xref: /linux/drivers/accel/qaic/qaic_data.c (revision f6d9329aefe2829aaa95feb6bbdcd3cbe32900f9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5 
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/uaccess.h>
24 #include <linux/wait.h>
25 #include <drm/drm_file.h>
26 #include <drm/drm_gem.h>
27 #include <drm/drm_prime.h>
28 #include <drm/drm_print.h>
29 #include <uapi/drm/qaic_accel.h>
30 
31 #include "qaic.h"
32 
33 #define SEM_VAL_MASK	GENMASK_ULL(11, 0)
34 #define SEM_INDEX_MASK	GENMASK_ULL(4, 0)
35 #define BULK_XFER	BIT(3)
36 #define GEN_COMPLETION	BIT(4)
37 #define INBOUND_XFER	1
38 #define OUTBOUND_XFER	2
39 #define REQHP_OFF	0x0 /* we read this */
40 #define REQTP_OFF	0x4 /* we write this */
41 #define RSPHP_OFF	0x8 /* we write this */
42 #define RSPTP_OFF	0xc /* we read this */
43 
44 #define ENCODE_SEM(val, index, sync, cmd, flags)			\
45 		({							\
46 			FIELD_PREP(GENMASK(11, 0), (val)) |		\
47 			FIELD_PREP(GENMASK(20, 16), (index)) |		\
48 			FIELD_PREP(BIT(22), (sync)) |			\
49 			FIELD_PREP(GENMASK(26, 24), (cmd)) |		\
50 			FIELD_PREP(GENMASK(30, 29), (flags)) |		\
51 			FIELD_PREP(BIT(31), (cmd) ? 1 : 0);		\
52 		})
53 #define NUM_EVENTS	128
54 #define NUM_DELAYS	10
55 #define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size())
56 
57 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
58 module_param(wait_exec_default_timeout_ms, uint, 0600);
59 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
60 
61 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
62 module_param(datapath_poll_interval_us, uint, 0600);
63 MODULE_PARM_DESC(datapath_poll_interval_us,
64 		 "Amount of time to sleep between activity when datapath polling is enabled");
65 
66 struct dbc_req {
67 	/*
68 	 * A request ID is assigned to each memory handle going in DMA queue.
69 	 * As a single memory handle can enqueue multiple elements in DMA queue
70 	 * all of them will have the same request ID.
71 	 */
72 	__le16	req_id;
73 	/* Future use */
74 	__u8	seq_id;
75 	/*
76 	 * Special encoded variable
77 	 * 7	0 - Do not force to generate MSI after DMA is completed
78 	 *	1 - Force to generate MSI after DMA is completed
79 	 * 6:5	Reserved
80 	 * 4	1 - Generate completion element in the response queue
81 	 *	0 - No Completion Code
82 	 * 3	0 - DMA request is a Link list transfer
83 	 *	1 - DMA request is a Bulk transfer
84 	 * 2	Reserved
85 	 * 1:0	00 - No DMA transfer involved
86 	 *	01 - DMA transfer is part of inbound transfer
87 	 *	10 - DMA transfer has outbound transfer
88 	 *	11 - NA
89 	 */
90 	__u8	cmd;
91 	__le32	resv;
92 	/* Source address for the transfer */
93 	__le64	src_addr;
94 	/* Destination address for the transfer */
95 	__le64	dest_addr;
96 	/* Length of transfer request */
97 	__le32	len;
98 	__le32	resv2;
99 	/* Doorbell address */
100 	__le64	db_addr;
101 	/*
102 	 * Special encoded variable
103 	 * 7	1 - Doorbell(db) write
104 	 *	0 - No doorbell write
105 	 * 6:2	Reserved
106 	 * 1:0	00 - 32 bit access, db address must be aligned to 32bit-boundary
107 	 *	01 - 16 bit access, db address must be aligned to 16bit-boundary
108 	 *	10 - 8 bit access, db address must be aligned to 8bit-boundary
109 	 *	11 - Reserved
110 	 */
111 	__u8	db_len;
112 	__u8	resv3;
113 	__le16	resv4;
114 	/* 32 bit data written to doorbell address */
115 	__le32	db_data;
116 	/*
117 	 * Special encoded variable
118 	 * All the fields of sem_cmdX are passed from user and all are ORed
119 	 * together to form sem_cmd.
120 	 * 0:11		Semaphore value
121 	 * 15:12	Reserved
122 	 * 20:16	Semaphore index
123 	 * 21		Reserved
124 	 * 22		Semaphore Sync
125 	 * 23		Reserved
126 	 * 26:24	Semaphore command
127 	 * 28:27	Reserved
128 	 * 29		Semaphore DMA out bound sync fence
129 	 * 30		Semaphore DMA in bound sync fence
130 	 * 31		Enable semaphore command
131 	 */
132 	__le32	sem_cmd0;
133 	__le32	sem_cmd1;
134 	__le32	sem_cmd2;
135 	__le32	sem_cmd3;
136 } __packed;
137 
138 struct dbc_rsp {
139 	/* Request ID of the memory handle whose DMA transaction is completed */
140 	__le16	req_id;
141 	/* Status of the DMA transaction. 0 : Success otherwise failure */
142 	__le16	status;
143 } __packed;
144 
145 static inline bool bo_queued(struct qaic_bo *bo)
146 {
147 	return !list_empty(&bo->xfer_list);
148 }
149 
150 inline int get_dbc_req_elem_size(void)
151 {
152 	return sizeof(struct dbc_req);
153 }
154 
155 inline int get_dbc_rsp_elem_size(void)
156 {
157 	return sizeof(struct dbc_rsp);
158 }
159 
160 static void free_slice(struct kref *kref)
161 {
162 	struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
163 
164 	slice->bo->total_slice_nents -= slice->nents;
165 	list_del(&slice->slice);
166 	drm_gem_object_put(&slice->bo->base);
167 	sg_free_table(slice->sgt);
168 	kfree(slice->sgt);
169 	kvfree(slice->reqs);
170 	kfree(slice);
171 }
172 
173 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
174 					struct sg_table *sgt_in, u64 size, u64 offset)
175 {
176 	struct scatterlist *sg, *sgn, *sgf, *sgl;
177 	unsigned int len, nents, offf, offl;
178 	struct sg_table *sgt;
179 	size_t total_len;
180 	int ret, j;
181 
182 	/* find out number of relevant nents needed for this mem */
183 	total_len = 0;
184 	sgf = NULL;
185 	sgl = NULL;
186 	nents = 0;
187 	offf = 0;
188 	offl = 0;
189 
190 	size = size ? size : PAGE_SIZE;
191 	for_each_sgtable_dma_sg(sgt_in, sg, j) {
192 		len = sg_dma_len(sg);
193 
194 		if (!len)
195 			continue;
196 		if (offset >= total_len && offset < total_len + len) {
197 			sgf = sg;
198 			offf = offset - total_len;
199 		}
200 		if (sgf)
201 			nents++;
202 		if (offset + size >= total_len &&
203 		    offset + size <= total_len + len) {
204 			sgl = sg;
205 			offl = offset + size - total_len;
206 			break;
207 		}
208 		total_len += len;
209 	}
210 
211 	if (!sgf || !sgl) {
212 		ret = -EINVAL;
213 		goto out;
214 	}
215 
216 	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
217 	if (!sgt) {
218 		ret = -ENOMEM;
219 		goto out;
220 	}
221 
222 	ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
223 	if (ret)
224 		goto free_sgt;
225 
226 	/* copy relevant sg node and fix page and length */
227 	sgn = sgf;
228 	for_each_sgtable_dma_sg(sgt, sg, j) {
229 		memcpy(sg, sgn, sizeof(*sg));
230 		if (sgn == sgf) {
231 			sg_dma_address(sg) += offf;
232 			sg_dma_len(sg) -= offf;
233 			sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
234 		} else {
235 			offf = 0;
236 		}
237 		if (sgn == sgl) {
238 			sg_dma_len(sg) = offl - offf;
239 			sg_set_page(sg, sg_page(sgn), offl - offf, offf);
240 			sg_mark_end(sg);
241 			break;
242 		}
243 		sgn = sg_next(sgn);
244 	}
245 
246 	*sgt_out = sgt;
247 	return ret;
248 
249 free_sgt:
250 	kfree(sgt);
251 out:
252 	*sgt_out = NULL;
253 	return ret;
254 }
255 
256 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
257 		       struct qaic_attach_slice_entry *req)
258 {
259 	__le64 db_addr = cpu_to_le64(req->db_addr);
260 	__le32 db_data = cpu_to_le32(req->db_data);
261 	struct scatterlist *sg;
262 	__u8 cmd = BULK_XFER;
263 	int presync_sem;
264 	u64 dev_addr;
265 	__u8 db_len;
266 	int i;
267 
268 	if (!slice->no_xfer)
269 		cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
270 
271 	if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
272 		return -EINVAL;
273 
274 	presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
275 	if (presync_sem > 1)
276 		return -EINVAL;
277 
278 	presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
279 		      req->sem2.presync << 2 | req->sem3.presync << 3;
280 
281 	switch (req->db_len) {
282 	case 32:
283 		db_len = BIT(7);
284 		break;
285 	case 16:
286 		db_len = BIT(7) | 1;
287 		break;
288 	case 8:
289 		db_len = BIT(7) | 2;
290 		break;
291 	case 0:
292 		db_len = 0; /* doorbell is not active for this command */
293 		break;
294 	default:
295 		return -EINVAL; /* should never hit this */
296 	}
297 
298 	/*
299 	 * When we end up splitting up a single request (ie a buf slice) into
300 	 * multiple DMA requests, we have to manage the sync data carefully.
