xref: /linux/drivers/acpi/acpi_pad.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/cpuid.h>
23 #include <asm/mwait.h>
24 #include <xen/xen.h>
25 
26 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
27 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
28 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
29 
30 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS	0
31 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION	1
32 
33 static DEFINE_MUTEX(isolated_cpus_lock);
34 static DEFINE_MUTEX(round_robin_lock);
35 
36 static unsigned long power_saving_mwait_eax;
37 
38 static unsigned char tsc_detected_unstable;
39 static unsigned char tsc_marked_unstable;
40 
41 static void power_saving_mwait_init(void)
42 {
43 	unsigned int eax, ebx, ecx, edx;
44 	unsigned int highest_cstate = 0;
45 	unsigned int highest_subcstate = 0;
46 	int i;
47 
48 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
49 		return;
50 
51 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
52 
53 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
54 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
55 		return;
56 
57 	edx >>= MWAIT_SUBSTATE_SIZE;
58 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
59 		if (edx & MWAIT_SUBSTATE_MASK) {
60 			highest_cstate = i;
61 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
62 		}
63 	}
64 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
65 		(highest_subcstate - 1);
66 
67 #if defined(CONFIG_X86)
68 	switch (boot_cpu_data.x86_vendor) {
69 	case X86_VENDOR_HYGON:
70 	case X86_VENDOR_AMD:
71 	case X86_VENDOR_INTEL:
72 	case X86_VENDOR_ZHAOXIN:
73 	case X86_VENDOR_CENTAUR:
74 		/*
75 		 * AMD Fam10h TSC will tick in all
76 		 * C/P/S0/S1 states when this bit is set.
77 		 */
78 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
79 			tsc_detected_unstable = 1;
80 		break;
81 	default:
82 		/* TSC could halt in idle */
83 		tsc_detected_unstable = 1;
84 	}
85 #endif
86 }
87 
88 static unsigned long cpu_weight[NR_CPUS];
89 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
90 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
91 static void round_robin_cpu(unsigned int tsk_index)
92 {
93 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
94 	cpumask_var_t tmp;
95 	int cpu;
96 	unsigned long min_weight = -1;
97 	unsigned long preferred_cpu;
98 
99 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
100 		return;
101 
102 	mutex_lock(&round_robin_lock);
103 	cpumask_clear(tmp);
104 	for_each_cpu(cpu, pad_busy_cpus)
105 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
106 	cpumask_andnot(tmp, cpu_online_mask, tmp);
107 	/* avoid HT siblings if possible */
108 	if (cpumask_empty(tmp))
109 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
110 	if (cpumask_empty(tmp)) {
111 		mutex_unlock(&round_robin_lock);
112 		free_cpumask_var(tmp);
113 		return;
114 	}
115 	for_each_cpu(cpu, tmp) {
116 		if (cpu_weight[cpu] < min_weight) {
117 			min_weight = cpu_weight[cpu];
118 			preferred_cpu = cpu;
119 		}
120 	}
121 
122 	if (tsk_in_cpu[tsk_index] != -1)
123 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124 	tsk_in_cpu[tsk_index] = preferred_cpu;
125 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126 	cpu_weight[preferred_cpu]++;
127 	mutex_unlock(&round_robin_lock);
128 
129 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130 
131 	free_cpumask_var(tmp);
132 }
133 
134 static void exit_round_robin(unsigned int tsk_index)
135 {
136 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137 
138 	if (tsk_in_cpu[tsk_index] != -1) {
139 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
140 		tsk_in_cpu[tsk_index] = -1;
141 	}
142 }
143 
144 static unsigned int idle_pct = 5; /* percentage */
145 static unsigned int round_robin_time = 1; /* second */
146 static int power_saving_thread(void *data)
147 {
148 	int do_sleep;
149 	unsigned int tsk_index = (unsigned long)data;
150 	u64 last_jiffies = 0;
151 
152 	sched_set_fifo_low(current);
153 
154 	while (!kthread_should_stop()) {
155 		unsigned long expire_time;
156 
157 		/* round robin to cpus */
158 		expire_time = last_jiffies + round_robin_time * HZ;
159 		if (time_before(expire_time, jiffies)) {
160 			last_jiffies = jiffies;
161 			round_robin_cpu(tsk_index);
162 		}
163 
164 		do_sleep = 0;
165 
166 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
167 
168 		while (!need_resched()) {
169 			if (tsc_detected_unstable && !tsc_marked_unstable) {
170 				/* TSC could halt in idle, so notify users */
171 				mark_tsc_unstable("TSC halts in idle");
172 				tsc_marked_unstable = 1;
173 			}
174 			local_irq_disable();
175 
176 			perf_lopwr_cb(true);
177 
178 			tick_broadcast_enable();
179 			tick_broadcast_enter();
180 			stop_critical_timings();
181 
182 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
183 
184 			start_critical_timings();
185 			tick_broadcast_exit();
186 
187 			perf_lopwr_cb(false);
188 
189 			local_irq_enable();
190 
191 			if (time_before(expire_time, jiffies)) {
192 				do_sleep = 1;
193 				break;
194 			}
195 		}
196 
197 		/*
198 		 * current sched_rt has threshold for rt task running time.
