xref: /linux/drivers/acpi/acpi_pad.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/kthread.h>
27 #include <linux/freezer.h>
28 #include <linux/cpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/slab.h>
31 #include <acpi/acpi_bus.h>
32 #include <acpi/acpi_drivers.h>
33 #include <asm/mwait.h>
34 
35 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
36 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
37 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
38 static DEFINE_MUTEX(isolated_cpus_lock);
39 static DEFINE_MUTEX(round_robin_lock);
40 
41 static unsigned long power_saving_mwait_eax;
42 
43 static unsigned char tsc_detected_unstable;
44 static unsigned char tsc_marked_unstable;
45 static unsigned char lapic_detected_unstable;
46 static unsigned char lapic_marked_unstable;
47 
48 static void power_saving_mwait_init(void)
49 {
50 	unsigned int eax, ebx, ecx, edx;
51 	unsigned int highest_cstate = 0;
52 	unsigned int highest_subcstate = 0;
53 	int i;
54 
55 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
56 		return;
57 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
58 		return;
59 
60 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
61 
62 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
63 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
64 		return;
65 
66 	edx >>= MWAIT_SUBSTATE_SIZE;
67 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
68 		if (edx & MWAIT_SUBSTATE_MASK) {
69 			highest_cstate = i;
70 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
71 		}
72 	}
73 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
74 		(highest_subcstate - 1);
75 
76 #if defined(CONFIG_X86)
77 	switch (boot_cpu_data.x86_vendor) {
78 	case X86_VENDOR_AMD:
79 	case X86_VENDOR_INTEL:
80 		/*
81 		 * AMD Fam10h TSC will tick in all
82 		 * C/P/S0/S1 states when this bit is set.
83 		 */
84 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
85 			tsc_detected_unstable = 1;
86 		if (!boot_cpu_has(X86_FEATURE_ARAT))
87 			lapic_detected_unstable = 1;
88 		break;
89 	default:
90 		/* TSC & LAPIC could halt in idle */
91 		tsc_detected_unstable = 1;
92 		lapic_detected_unstable = 1;
93 	}
94 #endif
95 }
96 
97 static unsigned long cpu_weight[NR_CPUS];
98 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
99 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
100 static void round_robin_cpu(unsigned int tsk_index)
101 {
102 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
103 	cpumask_var_t tmp;
104 	int cpu;
105 	unsigned long min_weight = -1;
106 	unsigned long uninitialized_var(preferred_cpu);
107 
108 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
109 		return;
110 
111 	mutex_lock(&round_robin_lock);
112 	cpumask_clear(tmp);
113 	for_each_cpu(cpu, pad_busy_cpus)
114 		cpumask_or(tmp, tmp, topology_thread_cpumask(cpu));
115 	cpumask_andnot(tmp, cpu_online_mask, tmp);
116 	/* avoid HT sibilings if possible */
117 	if (cpumask_empty(tmp))
118 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
119 	if (cpumask_empty(tmp)) {
120 		mutex_unlock(&round_robin_lock);
121 		return;
122 	}
123 	for_each_cpu(cpu, tmp) {
124 		if (cpu_weight[cpu] < min_weight) {
125 			min_weight = cpu_weight[cpu];
126 			preferred_cpu = cpu;
127 		}
128 	}
129 
130 	if (tsk_in_cpu[tsk_index] != -1)
131 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 	tsk_in_cpu[tsk_index] = preferred_cpu;
133 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
134 	cpu_weight[preferred_cpu]++;
135 	mutex_unlock(&round_robin_lock);
136 
137 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
138 }
139 
140 static void exit_round_robin(unsigned int tsk_index)
141 {
142 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