301 	 * There can only be one presync sem. That needs to be on every xfer
302 	 * so that the DMA engine doesn't transfer data before the receiver is
303 	 * ready. We only do the doorbell and postsync sems after the xfer.
304 	 * To guarantee previous xfers for the request are complete, we use a
305 	 * fence.
306 	 */
307 	dev_addr = req->dev_addr;
308 	for_each_sgtable_dma_sg(slice->sgt, sg, i) {
309 		slice->reqs[i].cmd = cmd;
310 		slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
311 						      sg_dma_address(sg) : dev_addr);
312 		slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
313 						       dev_addr : sg_dma_address(sg));
314 		/*
315 		 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
316 		 * segment size is set to UINT_MAX by qaic and hence return
317 		 * values of sg_dma_len(sg) can never exceed u32 range. So,
318 		 * by down sizing we are not corrupting the value.
319 		 */
320 		slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
321 		switch (presync_sem) {
322 		case BIT(0):
323 			slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
324 									 req->sem0.index,
325 									 req->sem0.presync,
326 									 req->sem0.cmd,
327 									 req->sem0.flags));
328 			break;
329 		case BIT(1):
330 			slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
331 									 req->sem1.index,
332 									 req->sem1.presync,
333 									 req->sem1.cmd,
334 									 req->sem1.flags));
335 			break;
336 		case BIT(2):
337 			slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
338 									 req->sem2.index,
339 									 req->sem2.presync,
340 									 req->sem2.cmd,
341 									 req->sem2.flags));
342 			break;
343 		case BIT(3):
344 			slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
345 									 req->sem3.index,
346 									 req->sem3.presync,
347 									 req->sem3.cmd,
348 									 req->sem3.flags));
349 			break;
350 		}
351 		dev_addr += sg_dma_len(sg);
352 	}
353 	/* add post transfer stuff to last segment */
354 	i--;
355 	slice->reqs[i].cmd |= GEN_COMPLETION;
356 	slice->reqs[i].db_addr = db_addr;
357 	slice->reqs[i].db_len = db_len;
358 	slice->reqs[i].db_data = db_data;
359 	/*
360 	 * Add a fence if we have more than one request going to the hardware
361 	 * representing the entirety of the user request, and the user request
362 	 * has no presync condition.
363 	 * Fences are expensive, so we try to avoid them. We rely on the
364 	 * hardware behavior to avoid needing one when there is a presync
365 	 * condition. When a presync exists, all requests for that same
366 	 * presync will be queued into a fifo. Thus, since we queue the
367 	 * post xfer activity only on the last request we queue, the hardware
368 	 * will ensure that the last queued request is processed last, thus
369 	 * making sure the post xfer activity happens at the right time without
370 	 * a fence.
371 	 */
372 	if (i && !presync_sem)
373 		req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
374 				    QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
375 	slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
376 							 req->sem0.presync, req->sem0.cmd,
377 							 req->sem0.flags));
378 	slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
379 							 req->sem1.presync, req->sem1.cmd,
380 							 req->sem1.flags));
381 	slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
382 							 req->sem2.presync, req->sem2.cmd,
383 							 req->sem2.flags));
384 	slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
385 							 req->sem3.presync, req->sem3.cmd,
386 							 req->sem3.flags));
387 
388 	return 0;
389 }
390 
391 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
392 			      struct qaic_attach_slice_entry *slice_ent)
393 {
394 	struct sg_table *sgt = NULL;
395 	struct bo_slice *slice;
396 	int ret;
397 
398 	ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
399 	if (ret)
400 		goto out;
401 
402 	slice = kmalloc(sizeof(*slice), GFP_KERNEL);
403 	if (!slice) {
404 		ret = -ENOMEM;
405 		goto free_sgt;
406 	}
407 
408 	slice->reqs = kvcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
409 	if (!slice->reqs) {
410 		ret = -ENOMEM;
411 		goto free_slice;
412 	}
413 
414 	slice->no_xfer = !slice_ent->size;
415 	slice->sgt = sgt;
416 	slice->nents = sgt->nents;
417 	slice->dir = bo->dir;
418 	slice->bo = bo;
419 	slice->size = slice_ent->size;
420 	slice->offset = slice_ent->offset;
421 
422 	ret = encode_reqs(qdev, slice, slice_ent);
423 	if (ret)
424 		goto free_req;
425 
426 	bo->total_slice_nents += sgt->nents;
427 	kref_init(&slice->ref_count);
428 	drm_gem_object_get(&bo->base);
429 	list_add_tail(&slice->slice, &bo->slices);
430 
431 	return 0;
432 
433 free_req:
434 	kvfree(slice->reqs);
435 free_slice:
436 	kfree(slice);
437 free_sgt:
438 	sg_free_table(sgt);
439 	kfree(sgt);
440 out:
441 	return ret;
442 }
443 
444 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
445 {
446 	struct scatterlist *sg;
447 	struct sg_table *sgt;
448 	struct page **pages;
449 	int *pages_order;
450 	int buf_extra;
451 	int max_order;
452 	int nr_pages;
453 	int ret = 0;
454 	int i, j, k;
455 	int order;
456 
457 	if (size) {
458 		nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
459 		/*
460 		 * calculate how much extra we are going to allocate, to remove
461 		 * later
462 		 */
463 		buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
464 		max_order = min(MAX_PAGE_ORDER, get_order(size));
465 	} else {
466 		/* allocate a single page for book keeping */
467 		nr_pages = 1;
468 		buf_extra = 0;
469 		max_order = 0;
470 	}
471 
472 	pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
473 	if (!pages) {
474 		ret = -ENOMEM;
475 		goto out;
476 	}
477 	pages_order = (void *)pages + sizeof(*pages) * nr_pages;
478 
479 	/*
480 	 * Allocate requested memory using alloc_pages. It is possible to allocate
481 	 * the requested memory in multiple chunks by calling alloc_pages
482 	 * multiple times. Use SG table to handle multiple allocated pages.