199 		 * When a rt task uses 95% CPU time, the rt thread will be
200 		 * scheduled out for 5% CPU time to not starve other tasks. But
201 		 * the mechanism only works when all CPUs have RT task running,
202 		 * as if one CPU hasn't RT task, RT task from other CPUs will
203 		 * borrow CPU time from this CPU and cause RT task use > 95%
204 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
205 		 */
206 		if (unlikely(do_sleep))
207 			schedule_timeout_killable(HZ * idle_pct / 100);
208 
209 		/* If an external event has set the need_resched flag, then
210 		 * we need to deal with it, or this loop will continue to
211 		 * spin without calling __mwait().
212 		 */
213 		if (unlikely(need_resched()))
214 			schedule();
215 	}
216 
217 	exit_round_robin(tsk_index);
218 	return 0;
219 }
220 
221 static struct task_struct *ps_tsks[NR_CPUS];
222 static unsigned int ps_tsk_num;
223 static int create_power_saving_task(void)
224 {
225 	int rc;
226 
227 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
228 		(void *)(unsigned long)ps_tsk_num,
229 		"acpi_pad/%d", ps_tsk_num);
230 
231 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
232 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
233 		ps_tsks[ps_tsk_num] = NULL;
234 	} else {
235 		rc = 0;
236 		ps_tsk_num++;
237 	}
238 
239 	return rc;
240 }
241 
242 static void destroy_power_saving_task(void)
243 {
244 	if (ps_tsk_num > 0) {
245 		ps_tsk_num--;
246 		kthread_stop(ps_tsks[ps_tsk_num]);
247 		ps_tsks[ps_tsk_num] = NULL;
248 	}
249 }
250 
251 static void set_power_saving_task_num(unsigned int num)
252 {
253 	if (num > ps_tsk_num) {
254 		while (ps_tsk_num < num) {
255 			if (create_power_saving_task())
256 				return;
257 		}
258 	} else if (num < ps_tsk_num) {
259 		while (ps_tsk_num > num)
260 			destroy_power_saving_task();
261 	}
262 }
263 
264 static void acpi_pad_idle_cpus(unsigned int num_cpus)
265 {
266 	cpus_read_lock();
267 
268 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
269 	set_power_saving_task_num(num_cpus);
270 
271 	cpus_read_unlock();
272 }
273 
274 static uint32_t acpi_pad_idle_cpus_num(void)
275 {
276 	return ps_tsk_num;
277 }
278 
279 static ssize_t rrtime_store(struct device *dev,
280 	struct device_attribute *attr, const char *buf, size_t count)
281 {
282 	unsigned long num;
283 
284 	if (kstrtoul(buf, 0, &num))
285 		return -EINVAL;
286 	if (num < 1 || num >= 100)
287 		return -EINVAL;
288 	mutex_lock(&isolated_cpus_lock);
289 	round_robin_time = num;
290 	mutex_unlock(&isolated_cpus_lock);
291 	return count;
292 }
293 
294 static ssize_t rrtime_show(struct device *dev,
295 	struct device_attribute *attr, char *buf)
296 {
297 	return sysfs_emit(buf, "%d\n", round_robin_time);
298 }
299 static DEVICE_ATTR_RW(rrtime);
300 
301 static ssize_t idlepct_store(struct device *dev,
302 	struct device_attribute *attr, const char *buf, size_t count)
303 {
304 	unsigned long num;
305 
306 	if (kstrtoul(buf, 0, &num))
307 		return -EINVAL;
308 	if (num < 1 || num >= 100)
309 		return -EINVAL;
310 	mutex_lock(&isolated_cpus_lock);
311 	idle_pct = num;
312 	mutex_unlock(&isolated_cpus_lock);
313 	return count;
314 }
315 
316 static ssize_t idlepct_show(struct device *dev,
317 	struct device_attribute *attr, char *buf)
318 {
319 	return sysfs_emit(buf, "%d\n", idle_pct);
320 }
321 static DEVICE_ATTR_RW(idlepct);
322 
323 static ssize_t idlecpus_store(struct device *dev,
324 	struct device_attribute *attr, const char *buf, size_t count)
325 {
326 	unsigned long num;
327 
328 	if (kstrtoul(buf, 0, &num))
329 		return -EINVAL;
330 	mutex_lock(&isolated_cpus_lock);
331 	acpi_pad_idle_cpus(num);
332 	mutex_unlock(&isolated_cpus_lock);
333 	return count;
334 }
335 
336 static ssize_t idlecpus_show(struct device *dev,
337 	struct device_attribute *attr, char *buf)
338 {
339 	return cpumap_print_to_pagebuf(false, buf,
340 				       to_cpumask(pad_busy_cpus_bits));
341 }
342 
343 static DEVICE_ATTR_RW(idlecpus);
344 
345 static struct attribute *acpi_pad_attrs[] = {
346 	&dev_attr_idlecpus.attr,
347 	&dev_attr_idlepct.attr,