143 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
144 	tsk_in_cpu[tsk_index] = -1;
145 }
146 
147 static unsigned int idle_pct = 5; /* percentage */
148 static unsigned int round_robin_time = 1; /* second */
149 static int power_saving_thread(void *data)
150 {
151 	struct sched_param param = {.sched_priority = 1};
152 	int do_sleep;
153 	unsigned int tsk_index = (unsigned long)data;
154 	u64 last_jiffies = 0;
155 
156 	sched_setscheduler(current, SCHED_RR, &param);
157 
158 	while (!kthread_should_stop()) {
159 		int cpu;
160 		u64 expire_time;
161 
162 		try_to_freeze();
163 
164 		/* round robin to cpus */
165 		if (last_jiffies + round_robin_time * HZ < jiffies) {
166 			last_jiffies = jiffies;
167 			round_robin_cpu(tsk_index);
168 		}
169 
170 		do_sleep = 0;
171 
172 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
173 
174 		while (!need_resched()) {
175 			if (tsc_detected_unstable && !tsc_marked_unstable) {
176 				/* TSC could halt in idle, so notify users */
177 				mark_tsc_unstable("TSC halts in idle");
178 				tsc_marked_unstable = 1;
179 			}
180 			if (lapic_detected_unstable && !lapic_marked_unstable) {
181 				int i;
182 				/* LAPIC could halt in idle, so notify users */
183 				for_each_online_cpu(i)
184 					clockevents_notify(
185 						CLOCK_EVT_NOTIFY_BROADCAST_ON,
186 						&i);
187 				lapic_marked_unstable = 1;
188 			}
189 			local_irq_disable();
190 			cpu = smp_processor_id();
191 			if (lapic_marked_unstable)
192 				clockevents_notify(
193 					CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
194 			stop_critical_timings();
195 
196 			__monitor((void *)&current_thread_info()->flags, 0, 0);
197 			smp_mb();
198 			if (!need_resched())
199 				__mwait(power_saving_mwait_eax, 1);
200 
201 			start_critical_timings();
202 			if (lapic_marked_unstable)
203 				clockevents_notify(
204 					CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
205 			local_irq_enable();
206 
207 			if (jiffies > expire_time) {
208 				do_sleep = 1;
209 				break;
210 			}
211 		}
212 
213 		/*
214 		 * current sched_rt has threshold for rt task running time.
215 		 * When a rt task uses 95% CPU time, the rt thread will be
216 		 * scheduled out for 5% CPU time to not starve other tasks. But
217 		 * the mechanism only works when all CPUs have RT task running,
218 		 * as if one CPU hasn't RT task, RT task from other CPUs will
219 		 * borrow CPU time from this CPU and cause RT task use > 95%
220 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
221 		 */
222 		if (do_sleep)
223 			schedule_timeout_killable(HZ * idle_pct / 100);
224 	}
225 
226 	exit_round_robin(tsk_index);
227 	return 0;
228 }
229 
230 static struct task_struct *ps_tsks[NR_CPUS];
231 static unsigned int ps_tsk_num;
232 static int create_power_saving_task(void)
233 {
234 	int rc = -ENOMEM;
235 
236 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
237 		(void *)(unsigned long)ps_tsk_num,
238 		"acpi_pad/%d", ps_tsk_num);
239 	rc = PTR_RET(ps_tsks[ps_tsk_num]);
240 	if (!rc)
241 		ps_tsk_num++;
242 	else
243 		ps_tsks[ps_tsk_num] = NULL;
244 
245 	return rc;
246 }
247 
248 static void destroy_power_saving_task(void)
249 {
250 	if (ps_tsk_num > 0) {
251 		ps_tsk_num--;
252 		kthread_stop(ps_tsks[ps_tsk_num]);
253 		ps_tsks[ps_tsk_num] = NULL;
254 	}
255 }
256 
257 static void set_power_saving_task_num(unsigned int num)
258 {
259 	if (num > ps_tsk_num) {
260 		while (ps_tsk_num < num) {
261 			if (create_power_saving_task())
262 				return;
263 		}
264 	} else if (num < ps_tsk_num) {
265 		while (ps_tsk_num > num)
266 			destroy_power_saving_task();
267 	}
268 }
269 
270 static void acpi_pad_idle_cpus(unsigned int num_cpus)
271 {
