xref: /linux/drivers/acpi/acpi_pad.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <acpi/acpi_bus.h>
32 #include <acpi/acpi_drivers.h>
33 #include <asm/mwait.h>
34 
35 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
36 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
37 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
38 static DEFINE_MUTEX(isolated_cpus_lock);
39 static DEFINE_MUTEX(round_robin_lock);
40 
41 static unsigned long power_saving_mwait_eax;
42 
43 static unsigned char tsc_detected_unstable;
44 static unsigned char tsc_marked_unstable;
45 static unsigned char lapic_detected_unstable;
46 static unsigned char lapic_marked_unstable;
47 
48 static void power_saving_mwait_init(void)
49 {
50 	unsigned int eax, ebx, ecx, edx;
51 	unsigned int highest_cstate = 0;
52 	unsigned int highest_subcstate = 0;
53 	int i;
54 
55 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
56 		return;
57 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
58 		return;
59 
60 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
61 
62 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
63 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
64 		return;
65 
66 	edx >>= MWAIT_SUBSTATE_SIZE;
67 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
68 		if (edx & MWAIT_SUBSTATE_MASK) {
69 			highest_cstate = i;
70 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
71 		}
72 	}
73 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
74 		(highest_subcstate - 1);
75 
76 #if defined(CONFIG_X86)
77 	switch (boot_cpu_data.x86_vendor) {
78 	case X86_VENDOR_AMD:
79 	case X86_VENDOR_INTEL:
80 		/*
81 		 * AMD Fam10h TSC will tick in all
82 		 * C/P/S0/S1 states when this bit is set.
83 		 */
84 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
85 			tsc_detected_unstable = 1;
86 		if (!boot_cpu_has(X86_FEATURE_ARAT))
87 			lapic_detected_unstable = 1;
88 		break;
89 	default:
90 		/* TSC & LAPIC could halt in idle */
91 		tsc_detected_unstable = 1;
92 		lapic_detected_unstable = 1;
93 	}
94 #endif
95 }
96 
97 static unsigned long cpu_weight[NR_CPUS];
98 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
99 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
100 static void round_robin_cpu(unsigned int tsk_index)
101 {
102 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
103 	cpumask_var_t tmp;
104 	int cpu;
105 	unsigned long min_weight = -1;
106 	unsigned long uninitialized_var(preferred_cpu);
107 
108 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
109 		return;
110 
111 	mutex_lock(&round_robin_lock);
112 	cpumask_clear(tmp);
113 	for_each_cpu(cpu, pad_busy_cpus)
114 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
115 	cpumask_andnot(tmp, cpu_online_mask, tmp);
116 	/* avoid HT sibilings if possible */
117 	if (cpumask_empty(tmp))
118 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
119 	if (cpumask_empty(tmp)) {
120 		mutex_unlock(&round_robin_lock);
121 		return;
122 	}
123 	for_each_cpu(cpu, tmp) {
124 		if (cpu_weight[cpu] < min_weight) {
125 			min_weight = cpu_weight[cpu];
126 			preferred_cpu = cpu;
127 		}
128 	}
129 
130 	if (tsk_in_cpu[tsk_index] != -1)
131 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 	tsk_in_cpu[tsk_index] = preferred_cpu;
133 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
134 	cpu_weight[preferred_cpu]++;
135 	mutex_unlock(&round_robin_lock);
136 
137 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
138 }
139 
140 static void exit_round_robin(unsigned int tsk_index)
141 {
142 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
143 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
144 	tsk_in_cpu[tsk_index] = -1;
