xref: /linux/drivers/acpi/acpi_pad.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <acpi/acpi_bus.h>
32 #include <acpi/acpi_drivers.h>
33 
34 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
35 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
36 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
37 static DEFINE_MUTEX(isolated_cpus_lock);
38 
39 #define MWAIT_SUBSTATE_MASK	(0xf)
40 #define MWAIT_CSTATE_MASK	(0xf)
41 #define MWAIT_SUBSTATE_SIZE	(4)
42 #define CPUID_MWAIT_LEAF (5)
43 #define CPUID5_ECX_EXTENSIONS_SUPPORTED (0x1)
44 #define CPUID5_ECX_INTERRUPT_BREAK	(0x2)
45 static unsigned long power_saving_mwait_eax;
46 
47 static unsigned char tsc_detected_unstable;
48 static unsigned char tsc_marked_unstable;
49 static unsigned char lapic_detected_unstable;
50 static unsigned char lapic_marked_unstable;
51 
52 static void power_saving_mwait_init(void)
53 {
54 	unsigned int eax, ebx, ecx, edx;
55 	unsigned int highest_cstate = 0;
56 	unsigned int highest_subcstate = 0;
57 	int i;
58 
59 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
60 		return;
61 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
62 		return;
63 
64 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
65 
66 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
67 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
68 		return;
69 
70 	edx >>= MWAIT_SUBSTATE_SIZE;
71 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
72 		if (edx & MWAIT_SUBSTATE_MASK) {
73 			highest_cstate = i;
74 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
75 		}
76 	}
77 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
78 		(highest_subcstate - 1);
79 
80 #if defined(CONFIG_X86)
81 	switch (boot_cpu_data.x86_vendor) {
82 	case X86_VENDOR_AMD:
83 	case X86_VENDOR_INTEL:
84 		/*
85 		 * AMD Fam10h TSC will tick in all
86 		 * C/P/S0/S1 states when this bit is set.
87 		 */
88 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
89 			tsc_detected_unstable = 1;
90 		if (!boot_cpu_has(X86_FEATURE_ARAT))
91 			lapic_detected_unstable = 1;
92 		break;
93 	default:
94 		/* TSC & LAPIC could halt in idle */
95 		tsc_detected_unstable = 1;
96 		lapic_detected_unstable = 1;
97 	}
98 #endif
99 }
100 
101 static unsigned long cpu_weight[NR_CPUS];
102 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
103 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
104 static void round_robin_cpu(unsigned int tsk_index)
105 {
106 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
107 	cpumask_var_t tmp;
108 	int cpu;
109 	unsigned long min_weight = -1;
110 	unsigned long uninitialized_var(preferred_cpu);
111 
112 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
113 		return;
114 
115 	mutex_lock(&isolated_cpus_lock);
116 	cpumask_clear(tmp);
117 	for_each_cpu(cpu, pad_busy_cpus)
118 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
119 	cpumask_andnot(tmp, cpu_online_mask, tmp);
120 	/* avoid HT sibilings if possible */
121 	if (cpumask_empty(tmp))
122 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
123 	if (cpumask_empty(tmp)) {
124 		mutex_unlock(&isolated_cpus_lock);
125 		return;
126 	}
127 	for_each_cpu(cpu, tmp) {
128 		if (cpu_weight[cpu] < min_weight) {
129 			min_weight = cpu_weight[cpu];
130 			preferred_cpu = cpu;
131 		}
132 	}
133 
134 	if (tsk_in_cpu[tsk_index] != -1)
135 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136 	tsk_in_cpu[tsk_index] = preferred_cpu;
137 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
138 	cpu_weight[preferred_cpu]++;
139 	mutex_unlock(&isolated_cpus_lock);
140 
141 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
142 }
143 
144 static void exit_round_robin(unsigned int tsk_index)
145 {
