xref: /linux/drivers/acpi/acpi_tad.c (revision b50ecc5aca4d18f1f0c4942f5c797bc85edef144)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ACPI Time and Alarm (TAD) Device Driver
4  *
5  * Copyright (C) 2018 Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
9  *
10  * It only supports the system wakeup capabilities of the TAD.
11  *
12  * Provided are sysfs attributes, available under the TAD platform device,
13  * allowing user space to manage the AC and DC wakeup timers of the TAD:
14  * set and read their values, set and check their expire timer wake policies,
15  * check and clear their status and check the capabilities of the TAD reported
16  * by AML.  The DC timer attributes are only present if the TAD supports a
17  * separate DC alarm timer.
18  *
19  * The wakeup events handling and power management of the TAD is expected to
20  * be taken care of by the ACPI PM domain attached to its platform device.
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/suspend.h>
29 
30 MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver");
31 MODULE_LICENSE("GPL v2");
32 MODULE_AUTHOR("Rafael J. Wysocki");
33 
34 /* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
35 #define ACPI_TAD_AC_WAKE	BIT(0)
36 #define ACPI_TAD_DC_WAKE	BIT(1)
37 #define ACPI_TAD_RT		BIT(2)
38 #define ACPI_TAD_RT_IN_MS	BIT(3)
39 #define ACPI_TAD_S4_S5__GWS	BIT(4)
40 #define ACPI_TAD_AC_S4_WAKE	BIT(5)
41 #define ACPI_TAD_AC_S5_WAKE	BIT(6)
42 #define ACPI_TAD_DC_S4_WAKE	BIT(7)
43 #define ACPI_TAD_DC_S5_WAKE	BIT(8)
44 
45 /* ACPI TAD alarm timer selection */
46 #define ACPI_TAD_AC_TIMER	(u32)0
47 #define ACPI_TAD_DC_TIMER	(u32)1
48 
49 /* Special value for disabled timer or expired timer wake policy. */
50 #define ACPI_TAD_WAKE_DISABLED	(~(u32)0)
51 
52 struct acpi_tad_driver_data {
53 	u32 capabilities;
54 };
55 
56 struct acpi_tad_rt {
57 	u16 year;  /* 1900 - 9999 */
58 	u8 month;  /* 1 - 12 */
59 	u8 day;    /* 1 - 31 */
60 	u8 hour;   /* 0 - 23 */
61 	u8 minute; /* 0 - 59 */
62 	u8 second; /* 0 - 59 */
63 	u8 valid;  /* 0 (failed) or 1 (success) for reads, 0 for writes */
64 	u16 msec;  /* 1 - 1000 */
65 	s16 tz;    /* -1440 to 1440 or 2047 (unspecified) */
66 	u8 daylight;
67 	u8 padding[3]; /* must be 0 */
68 } __packed;
69 
70 static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
71 {
72 	acpi_handle handle = ACPI_HANDLE(dev);
73 	union acpi_object args[] = {
74 		{ .type = ACPI_TYPE_BUFFER, },
75 	};
76 	struct acpi_object_list arg_list = {
77 		.pointer = args,
78 		.count = ARRAY_SIZE(args),
79 	};
80 	unsigned long long retval;
81 	acpi_status status;
82 
83 	if (rt->year < 1900 || rt->year > 9999 ||
84 	    rt->month < 1 || rt->month > 12 ||
85 	    rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
86 	    rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
87 	    rt->daylight > 3)
88 		return -ERANGE;
89 
90 	args[0].buffer.pointer = (u8 *)rt;
91 	args[0].buffer.length = sizeof(*rt);
92 
93 	pm_runtime_get_sync(dev);
94 
95 	status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
96 
97 	pm_runtime_put_sync(dev);
98 
99 	if (ACPI_FAILURE(status) || retval)
100 		return -EIO;
101 
102 	return 0;
103 }
104 
105 static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
106 {
107 	acpi_handle handle = ACPI_HANDLE(dev);
108 	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
109 	union acpi_object *out_obj;
110 	struct acpi_tad_rt *data;
111 	acpi_status status;
112 	int ret = -EIO;
113 
114 	pm_runtime_get_sync(dev);
115 
116 	status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
117 
118 	pm_runtime_put_sync(dev);
119 
