xref: /linux/drivers/accel/qaic/qaic_data.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5 
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29 
30 #include "qaic.h"
31 
32 #define SEM_VAL_MASK	GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK	GENMASK_ULL(4, 0)
34 #define BULK_XFER	BIT(3)
35 #define GEN_COMPLETION	BIT(4)
36 #define INBOUND_XFER	1
37 #define OUTBOUND_XFER	2
38 #define REQHP_OFF	0x0 /* we read this */
39 #define REQTP_OFF	0x4 /* we write this */
40 #define RSPHP_OFF	0x8 /* we write this */
41 #define RSPTP_OFF	0xc /* we read this */
42 
43 #define ENCODE_SEM(val, index, sync, cmd, flags)			\
44 		({							\
45 			FIELD_PREP(GENMASK(11, 0), (val)) |		\
46 			FIELD_PREP(GENMASK(20, 16), (index)) |		\
47 			FIELD_PREP(BIT(22), (sync)) |			\
48 			FIELD_PREP(GENMASK(26, 24), (cmd)) |		\
49 			FIELD_PREP(GENMASK(30, 29), (flags)) |		\
50 			FIELD_PREP(BIT(31), (cmd) ? 1 : 0);		\
51 		})
52 #define NUM_EVENTS	128
53 #define NUM_DELAYS	10
54 #define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size())
55 
56 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
57 module_param(wait_exec_default_timeout_ms, uint, 0600);
58 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
59 
60 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
61 module_param(datapath_poll_interval_us, uint, 0600);
62 MODULE_PARM_DESC(datapath_poll_interval_us,
63 		 "Amount of time to sleep between activity when datapath polling is enabled");
64 
65 struct dbc_req {
66 	/*
67 	 * A request ID is assigned to each memory handle going in DMA queue.
68 	 * As a single memory handle can enqueue multiple elements in DMA queue
69 	 * all of them will have the same request ID.
70 	 */
71 	__le16	req_id;
72 	/* Future use */
73 	__u8	seq_id;
74 	/*
75 	 * Special encoded variable
76 	 * 7	0 - Do not force to generate MSI after DMA is completed
77 	 *	1 - Force to generate MSI after DMA is completed
78 	 * 6:5	Reserved
79 	 * 4	1 - Generate completion element in the response queue
80 	 *	0 - No Completion Code
81 	 * 3	0 - DMA request is a Link list transfer
82 	 *	1 - DMA request is a Bulk transfer
83 	 * 2	Reserved
84 	 * 1:0	00 - No DMA transfer involved
85 	 *	01 - DMA transfer is part of inbound transfer
86 	 *	10 - DMA transfer has outbound transfer
87 	 *	11 - NA
88 	 */
89 	__u8	cmd;
90 	__le32	resv;
91 	/* Source address for the transfer */
92 	__le64	src_addr;
93 	/* Destination address for the transfer */
94 	__le64	dest_addr;
95 	/* Length of transfer request */
96 	__le32	len;
97 	__le32	resv2;
98 	/* Doorbell address */
99 	__le64	db_addr;
100 	/*
101 	 * Special encoded variable
102 	 * 7	1 - Doorbell(db) write
103 	 *	0 - No doorbell write
104 	 * 6:2	Reserved
105 	 * 1:0	00 - 32 bit access, db address must be aligned to 32bit-boundary
106 	 *	01 - 16 bit access, db address must be aligned to 16bit-boundary
107 	 *	10 - 8 bit access, db address must be aligned to 8bit-boundary
108 	 *	11 - Reserved
109 	 */
110 	__u8	db_len;
111 	__u8	resv3;
112 	__le16	resv4;
113 	/* 32 bit data written to doorbell address */
114 	__le32	db_data;
115 	/*
116 	 * Special encoded variable
117 	 * All the fields of sem_cmdX are passed from user and all are ORed
118 	 * together to form sem_cmd.