483 	 */
484 	i = 0;
485 	while (nr_pages > 0) {
486 		order = min(get_order(nr_pages * PAGE_SIZE), max_order);
487 		while (1) {
488 			pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
489 					       __GFP_NOWARN | __GFP_ZERO |
490 					       (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
491 					       order);
492 			if (pages[i])
493 				break;
494 			if (!order--) {
495 				ret = -ENOMEM;
496 				goto free_partial_alloc;
497 			}
498 		}
499 
500 		max_order = order;
501 		pages_order[i] = order;
502 
503 		nr_pages -= 1 << order;
504 		if (nr_pages <= 0)
505 			/* account for over allocation */
506 			buf_extra += abs(nr_pages) * PAGE_SIZE;
507 		i++;
508 	}
509 
510 	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
511 	if (!sgt) {
512 		ret = -ENOMEM;
513 		goto free_partial_alloc;
514 	}
515 
516 	if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
517 		ret = -ENOMEM;
518 		goto free_sgt;
519 	}
520 
521 	/* Populate the SG table with the allocated memory pages */
522 	sg = sgt->sgl;
523 	for (k = 0; k < i; k++, sg = sg_next(sg)) {
524 		/* Last entry requires special handling */
525 		if (k < i - 1) {
526 			sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
527 		} else {
528 			sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
529 			sg_mark_end(sg);
530 		}
531 	}
532 
533 	kvfree(pages);
534 	*sgt_out = sgt;
535 	return ret;
536 
537 free_sgt:
538 	kfree(sgt);
539 free_partial_alloc:
540 	for (j = 0; j < i; j++)
541 		__free_pages(pages[j], pages_order[j]);
542 	kvfree(pages);
543 out:
544 	*sgt_out = NULL;
545 	return ret;
546 }
547 
548 static bool invalid_sem(struct qaic_sem *sem)
549 {
550 	if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
551 	    !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
552 	    sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
553 	    sem->cmd > QAIC_SEM_WAIT_GT_0)
554 		return true;
555 	return false;
556 }
557 
558 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
559 			     u32 count, u64 total_size)
560 {
561 	u64 total;
562 	int i;
563 
564 	for (i = 0; i < count; i++) {
565 		if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
566 		      slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
567 		      invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
568 		      invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
569 			return -EINVAL;
570 
571 		if (check_add_overflow(slice_ent[i].offset, slice_ent[i].size, &total) ||
572 		    total > total_size)
573 			return -EINVAL;
574 	}
575 
576 	return 0;
577 }
578 
579 static void qaic_free_sgt(struct sg_table *sgt)
580 {
581 	struct scatterlist *sg;
582 
583 	if (!sgt)
584 		return;
585 
586 	for (sg = sgt->sgl; sg; sg = sg_next(sg))
587 		if (sg_page(sg))
588 			__free_pages(sg_page(sg), get_order(sg->length));
589 	sg_free_table(sgt);
590 	kfree(sgt);
591 }
592 
593 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
594 				const struct drm_gem_object *obj)
595 {
596 	struct qaic_bo *bo = to_qaic_bo(obj);
597 
598 	drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir);
599 }
600 
601 static const struct vm_operations_struct drm_vm_ops = {
602 	.open = drm_gem_vm_open,
603 	.close = drm_gem_vm_close,
604 };
605 
606 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
607 {
608 	struct qaic_bo *bo = to_qaic_bo(obj);
609 	unsigned long offset = 0;
610 	struct scatterlist *sg;
611 	int ret = 0;
612 
613 	if (drm_gem_is_imported(obj))
614 		return -EINVAL;
615 
616 	for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
617 		if (sg_page(sg)) {
618 			ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
619 					      sg->length, vma->vm_page_prot);
620 			if (ret)
621 				goto out;
622 			offset += sg->length;
623 		}
624 	}
625 
626 out:
627 	return ret;
628 }
629 
630 static void qaic_free_object(struct drm_gem_object *obj)
631 {
632 	struct qaic_bo *bo = to_qaic_bo(obj);
633 
634 	if (drm_gem_is_imported(obj)) {
635 		/* DMABUF/PRIME Path */
636 		drm_prime_gem_destroy(obj, NULL);
637 	} else {
638 		/* Private buffer allocation path */
639 		qaic_free_sgt(bo->sgt);
640 	}
641 
642 	mutex_destroy(&bo->lock);
643 	drm_gem_object_release(obj);
644 	kfree(bo);
645 }
646 
647 static struct sg_table *qaic_get_sg_table(struct drm_gem_object *obj)
648 {
649 	struct qaic_bo *bo = to_qaic_bo(obj);
650 	struct scatterlist *sg, *sg_in;
651 	struct sg_table *sgt, *sgt_in;
652 	int i;
653 
654 	sgt_in = bo->sgt;
655 
656 	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
657 	if (!sgt)
658 		return ERR_PTR(-ENOMEM);
659 
660 	if (sg_alloc_table(sgt, sgt_in->orig_nents, GFP_KERNEL)) {
661 		kfree(sgt);
662 		return ERR_PTR(-ENOMEM);
663 	}
664 
665 	sg = sgt->sgl;
666 	for_each_sgtable_sg(sgt_in, sg_in, i) {
667 		memcpy(sg, sg_in, sizeof(*sg));
668 		sg = sg_next(sg);
669 	}
670 
671 	return sgt;
672 }
673 
674 static const struct drm_gem_object_funcs qaic_gem_funcs = {
675 	.free = qaic_free_object,
676 	.get_sg_table = qaic_get_sg_table,
677 	.print_info = qaic_gem_print_info,
678 	.mmap = qaic_gem_object_mmap,
679 	.vm_ops = &drm_vm_ops,
680 };
681 
682 static void qaic_init_bo(struct qaic_bo *bo, bool reinit)
683 {
684 	if (reinit) {
685 		bo->sliced = false;
686 		reinit_completion(&bo->xfer_done);
687 	} else {
688 		mutex_init(&bo->lock);
689 		init_completion(&bo->xfer_done);
690 	}
691 	complete_all(&bo->xfer_done);
692 	INIT_LIST_HEAD(&bo->slices);
693 	INIT_LIST_HEAD(&bo->xfer_list);
694 }
695 
696 static struct qaic_bo *qaic_alloc_init_bo(void)
697 {
698 	struct qaic_bo *bo;
699 
700 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
701 	if (!bo)
702 		return ERR_PTR(-ENOMEM);
703 
704 	qaic_init_bo(bo, false);
705 
706 	return bo;
707 }
708 
709 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
710 {
711 	struct qaic_create_bo *args = data;
712 	int usr_rcu_id, qdev_rcu_id;
713 	struct drm_gem_object *obj;
714 	struct qaic_device *qdev;
715 	struct qaic_user *usr;
716 	struct qaic_bo *bo;
717 	size_t size;
718 	int ret;
719 
720 	if (args->pad)
721 		return -EINVAL;
722 
723 	size = PAGE_ALIGN(args->size);
724 	if (size == 0)
725 		return -EINVAL;
726 
727 	usr = file_priv->driver_priv;
728 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
729 	if (!usr->qddev) {
730 		ret = -ENODEV;
731 		goto unlock_usr_srcu;
732 	}
733 
734 	qdev = usr->qddev->qdev;
735 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
736 	if (qdev->dev_state != QAIC_ONLINE) {
737 		ret = -ENODEV;
738 		goto unlock_dev_srcu;
739 	}
740 
741 	bo = qaic_alloc_init_bo();
742 	if (IS_ERR(bo)) {
743 		ret = PTR_ERR(bo);
744 		goto unlock_dev_srcu;
745 	}
746 	obj = &bo->base;
747 
748 	drm_gem_private_object_init(dev, obj, size);
749 
750 	obj->funcs = &qaic_gem_funcs;
751 	ret = create_sgt(qdev, &bo->sgt, size);
752 	if (ret)
753 		goto free_bo;
754 
755 	ret = drm_gem_create_mmap_offset(obj);
756 	if (ret)
757 		goto free_bo;
758 
759 	ret = drm_gem_handle_create(file_priv, obj, &args->handle);
760 	if (ret)
761 		goto free_bo;
762 
763 	drm_gem_object_put(obj);
764 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
765 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
766 
767 	return 0;
768 
769 free_bo:
770 	drm_gem_object_put(obj);
771 unlock_dev_srcu:
772 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
773 unlock_usr_srcu:
774 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
775 	return ret;
776 }
777 
778 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
