xref: /linux/drivers/acpi/acpi_tad.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ACPI Time and Alarm (TAD) Device Driver
4  *
5  * Copyright (C) 2018 Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *
8  * This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
9  *
10  * It only supports the system wakeup capabilities of the TAD.
11  *
12  * Provided are sysfs attributes, available under the TAD platform device,
13  * allowing user space to manage the AC and DC wakeup timers of the TAD:
14  * set and read their values, set and check their expire timer wake policies,
15  * check and clear their status and check the capabilities of the TAD reported
16  * by AML.  The DC timer attributes are only present if the TAD supports a
17  * separate DC alarm timer.
18  *
19  * The wakeup events handling and power management of the TAD is expected to
20  * be taken care of by the ACPI PM domain attached to its platform device.
21  */
22 
23 #include <linux/acpi.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/suspend.h>
29 
30 MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver");
31 MODULE_LICENSE("GPL v2");
32 MODULE_AUTHOR("Rafael J. Wysocki");
33 
34 /* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
35 #define ACPI_TAD_AC_WAKE	BIT(0)
36 #define ACPI_TAD_DC_WAKE	BIT(1)
37 #define ACPI_TAD_RT		BIT(2)
38 #define ACPI_TAD_RT_IN_MS	BIT(3)
39 #define ACPI_TAD_S4_S5__GWS	BIT(4)
40 #define ACPI_TAD_AC_S4_WAKE	BIT(5)
41 #define ACPI_TAD_AC_S5_WAKE	BIT(6)
42 #define ACPI_TAD_DC_S4_WAKE	BIT(7)
43 #define ACPI_TAD_DC_S5_WAKE	BIT(8)
44 
45 /* ACPI TAD alarm timer selection */
46 #define ACPI_TAD_AC_TIMER	(u32)0
47 #define ACPI_TAD_DC_TIMER	(u32)1
48 
49 /* Special value for disabled timer or expired timer wake policy. */
50 #define ACPI_TAD_WAKE_DISABLED	(~(u32)0)
51 
52 struct acpi_tad_driver_data {
53 	u32 capabilities;
54 };
55 
56 struct acpi_tad_rt {
57 	u16 year;  /* 1900 - 9999 */
58 	u8 month;  /* 1 - 12 */
59 	u8 day;    /* 1 - 31 */
60 	u8 hour;   /* 0 - 23 */
61 	u8 minute; /* 0 - 59 */
62 	u8 second; /* 0 - 59 */
63 	u8 valid;  /* 0 (failed) or 1 (success) for reads, 0 for writes */
64 	u16 msec;  /* 1 - 1000 */
65 	s16 tz;    /* -1440 to 1440 or 2047 (unspecified) */
66 	u8 daylight;
67 	u8 padding[3]; /* must be 0 */
68 } __packed;
69 
70 static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
71 {
72 	acpi_handle handle = ACPI_HANDLE(dev);
73 	union acpi_object args[] = {
74 		{ .type = ACPI_TYPE_BUFFER, },
75 	};
76 	struct acpi_object_list arg_list = {
77 		.pointer = args,
78 		.count = ARRAY_SIZE(args),
79 	};
80 	unsigned long long retval;
81 	acpi_status status;
82 
83 	if (rt->year < 1900 || rt->year > 9999 ||
84 	    rt->month < 1 || rt->month > 12 ||
85 	    rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
86 	    rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
87 	    rt->daylight > 3)
88 		return -ERANGE;
89 
90 	args[0].buffer.pointer = (u8 *)rt;
91 	args[0].buffer.length = sizeof(*rt);
92 
93 	PM_RUNTIME_ACQUIRE(dev, pm);
94 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
95 		return -ENXIO;
96 
97 	status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
98 	if (ACPI_FAILURE(status) || retval)
99 		return -EIO;
100 
101 	return 0;
102 }
103 
104 static int acpi_tad_evaluate_grt(struct device *dev, struct acpi_tad_rt *rt)
105 {
106 	acpi_handle handle = ACPI_HANDLE(dev);
107 	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
108 	union acpi_object *out_obj;
109 	struct acpi_tad_rt *data;
110 	acpi_status status;
111 	int ret = -EIO;
112 
113 	status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
114 	if (ACPI_FAILURE(status))
115 		goto out_free;
116 
117 	out_obj = output.pointer;
