xref: /linux/drivers/acpi/acpi_pad.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/mwait.h>
23 #include <xen/xen.h>
24 
25 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
26 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
27 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
28 static DEFINE_MUTEX(isolated_cpus_lock);
29 static DEFINE_MUTEX(round_robin_lock);
30 
31 static unsigned long power_saving_mwait_eax;
32 
33 static unsigned char tsc_detected_unstable;
34 static unsigned char tsc_marked_unstable;
35 
36 static void power_saving_mwait_init(void)
37 {
38 	unsigned int eax, ebx, ecx, edx;
39 	unsigned int highest_cstate = 0;
40 	unsigned int highest_subcstate = 0;
41 	int i;
42 
43 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
44 		return;
45 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
46 		return;
47 
48 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
49 
50 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
51 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
52 		return;
53 
54 	edx >>= MWAIT_SUBSTATE_SIZE;
55 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
56 		if (edx & MWAIT_SUBSTATE_MASK) {
57 			highest_cstate = i;
58 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
59 		}
60 	}
61 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
62 		(highest_subcstate - 1);
63 
64 #if defined(CONFIG_X86)
65 	switch (boot_cpu_data.x86_vendor) {
66 	case X86_VENDOR_HYGON:
67 	case X86_VENDOR_AMD:
68 	case X86_VENDOR_INTEL:
69 	case X86_VENDOR_ZHAOXIN:
70 	case X86_VENDOR_CENTAUR:
71 		/*
72 		 * AMD Fam10h TSC will tick in all
73 		 * C/P/S0/S1 states when this bit is set.
74 		 */
75 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
76 			tsc_detected_unstable = 1;
77 		break;
78 	default:
79 		/* TSC could halt in idle */
80 		tsc_detected_unstable = 1;
81 	}
82 #endif
83 }
84 
85 static unsigned long cpu_weight[NR_CPUS];
86 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
87 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
88 static void round_robin_cpu(unsigned int tsk_index)
89 {
90 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
91 	cpumask_var_t tmp;
92 	int cpu;
93 	unsigned long min_weight = -1;
94 	unsigned long preferred_cpu;
95 
96 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
97 		return;
98 
99 	mutex_lock(&round_robin_lock);
100 	cpumask_clear(tmp);
101 	for_each_cpu(cpu, pad_busy_cpus)
102 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
103 	cpumask_andnot(tmp, cpu_online_mask, tmp);
104 	/* avoid HT siblings if possible */
105 	if (cpumask_empty(tmp))
106 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
107 	if (cpumask_empty(tmp)) {
108 		mutex_unlock(&round_robin_lock);
109 		free_cpumask_var(tmp);
110 		return;
111 	}
112 	for_each_cpu(cpu, tmp) {
113 		if (cpu_weight[cpu] < min_weight) {
114 			min_weight = cpu_weight[cpu];
115 			preferred_cpu = cpu;
116 		}
117 	}
118 
119 	if (tsk_in_cpu[tsk_index] != -1)
120 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
121 	tsk_in_cpu[tsk_index] = preferred_cpu;
122 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
123 	cpu_weight[preferred_cpu]++;
124 	mutex_unlock(&round_robin_lock);
125 
126 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
127 
128 	free_cpumask_var(tmp);
129 }
130 
131 static void exit_round_robin(unsigned int tsk_index)
132 {
133 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
134 
135 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136 	tsk_in_cpu[tsk_index] = -1;
137 }
138 
139 static unsigned int idle_pct = 5; /* percentage */
140 static unsigned int round_robin_time = 1; /* second */
141 static int power_saving_thread(void *data)
142 {
143 	int do_sleep;
144 	unsigned int tsk_index = (unsigned long)data;
145 	u64 last_jiffies = 0;
146 
147 	sched_set_fifo_low(current);
148 
149 	while (!kthread_should_stop()) {
150 		unsigned long expire_time;
151 
152 		/* round robin to cpus */
153 		expire_time = last_jiffies + round_robin_time * HZ;
154 		if (time_before(expire_time, jiffies)) {
155 			last_jiffies = jiffies;
156 			round_robin_cpu(tsk_index);
157 		}
158 
159 		do_sleep = 0;
160 
161 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
162 
163 		while (!need_resched()) {
164 			if (tsc_detected_unstable && !tsc_marked_unstable) {
165 				/* TSC could halt in idle, so notify users */
166 				mark_tsc_unstable("TSC halts in idle");
167 				tsc_marked_unstable = 1;
168 			}
169 			local_irq_disable();
170 
171 			perf_lopwr_cb(true);
172 
173 			tick_broadcast_enable();
174 			tick_broadcast_enter();
175 			stop_critical_timings();
176 
177 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
178 
179 			start_critical_timings();
180 			tick_broadcast_exit();
181 
182 			perf_lopwr_cb(false);
183 
184 			local_irq_enable();
185 
186 			if (time_before(expire_time, jiffies)) {
187 				do_sleep = 1;
188 				break;
189 			}
190 		}
191 
192 		/*
193 		 * current sched_rt has threshold for rt task running time.
