xref: /linux/drivers/acpi/acpi_pad.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <acpi/acpi_bus.h>
31 #include <acpi/acpi_drivers.h>
32 
33 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"processor_aggregator"
34 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
35 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
36 static DEFINE_MUTEX(isolated_cpus_lock);
37 
38 #define MWAIT_SUBSTATE_MASK	(0xf)
39 #define MWAIT_CSTATE_MASK	(0xf)
40 #define MWAIT_SUBSTATE_SIZE	(4)
41 #define CPUID_MWAIT_LEAF (5)
42 #define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
43 #define CPUID5_ECX_INTERRUPT_BREAK	(0x2)
44 static unsigned long power_saving_mwait_eax;
45 static void power_saving_mwait_init(void)
46 {
47 	unsigned int eax, ebx, ecx, edx;
48 	unsigned int highest_cstate = 0;
49 	unsigned int highest_subcstate = 0;
50 	int i;
51 
52 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
53 		return;
54 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
55 		return;
56 
57 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
58 
59 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
60 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
61 		return;
62 
63 	edx >>= MWAIT_SUBSTATE_SIZE;
64 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
65 		if (edx & MWAIT_SUBSTATE_MASK) {
66 			highest_cstate = i;
67 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
68 		}
69 	}
70 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
71 		(highest_subcstate - 1);
72 
73 	for_each_online_cpu(i)
74 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ON, &i);
75 
76 #if defined(CONFIG_GENERIC_TIME) && defined(CONFIG_X86)
77 	switch (boot_cpu_data.x86_vendor) {
78 	case X86_VENDOR_AMD:
79 	case X86_VENDOR_INTEL:
80 		/*
81 		 * AMD Fam10h TSC will tick in all
82 		 * C/P/S0/S1 states when this bit is set.
83 		 */
84 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
85 			return;
86 
87 		/*FALL THROUGH*/
88 	default:
89 		/* TSC could halt in idle, so notify users */
90 		mark_tsc_unstable("TSC halts in idle");
91 	}
92 #endif
93 }
94 
95 static unsigned long cpu_weight[NR_CPUS];
96 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
97 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
98 static void round_robin_cpu(unsigned int tsk_index)
99 {
100 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
101 	cpumask_var_t tmp;
102 	int cpu;
103 	unsigned long min_weight = -1, preferred_cpu;
104 
105 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
106 		return;
107 
108 	mutex_lock(&isolated_cpus_lock);
109 	cpumask_clear(tmp);
110 	for_each_cpu(cpu, pad_busy_cpus)
111 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
112 	cpumask_andnot(tmp, cpu_online_mask, tmp);
113 	/* avoid HT sibilings if possible */
114 	if (cpumask_empty(tmp))
115 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
116 	if (cpumask_empty(tmp)) {
117 		mutex_unlock(&isolated_cpus_lock);
118 		return;
119 	}
120 	for_each_cpu(cpu, tmp) {
121 		if (cpu_weight[cpu] < min_weight) {
122 			min_weight = cpu_weight[cpu];
123 			preferred_cpu = cpu;
124 		}
125 	}
126 
127 	if (tsk_in_cpu[tsk_index] != -1)
128 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
129 	tsk_in_cpu[tsk_index] = preferred_cpu;
130 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
131 	cpu_weight[preferred_cpu]++;
132 	mutex_unlock(&isolated_cpus_lock);
133 
134 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
135 }
136 
137 static void exit_round_robin(unsigned int tsk_index)
138 {
139 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