118 	if (out_obj->type != ACPI_TYPE_BUFFER)
119 		goto out_free;
120 
121 	if (out_obj->buffer.length != sizeof(*rt))
122 		goto out_free;
123 
124 	data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
125 	if (!data->valid)
126 		goto out_free;
127 
128 	memcpy(rt, data, sizeof(*rt));
129 	ret = 0;
130 
131 out_free:
132 	ACPI_FREE(output.pointer);
133 	return ret;
134 }
135 
136 static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
137 {
138 	int ret;
139 
140 	PM_RUNTIME_ACQUIRE(dev, pm);
141 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
142 		return -ENXIO;
143 
144 	ret = acpi_tad_evaluate_grt(dev, rt);
145 	if (ret)
146 		return ret;
147 
148 	return 0;
149 }
150 
151 static char *acpi_tad_rt_next_field(char *s, int *val)
152 {
153 	char *p;
154 
155 	p = strchr(s, ':');
156 	if (!p)
157 		return NULL;
158 
159 	*p = '\0';
160 	if (kstrtoint(s, 10, val))
161 		return NULL;
162 
163 	return p + 1;
164 }
165 
166 static ssize_t time_store(struct device *dev, struct device_attribute *attr,
167 			  const char *buf, size_t count)
168 {
169 	struct acpi_tad_rt rt;
170 	char *str, *s;
171 	int val, ret = -ENODATA;
172 
173 	str = kmemdup_nul(buf, count, GFP_KERNEL);
174 	if (!str)
175 		return -ENOMEM;
176 
177 	s = acpi_tad_rt_next_field(str, &val);
178 	if (!s)
179 		goto out_free;
180 
181 	rt.year = val;
182 
183 	s = acpi_tad_rt_next_field(s, &val);
184 	if (!s)
185 		goto out_free;
186 
187 	rt.month = val;
188 
189 	s = acpi_tad_rt_next_field(s, &val);
190 	if (!s)
191 		goto out_free;
192 
193 	rt.day = val;
194 
195 	s = acpi_tad_rt_next_field(s, &val);
196 	if (!s)
197 		goto out_free;
198 
199 	rt.hour = val;
200 
201 	s = acpi_tad_rt_next_field(s, &val);
202 	if (!s)
203 		goto out_free;
204 
205 	rt.minute = val;
206 
207 	s = acpi_tad_rt_next_field(s, &val);
208 	if (!s)
209 		goto out_free;
210 
211 	rt.second = val;
212 
213 	s = acpi_tad_rt_next_field(s, &val);
214 	if (!s)
215 		goto out_free;
216 
217 	rt.tz = val;
218 
219 	if (kstrtoint(s, 10, &val))
220 		goto out_free;
221 
222 	rt.daylight = val;
223 
224 	rt.valid = 0;
225 	rt.msec = 0;
226 	memset(rt.padding, 0, 3);
227 
228 	ret = acpi_tad_set_real_time(dev, &rt);
229 
230 out_free:
231 	kfree(str);
232 	return ret ? ret : count;
233 }
234 
235 static ssize_t time_show(struct device *dev, struct device_attribute *attr,
236 			 char *buf)
237 {
238 	struct acpi_tad_rt rt;
239 	int ret;
240 
241 	ret = acpi_tad_get_real_time(dev, &rt);
242 	if (ret)
243 		return ret;
244 
245 	return sysfs_emit(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
246 		       rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
247 		       rt.tz, rt.daylight);
248 }
249 
250 static DEVICE_ATTR_RW(time);
251 
252 static struct attribute *acpi_tad_time_attrs[] = {
253 	&dev_attr_time.attr,
254 	NULL,
255 };
256 static const struct attribute_group acpi_tad_time_attr_group = {
257 	.attrs	= acpi_tad_time_attrs,
258 };
259 
260 static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
261 			     u32 value)
262 {
263 	acpi_handle handle = ACPI_HANDLE(dev);
264 	union acpi_object args[] = {
265 		{ .type = ACPI_TYPE_INTEGER, },
266 		{ .type = ACPI_TYPE_INTEGER, },
267 	};
268 	struct acpi_object_list arg_list = {
269 		.pointer = args,
270 		.count = ARRAY_SIZE(args),
271 	};
272 	unsigned long long retval;
273 	acpi_status status;
274 
275 	args[0].integer.value = timer_id;
276 	args[1].integer.value = value;
277 
278 	PM_RUNTIME_ACQUIRE(dev, pm);
279 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
280 		return -ENXIO;
281 
282 	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
283 	if (ACPI_FAILURE(status) || retval)
284 		return -EIO;
285 
286 	return 0;
287 }
288 
289 static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