120 	if (ACPI_FAILURE(status))
121 		goto out_free;
122 
123 	out_obj = output.pointer;
124 	if (out_obj->type != ACPI_TYPE_BUFFER)
125 		goto out_free;
126 
127 	if (out_obj->buffer.length != sizeof(*rt))
128 		goto out_free;
129 
130 	data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
131 	if (!data->valid)
132 		goto out_free;
133 
134 	memcpy(rt, data, sizeof(*rt));
135 	ret = 0;
136 
137 out_free:
138 	ACPI_FREE(output.pointer);
139 	return ret;
140 }
141 
142 static char *acpi_tad_rt_next_field(char *s, int *val)
143 {
144 	char *p;
145 
146 	p = strchr(s, ':');
147 	if (!p)
148 		return NULL;
149 
150 	*p = '\0';
151 	if (kstrtoint(s, 10, val))
152 		return NULL;
153 
154 	return p + 1;
155 }
156 
157 static ssize_t time_store(struct device *dev, struct device_attribute *attr,
158 			  const char *buf, size_t count)
159 {
160 	struct acpi_tad_rt rt;
161 	char *str, *s;
162 	int val, ret = -ENODATA;
163 
164 	str = kmemdup_nul(buf, count, GFP_KERNEL);
165 	if (!str)
166 		return -ENOMEM;
167 
168 	s = acpi_tad_rt_next_field(str, &val);
169 	if (!s)
170 		goto out_free;
171 
172 	rt.year = val;
173 
174 	s = acpi_tad_rt_next_field(s, &val);
175 	if (!s)
176 		goto out_free;
177 
178 	rt.month = val;
179 
180 	s = acpi_tad_rt_next_field(s, &val);
181 	if (!s)
182 		goto out_free;
183 
184 	rt.day = val;
185 
186 	s = acpi_tad_rt_next_field(s, &val);
187 	if (!s)
188 		goto out_free;
189 
190 	rt.hour = val;
191 
192 	s = acpi_tad_rt_next_field(s, &val);
193 	if (!s)
194 		goto out_free;
195 
196 	rt.minute = val;
197 
198 	s = acpi_tad_rt_next_field(s, &val);
199 	if (!s)
200 		goto out_free;
201 
202 	rt.second = val;
203 
204 	s = acpi_tad_rt_next_field(s, &val);
205 	if (!s)
206 		goto out_free;
207 
208 	rt.tz = val;
209 
210 	if (kstrtoint(s, 10, &val))
211 		goto out_free;
212 
213 	rt.daylight = val;
214 
215 	rt.valid = 0;
216 	rt.msec = 0;
217 	memset(rt.padding, 0, 3);
218 
219 	ret = acpi_tad_set_real_time(dev, &rt);
220 
221 out_free:
222 	kfree(str);
223 	return ret ? ret : count;
224 }
225 
226 static ssize_t time_show(struct device *dev, struct device_attribute *attr,
227 			 char *buf)
228 {
229 	struct acpi_tad_rt rt;
230 	int ret;
231 
232 	ret = acpi_tad_get_real_time(dev, &rt);
233 	if (ret)
234 		return ret;
235 
236 	return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
237 		       rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
238 		       rt.tz, rt.daylight);
239 }
240 
241 static DEVICE_ATTR_RW(time);
242 
243 static struct attribute *acpi_tad_time_attrs[] = {
244 	&dev_attr_time.attr,
245 	NULL,
246 };
247 static const struct attribute_group acpi_tad_time_attr_group = {
248 	.attrs	= acpi_tad_time_attrs,
249 };
250 
251 static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
252 			     u32 value)
253 {
254 	acpi_handle handle = ACPI_HANDLE(dev);
255 	union acpi_object args[] = {
256 		{ .type = ACPI_TYPE_INTEGER, },
257 		{ .type = ACPI_TYPE_INTEGER, },
258 	};
259 	struct acpi_object_list arg_list = {
260 		.pointer = args,
261 		.count = ARRAY_SIZE(args),
262 	};
263 	unsigned long long retval;
264 	acpi_status status;
265 
266 	args[0].integer.value = timer_id;
267 	args[1].integer.value = value;
268 
269 	pm_runtime_get_sync(dev);
270 
271 	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
272 
273 	pm_runtime_put_sync(dev);
274 
275 	if (ACPI_FAILURE(status) || retval)
276 		return -EIO;
277 
278 	return 0;
279 }
280 
281 static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
282 			       u32 timer_id, const char *specval)
283 {
284 	u32 value;
285 
286 	if (sysfs_streq(buf, specval)) {
