xref: /linux/drivers/acpi/acpi_pad.c (revision bf36793fa260cb68cc817f311f1f683788261796)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/mwait.h>
23 #include <xen/xen.h>
24 
25 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
26 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
27 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
28 
29 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS	0
30 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION	1
31 
32 static DEFINE_MUTEX(isolated_cpus_lock);
33 static DEFINE_MUTEX(round_robin_lock);
34 
35 static unsigned long power_saving_mwait_eax;
36 
37 static unsigned char tsc_detected_unstable;
38 static unsigned char tsc_marked_unstable;
39 
40 static void power_saving_mwait_init(void)
41 {
42 	unsigned int eax, ebx, ecx, edx;
43 	unsigned int highest_cstate = 0;
44 	unsigned int highest_subcstate = 0;
45 	int i;
46 
47 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
48 		return;
49 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
50 		return;
51 
52 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
53 
54 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
55 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
56 		return;
57 
58 	edx >>= MWAIT_SUBSTATE_SIZE;
59 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
60 		if (edx & MWAIT_SUBSTATE_MASK) {
61 			highest_cstate = i;
62 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
63 		}
64 	}
65 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
66 		(highest_subcstate - 1);
67 
68 #if defined(CONFIG_X86)
69 	switch (boot_cpu_data.x86_vendor) {
70 	case X86_VENDOR_HYGON:
71 	case X86_VENDOR_AMD:
72 	case X86_VENDOR_INTEL:
73 	case X86_VENDOR_ZHAOXIN:
74 	case X86_VENDOR_CENTAUR:
75 		/*
76 		 * AMD Fam10h TSC will tick in all
77 		 * C/P/S0/S1 states when this bit is set.
78 		 */
79 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
80 			tsc_detected_unstable = 1;
81 		break;
82 	default:
83 		/* TSC could halt in idle */
84 		tsc_detected_unstable = 1;
85 	}
86 #endif
87 }
88 
89 static unsigned long cpu_weight[NR_CPUS];
90 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
92 static void round_robin_cpu(unsigned int tsk_index)
93 {
94 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
95 	cpumask_var_t tmp;
96 	int cpu;
97 	unsigned long min_weight = -1;
98 	unsigned long preferred_cpu;
99 
100 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
101 		return;
102 
103 	mutex_lock(&round_robin_lock);
104 	cpumask_clear(tmp);
105 	for_each_cpu(cpu, pad_busy_cpus)
106 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
107 	cpumask_andnot(tmp, cpu_online_mask, tmp);
108 	/* avoid HT siblings if possible */
109 	if (cpumask_empty(tmp))
110 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
111 	if (cpumask_empty(tmp)) {
112 		mutex_unlock(&round_robin_lock);
113 		free_cpumask_var(tmp);
114 		return;
115 	}
116 	for_each_cpu(cpu, tmp) {
117 		if (cpu_weight[cpu] < min_weight) {
118 			min_weight = cpu_weight[cpu];
119 			preferred_cpu = cpu;
120 		}
121 	}
122 
123 	if (tsk_in_cpu[tsk_index] != -1)
124 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
125 	tsk_in_cpu[tsk_index] = preferred_cpu;
126 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
127 	cpu_weight[preferred_cpu]++;
128 	mutex_unlock(&round_robin_lock);
129 
130 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
131 
132 	free_cpumask_var(tmp);
133 }
134 
135 static void exit_round_robin(unsigned int tsk_index)
136 {
137 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
138 
139 	cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
140 	tsk_in_cpu[tsk_index] = -1;
141 }
142 
143 static unsigned int idle_pct = 5; /* percentage */
144 static unsigned int round_robin_time = 1; /* second */
145 static int power_saving_thread(void *data)
146 {
147 	int do_sleep;
148 	unsigned int tsk_index = (unsigned long)data;
149 	u64 last_jiffies = 0;
150 
151 	sched_set_fifo_low(current);
152 
153 	while (!kthread_should_stop()) {
154 		unsigned long expire_time;
155 
156 		/* round robin to cpus */
157 		expire_time = last_jiffies + round_robin_time * HZ;
158 		if (time_before(expire_time, jiffies)) {
159 			last_jiffies = jiffies;
160 			round_robin_cpu(tsk_index);
161 		}
162 
163 		do_sleep = 0;
164 
165 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
166 
167 		while (!need_resched()) {
168 			if (tsc_detected_unstable && !tsc_marked_unstable) {
169 				/* TSC could halt in idle, so notify users */
170 				mark_tsc_unstable("TSC halts in idle");
171 				tsc_marked_unstable = 1;
172 			}
173 			local_irq_disable();
174 
175 			perf_lopwr_cb(true);
176 
177 			tick_broadcast_enable();
178 			tick_broadcast_enter();
179 			stop_critical_timings();
180 
181 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
182 
183 			start_critical_timings();
184 			tick_broadcast_exit();
185 
186 			perf_lopwr_cb(false);
187 
188 			local_irq_enable();
189 
190 			if (time_before(expire_time, jiffies)) {
191 				do_sleep = 1;
192 				break;
193 			}
194 		}
195 
196 		/*
197 		 * current sched_rt has threshold for rt task running time.