290 			       u32 timer_id, const char *specval)
291 {
292 	u32 value;
293 
294 	if (sysfs_streq(buf, specval)) {
295 		value = ACPI_TAD_WAKE_DISABLED;
296 	} else {
297 		int ret = kstrtou32(buf, 0, &value);
298 
299 		if (ret)
300 			return ret;
301 
302 		if (value == ACPI_TAD_WAKE_DISABLED)
303 			return -EINVAL;
304 	}
305 
306 	return acpi_tad_wake_set(dev, method, timer_id, value);
307 }
308 
309 static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
310 				  u32 timer_id, const char *specval)
311 {
312 	acpi_handle handle = ACPI_HANDLE(dev);
313 	union acpi_object args[] = {
314 		{ .type = ACPI_TYPE_INTEGER, },
315 	};
316 	struct acpi_object_list arg_list = {
317 		.pointer = args,
318 		.count = ARRAY_SIZE(args),
319 	};
320 	unsigned long long retval;
321 	acpi_status status;
322 
323 	args[0].integer.value = timer_id;
324 
325 	PM_RUNTIME_ACQUIRE(dev, pm);
326 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
327 		return -ENXIO;
328 
329 	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
330 	if (ACPI_FAILURE(status))
331 		return -EIO;
332 
333 	if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
334 		return sprintf(buf, "%s\n", specval);
335 
336 	return sprintf(buf, "%u\n", (u32)retval);
337 }
338 
339 static const char *alarm_specval = "disabled";
340 
341 static int acpi_tad_alarm_write(struct device *dev, const char *buf,
342 				u32 timer_id)
343 {
344 	return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
345 }
346 
347 static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
348 {
349 	return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
350 }
351 
352 static const char *policy_specval = "never";
353 
354 static int acpi_tad_policy_write(struct device *dev, const char *buf,
355 				 u32 timer_id)
356 {
357 	return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
358 }
359 
360 static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
361 {
362 	return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
363 }
364 
365 static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
366 {
367 	acpi_handle handle = ACPI_HANDLE(dev);
368 	union acpi_object args[] = {
369 		{ .type = ACPI_TYPE_INTEGER, },
370 	};
371 	struct acpi_object_list arg_list = {
372 		.pointer = args,
373 		.count = ARRAY_SIZE(args),
374 	};
375 	unsigned long long retval;
376 	acpi_status status;
377 
378 	args[0].integer.value = timer_id;
379 
380 	PM_RUNTIME_ACQUIRE(dev, pm);
381 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
382 		return -ENXIO;
383 
384 	status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
385 	if (ACPI_FAILURE(status) || retval)
386 		return -EIO;
387 
388 	return 0;
389 }
390 
391 static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
392 {
393 	int ret, value;
394 
395 	ret = kstrtoint(buf, 0, &value);
396 	if (ret)
397 		return ret;
398 
399 	if (value)
400 		return -EINVAL;
401 
402 	return acpi_tad_clear_status(dev, timer_id);
403 }
404 
405 static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
406 {
407 	acpi_handle handle = ACPI_HANDLE(dev);
408 	union acpi_object args[] = {
409 		{ .type = ACPI_TYPE_INTEGER, },
410 	};
411 	struct acpi_object_list arg_list = {
412 		.pointer = args,
413 		.count = ARRAY_SIZE(args),
414 	};
415 	unsigned long long retval;
416 	acpi_status status;
417 
418 	args[0].integer.value = timer_id;
419 
420 	PM_RUNTIME_ACQUIRE(dev, pm);
421 	if (PM_RUNTIME_ACQUIRE_ERR(&pm))
422 		return -ENXIO;
423 
424 	status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
425 	if (ACPI_FAILURE(status))
426 		return -EIO;
427 
428 	return sprintf(buf, "0x%02X\n", (u32)retval);
429 }
430 
431 static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