194 		 * When a rt task uses 95% CPU time, the rt thread will be
195 		 * scheduled out for 5% CPU time to not starve other tasks. But
196 		 * the mechanism only works when all CPUs have RT task running,
197 		 * as if one CPU hasn't RT task, RT task from other CPUs will
198 		 * borrow CPU time from this CPU and cause RT task use > 95%
199 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
200 		 */
201 		if (unlikely(do_sleep))
202 			schedule_timeout_killable(HZ * idle_pct / 100);
203 
204 		/* If an external event has set the need_resched flag, then
205 		 * we need to deal with it, or this loop will continue to
206 		 * spin without calling __mwait().
207 		 */
208 		if (unlikely(need_resched()))
209 			schedule();
210 	}
211 
212 	exit_round_robin(tsk_index);
213 	return 0;
214 }
215 
216 static struct task_struct *ps_tsks[NR_CPUS];
217 static unsigned int ps_tsk_num;
218 static int create_power_saving_task(void)
219 {
220 	int rc;
221 
222 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
223 		(void *)(unsigned long)ps_tsk_num,
224 		"acpi_pad/%d", ps_tsk_num);
225 
226 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
227 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
228 		ps_tsks[ps_tsk_num] = NULL;
229 	} else {
230 		rc = 0;
231 		ps_tsk_num++;
232 	}
233 
234 	return rc;
235 }
236 
237 static void destroy_power_saving_task(void)
238 {
239 	if (ps_tsk_num > 0) {
240 		ps_tsk_num--;
241 		kthread_stop(ps_tsks[ps_tsk_num]);
242 		ps_tsks[ps_tsk_num] = NULL;
243 	}
244 }
245 
246 static void set_power_saving_task_num(unsigned int num)
247 {
248 	if (num > ps_tsk_num) {
249 		while (ps_tsk_num < num) {
250 			if (create_power_saving_task())
251 				return;
252 		}
253 	} else if (num < ps_tsk_num) {
254 		while (ps_tsk_num > num)
255 			destroy_power_saving_task();
256 	}
257 }
258 
259 static void acpi_pad_idle_cpus(unsigned int num_cpus)
260 {
261 	cpus_read_lock();
262 
263 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
264 	set_power_saving_task_num(num_cpus);
265 
266 	cpus_read_unlock();
267 }
268 
269 static uint32_t acpi_pad_idle_cpus_num(void)
270 {
271 	return ps_tsk_num;
272 }
273 
274 static ssize_t rrtime_store(struct device *dev,
275 	struct device_attribute *attr, const char *buf, size_t count)
276 {
277 	unsigned long num;
278 
279 	if (kstrtoul(buf, 0, &num))
280 		return -EINVAL;
281 	if (num < 1 || num >= 100)
282 		return -EINVAL;
283 	mutex_lock(&isolated_cpus_lock);
284 	round_robin_time = num;
285 	mutex_unlock(&isolated_cpus_lock);
286 	return count;
287 }
288 
289 static ssize_t rrtime_show(struct device *dev,
290 	struct device_attribute *attr, char *buf)
291 {
292 	return sysfs_emit(buf, "%d\n", round_robin_time);
293 }
294 static DEVICE_ATTR_RW(rrtime);
295 
296 static ssize_t idlepct_store(struct device *dev,
297 	struct device_attribute *attr, const char *buf, size_t count)
298 {
299 	unsigned long num;
300 
301 	if (kstrtoul(buf, 0, &num))
302 		return -EINVAL;
303 	if (num < 1 || num >= 100)
304 		return -EINVAL;
305 	mutex_lock(&isolated_cpus_lock);
306 	idle_pct = num;
307 	mutex_unlock(&isolated_cpus_lock);
308 	return count;
309 }
310 
311 static ssize_t idlepct_show(struct device *dev,
312 	struct device_attribute *attr, char *buf)
313 {
314 	return sysfs_emit(buf, "%d\n", idle_pct);
315 }
316 static DEVICE_ATTR_RW(idlepct);
317 
318 static ssize_t idlecpus_store(struct device *dev,
319 	struct device_attribute *attr, const char *buf, size_t count)
320 {
321 	unsigned long num;
322 
323 	if (kstrtoul(buf, 0, &num))
324 		return -EINVAL;
325 	mutex_lock(&isolated_cpus_lock);
326 	acpi_pad_idle_cpus(num);
327 	mutex_unlock(&isolated_cpus_lock);
328 	return count;
329 }
330 
331 static ssize_t idlecpus_show(struct device *dev,
332 	struct device_attribute *attr, char *buf)
333 {
334 	return cpumap_print_to_pagebuf(false, buf,
335 				       to_cpumask(pad_busy_cpus_bits));
336 }