119 	 * 0:11		Semaphore value
120 	 * 15:12	Reserved
121 	 * 20:16	Semaphore index
122 	 * 21		Reserved
123 	 * 22		Semaphore Sync
124 	 * 23		Reserved
125 	 * 26:24	Semaphore command
126 	 * 28:27	Reserved
127 	 * 29		Semaphore DMA out bound sync fence
128 	 * 30		Semaphore DMA in bound sync fence
129 	 * 31		Enable semaphore command
130 	 */
131 	__le32	sem_cmd0;
132 	__le32	sem_cmd1;
133 	__le32	sem_cmd2;
134 	__le32	sem_cmd3;
135 } __packed;
136 
137 struct dbc_rsp {
138 	/* Request ID of the memory handle whose DMA transaction is completed */
139 	__le16	req_id;
140 	/* Status of the DMA transaction. 0 : Success otherwise failure */
141 	__le16	status;
142 } __packed;
143 
144 inline int get_dbc_req_elem_size(void)
145 {
146 	return sizeof(struct dbc_req);
147 }
148 
149 inline int get_dbc_rsp_elem_size(void)
150 {
151 	return sizeof(struct dbc_rsp);
152 }
153 
154 static void free_slice(struct kref *kref)
155 {
156 	struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
157 
158 	slice->bo->total_slice_nents -= slice->nents;
159 	list_del(&slice->slice);
160 	drm_gem_object_put(&slice->bo->base);
161 	sg_free_table(slice->sgt);
162 	kfree(slice->sgt);
163 	kfree(slice->reqs);
164 	kfree(slice);
165 }
166 
167 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
168 					struct sg_table *sgt_in, u64 size, u64 offset)
169 {
170 	int total_len, len, nents, offf = 0, offl = 0;
171 	struct scatterlist *sg, *sgn, *sgf, *sgl;
172 	struct sg_table *sgt;
173 	int ret, j;
174 
175 	/* find out number of relevant nents needed for this mem */
176 	total_len = 0;
177 	sgf = NULL;
178 	sgl = NULL;
179 	nents = 0;
180 
181 	size = size ? size : PAGE_SIZE;
182 	for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
183 		len = sg_dma_len(sg);
184 
185 		if (!len)
186 			continue;
187 		if (offset >= total_len && offset < total_len + len) {
188 			sgf = sg;
189 			offf = offset - total_len;
190 		}
191 		if (sgf)
192 			nents++;
193 		if (offset + size >= total_len &&
194 		    offset + size <= total_len + len) {
195 			sgl = sg;
196 			offl = offset + size - total_len;
197 			break;
198 		}
199 		total_len += len;
200 	}
201 
202 	if (!sgf || !sgl) {
203 		ret = -EINVAL;
204 		goto out;
205 	}
206 
207 	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
208 	if (!sgt) {
209 		ret = -ENOMEM;
210 		goto out;
211 	}
212 
213 	ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
214 	if (ret)
215 		goto free_sgt;
216 
217 	/* copy relevant sg node and fix page and length */
218 	sgn = sgf;
219 	for_each_sgtable_sg(sgt, sg, j) {
220 		memcpy(sg, sgn, sizeof(*sg));
221 		if (sgn == sgf) {
222 			sg_dma_address(sg) += offf;
223 			sg_dma_len(sg) -= offf;
224 			sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
225 		} else {
226 			offf = 0;
227 		}
228 		if (sgn == sgl) {
229 			sg_dma_len(sg) = offl - offf;
230 			sg_set_page(sg, sg_page(sgn), offl - offf, offf);
231 			sg_mark_end(sg);
232 			break;
233 		}
234 		sgn = sg_next(sgn);
235 	}
236 
237 	*sgt_out = sgt;
238 	return ret;
239 
240 free_sgt:
241 	kfree(sgt);
242 out:
243 	*sgt_out = NULL;
244 	return ret;
245 }
246 
247 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
248 		       struct qaic_attach_slice_entry *req)
249 {
250 	__le64 db_addr = cpu_to_le64(req->db_addr);
251 	__le32 db_data = cpu_to_le32(req->db_data);
252 	struct scatterlist *sg;
253 	__u8 cmd = BULK_XFER;
254 	int presync_sem;
255 	u64 dev_addr;
256 	__u8 db_len;
257 	int i;
258 
259 	if (!slice->no_xfer)
260 		cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
261 
262 	if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
263 		return -EINVAL;
264 
265 	presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
266 	if (presync_sem > 1)
267 		return -EINVAL;
268 
269 	presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
270 		      req->sem2.presync << 2 | req->sem3.presync << 3;
271 
272 	switch (req->db_len) {
273 	case 32:
274 		db_len = BIT(7);
275 		break;
276 	case 16:
277 		db_len = BIT(7) | 1;
278 		break;
279 	case 8:
280 		db_len = BIT(7) | 2;
281 		break;
282 	case 0:
283 		db_len = 0; /* doorbell is not active for this command */
284 		break;
285 	default:
286 		return -EINVAL; /* should never hit this */
287 	}
288 
289 	/*
290 	 * When we end up splitting up a single request (ie a buf slice) into
291 	 * multiple DMA requests, we have to manage the sync data carefully.