432 			 char *buf)
433 {
434 	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
435 
436 	return sysfs_emit(buf, "0x%02X\n", dd->capabilities);
437 }
438 
439 static DEVICE_ATTR_RO(caps);
440 
441 static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
442 			      const char *buf, size_t count)
443 {
444 	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
445 
446 	return ret ? ret : count;
447 }
448 
449 static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
450 			     char *buf)
451 {
452 	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
453 }
454 
455 static DEVICE_ATTR_RW(ac_alarm);
456 
457 static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
458 			       const char *buf, size_t count)
459 {
460 	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
461 
462 	return ret ? ret : count;
463 }
464 
465 static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
466 			      char *buf)
467 {
468 	return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
469 }
470 
471 static DEVICE_ATTR_RW(ac_policy);
472 
473 static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
474 			       const char *buf, size_t count)
475 {
476 	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
477 
478 	return ret ? ret : count;
479 }
480 
481 static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
482 			      char *buf)
483 {
484 	return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
485 }
486 
487 static DEVICE_ATTR_RW(ac_status);
488 
489 static struct attribute *acpi_tad_attrs[] = {
490 	&dev_attr_caps.attr,
491 	&dev_attr_ac_alarm.attr,
492 	&dev_attr_ac_policy.attr,
493 	&dev_attr_ac_status.attr,
494 	NULL,
495 };
496 static const struct attribute_group acpi_tad_attr_group = {
497 	.attrs	= acpi_tad_attrs,
498 };
499 
500 static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
501 			      const char *buf, size_t count)
502 {
503 	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
504 
505 	return ret ? ret : count;
506 }
507 
508 static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
509 			     char *buf)
510 {
511 	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
512 }
513 
514 static DEVICE_ATTR_RW(dc_alarm);
515 
516 static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
517 			       const char *buf, size_t count)
518 {
519 	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
520 
521 	return ret ? ret : count;
522 }
523 
524 static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
525 			      char *buf)
526 {
527 	return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
528 }
529 
530 static DEVICE_ATTR_RW(dc_policy);
531 
532 static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
533 			       const char *buf, size_t count)
534 {
535 	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
536 
537 	return ret ? ret : count;
538 }
539 
540 static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
541 			      char *buf)
542 {
543 	return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
544 }
545 
546 static DEVICE_ATTR_RW(dc_status);
547 
548 static struct attribute *acpi_tad_dc_attrs[] = {
549 	&dev_attr_dc_alarm.attr,
550 	&dev_attr_dc_policy.attr,
551 	&dev_attr_dc_status.attr,
552 	NULL,
553 };
554 static const struct attribute_group acpi_tad_dc_attr_group = {
555 	.attrs	= acpi_tad_dc_attrs,
556 };
557 
558 static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
559 {
560 	return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
561 }
562 
563 static void acpi_tad_remove(struct platform_device *pdev)
564 {
565 	struct device *dev = &pdev->dev;
566 	acpi_handle handle = ACPI_HANDLE(dev);
567 	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
568 
569 	device_init_wakeup(dev, false);