272 	get_online_cpus();
273 
274 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
275 	set_power_saving_task_num(num_cpus);
276 
277 	put_online_cpus();
278 }
279 
280 static uint32_t acpi_pad_idle_cpus_num(void)
281 {
282 	return ps_tsk_num;
283 }
284 
285 static ssize_t acpi_pad_rrtime_store(struct device *dev,
286 	struct device_attribute *attr, const char *buf, size_t count)
287 {
288 	unsigned long num;
289 	if (kstrtoul(buf, 0, &num))
290 		return -EINVAL;
291 	if (num < 1 || num >= 100)
292 		return -EINVAL;
293 	mutex_lock(&isolated_cpus_lock);
294 	round_robin_time = num;
295 	mutex_unlock(&isolated_cpus_lock);
296 	return count;
297 }
298 
299 static ssize_t acpi_pad_rrtime_show(struct device *dev,
300 	struct device_attribute *attr, char *buf)
301 {
302 	return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
303 }
304 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
305 	acpi_pad_rrtime_show,
306 	acpi_pad_rrtime_store);
307 
308 static ssize_t acpi_pad_idlepct_store(struct device *dev,
309 	struct device_attribute *attr, const char *buf, size_t count)
310 {
311 	unsigned long num;
312 	if (kstrtoul(buf, 0, &num))
313 		return -EINVAL;
314 	if (num < 1 || num >= 100)
315 		return -EINVAL;
316 	mutex_lock(&isolated_cpus_lock);
317 	idle_pct = num;
318 	mutex_unlock(&isolated_cpus_lock);
319 	return count;
320 }
321 
322 static ssize_t acpi_pad_idlepct_show(struct device *dev,
323 	struct device_attribute *attr, char *buf)
324 {
325 	return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
326 }
327 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
328 	acpi_pad_idlepct_show,
329 	acpi_pad_idlepct_store);
330 
331 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
332 	struct device_attribute *attr, const char *buf, size_t count)
333 {
334 	unsigned long num;
335 	if (kstrtoul(buf, 0, &num))
336 		return -EINVAL;
337 	mutex_lock(&isolated_cpus_lock);
338 	acpi_pad_idle_cpus(num);
339 	mutex_unlock(&isolated_cpus_lock);
340 	return count;
341 }
342 
343 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
344 	struct device_attribute *attr, char *buf)
345 {
346 	int n = 0;
347 	n = cpumask_scnprintf(buf, PAGE_SIZE-2, to_cpumask(pad_busy_cpus_bits));
348 	buf[n++] = '\n';
349 	buf[n] = '\0';
350 	return n;
351 }
352 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
353 	acpi_pad_idlecpus_show,
354 	acpi_pad_idlecpus_store);
355 
356 static int acpi_pad_add_sysfs(struct acpi_device *device)
357 {
358 	int result;
359 
360 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
361 	if (result)
362 		return -ENODEV;
363 	result = device_create_file(&device->dev, &dev_attr_idlepct);
364 	if (result) {
365 		device_remove_file(&device->dev, &dev_attr_idlecpus);
366 		return -ENODEV;
367 	}
368 	result = device_create_file(&device->dev, &dev_attr_rrtime);
369 	if (result) {
370 		device_remove_file(&device->dev, &dev_attr_idlecpus);
371 		device_remove_file(&device->dev, &dev_attr_idlepct);
372 		return -ENODEV;
373 	}
374 	return 0;
375 }
376 
377 static void acpi_pad_remove_sysfs(struct acpi_device *device)
378 {
379 	device_remove_file(&device->dev, &dev_attr_idlecpus);
380 	device_remove_file(&device->dev, &dev_attr_idlepct);
381 	device_remove_file(&device->dev, &dev_attr_rrtime);
382 }
383 
384 /*
385  * Query firmware how many CPUs should be idle
386  * return -1 on failure
387  */
388 static int acpi_pad_pur(acpi_handle handle)
389 {
390 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
391 	union acpi_object *package;
392 	int num = -1;
393 
394 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
395 		return num;
396 
397 	if (!buffer.length || !buffer.pointer)
398 		return num;
399 