287 		value = ACPI_TAD_WAKE_DISABLED;
288 	} else {
289 		int ret = kstrtou32(buf, 0, &value);
290 
291 		if (ret)
292 			return ret;
293 
294 		if (value == ACPI_TAD_WAKE_DISABLED)
295 			return -EINVAL;
296 	}
297 
298 	return acpi_tad_wake_set(dev, method, timer_id, value);
299 }
300 
301 static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
302 				  u32 timer_id, const char *specval)
303 {
304 	acpi_handle handle = ACPI_HANDLE(dev);
305 	union acpi_object args[] = {
306 		{ .type = ACPI_TYPE_INTEGER, },
307 	};
308 	struct acpi_object_list arg_list = {
309 		.pointer = args,
310 		.count = ARRAY_SIZE(args),
311 	};
312 	unsigned long long retval;
313 	acpi_status status;
314 
315 	args[0].integer.value = timer_id;
316 
317 	pm_runtime_get_sync(dev);
318 
319 	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
320 
321 	pm_runtime_put_sync(dev);
322 
323 	if (ACPI_FAILURE(status))
324 		return -EIO;
325 
326 	if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
327 		return sprintf(buf, "%s\n", specval);
328 
329 	return sprintf(buf, "%u\n", (u32)retval);
330 }
331 
332 static const char *alarm_specval = "disabled";
333 
334 static int acpi_tad_alarm_write(struct device *dev, const char *buf,
335 				u32 timer_id)
336 {
337 	return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
338 }
339 
340 static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
341 {
342 	return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
343 }
344 
345 static const char *policy_specval = "never";
346 
347 static int acpi_tad_policy_write(struct device *dev, const char *buf,
348 				 u32 timer_id)
349 {
350 	return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
351 }
352 
353 static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
354 {
355 	return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
356 }
357 
358 static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
359 {
360 	acpi_handle handle = ACPI_HANDLE(dev);
361 	union acpi_object args[] = {
362 		{ .type = ACPI_TYPE_INTEGER, },
363 	};
364 	struct acpi_object_list arg_list = {
365 		.pointer = args,
366 		.count = ARRAY_SIZE(args),
367 	};
368 	unsigned long long retval;
369 	acpi_status status;
370 
371 	args[0].integer.value = timer_id;
372 
373 	pm_runtime_get_sync(dev);
374 
375 	status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
376 
377 	pm_runtime_put_sync(dev);
378 
379 	if (ACPI_FAILURE(status) || retval)
380 		return -EIO;
381 
382 	return 0;
383 }
384 
385 static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
386 {
387 	int ret, value;
388 
389 	ret = kstrtoint(buf, 0, &value);
390 	if (ret)
391 		return ret;
392 
393 	if (value)
394 		return -EINVAL;
395 
396 	return acpi_tad_clear_status(dev, timer_id);
397 }
398 
399 static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
400 {
401 	acpi_handle handle = ACPI_HANDLE(dev);
402 	union acpi_object args[] = {
403 		{ .type = ACPI_TYPE_INTEGER, },
404 	};
405 	struct acpi_object_list arg_list = {
406 		.pointer = args,
407 		.count = ARRAY_SIZE(args),
408 	};
409 	unsigned long long retval;
410 	acpi_status status;
411 
412 	args[0].integer.value = timer_id;
413 
414 	pm_runtime_get_sync(dev);
415 
416 	status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
417 
418 	pm_runtime_put_sync(dev);
419 
420 	if (ACPI_FAILURE(status))
421 		return -EIO;
422 
423 	return sprintf(buf, "0x%02X\n", (u32)retval);
424 }
425 
426 static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
427 			 char *buf)
428 {
429 	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
430 
431 	return sprintf(buf, "0x%02X\n", dd->capabilities);