570 
571 	if (dd->capabilities & ACPI_TAD_RT)
572 		sysfs_remove_group(&dev->kobj, &acpi_tad_time_attr_group);
573 
574 	if (dd->capabilities & ACPI_TAD_DC_WAKE)
575 		sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
576 
577 	sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
578 
579 	scoped_guard(pm_runtime_noresume, dev) {
580 		acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
581 		acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
582 		if (dd->capabilities & ACPI_TAD_DC_WAKE) {
583 			acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
584 			acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
585 		}
586 	}
587 
588 	pm_runtime_suspend(dev);
589 	pm_runtime_disable(dev);
590 	acpi_remove_cmos_rtc_space_handler(handle);
591 }
592 
593 static int acpi_tad_probe(struct platform_device *pdev)
594 {
595 	struct device *dev = &pdev->dev;
596 	acpi_handle handle = ACPI_HANDLE(dev);
597 	struct acpi_tad_driver_data *dd;
598 	acpi_status status;
599 	unsigned long long caps;
600 	int ret;
601 
602 	ret = acpi_install_cmos_rtc_space_handler(handle);
603 	if (ret < 0) {
604 		dev_info(dev, "Unable to install space handler\n");
605 		return -ENODEV;
606 	}
607 	/*
608 	 * Initialization failure messages are mostly about firmware issues, so
609 	 * print them at the "info" level.
610 	 */
611 	status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
612 	if (ACPI_FAILURE(status)) {
613 		dev_info(dev, "Unable to get capabilities\n");
614 		ret = -ENODEV;
615 		goto remove_handler;
616 	}
617 
618 	if (!(caps & ACPI_TAD_AC_WAKE)) {
619 		dev_info(dev, "Unsupported capabilities\n");
620 		ret = -ENODEV;
621 		goto remove_handler;
622 	}
623 
624 	if (!acpi_has_method(handle, "_PRW")) {
625 		dev_info(dev, "Missing _PRW\n");
626 		ret = -ENODEV;
627 		goto remove_handler;
628 	}
629 
630 	dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
631 	if (!dd) {
632 		ret = -ENOMEM;
633 		goto remove_handler;
634 	}
635 
636 	dd->capabilities = caps;
637 	dev_set_drvdata(dev, dd);
638 
639 	/*
640 	 * Assume that the ACPI PM domain has been attached to the device and
641 	 * simply enable system wakeup and runtime PM and put the device into
642 	 * runtime suspend.  Everything else should be taken care of by the ACPI
643 	 * PM domain callbacks.
644 	 */
645 	device_init_wakeup(dev, true);
646 	dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
647 				     DPM_FLAG_MAY_SKIP_RESUME);
648 	/*
649 	 * The platform bus type layer tells the ACPI PM domain powers up the
650 	 * device, so set the runtime PM status of it to "active".
651 	 */
652 	pm_runtime_set_active(dev);
653 	pm_runtime_enable(dev);
654 	pm_runtime_suspend(dev);
655 
656 	ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
657 	if (ret)
658 		goto fail;
659 
660 	if (caps & ACPI_TAD_DC_WAKE) {
661 		ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
662 		if (ret)
663 			goto fail;
664 	}
665 
666 	if (caps & ACPI_TAD_RT) {
667 		ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
668 		if (ret)
669 			goto fail;
670 	}
671 
672 	return 0;
673 
674 fail:
675 	acpi_tad_remove(pdev);
676 	/* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */
677 	return ret;
678 
679 remove_handler:
680 	acpi_remove_cmos_rtc_space_handler(handle);
681 	return ret;
682 }
683 
684 static const struct acpi_device_id acpi_tad_ids[] = {
685 	{"ACPI000E", 0},
686 	{}
687 };
688 
689 static struct platform_driver acpi_tad_driver = {
690 	.driver = {
691 		.name = "acpi-tad",
692 		.acpi_match_table = acpi_tad_ids,
693 	},
694 	.probe = acpi_tad_probe,
695 	.remove = acpi_tad_remove,
696 };
697 MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
698 
699 module_platform_driver(acpi_tad_driver);
700