145 }
146 
147 static unsigned int idle_pct = 5; /* percentage */
148 static unsigned int round_robin_time = 1; /* second */
149 static int power_saving_thread(void *data)
150 {
151 	struct sched_param param = {.sched_priority = 1};
152 	int do_sleep;
153 	unsigned int tsk_index = (unsigned long)data;
154 	u64 last_jiffies = 0;
155 
156 	sched_setscheduler(current, SCHED_RR, &param);
157 
158 	while (!kthread_should_stop()) {
159 		int cpu;
160 		u64 expire_time;
161 
162 		try_to_freeze();
163 
164 		/* round robin to cpus */
165 		if (last_jiffies + round_robin_time * HZ < jiffies) {
166 			last_jiffies = jiffies;
167 			round_robin_cpu(tsk_index);
168 		}
169 
170 		do_sleep = 0;
171 
172 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
173 
174 		while (!need_resched()) {
175 			if (tsc_detected_unstable && !tsc_marked_unstable) {
176 				/* TSC could halt in idle, so notify users */
177 				mark_tsc_unstable("TSC halts in idle");
178 				tsc_marked_unstable = 1;
179 			}
180 			if (lapic_detected_unstable && !lapic_marked_unstable) {
181 				int i;
182 				/* LAPIC could halt in idle, so notify users */
183 				for_each_online_cpu(i)
184 					clockevents_notify(
185 						CLOCK_EVT_NOTIFY_BROADCAST_ON,
186 						&i);
187 				lapic_marked_unstable = 1;
188 			}
189 			local_irq_disable();
190 			cpu = smp_processor_id();
191 			if (lapic_marked_unstable)
192 				clockevents_notify(
193 					CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
194 			stop_critical_timings();
195 
196 			__monitor((void *)&current_thread_info()->flags, 0, 0);
197 			smp_mb();
198 			if (!need_resched())
199 				__mwait(power_saving_mwait_eax, 1);
200 
201 			start_critical_timings();
202 			if (lapic_marked_unstable)
203 				clockevents_notify(
204 					CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
205 			local_irq_enable();
206 
207 			if (jiffies > expire_time) {
208 				do_sleep = 1;
209 				break;
210 			}
211 		}
212 
213 		/*
214 		 * current sched_rt has threshold for rt task running time.
215 		 * When a rt task uses 95% CPU time, the rt thread will be
216 		 * scheduled out for 5% CPU time to not starve other tasks. But
217 		 * the mechanism only works when all CPUs have RT task running,
218 		 * as if one CPU hasn't RT task, RT task from other CPUs will
219 		 * borrow CPU time from this CPU and cause RT task use > 95%
220 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
221 		 */
222 		if (do_sleep)
223 			schedule_timeout_killable(HZ * idle_pct / 100);
224 	}
225 
226 	exit_round_robin(tsk_index);
227 	return 0;
228 }
229 
230 static struct task_struct *ps_tsks[NR_CPUS];
231 static unsigned int ps_tsk_num;
232 static int create_power_saving_task(void)
233 {
234 	int rc;
235 
236 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
237 		(void *)(unsigned long)ps_tsk_num,
238 		"acpi_pad/%d", ps_tsk_num);
239 
240 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
241 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
242 		ps_tsks[ps_tsk_num] = NULL;
243 	} else {
244 		rc = 0;
245 		ps_tsk_num++;
246 	}
247 
248 	return rc;
249 }
250 
251 static void destroy_power_saving_task(void)
252 {
253 	if (ps_tsk_num > 0) {
254 		ps_tsk_num--;
255 		kthread_stop(ps_tsks[ps_tsk_num]);
256 		ps_tsks[ps_tsk_num] = NULL;
257 	}
258 }
259 
260 static void set_power_saving_task_num(unsigned int num)
261 {
262 	if (num > ps_tsk_num) {
263 		while (ps_tsk_num < num) {
264 			if (create_power_saving_task())
265 				return;
266 		}
267 	} else if (num < ps_tsk_num) {
268 		while (ps_tsk_num > num)
269 			destroy_power_saving_task();
270 	}
271 }
272 
273 static void acpi_pad_idle_cpus(unsigned int num_cpus)