779 {
780 	struct qaic_mmap_bo *args = data;
781 	int usr_rcu_id, qdev_rcu_id;
782 	struct drm_gem_object *obj;
783 	struct qaic_device *qdev;
784 	struct qaic_user *usr;
785 	int ret = 0;
786 
787 	usr = file_priv->driver_priv;
788 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
789 	if (!usr->qddev) {
790 		ret = -ENODEV;
791 		goto unlock_usr_srcu;
792 	}
793 
794 	qdev = usr->qddev->qdev;
795 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
796 	if (qdev->dev_state != QAIC_ONLINE) {
797 		ret = -ENODEV;
798 		goto unlock_dev_srcu;
799 	}
800 
801 	obj = drm_gem_object_lookup(file_priv, args->handle);
802 	if (!obj) {
803 		ret = -ENOENT;
804 		goto unlock_dev_srcu;
805 	}
806 
807 	args->offset = drm_vma_node_offset_addr(&obj->vma_node);
808 
809 	drm_gem_object_put(obj);
810 
811 unlock_dev_srcu:
812 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
813 unlock_usr_srcu:
814 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
815 	return ret;
816 }
817 
818 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
819 {
820 	struct dma_buf_attachment *attach;
821 	struct drm_gem_object *obj;
822 	struct qaic_bo *bo;
823 	int ret;
824 
825 	bo = qaic_alloc_init_bo();
826 	if (IS_ERR(bo)) {
827 		ret = PTR_ERR(bo);
828 		goto out;
829 	}
830 
831 	obj = &bo->base;
832 	get_dma_buf(dma_buf);
833 
834 	attach = dma_buf_attach(dma_buf, dev->dev);
835 	if (IS_ERR(attach)) {
836 		ret = PTR_ERR(attach);
837 		goto attach_fail;
838 	}
839 
840 	if (!attach->dmabuf->size) {
841 		ret = -EINVAL;
842 		goto size_align_fail;
843 	}
844 
845 	drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
846 	/*
847 	 * skipping dma_buf_map_attachment() as we do not know the direction
848 	 * just yet. Once the direction is known in the subsequent IOCTL to
849 	 * attach slicing, we can do it then.
850 	 */
851 
852 	obj->funcs = &qaic_gem_funcs;
853 	obj->import_attach = attach;
854 	obj->resv = dma_buf->resv;
855 
856 	return obj;
857 
858 size_align_fail:
859 	dma_buf_detach(dma_buf, attach);
860 attach_fail:
861 	dma_buf_put(dma_buf);
862 	kfree(bo);
863 out:
864 	return ERR_PTR(ret);
865 }
866 
867 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
868 {
869 	struct drm_gem_object *obj = &bo->base;
870 	struct sg_table *sgt;
871 	int ret;
872 
873 	sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
874 	if (IS_ERR(sgt)) {
875 		ret = PTR_ERR(sgt);
876 		return ret;
877 	}
878 
879 	bo->sgt = sgt;
880 
881 	return 0;
882 }
883 
884 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
885 				  struct qaic_attach_slice_hdr *hdr)
886 {
887 	int ret;
888 
889 	ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
890 	if (ret)
891 		return -EFAULT;
892 
893 	return 0;
894 }
895 
896 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
897 			   struct qaic_attach_slice_hdr *hdr)
898 {
899 	int ret;
900 
901 	if (drm_gem_is_imported(&bo->base))
902 		ret = qaic_prepare_import_bo(bo, hdr);
903 	else
904 		ret = qaic_prepare_export_bo(qdev, bo, hdr);
905 	bo->dir = hdr->dir;
906 	bo->dbc = &qdev->dbc[hdr->dbc_id];
907 	bo->nr_slice = hdr->count;
908 
909 	return ret;
910 }
911 
912 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
913 {
914 	dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
915 	bo->sgt = NULL;
916 }
917 
918 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
919 {
920 	dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
921 }
922 
923 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
924 {
925 	if (drm_gem_is_imported(&bo->base))
926 		qaic_unprepare_import_bo(bo);
927 	else
928 		qaic_unprepare_export_bo(qdev, bo);
929 
930 	bo->dir = 0;
931 	bo->dbc = NULL;
932 	bo->nr_slice = 0;
933 }
934 
935 static void qaic_free_slices_bo(struct qaic_bo *bo)
936 {
937 	struct bo_slice *slice, *temp;
938 
939 	list_for_each_entry_safe(slice, temp, &bo->slices, slice)
940 		kref_put(&slice->ref_count, free_slice);
941 	if (WARN_ON_ONCE(bo->total_slice_nents != 0))
942 		bo->total_slice_nents = 0;
943 	bo->nr_slice = 0;
944 }
945 
946 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
947 				  struct qaic_attach_slice_hdr *hdr,
948 				  struct qaic_attach_slice_entry *slice_ent)
949 {
950 	int ret, i;
951 
952 	for (i = 0; i < hdr->count; i++) {
953 		ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
954 		if (ret) {
955 			qaic_free_slices_bo(bo);
956 			return ret;
957 		}
958 	}
959 
960 	if (bo->total_slice_nents > bo->dbc->nelem) {
961 		qaic_free_slices_bo(bo);
962 		return -ENOSPC;
963 	}
964 
965 	return 0;
966 }
967 
968 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
969 {
970 	struct qaic_attach_slice_entry *slice_ent;
971 	struct qaic_attach_slice *args = data;
972 	int rcu_id, usr_rcu_id, qdev_rcu_id;
973 	struct dma_bridge_chan	*dbc;
974 	struct drm_gem_object *obj;
975 	struct qaic_device *qdev;
976 	unsigned long arg_size;
977 	struct qaic_user *usr;
978 	u8 __user *user_data;
979 	struct qaic_bo *bo;
980 	int ret;
981 
982 	if (args->hdr.count == 0)
983 		return -EINVAL;
984 
985 	arg_size = args->hdr.count * sizeof(*slice_ent);
986 	if (arg_size / args->hdr.count != sizeof(*slice_ent))
987 		return -EINVAL;
988 
989 	if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
990 		return -EINVAL;
991 
992 	if (args->data == 0)
993 		return -EINVAL;
994 
995 	usr = file_priv->driver_priv;
996 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
997 	if (!usr->qddev) {
998 		ret = -ENODEV;
999 		goto unlock_usr_srcu;
1000 	}
1001 
1002 	qdev = usr->qddev->qdev;
1003 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1004 	if (qdev->dev_state != QAIC_ONLINE) {
1005 		ret = -ENODEV;
1006 		goto unlock_dev_srcu;
1007 	}
1008 
1009 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1010 		ret = -EINVAL;
1011 		goto unlock_dev_srcu;
1012 	}
1013 
1014 	user_data = u64_to_user_ptr(args->data);
1015 
1016 	slice_ent = memdup_user(user_data, arg_size);
1017 	if (IS_ERR(slice_ent)) {
1018 		ret = PTR_ERR(slice_ent);
1019 		goto unlock_dev_srcu;
1020 	}
1021 
1022 	obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
1023 	if (!obj) {
1024 		ret = -ENOENT;
1025 		goto free_slice_ent;
1026 	}
1027 
1028 	ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, obj->size);
1029 	if (ret)
1030 		goto put_bo;
1031 
1032 	bo = to_qaic_bo(obj);
1033 	ret = mutex_lock_interruptible(&bo->lock);
1034 	if (ret)
1035 		goto put_bo;
1036 
1037 	if (bo->sliced) {
1038 		ret = -EINVAL;
1039 		goto unlock_bo;
1040 	}
1041 
1042 	dbc = &qdev->dbc[args->hdr.dbc_id];
1043 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1044 	if (dbc->usr != usr) {
1045 		ret = -EINVAL;
1046 		goto unlock_ch_srcu;
1047 	}
1048 
1049 	ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1050 	if (ret)
1051 		goto unlock_ch_srcu;
1052 
1053 	ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1054 	if (ret)
1055 		goto unprepare_bo;
1056 
1057 	if (args->hdr.dir == DMA_TO_DEVICE)
1058 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1059 
1060 	bo->sliced = true;
1061 	list_add_tail(&bo->bo_list, &bo->dbc->bo_lists);
1062 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1063 	mutex_unlock(&bo->lock);
1064 	kfree(slice_ent);
1065 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1066 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1067 
1068 	return 0;
1069 
1070 unprepare_bo:
1071 	qaic_unprepare_bo(qdev, bo);
1072 unlock_ch_srcu:
1073 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1074 unlock_bo:
1075 	mutex_unlock(&bo->lock);
1076 put_bo:
1077 	drm_gem_object_put(obj);
1078 free_slice_ent:
1079 	kfree(slice_ent);
1080 unlock_dev_srcu:
1081 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1082 unlock_usr_srcu:
1083 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1084 	return ret;
1085 }
1086 
1087 static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size)
1088 {
1089 	u32 avail = head - tail - 1;
1090 
1091 	if (head <= tail)
1092 		avail += q_size;
1093 
1094 	return avail;
1095 }
1096 
1097 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1098 				 u32 head, u32 *ptail)
1099 {
1100 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1101 	struct dbc_req *reqs = slice->reqs;
1102 	u32 tail = *ptail;
1103 	u32 avail;
1104 
1105 	avail = fifo_space_avail(head, tail, dbc->nelem);
1106 	if (avail < slice->nents)
1107 		return -EAGAIN;
1108 
1109 	if (tail + slice->nents > dbc->nelem) {
1110 		avail = dbc->nelem - tail;
1111 		avail = min_t(u32, avail, slice->nents);
1112 		memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1113 		reqs += avail;
1114 		avail = slice->nents - avail;
1115 		if (avail)
1116 			memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1117 	} else {
1118 		memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents);
1119 	}
1120 
1121 	*ptail = (tail + slice->nents) % dbc->nelem;
1122 
1123 	return 0;
1124 }
1125 
1126 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1127 					 u64 resize, struct dma_bridge_chan *dbc, u32 head,
1128 					 u32 *ptail)
1129 {
1130 	struct dbc_req *reqs = slice->reqs;
1131 	struct dbc_req *last_req;
1132 	u32 tail = *ptail;
1133 	u64 last_bytes;
1134 	u32 first_n;
1135 	u32 avail;
1136 
1137 	avail = fifo_space_avail(head, tail, dbc->nelem);
1138 
1139 	/*
1140 	 * After this for loop is complete, first_n represents the index
1141 	 * of the last DMA request of this slice that needs to be
1142 	 * transferred after resizing and last_bytes represents DMA size
1143 	 * of that request.
1144 	 */
1145 	last_bytes = resize;
1146 	for (first_n = 0; first_n < slice->nents; first_n++)
1147 		if (last_bytes > le32_to_cpu(reqs[first_n].len))
1148 			last_bytes -= le32_to_cpu(reqs[first_n].len);
1149 		else
1150 			break;
1151 
1152 	if (avail < (first_n + 1))
1153 		return -EAGAIN;
1154 
1155 	if (first_n) {
1156 		if (tail + first_n > dbc->nelem) {
1157 			avail = dbc->nelem - tail;
1158 			avail = min_t(u32, avail, first_n);
1159 			memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1160 			last_req = reqs + avail;
1161 			avail = first_n - avail;
1162 			if (avail)
1163 				memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1164 		} else {
1165 			memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n);
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Copy over the last entry. Here we need to adjust len to the left over
1171 	 * size, and set src and dst to the entry it is copied to.
1172 	 */
1173 	last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem);
1174 	memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1175 
1176 	/*
1177 	 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1178 	 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1179 	 * range. So, by down sizing we are not corrupting the value.
1180 	 */
1181 	last_req->len = cpu_to_le32((u32)last_bytes);
1182 	last_req->src_addr = reqs[first_n].src_addr;
1183 	last_req->dest_addr = reqs[first_n].dest_addr;
1184 	if (!last_bytes)
1185 		/* Disable DMA transfer */
1186 		last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd;
1187 
1188 	*ptail = (tail + first_n + 1) % dbc->nelem;
1189 
1190 	return 0;
1191 }
1192 
1193 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1194 				  struct qaic_execute_entry *exec, unsigned int count,
1195 				  bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1196 				  u32 *tail)
1197 {
1198 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1199 	struct drm_gem_object *obj;
1200 	struct bo_slice *slice;
1201 	unsigned long flags;
1202 	struct qaic_bo *bo;
1203 	int i, j;
1204 	int ret;
1205 
1206 	for (i = 0; i < count; i++) {
1207 		/*
1208 		 * ref count will be decremented when the transfer of this
1209 		 * buffer is complete. It is inside dbc_irq_threaded_fn().
1210 		 */
1211 		obj = drm_gem_object_lookup(file_priv,
1212 					    is_partial ? pexec[i].handle : exec[i].handle);
1213 		if (!obj) {
1214 			ret = -ENOENT;
1215 			goto failed_to_send_bo;
1216 		}
1217 
1218 		bo = to_qaic_bo(obj);
1219 		ret = mutex_lock_interruptible(&bo->lock);
1220 		if (ret)
1221 			goto failed_to_send_bo;
1222 
1223 		if (!bo->sliced) {
1224 			ret = -EINVAL;
1225 			goto unlock_bo;
1226 		}
1227 
1228 		if (is_partial && pexec[i].resize > bo->base.size) {
1229 			ret = -EINVAL;
1230 			goto unlock_bo;
1231 		}
1232 
1233 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1234 		if (bo_queued(bo)) {
1235 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1236 			ret = -EINVAL;
1237 			goto unlock_bo;
1238 		}
1239 
1240 		bo->req_id = dbc->next_req_id++;
1241 
1242 		list_for_each_entry(slice, &bo->slices, slice) {
1243 			for (j = 0; j < slice->nents; j++)
1244 				slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1245 
1246 			if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset))
1247 				/* Configure the slice for no DMA transfer */
1248 				ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail);
1249 			else if (is_partial && pexec[i].resize < slice->offset + slice->size)
1250 				/* Configure the slice to be partially DMA transferred */
1251 				ret = copy_partial_exec_reqs(qdev, slice,
1252 							     pexec[i].resize - slice->offset, dbc,
1253 							     head, tail);
1254 			else
1255 				ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1256 			if (ret) {
1257 				spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1258 				goto unlock_bo;
1259 			}
1260 		}
1261 		reinit_completion(&bo->xfer_done);
1262 		list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1263 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1264 		dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1265 		mutex_unlock(&bo->lock);
1266 	}
1267 
1268 	return 0;
1269 
1270 unlock_bo:
1271 	mutex_unlock(&bo->lock);
1272 failed_to_send_bo:
1273 	if (likely(obj))
1274 		drm_gem_object_put(obj);
1275 	for (j = 0; j < i; j++) {
1276 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1277 		bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1278 		obj = &bo->base;
1279 		list_del_init(&bo->xfer_list);
1280 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1281 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1282 		drm_gem_object_put(obj);
1283 	}
1284 	return ret;
1285 }
1286 
1287 static void update_profiling_data(struct drm_file *file_priv,
1288 				  struct qaic_execute_entry *exec, unsigned int count,
1289 				  bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1290 {
1291 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1292 	struct drm_gem_object *obj;
1293 	struct qaic_bo *bo;
1294 	int i;
1295 
1296 	for (i = 0; i < count; i++) {
1297 		/*
1298 		 * Since we already committed the BO to hardware, the only way
1299 		 * this should fail is a pending signal. We can't cancel the
1300 		 * submit to hardware, so we have to just skip the profiling
1301 		 * data. In case the signal is not fatal to the process, we
1302 		 * return success so that the user doesn't try to resubmit.
