg->page1_base_address; 1705 res[1].end = pmcg->page1_base_address + SZ_4K - 1; 1706 res[1].flags = IORESOURCE_MEM; 1707 } 1708 1709 if (pmcg->overflow_gsiv) 1710 acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", 1711 ACPI_EDGE_SENSITIVE, &res[2]); 1712 } 1713 1714 static struct acpi_platform_list pmcg_plat_info[] __initdata = { 1715 /* HiSilicon Hip08 Platform */ 1716 {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1717 "Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08}, 1718 /* HiSilicon Hip09 Platform */ 1719 {"HISI ", "HIP09 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1720 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09}, 1721 {"HISI ", "HIP09A ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1722 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09}, 1723 /* HiSilicon Hip10/11 Platform uses the same SMMU IP with Hip09 */ 1724 {"HISI ", "HIP10 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1725 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09}, 1726 {"HISI ", "HIP10C ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1727 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09}, 1728 {"HISI ", "HIP11 ", 0, ACPI_SIG_IORT, greater_than_or_equal, 1729 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09}, 1730 { } 1731 }; 1732 1733 static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) 1734 { 1735 u32 model; 1736 int idx; 1737 1738 idx = acpi_match_platform_list(pmcg_plat_info); 1739 if (idx >= 0) 1740 model = pmcg_plat_info[idx].data; 1741 else 1742 model = IORT_SMMU_V3_PMCG_GENERIC; 1743 1744 return platform_device_add_data(pdev, &model, sizeof(model)); 1745 } 1746 1747 struct iort_dev_config { 1748 const char *name; 1749 int (*dev_init)(struct acpi_iort_node *node); 1750 void (*dev_dma_configure)(struct device *dev, 1751 struct acpi_iort_node *node); 1752 int (*dev_count_resources)(struct acpi_iort_node *node); 1753 void (*dev_init_resources)(struct resource *res, 1754 struct acpi_iort_node *node); 1755 int (*dev_set_proximity)(struct device *dev, 1756 struct acpi_iort_node *node); 1757 int (*dev_add_platdata)(struct platform_device *pdev); 1758 }; 1759 1760 static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { 1761 .name = "arm-smmu-v3", 1762 .dev_dma_configure = arm_smmu_v3_dma_configure, 1763 .dev_count_resources = arm_smmu_v3_count_resources, 1764 .dev_init_resources = arm_smmu_v3_init_resources, 1765 .dev_set_proximity = arm_smmu_v3_set_proximity, 1766 }; 1767 1768 static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { 1769 .name = "arm-smmu", 1770 .dev_dma_configure = arm_smmu_dma_configure, 1771 .dev_count_resources = arm_smmu_count_resources, 1772 .dev_init_resources = arm_smmu_init_resources, 1773 }; 1774 1775 static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { 1776 .name = "arm-smmu-v3-pmcg", 1777 .dev_count_resources = arm_smmu_v3_pmcg_count_resources, 1778 .dev_init_resources = arm_smmu_v3_pmcg_init_resources, 1779 .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, 1780 }; 1781 1782 static __init const struct iort_dev_config *iort_get_dev_cfg( 1783 struct acpi_iort_node *node) 1784 { 1785 switch (node->type) { 1786 case ACPI_IORT_NODE_SMMU_V3: 1787 return &iort_arm_smmu_v3_cfg; 1788 case ACPI_IORT_NODE_SMMU: 1789 return &iort_arm_smmu_cfg; 1790 case ACPI_IORT_NODE_PMCG: 1791 return &iort_arm_smmu_v3_pmcg_cfg; 1792 default: 1793 return NULL; 1794 } 1795 } 1796 1797 /** 1798 * iort_add_platform_device() - Allocate a platform device for IORT node 1799 * @node: Pointer to device ACPI IORT node 1800 * @ops: Pointer to IORT device config struct 1801 * 1802 * Returns: 0 on success, <0 failure 1803 */ 1804 static int __init iort_add_platform_device(struct acpi_iort_node *node, 1805 const struct iort_dev_config *ops) 1806 { 1807 struct fwnode_handle *fwnode; 1808 struct platform_device *pdev; 1809 struct resource *r; 1810 int ret, count; 1811 1812 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); 1813 if (!pdev) 1814 return -ENOMEM; 1815 1816 if (ops->dev_set_proximity) { 1817 ret = ops->dev_set_proximity(&pdev->dev, node); 1818 if (ret) 1819 goto dev_put; 1820 } 1821 1822 count = ops->dev_count_resources(node); 1823 1824 r = kcalloc(count, sizeof(*r), GFP_KERNEL); 1825 if (!r) { 1826 ret = -ENOMEM; 1827 goto dev_put; 1828 } 1829 1830 ops->dev_init_resources(r, node); 1831 1832 ret = platform_device_add_resources(pdev, r, count); 1833 /* 1834 * Resources are duplicated in platform_device_add_resources, 1835 * free their allocated memory 1836 */ 1837 kfree(r); 1838 1839 if (ret) 1840 goto dev_put; 1841 1842 /* 1843 * Platform devices based on PMCG nodes uses platform_data to 1844 * pass the hardware model info to the driver. For others, add 1845 * a copy of IORT node pointer to platform_data to be used to 1846 * retrieve IORT data information. 