274 {
275 	get_online_cpus();
276 
277 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
278 	set_power_saving_task_num(num_cpus);
279 
280 	put_online_cpus();
281 }
282 
283 static uint32_t acpi_pad_idle_cpus_num(void)
284 {
285 	return ps_tsk_num;
286 }
287 
288 static ssize_t acpi_pad_rrtime_store(struct device *dev,
289 	struct device_attribute *attr, const char *buf, size_t count)
290 {
291 	unsigned long num;
292 	if (kstrtoul(buf, 0, &num))
293 		return -EINVAL;
294 	if (num < 1 || num >= 100)
295 		return -EINVAL;
296 	mutex_lock(&isolated_cpus_lock);
297 	round_robin_time = num;
298 	mutex_unlock(&isolated_cpus_lock);
299 	return count;
300 }
301 
302 static ssize_t acpi_pad_rrtime_show(struct device *dev,
303 	struct device_attribute *attr, char *buf)
304 {
305 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
306 }
307 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
308 	acpi_pad_rrtime_show,
309 	acpi_pad_rrtime_store);
310 
311 static ssize_t acpi_pad_idlepct_store(struct device *dev,
312 	struct device_attribute *attr, const char *buf, size_t count)
313 {
314 	unsigned long num;
315 	if (kstrtoul(buf, 0, &num))
316 		return -EINVAL;
317 	if (num < 1 || num >= 100)
318 		return -EINVAL;
319 	mutex_lock(&isolated_cpus_lock);
320 	idle_pct = num;
321 	mutex_unlock(&isolated_cpus_lock);
322 	return count;
323 }
324 
325 static ssize_t acpi_pad_idlepct_show(struct device *dev,
326 	struct device_attribute *attr, char *buf)
327 {
328 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
329 }
330 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
331 	acpi_pad_idlepct_show,
332 	acpi_pad_idlepct_store);
333 
334 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
335 	struct device_attribute *attr, const char *buf, size_t count)
336 {
337 	unsigned long num;
338 	if (kstrtoul(buf, 0, &num))
339 		return -EINVAL;
340 	mutex_lock(&isolated_cpus_lock);
341 	acpi_pad_idle_cpus(num);
342 	mutex_unlock(&isolated_cpus_lock);
343 	return count;
344 }
345 
346 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
347 	struct device_attribute *attr, char *buf)
348 {
349 	int n = 0;
350 	n = cpumask_scnprintf(buf, PAGE_SIZE-2, to_cpumask(pad_busy_cpus_bits));
351 	buf[n++] = '\n';
352 	buf[n] = '\0';
353 	return n;
354 }
355 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
356 	acpi_pad_idlecpus_show,
357 	acpi_pad_idlecpus_store);
358 
359 static int acpi_pad_add_sysfs(struct acpi_device *device)
360 {
361 	int result;
362 
363 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
364 	if (result)
365 		return -ENODEV;
366 	result = device_create_file(&device->dev, &dev_attr_idlepct);
367 	if (result) {
368 		device_remove_file(&device->dev, &dev_attr_idlecpus);
369 		return -ENODEV;
370 	}
371 	result = device_create_file(&device->dev, &dev_attr_rrtime);
372 	if (result) {
373 		device_remove_file(&device->dev, &dev_attr_idlecpus);
374 		device_remove_file(&device->dev, &dev_attr_idlepct);
375 		return -ENODEV;
376 	}
377 	return 0;
378 }
379 
380 static void acpi_pad_remove_sysfs(struct acpi_device *device)
381 {
382 	device_remove_file(&device->dev, &dev_attr_idlecpus);
383 	device_remove_file(&device->dev, &dev_attr_idlepct);
384 	device_remove_file(&device->dev, &dev_attr_rrtime);
385 }
386 
387 /*
388  * Query firmware how many CPUs should be idle
389  * return -1 on failure
390  */
391 static int acpi_pad_pur(acpi_handle handle)
392 {
393 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
394 	union acpi_object *package;
395 	int num = -1;
396 
397 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
398 		return num;
399 
400 	if (!buffer.length || !buffer.pointer)