292 	 * There can only be one presync sem. That needs to be on every xfer
293 	 * so that the DMA engine doesn't transfer data before the receiver is
294 	 * ready. We only do the doorbell and postsync sems after the xfer.
295 	 * To guarantee previous xfers for the request are complete, we use a
296 	 * fence.
297 	 */
298 	dev_addr = req->dev_addr;
299 	for_each_sgtable_sg(slice->sgt, sg, i) {
300 		slice->reqs[i].cmd = cmd;
301 		slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302 						      sg_dma_address(sg) : dev_addr);
303 		slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
304 						       dev_addr : sg_dma_address(sg));
305 		/*
306 		 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
307 		 * segment size is set to UINT_MAX by qaic and hence return
308 		 * values of sg_dma_len(sg) can never exceed u32 range. So,
309 		 * by down sizing we are not corrupting the value.
310 		 */
311 		slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
312 		switch (presync_sem) {
313 		case BIT(0):
314 			slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
315 									 req->sem0.index,
316 									 req->sem0.presync,
317 									 req->sem0.cmd,
318 									 req->sem0.flags));
319 			break;
320 		case BIT(1):
321 			slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
322 									 req->sem1.index,
323 									 req->sem1.presync,
324 									 req->sem1.cmd,
325 									 req->sem1.flags));
326 			break;
327 		case BIT(2):
328 			slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
329 									 req->sem2.index,
330 									 req->sem2.presync,
331 									 req->sem2.cmd,
332 									 req->sem2.flags));
333 			break;
334 		case BIT(3):
335 			slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
336 									 req->sem3.index,
337 									 req->sem3.presync,
338 									 req->sem3.cmd,
339 									 req->sem3.flags));
340 			break;
341 		}
342 		dev_addr += sg_dma_len(sg);
343 	}
344 	/* add post transfer stuff to last segment */
345 	i--;
346 	slice->reqs[i].cmd |= GEN_COMPLETION;
347 	slice->reqs[i].db_addr = db_addr;
348 	slice->reqs[i].db_len = db_len;
349 	slice->reqs[i].db_data = db_data;
350 	/*
351 	 * Add a fence if we have more than one request going to the hardware
352 	 * representing the entirety of the user request, and the user request
353 	 * has no presync condition.
354 	 * Fences are expensive, so we try to avoid them. We rely on the
355 	 * hardware behavior to avoid needing one when there is a presync
356 	 * condition. When a presync exists, all requests for that same
357 	 * presync will be queued into a fifo. Thus, since we queue the
358 	 * post xfer activity only on the last request we queue, the hardware
359 	 * will ensure that the last queued request is processed last, thus
360 	 * making sure the post xfer activity happens at the right time without
361 	 * a fence.
362 	 */
363 	if (i && !presync_sem)
364 		req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
365 				    QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
366 	slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
367 							 req->sem0.presync, req->sem0.cmd,
368 							 req->sem0.flags));
369 	slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
370 							 req->sem1.presync, req->sem1.cmd,
371 							 req->sem1.flags));
372 	slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
373 							 req->sem2.presync, req->sem2.cmd,
374 							 req->sem2.flags));
375 	slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
376 							 req->sem3.presync, req->sem3.cmd,
377 							 req->sem3.flags));
378 
379 	return 0;
380 }
381 
382 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
383 			      struct qaic_attach_slice_entry *slice_ent)
384 {
385 	struct sg_table *sgt = NULL;
386 	struct bo_slice *slice;
387 	int ret;
388 
389 	ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
390 	if (ret)
391 		goto out;
392 
393 	slice = kmalloc(sizeof(*slice), GFP_KERNEL);
394 	if (!slice) {
395 		ret = -ENOMEM;
396 		goto free_sgt;
397 	}
398 
399 	slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
400 	if (!slice->reqs) {
401 		ret = -ENOMEM;
402 		goto free_slice;
403 	}
404 