1303 		 */
1304 		obj = drm_gem_object_lookup(file_priv,
1305 					    is_partial ? pexec[i].handle : exec[i].handle);
1306 		if (!obj)
1307 			break;
1308 		bo = to_qaic_bo(obj);
1309 		bo->perf_stats.req_received_ts = received_ts;
1310 		bo->perf_stats.req_submit_ts = submit_ts;
1311 		bo->perf_stats.queue_level_before = queue_level;
1312 		queue_level += bo->total_slice_nents;
1313 		drm_gem_object_put(obj);
1314 	}
1315 }
1316 
1317 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1318 				   bool is_partial)
1319 {
1320 	struct qaic_execute *args = data;
1321 	struct qaic_execute_entry *exec;
1322 	struct dma_bridge_chan *dbc;
1323 	int usr_rcu_id, qdev_rcu_id;
1324 	struct qaic_device *qdev;
1325 	struct qaic_user *usr;
1326 	u64 received_ts;
1327 	u32 queue_level;
1328 	u64 submit_ts;
1329 	int rcu_id;
1330 	u32 head;
1331 	u32 tail;
1332 	u64 size;
1333 	int ret;
1334 
1335 	received_ts = ktime_get_ns();
1336 
1337 	size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1338 	if (args->hdr.count == 0)
1339 		return -EINVAL;
1340 
1341 	exec = memdup_array_user(u64_to_user_ptr(args->data), args->hdr.count, size);
1342 	if (IS_ERR(exec))
1343 		return PTR_ERR(exec);
1344 
1345 	usr = file_priv->driver_priv;
1346 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1347 	if (!usr->qddev) {
1348 		ret = -ENODEV;
1349 		goto unlock_usr_srcu;
1350 	}
1351 
1352 	qdev = usr->qddev->qdev;
1353 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1354 	if (qdev->dev_state != QAIC_ONLINE) {
1355 		ret = -ENODEV;
1356 		goto unlock_dev_srcu;
1357 	}
1358 
1359 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1360 		ret = -EINVAL;
1361 		goto unlock_dev_srcu;
1362 	}
1363 
1364 	dbc = &qdev->dbc[args->hdr.dbc_id];
1365 
1366 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1367 	if (!dbc->usr || dbc->usr->handle != usr->handle) {
1368 		ret = -EPERM;
1369 		goto release_ch_rcu;
1370 	}
1371 
1372 	head = readl(dbc->dbc_base + REQHP_OFF);
1373 	tail = readl(dbc->dbc_base + REQTP_OFF);
1374 
1375 	if (head == U32_MAX || tail == U32_MAX) {
1376 		/* PCI link error */
1377 		ret = -ENODEV;
1378 		goto release_ch_rcu;
1379 	}
1380 
1381 	queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1382 
1383 	ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1384 				     head, &tail);
1385 	if (ret)
1386 		goto release_ch_rcu;
1387 
1388 	/* Finalize commit to hardware */
1389 	submit_ts = ktime_get_ns();
1390 	writel(tail, dbc->dbc_base + REQTP_OFF);
1391 
1392 	update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1393 			      submit_ts, queue_level);
1394 
1395 	if (datapath_polling)
1396 		schedule_work(&dbc->poll_work);
1397 
1398 release_ch_rcu:
1399 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1400 unlock_dev_srcu:
1401 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1402 unlock_usr_srcu:
1403 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1404 	kfree(exec);
1405 	return ret;
1406 }
1407 
1408 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1409 {
1410 	return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1411 }
1412 
1413 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1414 {
1415 	return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1416 }
1417 
1418 /*
1419  * Our interrupt handling is a bit more complicated than a simple ideal, but
1420  * sadly necessary.
1421  *
1422  * Each dbc has a completion queue. Entries in the queue correspond to DMA
1423  * requests which the device has processed. The hardware already has a built
1424  * in irq mitigation. When the device puts an entry into the queue, it will
1425  * only trigger an interrupt if the queue was empty. Therefore, when adding
1426  * the Nth event to a non-empty queue, the hardware doesn't trigger an
1427  * interrupt. This means the host doesn't get additional interrupts signaling
1428  * the same thing - the queue has something to process.
1429  * This behavior can be overridden in the DMA request.
1430  * This means that when the host receives an interrupt, it is required to
1431  * drain the queue.
1432  *
1433  * This behavior is what NAPI attempts to accomplish, although we can't use
1434  * NAPI as we don't have a netdev. We use threaded irqs instead.
1435  *
1436  * However, there is a situation where the host drains the queue fast enough
1437  * that every event causes an interrupt. Typically this is not a problem as
1438  * the rate of events would be low. However, that is not the case with
1439  * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1440  * lprnet, the host receives roughly 80k interrupts per second from the device
1441  * (per /proc/interrupts). While NAPI documentation indicates the host should
1442  * just chug along, sadly that behavior causes instability in some hosts.
1443  *
1444  * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1445  * key difference is that we will delay after draining the queue for a small
1446  * time to allow additional events to come in via polling. Using the above
1447  * lprnet workload, this reduces the number of interrupts processed from
1448  * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1449  * instability.
1450  */
1451 irqreturn_t dbc_irq_handler(int irq, void *data)
1452 {
1453 	struct dma_bridge_chan *dbc = data;
1454 	int rcu_id;
1455 	u32 head;
1456 	u32 tail;
1457 
1458 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1459 
1460 	if (datapath_polling) {
1461 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1462 		/*
1463 		 * Normally datapath_polling will not have irqs enabled, but
1464 		 * when running with only one MSI the interrupt is shared with
1465 		 * MHI so it cannot be disabled. Return ASAP instead.