140 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
141 	tsk_in_cpu[tsk_index] = -1;
142 }
143 
144 static unsigned int idle_pct = 5; /* percentage */
145 static unsigned int round_robin_time = 10; /* second */
146 static int power_saving_thread(void *data)
147 {
148 	struct sched_param param = {.sched_priority = 1};
149 	int do_sleep;
150 	unsigned int tsk_index = (unsigned long)data;
151 	u64 last_jiffies = 0;
152 
153 	sched_setscheduler(current, SCHED_RR, &param);
154 
155 	while (!kthread_should_stop()) {
156 		int cpu;
157 		u64 expire_time;
158 
159 		try_to_freeze();
160 
161 		/* round robin to cpus */
162 		if (last_jiffies + round_robin_time * HZ < jiffies) {
163 			last_jiffies = jiffies;
164 			round_robin_cpu(tsk_index);
165 		}
166 
167 		do_sleep = 0;
168 
169 		current_thread_info()->status &= ~TS_POLLING;
170 		/*
171 		 * TS_POLLING-cleared state must be visible before we test
172 		 * NEED_RESCHED:
173 		 */
174 		smp_mb();
175 
176 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
177 
178 		while (!need_resched()) {
179 			local_irq_disable();
180 			cpu = smp_processor_id();
181 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER,
182 				&cpu);
183 			stop_critical_timings();
184 
185 			__monitor((void *)&current_thread_info()->flags, 0, 0);
186 			smp_mb();
187 			if (!need_resched())
188 				__mwait(power_saving_mwait_eax, 1);
189 
190 			start_critical_timings();
191 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT,
192 				&cpu);
193 			local_irq_enable();
194 
195 			if (jiffies > expire_time) {
196 				do_sleep = 1;
197 				break;
198 			}
199 		}
200 
201 		current_thread_info()->status |= TS_POLLING;
202 
203 		/*
204 		 * current sched_rt has threshold for rt task running time.
205 		 * When a rt task uses 95% CPU time, the rt thread will be
206 		 * scheduled out for 5% CPU time to not starve other tasks. But
207 		 * the mechanism only works when all CPUs have RT task running,
208 		 * as if one CPU hasn't RT task, RT task from other CPUs will
209 		 * borrow CPU time from this CPU and cause RT task use > 95%
210 		 * CPU time. To make 'avoid staration' work, takes a nap here.
211 		 */
212 		if (do_sleep)
213 			schedule_timeout_killable(HZ * idle_pct / 100);
214 	}
215 
216 	exit_round_robin(tsk_index);
217 	return 0;
218 }
219 
220 static struct task_struct *ps_tsks[NR_CPUS];
221 static unsigned int ps_tsk_num;
222 static int create_power_saving_task(void)
223 {
224 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
225 		(void *)(unsigned long)ps_tsk_num,
226 		"power_saving/%d", ps_tsk_num);
227 	if (ps_tsks[ps_tsk_num]) {
228 		ps_tsk_num++;
229 		return 0;
230 	}
231 	return -EINVAL;
232 }
233 
234 static void destroy_power_saving_task(void)
235 {
236 	if (ps_tsk_num > 0) {
237 		ps_tsk_num--;
238 		kthread_stop(ps_tsks[ps_tsk_num]);
239 	}
240 }
241 
242 static void set_power_saving_task_num(unsigned int num)
243 {
244 	if (num > ps_tsk_num) {
245 		while (ps_tsk_num < num) {
246 			if (create_power_saving_task())
247 				return;
248 		}
249 	} else if (num < ps_tsk_num) {
250 		while (ps_tsk_num > num)
251 			destroy_power_saving_task();
252 	}
253 }
254 
255 static int acpi_pad_idle_cpus(unsigned int num_cpus)
256 {
257 	get_online_cpus();
258 
259 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
260 	set_power_saving_task_num(num_cpus);
261 
262 	put_online_cpus();
263 	return 0;
264 }
265 
266 static uint32_t acpi_pad_idle_cpus_num(void)
267 {
268 	return ps_tsk_num;
269 }
270 
271 static ssize_t acpi_pad_rrtime_store(struct device *dev,