405 	slice->no_xfer = !slice_ent->size;
406 	slice->sgt = sgt;
407 	slice->nents = sgt->nents;
408 	slice->dir = bo->dir;
409 	slice->bo = bo;
410 	slice->size = slice_ent->size;
411 	slice->offset = slice_ent->offset;
412 
413 	ret = encode_reqs(qdev, slice, slice_ent);
414 	if (ret)
415 		goto free_req;
416 
417 	bo->total_slice_nents += sgt->nents;
418 	kref_init(&slice->ref_count);
419 	drm_gem_object_get(&bo->base);
420 	list_add_tail(&slice->slice, &bo->slices);
421 
422 	return 0;
423 
424 free_req:
425 	kfree(slice->reqs);
426 free_slice:
427 	kfree(slice);
428 free_sgt:
429 	sg_free_table(sgt);
430 	kfree(sgt);
431 out:
432 	return ret;
433 }
434 
435 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
436 {
437 	struct scatterlist *sg;
438 	struct sg_table *sgt;
439 	struct page **pages;
440 	int *pages_order;
441 	int buf_extra;
442 	int max_order;
443 	int nr_pages;
444 	int ret = 0;
445 	int i, j, k;
446 	int order;
447 
448 	if (size) {
449 		nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
450 		/*
451 		 * calculate how much extra we are going to allocate, to remove
452 		 * later
453 		 */
454 		buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
455 		max_order = min(MAX_PAGE_ORDER, get_order(size));
456 	} else {
457 		/* allocate a single page for book keeping */
458 		nr_pages = 1;
459 		buf_extra = 0;
460 		max_order = 0;
461 	}
462 
463 	pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
464 	if (!pages) {
465 		ret = -ENOMEM;
466 		goto out;
467 	}
468 	pages_order = (void *)pages + sizeof(*pages) * nr_pages;
469 
470 	/*
471 	 * Allocate requested memory using alloc_pages. It is possible to allocate
472 	 * the requested memory in multiple chunks by calling alloc_pages
473 	 * multiple times. Use SG table to handle multiple allocated pages.
474 	 */
475 	i = 0;
476 	while (nr_pages > 0) {
477 		order = min(get_order(nr_pages * PAGE_SIZE), max_order);
478 		while (1) {
479 			pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
480 					       __GFP_NOWARN | __GFP_ZERO |
481 					       (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
482 					       order);
483 			if (pages[i])
484 				break;
485 			if (!order--) {
486 				ret = -ENOMEM;
487 				goto free_partial_alloc;
488 			}
489 		}
490 
491 		max_order = order;
492 		pages_order[i] = order;
493 
494 		nr_pages -= 1 << order;
495 		if (nr_pages <= 0)
496 			/* account for over allocation */
497 			buf_extra += abs(nr_pages) * PAGE_SIZE;
498 		i++;
499 	}
500 
501 	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
502 	if (!sgt) {
503 		ret = -ENOMEM;
504 		goto free_partial_alloc;
505 	}
506 
507 	if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
508 		ret = -ENOMEM;
509 		goto free_sgt;
510 	}
511 
512 	/* Populate the SG table with the allocated memory pages */
513 	sg = sgt->sgl;
514 	for (k = 0; k < i; k++, sg = sg_next(sg)) {
515 		/* Last entry requires special handling */
516 		if (k < i - 1) {
517 			sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
518 		} else {
519 			sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
520 			sg_mark_end(sg);
521 		}
522 	}
523 
524 	kvfree(pages);
525 	*sgt_out = sgt;
526 	return ret;
527 
528 free_sgt:
529 	kfree(sgt);
530 free_partial_alloc:
531 	for (j = 0; j < i; j++)
532 		__free_pages(pages[j], pages_order[j]);
533 	kvfree(pages);
534 out:
535 	*sgt_out = NULL;
536 	return ret;
537 }
538 
539 static bool invalid_sem(struct qaic_sem *sem)
540 {
541 	if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
542 	    !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
543 	    sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
544 	    sem->cmd > QAIC_SEM_WAIT_GT_0)
545 		return true;
546 	return false;
547 }
548 
549 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
550 			     u32 count, u64 total_size)
551 {
552 	int i;
553 
554 	for (i = 0; i < count; i++) {
555 		if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
556 		      slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
557 		      invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
558 		      invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
559 			return -EINVAL;
560 