1466 		 */
1467 		return IRQ_HANDLED;
1468 	}
1469 
1470 	if (!dbc->usr) {
1471 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1472 		return IRQ_HANDLED;
1473 	}
1474 
1475 	head = readl(dbc->dbc_base + RSPHP_OFF);
1476 	if (head == U32_MAX) { /* PCI link error */
1477 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1478 		return IRQ_NONE;
1479 	}
1480 
1481 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1482 	if (tail == U32_MAX) { /* PCI link error */
1483 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1484 		return IRQ_NONE;
1485 	}
1486 
1487 	if (head == tail) { /* queue empty */
1488 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1489 		return IRQ_NONE;
1490 	}
1491 
1492 	if (!dbc->qdev->single_msi)
1493 		disable_irq_nosync(irq);
1494 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1495 	return IRQ_WAKE_THREAD;
1496 }
1497 
1498 void irq_polling_work(struct work_struct *work)
1499 {
1500 	struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan,  poll_work);
1501 	unsigned long flags;
1502 	int rcu_id;
1503 	u32 head;
1504 	u32 tail;
1505 
1506 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1507 
1508 	while (1) {
1509 		if (dbc->qdev->dev_state != QAIC_ONLINE) {
1510 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1511 			return;
1512 		}
1513 		if (!dbc->usr) {
1514 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1515 			return;
1516 		}
1517 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1518 		if (list_empty(&dbc->xfer_list)) {
1519 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1520 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1521 			return;
1522 		}
1523 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1524 
1525 		head = readl(dbc->dbc_base + RSPHP_OFF);
1526 		if (head == U32_MAX) { /* PCI link error */
1527 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1528 			return;
1529 		}
1530 
1531 		tail = readl(dbc->dbc_base + RSPTP_OFF);
1532 		if (tail == U32_MAX) { /* PCI link error */
1533 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1534 			return;
1535 		}
1536 
1537 		if (head != tail) {
1538 			irq_wake_thread(dbc->irq, dbc);
1539 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1540 			return;
1541 		}
1542 
1543 		cond_resched();
1544 		usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1545 	}
1546 }
1547 
1548 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1549 {
1550 	struct dma_bridge_chan *dbc = data;
1551 	int event_count = NUM_EVENTS;
1552 	int delay_count = NUM_DELAYS;
1553 	struct qaic_device *qdev;
1554 	struct qaic_bo *bo, *i;
1555 	struct dbc_rsp *rsp;
1556 	unsigned long flags;
1557 	int rcu_id;
1558 	u16 status;
1559 	u16 req_id;
1560 	u32 head;
1561 	u32 tail;
1562 
1563 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1564 	qdev = dbc->qdev;
1565 
1566 	head = readl(dbc->dbc_base + RSPHP_OFF);
1567 	if (head == U32_MAX) /* PCI link error */
1568 		goto error_out;
1569 
1570 read_fifo:
1571 
1572 	if (!event_count) {
1573 		event_count = NUM_EVENTS;
1574 		cond_resched();
1575 	}
1576 
1577 	/*
1578 	 * if this channel isn't assigned or gets unassigned during processing
1579 	 * we have nothing further to do
1580 	 */
1581 	if (!dbc->usr)
1582 		goto error_out;
1583 
1584 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1585 	if (tail == U32_MAX) /* PCI link error */
1586 		goto error_out;
1587 
1588 	if (head == tail) { /* queue empty */
1589 		if (delay_count) {
1590 			--delay_count;
1591 			usleep_range(100, 200);
1592 			goto read_fifo; /* check for a new event */
1593 		}
1594 		goto normal_out;
1595 	}
1596 
1597 	delay_count = NUM_DELAYS;
1598 	while (head != tail) {
1599 		if (!event_count)
1600 			break;
1601 		--event_count;
1602 		rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1603 		req_id = le16_to_cpu(rsp->req_id);
1604 		status = le16_to_cpu(rsp->status);
1605 		if (status)
1606 			pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1607 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1608 		/*
1609 		 * A BO can receive multiple interrupts, since a BO can be
1610 		 * divided into multiple slices and a buffer receives as many
1611 		 * interrupts as slices. So until it receives interrupts for
1612 		 * all the slices we cannot mark that buffer complete.
1613 		 */
1614 		list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1615 			if (bo->req_id == req_id)
1616 				bo->nr_slice_xfer_done++;
1617 			else
1618 				continue;
1619 
1620 			if (bo->nr_slice_xfer_done < bo->nr_slice)
1621 				break;
1622 
1623 			/*
1624 			 * At this point we have received all the interrupts for
1625 			 * BO, which means BO execution is complete.
1626 			 */
1627 			dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1628 			bo->nr_slice_xfer_done = 0;
1629 			list_del_init(&bo->xfer_list);
1630 			bo->perf_stats.req_processed_ts = ktime_get_ns();
1631 			complete_all(&bo->xfer_done);
1632 			drm_gem_object_put(&bo->base);
1633 			break;
1634 		}
1635 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1636 		head = (head + 1) % dbc->nelem;
1637 	}
1638 
1639 	/*
1640 	 * Update the head pointer of response queue and let the device know
1641 	 * that we have consumed elements from the queue.
1642 	 */
1643 	writel(head, dbc->dbc_base + RSPHP_OFF);
1644 
1645 	/* elements might have been put in the queue while we were processing */
1646 	goto read_fifo;
1647 
1648 normal_out:
1649 	if (!qdev->single_msi && likely(!datapath_polling))
1650 		enable_irq(irq);
1651 	else if (unlikely(datapath_polling))
1652 		schedule_work(&dbc->poll_work);
1653 	/* checking the fifo and enabling irqs is a race, missed event check */
1654 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1655 	if (tail != U32_MAX && head != tail) {
1656 		if (!qdev->single_msi && likely(!datapath_polling))
1657 			disable_irq_nosync(irq);
1658 		goto read_fifo;
1659 	}
1660 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1661 	return IRQ_HANDLED;
1662 
1663 error_out:
1664 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1665 	if (!qdev->single_msi && likely(!datapath_polling))
1666 		enable_irq(irq);
1667 	else if (unlikely(datapath_polling))
1668 		schedule_work(&dbc->poll_work);
1669 
1670 	return IRQ_HANDLED;
1671 }
1672 
1673 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1674 {
1675 	struct qaic_wait *args = data;
1676 	int usr_rcu_id, qdev_rcu_id;
1677 	struct dma_bridge_chan *dbc;
1678 	struct drm_gem_object *obj;
1679 	struct qaic_device *qdev;
1680 	unsigned long timeout;
1681 	struct qaic_user *usr;
1682 	struct qaic_bo *bo;
1683 	int rcu_id;
1684 	int ret;
1685 
1686 	if (args->pad != 0)
1687 		return -EINVAL;
1688 
1689 	usr = file_priv->driver_priv;
1690 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1691 	if (!usr->qddev) {
1692 		ret = -ENODEV;
1693 		goto unlock_usr_srcu;
1694 	}
1695 
1696 	qdev = usr->qddev->qdev;
1697 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1698 	if (qdev->dev_state != QAIC_ONLINE) {
1699 		ret = -ENODEV;
1700 		goto unlock_dev_srcu;
1701 	}
1702 
1703 	if (args->dbc_id >= qdev->num_dbc) {
1704 		ret = -EINVAL;
1705 		goto unlock_dev_srcu;
1706 	}
1707 
1708 	dbc = &qdev->dbc[args->dbc_id];
1709 
1710 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1711 	if (dbc->usr != usr) {
1712 		ret = -EPERM;
1713 		goto unlock_ch_srcu;
1714 	}
1715 
1716 	obj = drm_gem_object_lookup(file_priv, args->handle);
1717 	if (!obj) {
1718 		ret = -ENOENT;
1719 		goto unlock_ch_srcu;
1720 	}
1721 
1722 	bo = to_qaic_bo(obj);
1723 	timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1724 	timeout = msecs_to_jiffies(timeout);
1725 	ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1726 	if (!ret) {
1727 		ret = -ETIMEDOUT;
1728 		goto put_obj;
1729 	}
1730 	if (ret > 0)
1731 		ret = 0;
1732 
1733 	if (!dbc->usr)
1734 		ret = -EPERM;
1735 
1736 put_obj:
1737 	drm_gem_object_put(obj);
1738 unlock_ch_srcu:
1739 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1740 unlock_dev_srcu:
1741 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1742 unlock_usr_srcu:
1743 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1744 	return ret;
1745 }
1746 
1747 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1748 {
1749 	struct qaic_perf_stats_entry *ent = NULL;
1750 	struct qaic_perf_stats *args = data;
1751 	int usr_rcu_id, qdev_rcu_id;
1752 	struct drm_gem_object *obj;
1753 	struct qaic_device *qdev;
1754 	struct qaic_user *usr;
1755 	struct qaic_bo *bo;
1756 	int ret = 0;
1757 	int i;
1758 
1759 	usr = file_priv->driver_priv;
1760 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1761 	if (!usr->qddev) {
1762 		ret = -ENODEV;
1763 		goto unlock_usr_srcu;
1764 	}
1765 
1766 	qdev = usr->qddev->qdev;
1767 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1768 	if (qdev->dev_state != QAIC_ONLINE) {
1769 		ret = -ENODEV;
1770 		goto unlock_dev_srcu;
1771 	}
1772 
1773 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1774 		ret = -EINVAL;
1775 		goto unlock_dev_srcu;
1776 	}
1777 
1778 	ent = memdup_array_user(u64_to_user_ptr(args->data), args->hdr.count, sizeof(*ent));
1779 	if (IS_ERR(ent)) {
1780 		ret = PTR_ERR(ent);
1781 		goto unlock_dev_srcu;
1782 	}
1783 
1784 	for (i = 0; i < args->hdr.count; i++) {
1785 		obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1786 		if (!obj) {
1787 			ret = -ENOENT;
1788 			goto free_ent;
1789 		}
1790 		bo = to_qaic_bo(obj);
1791 		/*
1792 		 * perf stats ioctl is called before wait ioctl is complete then
1793 		 * the latency information is invalid.