348 	&dev_attr_rrtime.attr,
349 	NULL
350 };
351 
352 ATTRIBUTE_GROUPS(acpi_pad);
353 
354 /*
355  * Query firmware how many CPUs should be idle
356  * return -1 on failure
357  */
358 static int acpi_pad_pur(acpi_handle handle)
359 {
360 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
361 	union acpi_object *package;
362 	int num = -1;
363 
364 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
365 		return num;
366 
367 	if (!buffer.length || !buffer.pointer)
368 		return num;
369 
370 	package = buffer.pointer;
371 
372 	if (package->type == ACPI_TYPE_PACKAGE &&
373 		package->package.count == 2 &&
374 		package->package.elements[0].integer.value == 1) /* rev 1 */
375 
376 		num = package->package.elements[1].integer.value;
377 
378 	kfree(buffer.pointer);
379 	return num;
380 }
381 
382 static void acpi_pad_handle_notify(acpi_handle handle)
383 {
384 	int num_cpus;
385 	uint32_t idle_cpus;
386 	struct acpi_buffer param = {
387 		.length = 4,
388 		.pointer = (void *)&idle_cpus,
389 	};
390 	u32 status;
391 
392 	mutex_lock(&isolated_cpus_lock);
393 	num_cpus = acpi_pad_pur(handle);
394 	if (num_cpus < 0) {
395 		/* The ACPI specification says that if no action was performed when
396 		 * processing the _PUR object, _OST should still be evaluated, albeit
397 		 * with a different status code.
398 		 */
399 		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
400 	} else {
401 		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
402 		acpi_pad_idle_cpus(num_cpus);
403 	}
404 
405 	idle_cpus = acpi_pad_idle_cpus_num();
406 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, &param);
407 	mutex_unlock(&isolated_cpus_lock);
408 }
409 
410 static void acpi_pad_notify(acpi_handle handle, u32 event,
411 	void *data)
412 {
413 	struct acpi_device *adev = data;
414 
415 	switch (event) {
416 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
417 		acpi_pad_handle_notify(handle);
418 		acpi_bus_generate_netlink_event(adev->pnp.device_class,
419 			dev_name(&adev->dev), event, 0);
420 		break;
421 	default:
422 		pr_warn("Unsupported event [0x%x]\n", event);
423 		break;
424 	}
425 }
426 
427 static int acpi_pad_probe(struct platform_device *pdev)
428 {
429 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
430 	acpi_status status;
431 
432 	strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433 	strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434 
435 	status = acpi_install_notify_handler(adev->handle,
436 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
437 
438 	if (ACPI_FAILURE(status))
439 		return -ENODEV;
440 
441 	return 0;
442 }
443 
444 static void acpi_pad_remove(struct platform_device *pdev)
445 {
446 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
447 
448 	mutex_lock(&isolated_cpus_lock);
449 	acpi_pad_idle_cpus(0);
450 	mutex_unlock(&isolated_cpus_lock);
451 
452 	acpi_remove_notify_handler(adev->handle,
453 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
454 }
455 
456 static const struct acpi_device_id pad_device_ids[] = {
457 	{"ACPI000C", 0},
458 	{"", 0},
459 };
460 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
461 
462 static struct platform_driver acpi_pad_driver = {
463 	.probe = acpi_pad_probe,
464 	.remove = acpi_pad_remove,
465 	.driver = {
466 		.dev_groups = acpi_pad_groups,
467 		.name = "processor_aggregator",
468 		.acpi_match_table = pad_device_ids,
469 	},
470 };
471 
472 static int __init acpi_pad_init(void)
473 {
474 	/* Xen ACPI PAD is used when running as Xen Dom0. */
475 	if (xen_initial_domain())
476 		return -ENODEV;
477 
478 	power_saving_mwait_init();
479 	if (power_saving_mwait_eax == 0)
480 		return -EINVAL;
481 
482 	return platform_driver_register(&acpi_pad_driver);
483 }
484 
485 static void __exit acpi_pad_exit(void)
486 {
487 	platform_driver_unregister(&acpi_pad_driver);
488 }
489 
490 module_init(acpi_pad_init);
491 module_exit(acpi_pad_exit);
492 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
493 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
494 MODULE_LICENSE("GPL");
495