561 		if (slice_ent[i].offset + slice_ent[i].size > total_size)
562 			return -EINVAL;
563 	}
564 
565 	return 0;
566 }
567 
568 static void qaic_free_sgt(struct sg_table *sgt)
569 {
570 	struct scatterlist *sg;
571 
572 	for (sg = sgt->sgl; sg; sg = sg_next(sg))
573 		if (sg_page(sg))
574 			__free_pages(sg_page(sg), get_order(sg->length));
575 	sg_free_table(sgt);
576 	kfree(sgt);
577 }
578 
579 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
580 				const struct drm_gem_object *obj)
581 {
582 	struct qaic_bo *bo = to_qaic_bo(obj);
583 
584 	drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir);
585 }
586 
587 static const struct vm_operations_struct drm_vm_ops = {
588 	.open = drm_gem_vm_open,
589 	.close = drm_gem_vm_close,
590 };
591 
592 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
593 {
594 	struct qaic_bo *bo = to_qaic_bo(obj);
595 	unsigned long offset = 0;
596 	struct scatterlist *sg;
597 	int ret = 0;
598 
599 	if (obj->import_attach)
600 		return -EINVAL;
601 
602 	for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
603 		if (sg_page(sg)) {
604 			ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
605 					      sg->length, vma->vm_page_prot);
606 			if (ret)
607 				goto out;
608 			offset += sg->length;
609 		}
610 	}
611 
612 out:
613 	return ret;
614 }
615 
616 static void qaic_free_object(struct drm_gem_object *obj)
617 {
618 	struct qaic_bo *bo = to_qaic_bo(obj);
619 
620 	if (obj->import_attach) {
621 		/* DMABUF/PRIME Path */
622 		drm_prime_gem_destroy(obj, NULL);
623 	} else {
624 		/* Private buffer allocation path */
625 		qaic_free_sgt(bo->sgt);
626 	}
627 
628 	mutex_destroy(&bo->lock);
629 	drm_gem_object_release(obj);
630 	kfree(bo);
631 }
632 
633 static const struct drm_gem_object_funcs qaic_gem_funcs = {
634 	.free = qaic_free_object,
635 	.print_info = qaic_gem_print_info,
636 	.mmap = qaic_gem_object_mmap,
637 	.vm_ops = &drm_vm_ops,
638 };
639 
640 static void qaic_init_bo(struct qaic_bo *bo, bool reinit)
641 {
642 	if (reinit) {
643 		bo->sliced = false;
644 		reinit_completion(&bo->xfer_done);
645 	} else {
646 		mutex_init(&bo->lock);
647 		init_completion(&bo->xfer_done);
648 	}
649 	complete_all(&bo->xfer_done);
650 	INIT_LIST_HEAD(&bo->slices);
651 }
652 
653 static struct qaic_bo *qaic_alloc_init_bo(void)
654 {
655 	struct qaic_bo *bo;
656 
657 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
658 	if (!bo)
659 		return ERR_PTR(-ENOMEM);
660 
661 	qaic_init_bo(bo, false);
662 
663 	return bo;
664 }
665 
666 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
667 {
668 	struct qaic_create_bo *args = data;
669 	int usr_rcu_id, qdev_rcu_id;
670 	struct drm_gem_object *obj;
671 	struct qaic_device *qdev;
672 	struct qaic_user *usr;
673 	struct qaic_bo *bo;
674 	size_t size;
675 	int ret;
676 
677 	if (args->pad)
678 		return -EINVAL;
679 
680 	size = PAGE_ALIGN(args->size);
681 	if (size == 0)
682 		return -EINVAL;
683 
684 	usr = file_priv->driver_priv;
685 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
686 	if (!usr->qddev) {
687 		ret = -ENODEV;
688 		goto unlock_usr_srcu;
689 	}
690 
691 	qdev = usr->qddev->qdev;
692 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
693 	if (qdev->dev_state != QAIC_ONLINE) {
694 		ret = -ENODEV;
695 		goto unlock_dev_srcu;
696 	}
697 
698 	bo = qaic_alloc_init_bo();
699 	if (IS_ERR(bo)) {
700 		ret = PTR_ERR(bo);
701 		goto unlock_dev_srcu;
702 	}
703 	obj = &bo->base;
704 
705 	drm_gem_private_object_init(dev, obj, size);
706 
707 	obj->funcs = &qaic_gem_funcs;
708 	ret = create_sgt(qdev, &bo->sgt, size);
709 	if (ret)
710 		goto free_bo;
711 
712 	ret = drm_gem_handle_create(file_priv, obj, &args->handle);
713 	if (ret)
714 		goto free_sgt;
715 
716 	bo->handle = args->handle;
717 	drm_gem_object_put(obj);
718 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
719 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
720 
721 	return 0;
722 
723 free_sgt:
724 	qaic_free_sgt(bo->sgt);
725 free_bo:
726 	kfree(bo);
727 unlock_dev_srcu:
728 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
729 unlock_usr_srcu:
730 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
731 	return ret;
732 }
733 