1794 		 */
1795 		if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1796 			ent[i].device_latency_us = 0;
1797 		} else {
1798 			ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1799 							    bo->perf_stats.req_submit_ts), 1000);
1800 		}
1801 		ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1802 						    bo->perf_stats.req_received_ts), 1000);
1803 		ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1804 		ent[i].num_queue_element = bo->total_slice_nents;
1805 		drm_gem_object_put(obj);
1806 	}
1807 
1808 	if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1809 		ret = -EFAULT;
1810 
1811 free_ent:
1812 	kfree(ent);
1813 unlock_dev_srcu:
1814 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1815 unlock_usr_srcu:
1816 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1817 	return ret;
1818 }
1819 
1820 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo)
1821 {
1822 	qaic_free_slices_bo(bo);
1823 	qaic_unprepare_bo(qdev, bo);
1824 	qaic_init_bo(bo, true);
1825 	list_del(&bo->bo_list);
1826 	drm_gem_object_put(&bo->base);
1827 }
1828 
1829 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1830 {
1831 	struct qaic_detach_slice *args = data;
1832 	int rcu_id, usr_rcu_id, qdev_rcu_id;
1833 	struct dma_bridge_chan *dbc;
1834 	struct drm_gem_object *obj;
1835 	struct qaic_device *qdev;
1836 	struct qaic_user *usr;
1837 	unsigned long flags;
1838 	struct qaic_bo *bo;
1839 	int ret;
1840 
1841 	if (args->pad != 0)
1842 		return -EINVAL;
1843 
1844 	usr = file_priv->driver_priv;
1845 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1846 	if (!usr->qddev) {
1847 		ret = -ENODEV;
1848 		goto unlock_usr_srcu;
1849 	}
1850 
1851 	qdev = usr->qddev->qdev;
1852 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1853 	if (qdev->dev_state != QAIC_ONLINE) {
1854 		ret = -ENODEV;
1855 		goto unlock_dev_srcu;
1856 	}
1857 
1858 	obj = drm_gem_object_lookup(file_priv, args->handle);
1859 	if (!obj) {
1860 		ret = -ENOENT;
1861 		goto unlock_dev_srcu;
1862 	}
1863 
1864 	bo = to_qaic_bo(obj);
1865 	ret = mutex_lock_interruptible(&bo->lock);
1866 	if (ret)
1867 		goto put_bo;
1868 
1869 	if (!bo->sliced) {
1870 		ret = -EINVAL;
1871 		goto unlock_bo;
1872 	}
1873 
1874 	dbc = bo->dbc;
1875 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1876 	if (dbc->usr != usr) {
1877 		ret = -EINVAL;
1878 		goto unlock_ch_srcu;
1879 	}
1880 
1881 	/* Check if BO is committed to H/W for DMA */
1882 	spin_lock_irqsave(&dbc->xfer_lock, flags);
1883 	if (bo_queued(bo)) {
1884 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1885 		ret = -EBUSY;
1886 		goto unlock_ch_srcu;
1887 	}
1888 	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1889 
1890 	detach_slice_bo(qdev, bo);
1891 
1892 unlock_ch_srcu:
1893 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1894 unlock_bo:
1895 	mutex_unlock(&bo->lock);
1896 put_bo:
1897 	drm_gem_object_put(obj);
1898 unlock_dev_srcu:
1899 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1900 unlock_usr_srcu:
1901 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1902 	return ret;
1903 }
1904 
1905 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1906 {
1907 	unsigned long flags;
1908 	struct qaic_bo *bo;
1909 
1910 	spin_lock_irqsave(&dbc->xfer_lock, flags);
1911 	while (!list_empty(&dbc->xfer_list)) {
1912 		bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1913 		list_del_init(&bo->xfer_list);
1914 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1915 		bo->nr_slice_xfer_done = 0;
1916 		bo->req_id = 0;
1917 		bo->perf_stats.req_received_ts = 0;
1918 		bo->perf_stats.req_submit_ts = 0;
1919 		bo->perf_stats.req_processed_ts = 0;
1920 		bo->perf_stats.queue_level_before = 0;
1921 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1922 		complete_all(&bo->xfer_done);
1923 		drm_gem_object_put(&bo->base);
1924 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1925 	}
1926 	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1927 }
1928 
1929 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1930 {
1931 	if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1932 		return -EPERM;
1933 
1934 	qdev->dbc[dbc_id].usr = NULL;
1935 	synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1936 	return 0;
1937 }
1938 
1939 /**
1940  * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1941  * user. Add user context back to DBC to enable it. This function trusts the
1942  * DBC ID passed and expects the DBC to be disabled.
1943  * @qdev: Qranium device handle
1944  * @dbc_id: ID of the DBC
1945  * @usr: User context
1946  */
1947 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1948 {
1949 	qdev->dbc[dbc_id].usr = usr;
1950 }
1951 
1952 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1953 {
1954 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1955 
1956 	dbc->usr = NULL;
1957 	empty_xfer_list(qdev, dbc);
1958 	synchronize_srcu(&dbc->ch_lock);
1959 	/*
1960 	 * Threads holding channel lock, may add more elements in the xfer_list.
1961 	 * Flush out these elements from xfer_list.
1962 	 */
1963 	empty_xfer_list(qdev, dbc);
1964 }
1965 
1966 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1967 {
1968 	struct qaic_bo *bo, *bo_temp;
1969 	struct dma_bridge_chan *dbc;
1970 
1971 	dbc = &qdev->dbc[dbc_id];
1972 	if (!dbc->in_use)
1973 		return;
1974 
1975 	wakeup_dbc(qdev, dbc_id);
1976 
1977 	dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1978 	dbc->total_size = 0;
1979 	dbc->req_q_base = NULL;
1980 	dbc->dma_addr = 0;
1981 	dbc->nelem = 0;
1982 	dbc->usr = NULL;
1983 
1984 	list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1985 		drm_gem_object_get(&bo->base);
1986 		mutex_lock(&bo->lock);
1987 		detach_slice_bo(qdev, bo);
1988 		mutex_unlock(&bo->lock);
1989 		drm_gem_object_put(&bo->base);
1990 	}
1991 
1992 	dbc->in_use = false;
1993 	wake_up(&dbc->dbc_release);
1994 }
1995 
1996 void qaic_data_get_fifo_info(struct dma_bridge_chan *dbc, u32 *head, u32 *tail)
1997 {
1998 	if (!dbc || !head || !tail)
1999 		return;
2000 
2001 	*head = readl(dbc->dbc_base + REQHP_OFF);
2002 	*tail = readl(dbc->dbc_base + REQTP_OFF);
2003 }
2004