432 }
433 
434 static DEVICE_ATTR_RO(caps);
435 
436 static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
437 			      const char *buf, size_t count)
438 {
439 	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
440 
441 	return ret ? ret : count;
442 }
443 
444 static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
445 			     char *buf)
446 {
447 	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
448 }
449 
450 static DEVICE_ATTR_RW(ac_alarm);
451 
452 static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
453 			       const char *buf, size_t count)
454 {
455 	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
456 
457 	return ret ? ret : count;
458 }
459 
460 static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
461 			      char *buf)
462 {
463 	return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
464 }
465 
466 static DEVICE_ATTR_RW(ac_policy);
467 
468 static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
469 			       const char *buf, size_t count)
470 {
471 	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
472 
473 	return ret ? ret : count;
474 }
475 
476 static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
477 			      char *buf)
478 {
479 	return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
480 }
481 
482 static DEVICE_ATTR_RW(ac_status);
483 
484 static struct attribute *acpi_tad_attrs[] = {
485 	&dev_attr_caps.attr,
486 	&dev_attr_ac_alarm.attr,
487 	&dev_attr_ac_policy.attr,
488 	&dev_attr_ac_status.attr,
489 	NULL,
490 };
491 static const struct attribute_group acpi_tad_attr_group = {
492 	.attrs	= acpi_tad_attrs,
493 };
494 
495 static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
496 			      const char *buf, size_t count)
497 {
498 	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
499 
500 	return ret ? ret : count;
501 }
502 
503 static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
504 			     char *buf)
505 {
506 	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
507 }
508 
509 static DEVICE_ATTR_RW(dc_alarm);
510 
511 static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
512 			       const char *buf, size_t count)
513 {
514 	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
515 
516 	return ret ? ret : count;
517 }
518 
519 static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
520 			      char *buf)
521 {
522 	return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
523 }
524 
525 static DEVICE_ATTR_RW(dc_policy);
526 
527 static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
528 			       const char *buf, size_t count)
529 {
530 	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
531 
532 	return ret ? ret : count;
533 }
534 
535 static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
536 			      char *buf)
537 {
538 	return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
539 }
540 
541 static DEVICE_ATTR_RW(dc_status);
542 
543 static struct attribute *acpi_tad_dc_attrs[] = {
544 	&dev_attr_dc_alarm.attr,
545 	&dev_attr_dc_policy.attr,
546 	&dev_attr_dc_status.attr,
547 	NULL,
548 };
549 static const struct attribute_group acpi_tad_dc_attr_group = {
550 	.attrs	= acpi_tad_dc_attrs,
551 };
552 
553 static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
554 {
555 	return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
556 }
557 
558 static void acpi_tad_remove(struct platform_device *pdev)
559 {
560 	struct device *dev = &pdev->dev;
561 	acpi_handle handle = ACPI_HANDLE(dev);
562 	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
563 
564 	device_init_wakeup(dev, false);