734 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
735 {
736 	struct qaic_mmap_bo *args = data;
737 	int usr_rcu_id, qdev_rcu_id;
738 	struct drm_gem_object *obj;
739 	struct qaic_device *qdev;
740 	struct qaic_user *usr;
741 	int ret;
742 
743 	usr = file_priv->driver_priv;
744 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
745 	if (!usr->qddev) {
746 		ret = -ENODEV;
747 		goto unlock_usr_srcu;
748 	}
749 
750 	qdev = usr->qddev->qdev;
751 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
752 	if (qdev->dev_state != QAIC_ONLINE) {
753 		ret = -ENODEV;
754 		goto unlock_dev_srcu;
755 	}
756 
757 	obj = drm_gem_object_lookup(file_priv, args->handle);
758 	if (!obj) {
759 		ret = -ENOENT;
760 		goto unlock_dev_srcu;
761 	}
762 
763 	ret = drm_gem_create_mmap_offset(obj);
764 	if (ret == 0)
765 		args->offset = drm_vma_node_offset_addr(&obj->vma_node);
766 
767 	drm_gem_object_put(obj);
768 
769 unlock_dev_srcu:
770 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
771 unlock_usr_srcu:
772 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
773 	return ret;
774 }
775 
776 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
777 {
778 	struct dma_buf_attachment *attach;
779 	struct drm_gem_object *obj;
780 	struct qaic_bo *bo;
781 	int ret;
782 
783 	bo = qaic_alloc_init_bo();
784 	if (IS_ERR(bo)) {
785 		ret = PTR_ERR(bo);
786 		goto out;
787 	}
788 
789 	obj = &bo->base;
790 	get_dma_buf(dma_buf);
791 
792 	attach = dma_buf_attach(dma_buf, dev->dev);
793 	if (IS_ERR(attach)) {
794 		ret = PTR_ERR(attach);
795 		goto attach_fail;
796 	}
797 
798 	if (!attach->dmabuf->size) {
799 		ret = -EINVAL;
800 		goto size_align_fail;
801 	}
802 
803 	drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
804 	/*
805 	 * skipping dma_buf_map_attachment() as we do not know the direction
806 	 * just yet. Once the direction is known in the subsequent IOCTL to
807 	 * attach slicing, we can do it then.
808 	 */
809 
810 	obj->funcs = &qaic_gem_funcs;
811 	obj->import_attach = attach;
812 	obj->resv = dma_buf->resv;
813 
814 	return obj;
815 
816 size_align_fail:
817 	dma_buf_detach(dma_buf, attach);
818 attach_fail:
819 	dma_buf_put(dma_buf);
820 	kfree(bo);
821 out:
822 	return ERR_PTR(ret);
823 }
824 
825 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
826 {
827 	struct drm_gem_object *obj = &bo->base;
828 	struct sg_table *sgt;
829 	int ret;
830 
831 	if (obj->import_attach->dmabuf->size < hdr->size)
832 		return -EINVAL;
833 
834 	sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
835 	if (IS_ERR(sgt)) {
836 		ret = PTR_ERR(sgt);
837 		return ret;
838 	}
839 
840 	bo->sgt = sgt;
841 
842 	return 0;
843 }
844 
845 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
846 				  struct qaic_attach_slice_hdr *hdr)
847 {
848 	int ret;
849 
850 	if (bo->base.size < hdr->size)
851 		return -EINVAL;
852 
853 	ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
854 	if (ret)
855 		return -EFAULT;
856 
857 	return 0;
858 }
859 
860 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
861 			   struct qaic_attach_slice_hdr *hdr)
862 {
863 	int ret;
864 
865 	if (bo->base.import_attach)
866 		ret = qaic_prepare_import_bo(bo, hdr);
867 	else
868 		ret = qaic_prepare_export_bo(qdev, bo, hdr);
869 	bo->dir = hdr->dir;
870 	bo->dbc = &qdev->dbc[hdr->dbc_id];
871 	bo->nr_slice = hdr->count;
872 
873 	return ret;
874 }
875 
876 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
877 {
878 	dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
879 	bo->sgt = NULL;
880 }
881 
882 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
883 {
884 	dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
885 }
886 
887 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
888 {
889 	if (bo->base.import_attach)
890 		qaic_unprepare_import_bo(bo);
891 	else
892 		qaic_unprepare_export_bo(qdev, bo);
893 
894 	bo->dir = 0;
895 	bo->dbc = NULL;
896 	bo->nr_slice = 0;
897 }
898 
899 static void qaic_free_slices_bo(struct qaic_bo *bo)
900 {
901 	struct bo_slice *slice, *temp;
902 
903 	list_for_each_entry_safe(slice, temp, &bo->slices, slice)
904 		kref_put(&slice->ref_count, free_slice);
905 	if (WARN_ON_ONCE(bo->total_slice_nents != 0))
906 		bo->total_slice_nents = 0;