198 		 * When a rt task uses 95% CPU time, the rt thread will be
199 		 * scheduled out for 5% CPU time to not starve other tasks. But
200 		 * the mechanism only works when all CPUs have RT task running,
201 		 * as if one CPU hasn't RT task, RT task from other CPUs will
202 		 * borrow CPU time from this CPU and cause RT task use > 95%
203 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
204 		 */
205 		if (unlikely(do_sleep))
206 			schedule_timeout_killable(HZ * idle_pct / 100);
207 
208 		/* If an external event has set the need_resched flag, then
209 		 * we need to deal with it, or this loop will continue to
210 		 * spin without calling __mwait().
211 		 */
212 		if (unlikely(need_resched()))
213 			schedule();
214 	}
215 
216 	exit_round_robin(tsk_index);
217 	return 0;
218 }
219 
220 static struct task_struct *ps_tsks[NR_CPUS];
221 static unsigned int ps_tsk_num;
222 static int create_power_saving_task(void)
223 {
224 	int rc;
225 
226 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
227 		(void *)(unsigned long)ps_tsk_num,
228 		"acpi_pad/%d", ps_tsk_num);
229 
230 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
231 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
232 		ps_tsks[ps_tsk_num] = NULL;
233 	} else {
234 		rc = 0;
235 		ps_tsk_num++;
236 	}
237 
238 	return rc;
239 }
240 
241 static void destroy_power_saving_task(void)
242 {
243 	if (ps_tsk_num > 0) {
244 		ps_tsk_num--;
245 		kthread_stop(ps_tsks[ps_tsk_num]);
246 		ps_tsks[ps_tsk_num] = NULL;
247 	}
248 }
249 
250 static void set_power_saving_task_num(unsigned int num)
251 {
252 	if (num > ps_tsk_num) {
253 		while (ps_tsk_num < num) {
254 			if (create_power_saving_task())
255 				return;
256 		}
257 	} else if (num < ps_tsk_num) {
258 		while (ps_tsk_num > num)
259 			destroy_power_saving_task();
260 	}
261 }
262 
263 static void acpi_pad_idle_cpus(unsigned int num_cpus)
264 {
265 	cpus_read_lock();
266 
267 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
268 	set_power_saving_task_num(num_cpus);
269 
270 	cpus_read_unlock();
271 }
272 
273 static uint32_t acpi_pad_idle_cpus_num(void)
274 {
275 	return ps_tsk_num;
276 }
277 
278 static ssize_t rrtime_store(struct device *dev,
279 	struct device_attribute *attr, const char *buf, size_t count)
280 {
281 	unsigned long num;
282 
283 	if (kstrtoul(buf, 0, &num))
284 		return -EINVAL;
285 	if (num < 1 || num >= 100)
286 		return -EINVAL;
287 	mutex_lock(&isolated_cpus_lock);
288 	round_robin_time = num;
289 	mutex_unlock(&isolated_cpus_lock);
290 	return count;
291 }
292 
293 static ssize_t rrtime_show(struct device *dev,
294 	struct device_attribute *attr, char *buf)
295 {
296 	return sysfs_emit(buf, "%d\n", round_robin_time);
297 }
298 static DEVICE_ATTR_RW(rrtime);
299 
300 static ssize_t idlepct_store(struct device *dev,
301 	struct device_attribute *attr, const char *buf, size_t count)
302 {
303 	unsigned long num;
304 
305 	if (kstrtoul(buf, 0, &num))
306 		return -EINVAL;
307 	if (num < 1 || num >= 100)
308 		return -EINVAL;
309 	mutex_lock(&isolated_cpus_lock);
310 	idle_pct = num;
311 	mutex_unlock(&isolated_cpus_lock);
312 	return count;
313 }
314 
315 static ssize_t idlepct_show(struct device *dev,
316 	struct device_attribute *attr, char *buf)
317 {
318 	return sysfs_emit(buf, "%d\n", idle_pct);
319 }
320 static DEVICE_ATTR_RW(idlepct);
321 
322 static ssize_t idlecpus_store(struct device *dev,
323 	struct device_attribute *attr, const char *buf, size_t count)
324 {
325 	unsigned long num;
326 
327 	if (kstrtoul(buf, 0, &num))
328 		return -EINVAL;
329 	mutex_lock(&isolated_cpus_lock);
330 	acpi_pad_idle_cpus(num);
331 	mutex_unlock(&isolated_cpus_lock);
332 	return count;
333 }
334 
335 static ssize_t idlecpus_show(struct device *dev,
336 	struct device_attribute *attr, char *buf)
337 {
338 	return cpumap_print_to_pagebuf(false, buf,
339 				       to_cpumask(pad_busy_cpus_bits));
340 }
341 
342 static DEVICE_ATTR_RW(idlecpus);
343 
344 static struct attribute *acpi_pad_attrs[] = {
345 	&dev_attr_idlecpus.attr,
346 	&dev_attr_idlepct.attr,