400 	package = buffer.pointer;
401 
402 	if (package->type == ACPI_TYPE_PACKAGE &&
403 		package->package.count == 2 &&
404 		package->package.elements[0].integer.value == 1) /* rev 1 */
405 
406 		num = package->package.elements[1].integer.value;
407 
408 	kfree(buffer.pointer);
409 	return num;
410 }
411 
412 /* Notify firmware how many CPUs are idle */
413 static void acpi_pad_ost(acpi_handle handle, int stat,
414 	uint32_t idle_cpus)
415 {
416 	union acpi_object params[3] = {
417 		{.type = ACPI_TYPE_INTEGER,},
418 		{.type = ACPI_TYPE_INTEGER,},
419 		{.type = ACPI_TYPE_BUFFER,},
420 	};
421 	struct acpi_object_list arg_list = {3, params};
422 
423 	params[0].integer.value = ACPI_PROCESSOR_AGGREGATOR_NOTIFY;
424 	params[1].integer.value =  stat;
425 	params[2].buffer.length = 4;
426 	params[2].buffer.pointer = (void *)&idle_cpus;
427 	acpi_evaluate_object(handle, "_OST", &arg_list, NULL);
428 }
429 
430 static void acpi_pad_handle_notify(acpi_handle handle)
431 {
432 	int num_cpus;
433 	uint32_t idle_cpus;
434 
435 	mutex_lock(&isolated_cpus_lock);
436 	num_cpus = acpi_pad_pur(handle);
437 	if (num_cpus < 0) {
438 		mutex_unlock(&isolated_cpus_lock);
439 		return;
440 	}
441 	acpi_pad_idle_cpus(num_cpus);
442 	idle_cpus = acpi_pad_idle_cpus_num();
443 	acpi_pad_ost(handle, 0, idle_cpus);
444 	mutex_unlock(&isolated_cpus_lock);
445 }
446 
447 static void acpi_pad_notify(acpi_handle handle, u32 event,
448 	void *data)
449 {
450 	struct acpi_device *device = data;
451 
452 	switch (event) {
453 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
454 		acpi_pad_handle_notify(handle);
455 		acpi_bus_generate_proc_event(device, event, 0);
456 		acpi_bus_generate_netlink_event(device->pnp.device_class,
457 			dev_name(&device->dev), event, 0);
458 		break;
459 	default:
460 		pr_warn("Unsupported event [0x%x]\n", event);
461 		break;
462 	}
463 }
464 
465 static int acpi_pad_add(struct acpi_device *device)
466 {
467 	acpi_status status;
468 
469 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
470 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
471 
472 	if (acpi_pad_add_sysfs(device))
473 		return -ENODEV;
474 
475 	status = acpi_install_notify_handler(device->handle,
476 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
477 	if (ACPI_FAILURE(status)) {
478 		acpi_pad_remove_sysfs(device);
479 		return -ENODEV;
480 	}
481 
482 	return 0;
483 }
484 
485 static int acpi_pad_remove(struct acpi_device *device)
486 {
487 	mutex_lock(&isolated_cpus_lock);
488 	acpi_pad_idle_cpus(0);
489 	mutex_unlock(&isolated_cpus_lock);
490 
491 	acpi_remove_notify_handler(device->handle,
492 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
493 	acpi_pad_remove_sysfs(device);
494 	return 0;
495 }
496 
497 static const struct acpi_device_id pad_device_ids[] = {
498 	{"ACPI000C", 0},
499 	{"", 0},
500 };
501 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
502 
503 static struct acpi_driver acpi_pad_driver = {
504 	.name = "processor_aggregator",
505 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
506 	.ids = pad_device_ids,
507 	.ops = {
508 		.add = acpi_pad_add,
509 		.remove = acpi_pad_remove,
510 	},
511 };
512 
513 static int __init acpi_pad_init(void)
514 {
515 	power_saving_mwait_init();
516 	if (power_saving_mwait_eax == 0)
517 		return -EINVAL;
518 
519 	return acpi_bus_register_driver(&acpi_pad_driver);
520 }
521 
522 static void __exit acpi_pad_exit(void)
523 {
524 	acpi_bus_unregister_driver(&acpi_pad_driver);
525 }
526 
527 module_init(acpi_pad_init);
528 module_exit(acpi_pad_exit);
529 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
530 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
531 MODULE_LICENSE("GPL");
532