907 	bo->nr_slice = 0;
908 }
909 
910 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
911 				  struct qaic_attach_slice_hdr *hdr,
912 				  struct qaic_attach_slice_entry *slice_ent)
913 {
914 	int ret, i;
915 
916 	for (i = 0; i < hdr->count; i++) {
917 		ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
918 		if (ret) {
919 			qaic_free_slices_bo(bo);
920 			return ret;
921 		}
922 	}
923 
924 	if (bo->total_slice_nents > bo->dbc->nelem) {
925 		qaic_free_slices_bo(bo);
926 		return -ENOSPC;
927 	}
928 
929 	return 0;
930 }
931 
932 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
933 {
934 	struct qaic_attach_slice_entry *slice_ent;
935 	struct qaic_attach_slice *args = data;
936 	int rcu_id, usr_rcu_id, qdev_rcu_id;
937 	struct dma_bridge_chan	*dbc;
938 	struct drm_gem_object *obj;
939 	struct qaic_device *qdev;
940 	unsigned long arg_size;
941 	struct qaic_user *usr;
942 	u8 __user *user_data;
943 	struct qaic_bo *bo;
944 	int ret;
945 
946 	if (args->hdr.count == 0)
947 		return -EINVAL;
948 
949 	arg_size = args->hdr.count * sizeof(*slice_ent);
950 	if (arg_size / args->hdr.count != sizeof(*slice_ent))
951 		return -EINVAL;
952 
953 	if (args->hdr.size == 0)
954 		return -EINVAL;
955 
956 	if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
957 		return -EINVAL;
958 
959 	if (args->data == 0)
960 		return -EINVAL;
961 
962 	usr = file_priv->driver_priv;
963 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
964 	if (!usr->qddev) {
965 		ret = -ENODEV;
966 		goto unlock_usr_srcu;
967 	}
968 
969 	qdev = usr->qddev->qdev;
970 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
971 	if (qdev->dev_state != QAIC_ONLINE) {
972 		ret = -ENODEV;
973 		goto unlock_dev_srcu;
974 	}
975 
976 	if (args->hdr.dbc_id >= qdev->num_dbc) {
977 		ret = -EINVAL;
978 		goto unlock_dev_srcu;
979 	}
980 
981 	user_data = u64_to_user_ptr(args->data);
982 
983 	slice_ent = kzalloc(arg_size, GFP_KERNEL);
984 	if (!slice_ent) {
985 		ret = -EINVAL;
986 		goto unlock_dev_srcu;
987 	}
988 
989 	ret = copy_from_user(slice_ent, user_data, arg_size);
990 	if (ret) {
991 		ret = -EFAULT;
992 		goto free_slice_ent;
993 	}
994 
995 	ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
996 	if (ret)
997 		goto free_slice_ent;
998 
999 	obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
1000 	if (!obj) {
1001 		ret = -ENOENT;
1002 		goto free_slice_ent;
1003 	}
1004 
1005 	bo = to_qaic_bo(obj);
1006 	ret = mutex_lock_interruptible(&bo->lock);
1007 	if (ret)
1008 		goto put_bo;
1009 
1010 	if (bo->sliced) {
1011 		ret = -EINVAL;
1012 		goto unlock_bo;
1013 	}
1014 
1015 	dbc = &qdev->dbc[args->hdr.dbc_id];
1016 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1017 	if (dbc->usr != usr) {
1018 		ret = -EINVAL;
1019 		goto unlock_ch_srcu;
1020 	}
1021 
1022 	ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1023 	if (ret)
1024 		goto unlock_ch_srcu;
1025 
1026 	ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1027 	if (ret)
1028 		goto unprepare_bo;
1029 
1030 	if (args->hdr.dir == DMA_TO_DEVICE)
1031 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1032 
1033 	bo->sliced = true;
1034 	list_add_tail(&bo->bo_list, &bo->dbc->bo_lists);
1035 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1036 	mutex_unlock(&bo->lock);
1037 	kfree(slice_ent);
1038 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1039 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1040 
1041 	return 0;
1042 
1043 unprepare_bo:
1044 	qaic_unprepare_bo(qdev, bo);
1045 unlock_ch_srcu:
1046 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1047 unlock_bo:
1048 	mutex_unlock(&bo->lock);
1049 put_bo:
1050 	drm_gem_object_put(obj);
1051 free_slice_ent:
1052 	kfree(slice_ent);
1053 unlock_dev_srcu:
1054 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1055 unlock_usr_srcu:
1056 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1057 	return ret;
1058 }
1059 
1060 static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size)
1061 {
1062 	u32 avail = head - tail - 1;
1063 
1064 	if (head <= tail)
1065 		avail += q_size;
1066 
1067 	return avail;
1068 }
1069 
1070 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1071 				 u32 head, u32 *ptail)