146 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
147 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
148 	tsk_in_cpu[tsk_index] = -1;
149 }
150 
151 static unsigned int idle_pct = 5; /* percentage */
152 static unsigned int round_robin_time = 10; /* second */
153 static int power_saving_thread(void *data)
154 {
155 	struct sched_param param = {.sched_priority = 1};
156 	int do_sleep;
157 	unsigned int tsk_index = (unsigned long)data;
158 	u64 last_jiffies = 0;
159 
160 	sched_setscheduler(current, SCHED_RR, &param);
161 
162 	while (!kthread_should_stop()) {
163 		int cpu;
164 		u64 expire_time;
165 
166 		try_to_freeze();
167 
168 		/* round robin to cpus */
169 		if (last_jiffies + round_robin_time * HZ < jiffies) {
170 			last_jiffies = jiffies;
171 			round_robin_cpu(tsk_index);
172 		}
173 
174 		do_sleep = 0;
175 
176 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
177 
178 		while (!need_resched()) {
179 			if (tsc_detected_unstable && !tsc_marked_unstable) {
180 				/* TSC could halt in idle, so notify users */
181 				mark_tsc_unstable("TSC halts in idle");
182 				tsc_marked_unstable = 1;
183 			}
184 			if (lapic_detected_unstable && !lapic_marked_unstable) {
185 				int i;
186 				/* LAPIC could halt in idle, so notify users */
187 				for_each_online_cpu(i)
188 					clockevents_notify(
189 						CLOCK_EVT_NOTIFY_BROADCAST_ON,
190 						&i);
191 				lapic_marked_unstable = 1;
192 			}
193 			local_irq_disable();
194 			cpu = smp_processor_id();
195 			if (lapic_marked_unstable)
196 				clockevents_notify(
197 					CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
198 			stop_critical_timings();
199 
200 			__monitor((void *)&current_thread_info()->flags, 0, 0);
201 			smp_mb();
202 			if (!need_resched())
203 				__mwait(power_saving_mwait_eax, 1);
204 
205 			start_critical_timings();
206 			if (lapic_marked_unstable)
207 				clockevents_notify(
208 					CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
209 			local_irq_enable();
210 
211 			if (jiffies > expire_time) {
212 				do_sleep = 1;
213 				break;
214 			}
215 		}
216 
217 		/*
218 		 * current sched_rt has threshold for rt task running time.
219 		 * When a rt task uses 95% CPU time, the rt thread will be
220 		 * scheduled out for 5% CPU time to not starve other tasks. But
221 		 * the mechanism only works when all CPUs have RT task running,
222 		 * as if one CPU hasn't RT task, RT task from other CPUs will
223 		 * borrow CPU time from this CPU and cause RT task use > 95%
224 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
225 		 */
226 		if (do_sleep)
227 			schedule_timeout_killable(HZ * idle_pct / 100);
228 	}
229 
230 	exit_round_robin(tsk_index);
231 	return 0;
232 }
233 
234 static struct task_struct *ps_tsks[NR_CPUS];
235 static unsigned int ps_tsk_num;
236 static int create_power_saving_task(void)
237 {
238 	int rc = -ENOMEM;
239 
240 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
241 		(void *)(unsigned long)ps_tsk_num,
242 		"power_saving/%d", ps_tsk_num);
243 	rc = IS_ERR(ps_tsks[ps_tsk_num]) ? PTR_ERR(ps_tsks[ps_tsk_num]) : 0;
244 	if (!rc)
245 		ps_tsk_num++;
246 	else
247 		ps_tsks[ps_tsk_num] = NULL;
248 
249 	return rc;
250 }
251 
252 static void destroy_power_saving_task(void)
253 {
254 	if (ps_tsk_num > 0) {
255 		ps_tsk_num--;
256 		kthread_stop(ps_tsks[ps_tsk_num]);
257 		ps_tsks[ps_tsk_num] = NULL;
258 	}
259 }
260 
261 static void set_power_saving_task_num(unsigned int num)
262 {
263 	if (num > ps_tsk_num) {
264 		while (ps_tsk_num < num) {
265 			if (create_power_saving_task())
266 				return;
267 		}
268 	} else if (num < ps_tsk_num) {
269 		while (ps_tsk_num > num)
270 			destroy_power_saving_task();
271 	}
272 }
273 