337 
338 static DEVICE_ATTR_RW(idlecpus);
339 
340 static struct attribute *acpi_pad_attrs[] = {
341 	&dev_attr_idlecpus.attr,
342 	&dev_attr_idlepct.attr,
343 	&dev_attr_rrtime.attr,
344 	NULL
345 };
346 
347 ATTRIBUTE_GROUPS(acpi_pad);
348 
349 /*
350  * Query firmware how many CPUs should be idle
351  * return -1 on failure
352  */
353 static int acpi_pad_pur(acpi_handle handle)
354 {
355 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356 	union acpi_object *package;
357 	int num = -1;
358 
359 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
360 		return num;
361 
362 	if (!buffer.length || !buffer.pointer)
363 		return num;
364 
365 	package = buffer.pointer;
366 
367 	if (package->type == ACPI_TYPE_PACKAGE &&
368 		package->package.count == 2 &&
369 		package->package.elements[0].integer.value == 1) /* rev 1 */
370 
371 		num = package->package.elements[1].integer.value;
372 
373 	kfree(buffer.pointer);
374 	return num;
375 }
376 
377 static void acpi_pad_handle_notify(acpi_handle handle)
378 {
379 	int num_cpus;
380 	uint32_t idle_cpus;
381 	struct acpi_buffer param = {
382 		.length = 4,
383 		.pointer = (void *)&idle_cpus,
384 	};
385 
386 	mutex_lock(&isolated_cpus_lock);
387 	num_cpus = acpi_pad_pur(handle);
388 	if (num_cpus < 0) {
389 		mutex_unlock(&isolated_cpus_lock);
390 		return;
391 	}
392 	acpi_pad_idle_cpus(num_cpus);
393 	idle_cpus = acpi_pad_idle_cpus_num();
394 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
395 	mutex_unlock(&isolated_cpus_lock);
396 }
397 
398 static void acpi_pad_notify(acpi_handle handle, u32 event,
399 	void *data)
400 {
401 	struct acpi_device *adev = data;
402 
403 	switch (event) {
404 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
405 		acpi_pad_handle_notify(handle);
406 		acpi_bus_generate_netlink_event(adev->pnp.device_class,
407 			dev_name(&adev->dev), event, 0);
408 		break;
409 	default:
410 		pr_warn("Unsupported event [0x%x]\n", event);
411 		break;
412 	}
413 }
414 
415 static int acpi_pad_probe(struct platform_device *pdev)
416 {
417 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
418 	acpi_status status;
419 
420 	strcpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
421 	strcpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
422 
423 	status = acpi_install_notify_handler(adev->handle,
424 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
425 
426 	if (ACPI_FAILURE(status))
427 		return -ENODEV;
428 
429 	return 0;
430 }
431 
432 static void acpi_pad_remove(struct platform_device *pdev)
433 {
434 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
435 
436 	mutex_lock(&isolated_cpus_lock);
437 	acpi_pad_idle_cpus(0);
438 	mutex_unlock(&isolated_cpus_lock);
439 
440 	acpi_remove_notify_handler(adev->handle,
441 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
442 }
443 
444 static const struct acpi_device_id pad_device_ids[] = {
445 	{"ACPI000C", 0},
446 	{"", 0},
447 };
448 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
449 
450 static struct platform_driver acpi_pad_driver = {
451 	.probe = acpi_pad_probe,
452 	.remove_new = acpi_pad_remove,
453 	.driver = {
454 		.dev_groups = acpi_pad_groups,
455 		.name = "processor_aggregator",
456 		.acpi_match_table = pad_device_ids,
457 	},
458 };
459 
460 static int __init acpi_pad_init(void)
461 {
462 	/* Xen ACPI PAD is used when running as Xen Dom0. */
463 	if (xen_initial_domain())
464 		return -ENODEV;
465 
466 	power_saving_mwait_init();
467 	if (power_saving_mwait_eax == 0)
468 		return -EINVAL;
469 
470 	return platform_driver_register(&acpi_pad_driver);
471 }
472 
473 static void __exit acpi_pad_exit(void)
474 {
475 	platform_driver_unregister(&acpi_pad_driver);
476 }
477 
478 module_init(acpi_pad_init);
479 module_exit(acpi_pad_exit);
480 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
481 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
482 MODULE_LICENSE("GPL");
483