401 		return num;
402 
403 	package = buffer.pointer;
404 
405 	if (package->type == ACPI_TYPE_PACKAGE &&
406 		package->package.count == 2 &&
407 		package->package.elements[0].integer.value == 1) /* rev 1 */
408 
409 		num = package->package.elements[1].integer.value;
410 
411 	kfree(buffer.pointer);
412 	return num;
413 }
414 
415 /* Notify firmware how many CPUs are idle */
416 static void acpi_pad_ost(acpi_handle handle, int stat,
417 	uint32_t idle_cpus)
418 {
419 	union acpi_object params[3] = {
420 		{.type = ACPI_TYPE_INTEGER,},
421 		{.type = ACPI_TYPE_INTEGER,},
422 		{.type = ACPI_TYPE_BUFFER,},
423 	};
424 	struct acpi_object_list arg_list = {3, params};
425 
426 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
427 	params[1].integer.value =  stat;
428 	params[2].buffer.length = 4;
429 	params[2].buffer.pointer = (void *)&idle_cpus;
430 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
431 }
432 
433 static void acpi_pad_handle_notify(acpi_handle handle)
434 {
435 	int num_cpus;
436 	uint32_t idle_cpus;
437 
438 	mutex_lock(&isolated_cpus_lock);
439 	num_cpus = acpi_pad_pur(handle);
440 	if (num_cpus < 0) {
441 		mutex_unlock(&isolated_cpus_lock);
442 		return;
443 	}
444 	acpi_pad_idle_cpus(num_cpus);
445 	idle_cpus = acpi_pad_idle_cpus_num();
446 	acpi_pad_ost(handle, 0, idle_cpus);
447 	mutex_unlock(&isolated_cpus_lock);
448 }
449 
450 static void acpi_pad_notify(acpi_handle handle, u32 event,
451 	void *data)
452 {
453 	struct acpi_device *device = data;
454 
455 	switch (event) {
456 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
457 		acpi_pad_handle_notify(handle);
458 		acpi_bus_generate_netlink_event(device->pnp.device_class,
459 			dev_name(&device->dev), event, 0);
460 		break;
461 	default:
462 		pr_warn("Unsupported event [0x%x]\n", event);
463 		break;
464 	}
465 }
466 
467 static int acpi_pad_add(struct acpi_device *device)
468 {
469 	acpi_status status;
470 
471 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
472 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
473 
474 	if (acpi_pad_add_sysfs(device))
475 		return -ENODEV;
476 
477 	status = acpi_install_notify_handler(device->handle,
478 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
479 	if (ACPI_FAILURE(status)) {
480 		acpi_pad_remove_sysfs(device);
481 		return -ENODEV;
482 	}
483 
484 	return 0;
485 }
486 
487 static int acpi_pad_remove(struct acpi_device *device)
488 {
489 	mutex_lock(&isolated_cpus_lock);
490 	acpi_pad_idle_cpus(0);
491 	mutex_unlock(&isolated_cpus_lock);
492 
493 	acpi_remove_notify_handler(device->handle,
494 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
495 	acpi_pad_remove_sysfs(device);
496 	return 0;
497 }
498 
499 static const struct acpi_device_id pad_device_ids[] = {
500 	{"ACPI000C", 0},
501 	{"", 0},
502 };
503 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
504 
505 static struct acpi_driver acpi_pad_driver = {
506 	.name = "processor_aggregator",
507 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
508 	.ids = pad_device_ids,
509 	.ops = {
510 		.add = acpi_pad_add,
511 		.remove = acpi_pad_remove,
512 	},
513 };
514 
515 static int __init acpi_pad_init(void)
516 {
517 	power_saving_mwait_init();
518 	if (power_saving_mwait_eax == 0)
519 		return -EINVAL;
520 
521 	return acpi_bus_register_driver(&acpi_pad_driver);
522 }
523 
524 static void __exit acpi_pad_exit(void)
525 {
526 	acpi_bus_unregister_driver(&acpi_pad_driver);
527 }
528 
529 module_init(acpi_pad_init);
530 module_exit(acpi_pad_exit);
531 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
532 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
533 MODULE_LICENSE("GPL");
534