272 	struct device_attribute *attr, const char *buf, size_t count)
273 {
274 	unsigned long num;
275 	if (strict_strtoul(buf, 0, &num))
276 		return -EINVAL;
277 	if (num < 1 || num >= 100)
278 		return -EINVAL;
279 	mutex_lock(&isolated_cpus_lock);
280 	round_robin_time = num;
281 	mutex_unlock(&isolated_cpus_lock);
282 	return count;
283 }
284 
285 static ssize_t acpi_pad_rrtime_show(struct device *dev,
286 	struct device_attribute *attr, char *buf)
287 {
288 	return scnprintf(buf, PAGE_SIZE, "%d", round_robin_time);
289 }
290 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
291 	acpi_pad_rrtime_show,
292 	acpi_pad_rrtime_store);
293 
294 static ssize_t acpi_pad_idlepct_store(struct device *dev,
295 	struct device_attribute *attr, const char *buf, size_t count)
296 {
297 	unsigned long num;
298 	if (strict_strtoul(buf, 0, &num))
299 		return -EINVAL;
300 	if (num < 1 || num >= 100)
301 		return -EINVAL;
302 	mutex_lock(&isolated_cpus_lock);
303 	idle_pct = num;
304 	mutex_unlock(&isolated_cpus_lock);
305 	return count;
306 }
307 
308 static ssize_t acpi_pad_idlepct_show(struct device *dev,
309 	struct device_attribute *attr, char *buf)
310 {
311 	return scnprintf(buf, PAGE_SIZE, "%d", idle_pct);
312 }
313 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
314 	acpi_pad_idlepct_show,
315 	acpi_pad_idlepct_store);
316 
317 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
318 	struct device_attribute *attr, const char *buf, size_t count)
319 {
320 	unsigned long num;
321 	if (strict_strtoul(buf, 0, &num))
322 		return -EINVAL;
323 	mutex_lock(&isolated_cpus_lock);
324 	acpi_pad_idle_cpus(num);
325 	mutex_unlock(&isolated_cpus_lock);
326 	return count;
327 }
328 
329 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
330 	struct device_attribute *attr, char *buf)
331 {
332 	return cpumask_scnprintf(buf, PAGE_SIZE,
333 		to_cpumask(pad_busy_cpus_bits));
334 }
335 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
336 	acpi_pad_idlecpus_show,
337 	acpi_pad_idlecpus_store);
338 
339 static int acpi_pad_add_sysfs(struct acpi_device *device)
340 {
341 	int result;
342 
343 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
344 	if (result)
345 		return -ENODEV;
346 	result = device_create_file(&device->dev, &dev_attr_idlepct);
347 	if (result) {
348 		device_remove_file(&device->dev, &dev_attr_idlecpus);
349 		return -ENODEV;
350 	}
351 	result = device_create_file(&device->dev, &dev_attr_rrtime);
352 	if (result) {
353 		device_remove_file(&device->dev, &dev_attr_idlecpus);
354 		device_remove_file(&device->dev, &dev_attr_idlepct);
355 		return -ENODEV;
356 	}
357 	return 0;
358 }
359 
360 static void acpi_pad_remove_sysfs(struct acpi_device *device)
361 {
362 	device_remove_file(&device->dev, &dev_attr_idlecpus);
363 	device_remove_file(&device->dev, &dev_attr_idlepct);
364 	device_remove_file(&device->dev, &dev_attr_rrtime);
365 }
366 
367 /* Query firmware how many CPUs should be idle */
368 static int acpi_pad_pur(acpi_handle handle, int *num_cpus)
369 {
370 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
371 	acpi_status status;
372 	union acpi_object *package;
373 	int rev, num, ret = -EINVAL;
374 
375 	status = acpi_evaluate_object(handle, "_PUR", NULL, &buffer);
376 	if (ACPI_FAILURE(status))
377 		return -EINVAL;
378 	package = buffer.pointer;
379 	if (package->type != ACPI_TYPE_PACKAGE || package->package.count != 2)
380 		goto out;
381 	rev = package->package.elements[0].integer.value;
382 	num = package->package.elements[1].integer.value;
383 	if (rev != 1)
384 		goto out;