1847 */ 1848 if (ops->dev_add_platdata) 1849 ret = ops->dev_add_platdata(pdev); 1850 else 1851 ret = platform_device_add_data(pdev, &node, sizeof(node)); 1852 1853 if (ret) 1854 goto dev_put; 1855 1856 fwnode = iort_get_fwnode(node); 1857 1858 if (!fwnode) { 1859 ret = -ENODEV; 1860 goto dev_put; 1861 } 1862 1863 pdev->dev.fwnode = fwnode; 1864 1865 if (ops->dev_dma_configure) 1866 ops->dev_dma_configure(&pdev->dev, node); 1867 1868 iort_set_device_domain(&pdev->dev, node); 1869 1870 ret = platform_device_add(pdev); 1871 if (ret) 1872 goto dma_deconfigure; 1873 1874 return 0; 1875 1876 dma_deconfigure: 1877 arch_teardown_dma_ops(&pdev->dev); 1878 dev_put: 1879 platform_device_put(pdev); 1880 1881 return ret; 1882 } 1883 1884 #ifdef CONFIG_PCI 1885 static void __init iort_enable_acs(struct acpi_iort_node *iort_node) 1886 { 1887 static bool acs_enabled __initdata; 1888 1889 if (acs_enabled) 1890 return; 1891 1892 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { 1893 struct acpi_iort_node *parent; 1894 struct acpi_iort_id_mapping *map; 1895 int i; 1896 1897 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, 1898 iort_node->mapping_offset); 1899 1900 for (i = 0; i < iort_node->mapping_count; i++, map++) { 1901 if (!map->output_reference) 1902 continue; 1903 1904 parent = ACPI_ADD_PTR(struct acpi_iort_node, 1905 iort_table, map->output_reference); 1906 /* 1907 * If we detect a RC->SMMU mapping, make sure 1908 * we enable ACS on the system. 1909 */ 1910 if ((parent->type == ACPI_IORT_NODE_SMMU) || 1911 (parent->type == ACPI_IORT_NODE_SMMU_V3)) { 1912 pci_request_acs(); 1913 acs_enabled = true; 1914 return; 1915 } 1916 } 1917 } 1918 } 1919 #else 1920 static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } 1921 #endif 1922 1923 static void __init iort_init_platform_devices(void) 1924 { 1925 struct acpi_iort_node *iort_node, *iort_end; 1926 struct acpi_table_iort *iort; 1927 struct fwnode_handle *fwnode; 1928 int i, ret; 1929 const struct iort_dev_config *ops; 1930 1931 /* 1932 * iort_table and iort both point to the start of IORT table, but 1933 * have different struct types 1934 */ 1935 iort = (struct acpi_table_iort *)iort_table; 1936 1937 /* Get the first IORT node */ 1938 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1939 iort->node_offset); 1940 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, 1941 iort_table->length); 1942 1943 for (i = 0; i < iort->node_count; i++) { 1944 if (iort_node >= iort_end) { 1945 pr_err("iort node pointer overflows, bad table\n"); 1946 return; 1947 } 1948 1949 iort_enable_acs(iort_node); 1950 1951 ops = iort_get_dev_cfg(iort_node); 1952 if (ops) { 1953 fwnode = acpi_alloc_fwnode_static(); 1954 if (!fwnode) 1955 return; 1956 1957 iort_set_fwnode(iort_node, fwnode); 1958 1959 ret = iort_add_platform_device(iort_node, ops); 1960 if (ret) { 1961 iort_delete_fwnode(iort_node); 1962 acpi_free_fwnode_static(fwnode); 1963 return; 1964 } 1965 } 1966 1967 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, 1968 iort_node->length); 1969 } 1970 } 1971 1972 void __init acpi_iort_init(void) 1973 { 1974 acpi_status status; 1975 1976 /* iort_table will be used at runtime after the iort init, 1977 * so we don't need to call acpi_put_table() to release 1978 * the IORT table mapping. 1979 */ 1980 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); 1981 if (ACPI_FAILURE(status)) { 1982 if (status != AE_NOT_FOUND) { 1983 const char *msg = acpi_format_exception(status); 1984 1985 pr_err("Failed to get table, %s\n", msg); 1986 } 1987 1988 return; 1989 } 1990 1991 iort_init_platform_devices(); 1992 } 1993 1994 #ifdef CONFIG_ZONE_DMA 1995 /* 1996 * Extract the highest CPU physical address accessible to all DMA masters in 1997 * the system. PHYS_ADDR_MAX is returned when no constrained device is found. 1998 */ 1999 phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void) 2000 { 2001 phys_addr_t limit = PHYS_ADDR_MAX; 2002 struct acpi_iort_node *node, *end; 2003 struct acpi_table_iort *iort; 2004 acpi_status status; 2005 int i; 2006 2007 if (acpi_disabled) 2008 return limit; 2009 2010 status = acpi_get_table(ACPI_SIG_IORT, 0, 2011 (struct acpi_table_header **)&iort); 2012 if (ACPI_FAILURE(status)) 2013 return limit; 2014 2015 node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset); 2016 end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length); 2017 2018 for (i = 0; i < iort->node_count; i++) { 2019 if (node >= end) 2020 break; 2021 2022 switch (node->type) { 2023 struct acpi_iort_named_component *ncomp; 2024 struct acpi_iort_root_complex *rc; 2025 phys_addr_t local_limit; 2026 2027 case ACPI_IORT_NODE_NAMED_COMPONENT: 2028 ncomp = (struct acpi_iort_named_component *)node->node_data; 2029 local_limit = DMA_BIT_MASK(ncomp->memory_address_limit); 2030 limit = min_not_zero(limit, local_limit); 2031 break; 2032 2033 case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: 2034 if (node->revision < 1) 2035 break; 2036 2037 rc = (struct acpi_iort_root_complex *)node->node_data; 2038 local_limit = DMA_BIT_MASK(rc->memory_address_limit); 2039 limit = min_not_zero(limit, local_limit); 2040 break; 2041 } 2042 node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length); 2043 } 2044 acpi_put_table(&iort->header); 2045 return limit; 2046 } 2047 #endif 2048