274 static void acpi_pad_idle_cpus(unsigned int num_cpus)
275 {
276 	get_online_cpus();
277 
278 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
279 	set_power_saving_task_num(num_cpus);
280 
281 	put_online_cpus();
282 }
283 
284 static uint32_t acpi_pad_idle_cpus_num(void)
285 {
286 	return ps_tsk_num;
287 }
288 
289 static ssize_t acpi_pad_rrtime_store(struct device *dev,
290 	struct device_attribute *attr, const char *buf, size_t count)
291 {
292 	unsigned long num;
293 	if (strict_strtoul(buf, 0, &num))
294 		return -EINVAL;
295 	if (num < 1 || num >= 100)
296 		return -EINVAL;
297 	mutex_lock(&isolated_cpus_lock);
298 	round_robin_time = num;
299 	mutex_unlock(&isolated_cpus_lock);
300 	return count;
301 }
302 
303 static ssize_t acpi_pad_rrtime_show(struct device *dev,
304 	struct device_attribute *attr, char *buf)
305 {
306 	return scnprintf(buf, PAGE_SIZE, "%d", round_robin_time);
307 }
308 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
309 	acpi_pad_rrtime_show,
310 	acpi_pad_rrtime_store);
311 
312 static ssize_t acpi_pad_idlepct_store(struct device *dev,
313 	struct device_attribute *attr, const char *buf, size_t count)
314 {
315 	unsigned long num;
316 	if (strict_strtoul(buf, 0, &num))
317 		return -EINVAL;
318 	if (num < 1 || num >= 100)
319 		return -EINVAL;
320 	mutex_lock(&isolated_cpus_lock);
321 	idle_pct = num;
322 	mutex_unlock(&isolated_cpus_lock);
323 	return count;
324 }
325 
326 static ssize_t acpi_pad_idlepct_show(struct device *dev,
327 	struct device_attribute *attr, char *buf)
328 {
329 	return scnprintf(buf, PAGE_SIZE, "%d", idle_pct);
330 }
331 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
332 	acpi_pad_idlepct_show,
333 	acpi_pad_idlepct_store);
334 
335 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
336 	struct device_attribute *attr, const char *buf, size_t count)
337 {
338 	unsigned long num;
339 	if (strict_strtoul(buf, 0, &num))
340 		return -EINVAL;
341 	mutex_lock(&isolated_cpus_lock);
342 	acpi_pad_idle_cpus(num);
343 	mutex_unlock(&isolated_cpus_lock);
344 	return count;
345 }
346 
347 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
348 	struct device_attribute *attr, char *buf)
349 {
350 	return cpumask_scnprintf(buf, PAGE_SIZE,
351 		to_cpumask(pad_busy_cpus_bits));
352 }
353 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
354 	acpi_pad_idlecpus_show,
355 	acpi_pad_idlecpus_store);
356 
357 static int acpi_pad_add_sysfs(struct acpi_device *device)
358 {
359 	int result;
360 
361 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
362 	if (result)
363 		return -ENODEV;
364 	result = device_create_file(&device->dev, &dev_attr_idlepct);
365 	if (result) {
366 		device_remove_file(&device->dev, &dev_attr_idlecpus);
367 		return -ENODEV;
368 	}
369 	result = device_create_file(&device->dev, &dev_attr_rrtime);
370 	if (result) {
371 		device_remove_file(&device->dev, &dev_attr_idlecpus);
372 		device_remove_file(&device->dev, &dev_attr_idlepct);
373 		return -ENODEV;
374 	}
375 	return 0;
376 }
377 
378 static void acpi_pad_remove_sysfs(struct acpi_device *device)
379 {
380 	device_remove_file(&device->dev, &dev_attr_idlecpus);
381 	device_remove_file(&device->dev, &dev_attr_idlepct);
382 	device_remove_file(&device->dev, &dev_attr_rrtime);
383 }
384 
385 /* Query firmware how many CPUs should be idle */
386 static int acpi_pad_pur(acpi_handle handle, int *num_cpus)
387 {
388 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
389 	union acpi_object *package;
390 	int rev, num, ret = -EINVAL;
391 
392 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
393 		return -EINVAL;
394 
395 	if (!buffer.length || !buffer.pointer)
396 		return -EINVAL;
397 
398 	package = buffer.pointer;