347 	&dev_attr_rrtime.attr,
348 	NULL
349 };
350 
351 ATTRIBUTE_GROUPS(acpi_pad);
352 
353 /*
354  * Query firmware how many CPUs should be idle
355  * return -1 on failure
356  */
357 static int acpi_pad_pur(acpi_handle handle)
358 {
359 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
360 	union acpi_object *package;
361 	int num = -1;
362 
363 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
364 		return num;
365 
366 	if (!buffer.length || !buffer.pointer)
367 		return num;
368 
369 	package = buffer.pointer;
370 
371 	if (package->type == ACPI_TYPE_PACKAGE &&
372 		package->package.count == 2 &&
373 		package->package.elements[0].integer.value == 1) /* rev 1 */
374 
375 		num = package->package.elements[1].integer.value;
376 
377 	kfree(buffer.pointer);
378 	return num;
379 }
380 
381 static void acpi_pad_handle_notify(acpi_handle handle)
382 {
383 	int num_cpus;
384 	uint32_t idle_cpus;
385 	struct acpi_buffer param = {
386 		.length = 4,
387 		.pointer = (void *)&idle_cpus,
388 	};
389 	u32 status;
390 
391 	mutex_lock(&isolated_cpus_lock);
392 	num_cpus = acpi_pad_pur(handle);
393 	if (num_cpus < 0) {
394 		/* The ACPI specification says that if no action was performed when
395 		 * processing the _PUR object, _OST should still be evaluated, albeit
396 		 * with a different status code.
397 		 */
398 		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
399 	} else {
400 		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
401 		acpi_pad_idle_cpus(num_cpus);
402 	}
403 
404 	idle_cpus = acpi_pad_idle_cpus_num();
405 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, &param);
406 	mutex_unlock(&isolated_cpus_lock);
407 }
408 
409 static void acpi_pad_notify(acpi_handle handle, u32 event,
410 	void *data)
411 {
412 	struct acpi_device *adev = data;
413 
414 	switch (event) {
415 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
416 		acpi_pad_handle_notify(handle);
417 		acpi_bus_generate_netlink_event(adev->pnp.device_class,
418 			dev_name(&adev->dev), event, 0);
419 		break;
420 	default:
421 		pr_warn("Unsupported event [0x%x]\n", event);
422 		break;
423 	}
424 }
425 
426 static int acpi_pad_probe(struct platform_device *pdev)
427 {
428 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
429 	acpi_status status;
430 
431 	strcpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
432 	strcpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
433 
434 	status = acpi_install_notify_handler(adev->handle,
435 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
436 
437 	if (ACPI_FAILURE(status))
438 		return -ENODEV;
439 
440 	return 0;
441 }
442 
443 static void acpi_pad_remove(struct platform_device *pdev)
444 {
445 	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
446 
447 	mutex_lock(&isolated_cpus_lock);
448 	acpi_pad_idle_cpus(0);
449 	mutex_unlock(&isolated_cpus_lock);
450 
451 	acpi_remove_notify_handler(adev->handle,
452 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
453 }
454 
455 static const struct acpi_device_id pad_device_ids[] = {
456 	{"ACPI000C", 0},
457 	{"", 0},
458 };
459 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
460 
461 static struct platform_driver acpi_pad_driver = {
462 	.probe = acpi_pad_probe,
463 	.remove_new = acpi_pad_remove,
464 	.driver = {
465 		.dev_groups = acpi_pad_groups,
466 		.name = "processor_aggregator",
467 		.acpi_match_table = pad_device_ids,
468 	},
469 };
470 
471 static int __init acpi_pad_init(void)
472 {
473 	/* Xen ACPI PAD is used when running as Xen Dom0. */
474 	if (xen_initial_domain())
475 		return -ENODEV;
476 
477 	power_saving_mwait_init();
478 	if (power_saving_mwait_eax == 0)
479 		return -EINVAL;
480 
481 	return platform_driver_register(&acpi_pad_driver);
482 }
483 
484 static void __exit acpi_pad_exit(void)
485 {
486 	platform_driver_unregister(&acpi_pad_driver);
487 }
488 
489 module_init(acpi_pad_init);
490 module_exit(acpi_pad_exit);
491 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
492 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
493 MODULE_LICENSE("GPL");
494