565 
566 	pm_runtime_get_sync(dev);
567 
568 	if (dd->capabilities & ACPI_TAD_DC_WAKE)
569 		sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
570 
571 	sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
572 
573 	acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
574 	acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
575 	if (dd->capabilities & ACPI_TAD_DC_WAKE) {
576 		acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
577 		acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
578 	}
579 
580 	pm_runtime_put_sync(dev);
581 	pm_runtime_disable(dev);
582 	acpi_remove_cmos_rtc_space_handler(handle);
583 }
584 
585 static int acpi_tad_probe(struct platform_device *pdev)
586 {
587 	struct device *dev = &pdev->dev;
588 	acpi_handle handle = ACPI_HANDLE(dev);
589 	struct acpi_tad_driver_data *dd;
590 	acpi_status status;
591 	unsigned long long caps;
592 	int ret;
593 
594 	ret = acpi_install_cmos_rtc_space_handler(handle);
595 	if (ret < 0) {
596 		dev_info(dev, "Unable to install space handler\n");
597 		return -ENODEV;
598 	}
599 	/*
600 	 * Initialization failure messages are mostly about firmware issues, so
601 	 * print them at the "info" level.
602 	 */
603 	status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
604 	if (ACPI_FAILURE(status)) {
605 		dev_info(dev, "Unable to get capabilities\n");
606 		ret = -ENODEV;
607 		goto remove_handler;
608 	}
609 
610 	if (!(caps & ACPI_TAD_AC_WAKE)) {
611 		dev_info(dev, "Unsupported capabilities\n");
612 		ret = -ENODEV;
613 		goto remove_handler;
614 	}
615 
616 	if (!acpi_has_method(handle, "_PRW")) {
617 		dev_info(dev, "Missing _PRW\n");
618 		ret = -ENODEV;
619 		goto remove_handler;
620 	}
621 
622 	dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
623 	if (!dd) {
624 		ret = -ENOMEM;
625 		goto remove_handler;
626 	}
627 
628 	dd->capabilities = caps;
629 	dev_set_drvdata(dev, dd);
630 
631 	/*
632 	 * Assume that the ACPI PM domain has been attached to the device and
633 	 * simply enable system wakeup and runtime PM and put the device into
634 	 * runtime suspend.  Everything else should be taken care of by the ACPI
635 	 * PM domain callbacks.
636 	 */
637 	device_init_wakeup(dev, true);
638 	dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
639 				     DPM_FLAG_MAY_SKIP_RESUME);
640 	/*
641 	 * The platform bus type layer tells the ACPI PM domain powers up the
642 	 * device, so set the runtime PM status of it to "active".
643 	 */
644 	pm_runtime_set_active(dev);
645 	pm_runtime_enable(dev);
646 	pm_runtime_suspend(dev);
647 
648 	ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
649 	if (ret)
650 		goto fail;
651 
652 	if (caps & ACPI_TAD_DC_WAKE) {
653 		ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
654 		if (ret)
655 			goto fail;
656 	}
657 
658 	if (caps & ACPI_TAD_RT) {
659 		ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
660 		if (ret)
661 			goto fail;
662 	}
663 
664 	return 0;
665 
666 fail:
667 	acpi_tad_remove(pdev);
668 	/* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */
669 	return ret;
670 
671 remove_handler:
672 	acpi_remove_cmos_rtc_space_handler(handle);
673 	return ret;
674 }
675 
676 static const struct acpi_device_id acpi_tad_ids[] = {
677 	{"ACPI000E", 0},
678 	{}
679 };
680 
681 static struct platform_driver acpi_tad_driver = {
682 	.driver = {
683 		.name = "acpi-tad",
684 		.acpi_match_table = acpi_tad_ids,
685 	},
686 	.probe = acpi_tad_probe,
687 	.remove = acpi_tad_remove,
688 };
689 MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
690 
691 module_platform_driver(acpi_tad_driver);
692