399 	if (package->type != ACPI_TYPE_PACKAGE || package->package.count != 2)
400 		goto out;
401 	rev = package->package.elements[0].integer.value;
402 	num = package->package.elements[1].integer.value;
403 	if (rev != 1 || num < 0)
404 		goto out;
405 	*num_cpus = num;
406 	ret = 0;
407 out:
408 	kfree(buffer.pointer);
409 	return ret;
410 }
411 
412 /* Notify firmware how many CPUs are idle */
413 static void acpi_pad_ost(acpi_handle handle, int stat,
414 	uint32_t idle_cpus)
415 {
416 	union acpi_object params[3] = {
417 		{.type = ACPI_TYPE_INTEGER,},
418 		{.type = ACPI_TYPE_INTEGER,},
419 		{.type = ACPI_TYPE_BUFFER,},
420 	};
421 	struct acpi_object_list arg_list = {3, params};
422 
423 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
424 	params[1].integer.value =  stat;
425 	params[2].buffer.length = 4;
426 	params[2].buffer.pointer = (void *)&idle_cpus;
427 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
428 }
429 
430 static void acpi_pad_handle_notify(acpi_handle handle)
431 {
432 	int num_cpus;
433 	uint32_t idle_cpus;
434 
435 	mutex_lock(&isolated_cpus_lock);
436 	if (acpi_pad_pur(handle, &num_cpus)) {
437 		mutex_unlock(&isolated_cpus_lock);
438 		return;
439 	}
440 	acpi_pad_idle_cpus(num_cpus);
441 	idle_cpus = acpi_pad_idle_cpus_num();
442 	acpi_pad_ost(handle, 0, idle_cpus);
443 	mutex_unlock(&isolated_cpus_lock);
444 }
445 
446 static void acpi_pad_notify(acpi_handle handle, u32 event,
447 	void *data)
448 {
449 	struct acpi_device *device = data;
450 
451 	switch (event) {
452 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
453 		acpi_pad_handle_notify(handle);
454 		acpi_bus_generate_proc_event(device, event, 0);
455 		acpi_bus_generate_netlink_event(device->pnp.device_class,
456 			dev_name(&device->dev), event, 0);
457 		break;
458 	default:
459 		printk(KERN_WARNING"Unsupported event [0x%x]\n", event);
460 		break;
461 	}
462 }
463 
464 static int acpi_pad_add(struct acpi_device *device)
465 {
466 	acpi_status status;
467 
468 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
469 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
470 
471 	if (acpi_pad_add_sysfs(device))
472 		return -ENODEV;
473 
474 	status = acpi_install_notify_handler(device->handle,
475 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
476 	if (ACPI_FAILURE(status)) {
477 		acpi_pad_remove_sysfs(device);
478 		return -ENODEV;
479 	}
480 
481 	return 0;
482 }
483 
484 static int acpi_pad_remove(struct acpi_device *device,
485 	int type)
486 {
487 	mutex_lock(&isolated_cpus_lock);
488 	acpi_pad_idle_cpus(0);
489 	mutex_unlock(&isolated_cpus_lock);
490 
491 	acpi_remove_notify_handler(device->handle,
492 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
493 	acpi_pad_remove_sysfs(device);
494 	return 0;
495 }
496 
497 static const struct acpi_device_id pad_device_ids[] = {
498 	{"ACPI000C", 0},
499 	{"", 0},
500 };
501 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
502 
503 static struct acpi_driver acpi_pad_driver = {
504 	.name = "processor_aggregator",
505 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
506 	.ids = pad_device_ids,
507 	.ops = {
508 		.add = acpi_pad_add,
509 		.remove = acpi_pad_remove,
510 	},
511 };
512 
513 static int __init acpi_pad_init(void)
514 {
515 	power_saving_mwait_init();
516 	if (power_saving_mwait_eax == 0)
517 		return -EINVAL;
518 
519 	return acpi_bus_register_driver(&acpi_pad_driver);
520 }
521 
522 static void __exit acpi_pad_exit(void)
523 {
524 	acpi_bus_unregister_driver(&acpi_pad_driver);
525 }
526 
527 module_init(acpi_pad_init);
528 module_exit(acpi_pad_exit);
529 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
530 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
531 MODULE_LICENSE("GPL");
532