385 	*num_cpus = num;
386 	ret = 0;
387 out:
388 	kfree(buffer.pointer);
389 	return ret;
390 }
391 
392 /* Notify firmware how many CPUs are idle */
393 static void acpi_pad_ost(acpi_handle handle, int stat,
394 	uint32_t idle_cpus)
395 {
396 	union acpi_object params[3] = {
397 		{.type = ACPI_TYPE_INTEGER,},
398 		{.type = ACPI_TYPE_INTEGER,},
399 		{.type = ACPI_TYPE_BUFFER,},
400 	};
401 	struct acpi_object_list arg_list = {3, params};
402 
403 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
404 	params[1].integer.value =  stat;
405 	params[2].buffer.length = 4;
406 	params[2].buffer.pointer = (void *)&idle_cpus;
407 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
408 }
409 
410 static void acpi_pad_handle_notify(acpi_handle handle)
411 {
412 	int num_cpus, ret;
413 	uint32_t idle_cpus;
414 
415 	mutex_lock(&isolated_cpus_lock);
416 	if (acpi_pad_pur(handle, &num_cpus)) {
417 		mutex_unlock(&isolated_cpus_lock);
418 		return;
419 	}
420 	ret = acpi_pad_idle_cpus(num_cpus);
421 	idle_cpus = acpi_pad_idle_cpus_num();
422 	if (!ret)
423 		acpi_pad_ost(handle, 0, idle_cpus);
424 	else
425 		acpi_pad_ost(handle, 1, 0);
426 	mutex_unlock(&isolated_cpus_lock);
427 }
428 
429 static void acpi_pad_notify(acpi_handle handle, u32 event,
430 	void *data)
431 {
432 	struct acpi_device *device = data;
433 
434 	switch (event) {
435 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
436 		acpi_pad_handle_notify(handle);
437 		acpi_bus_generate_proc_event(device, event, 0);
438 		acpi_bus_generate_netlink_event(device->pnp.device_class,
439 			dev_name(&device->dev), event, 0);
440 		break;
441 	default:
442 		printk(KERN_WARNING"Unsupported event [0x%x]\n", event);
443 		break;
444 	}
445 }
446 
447 static int acpi_pad_add(struct acpi_device *device)
448 {
449 	acpi_status status;
450 
451 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
452 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
453 
454 	if (acpi_pad_add_sysfs(device))
455 		return -ENODEV;
456 
457 	status = acpi_install_notify_handler(device->handle,
458 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
459 	if (ACPI_FAILURE(status)) {
460 		acpi_pad_remove_sysfs(device);
461 		return -ENODEV;
462 	}
463 
464 	return 0;
465 }
466 
467 static int acpi_pad_remove(struct acpi_device *device,
468 	int type)
469 {
470 	mutex_lock(&isolated_cpus_lock);
471 	acpi_pad_idle_cpus(0);
472 	mutex_unlock(&isolated_cpus_lock);
473 
474 	acpi_remove_notify_handler(device->handle,
475 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
476 	acpi_pad_remove_sysfs(device);
477 	return 0;
478 }
479 
480 static const struct acpi_device_id pad_device_ids[] = {
481 	{"ACPI000C", 0},
482 	{"", 0},
483 };
484 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
485 
486 static struct acpi_driver acpi_pad_driver = {
487 	.name = "processor_aggregator",
488 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
489 	.ids = pad_device_ids,
490 	.ops = {
491 		.add = acpi_pad_add,
492 		.remove = acpi_pad_remove,
493 	},
494 };
495 
496 static int __init acpi_pad_init(void)
497 {
498 	power_saving_mwait_init();
499 	if (power_saving_mwait_eax == 0)
500 		return -EINVAL;
501 
502 	return acpi_bus_register_driver(&acpi_pad_driver);
503 }
504 
505 static void __exit acpi_pad_exit(void)
506 {
507 	acpi_bus_unregister_driver(&acpi_pad_driver);
508 }
509 
510 module_init(acpi_pad_init);
511 module_exit(acpi_pad_exit);
512 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
513 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
514 MODULE_LICENSE("GPL");
515