1072 {
1073 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1074 	struct dbc_req *reqs = slice->reqs;
1075 	u32 tail = *ptail;
1076 	u32 avail;
1077 
1078 	avail = fifo_space_avail(head, tail, dbc->nelem);
1079 	if (avail < slice->nents)
1080 		return -EAGAIN;
1081 
1082 	if (tail + slice->nents > dbc->nelem) {
1083 		avail = dbc->nelem - tail;
1084 		avail = min_t(u32, avail, slice->nents);
1085 		memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1086 		reqs += avail;
1087 		avail = slice->nents - avail;
1088 		if (avail)
1089 			memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1090 	} else {
1091 		memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents);
1092 	}
1093 
1094 	*ptail = (tail + slice->nents) % dbc->nelem;
1095 
1096 	return 0;
1097 }
1098 
1099 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1100 					 u64 resize, struct dma_bridge_chan *dbc, u32 head,
1101 					 u32 *ptail)
1102 {
1103 	struct dbc_req *reqs = slice->reqs;
1104 	struct dbc_req *last_req;
1105 	u32 tail = *ptail;
1106 	u64 last_bytes;
1107 	u32 first_n;
1108 	u32 avail;
1109 
1110 	avail = fifo_space_avail(head, tail, dbc->nelem);
1111 
1112 	/*
1113 	 * After this for loop is complete, first_n represents the index
1114 	 * of the last DMA request of this slice that needs to be
1115 	 * transferred after resizing and last_bytes represents DMA size
1116 	 * of that request.
1117 	 */
1118 	last_bytes = resize;
1119 	for (first_n = 0; first_n < slice->nents; first_n++)
1120 		if (last_bytes > le32_to_cpu(reqs[first_n].len))
1121 			last_bytes -= le32_to_cpu(reqs[first_n].len);
1122 		else
1123 			break;
1124 
1125 	if (avail < (first_n + 1))
1126 		return -EAGAIN;
1127 
1128 	if (first_n) {
1129 		if (tail + first_n > dbc->nelem) {
1130 			avail = dbc->nelem - tail;
1131 			avail = min_t(u32, avail, first_n);
1132 			memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1133 			last_req = reqs + avail;
1134 			avail = first_n - avail;
1135 			if (avail)
1136 				memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1137 		} else {
1138 			memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n);
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Copy over the last entry. Here we need to adjust len to the left over
1144 	 * size, and set src and dst to the entry it is copied to.
1145 	 */
1146 	last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem);
1147 	memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1148 
1149 	/*
1150 	 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1151 	 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1152 	 * range. So, by down sizing we are not corrupting the value.
1153 	 */
1154 	last_req->len = cpu_to_le32((u32)last_bytes);
1155 	last_req->src_addr = reqs[first_n].src_addr;
1156 	last_req->dest_addr = reqs[first_n].dest_addr;
1157 	if (!last_bytes)
1158 		/* Disable DMA transfer */
1159 		last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd;
1160 
1161 	*ptail = (tail + first_n + 1) % dbc->nelem;
1162 
1163 	return 0;
1164 }
1165 
1166 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1167 				  struct qaic_execute_entry *exec, unsigned int count,
1168 				  bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1169 				  u32 *tail)
1170 {
1171 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1172 	struct drm_gem_object *obj;
1173 	struct bo_slice *slice;
1174 	unsigned long flags;
1175 	struct qaic_bo *bo;
1176 	bool queued;
1177 	int i, j;
1178 	int ret;
1179 
1180 	for (i = 0; i < count; i++) {
1181 		/*
1182 		 * ref count will be decremented when the transfer of this
1183 		 * buffer is complete. It is inside dbc_irq_threaded_fn().
1184 		 */
1185 		obj = drm_gem_object_lookup(file_priv,
1186 					    is_partial ? pexec[i].handle : exec[i].handle);
1187 		if (!obj) {
1188 			ret = -ENOENT;
1189 			goto failed_to_send_bo;
1190 		}
1191 
1192 		bo = to_qaic_bo(obj);
1193 		ret = mutex_lock_interruptible(&bo->lock);
1194 		if (ret)
1195 			goto failed_to_send_bo;
1196 
1197 		if (!bo->sliced) {
1198 			ret = -EINVAL;
1199 			goto unlock_bo;
1200 		}
1201 
1202 		if (is_partial && pexec[i].resize > bo->base.size) {
1203 			ret = -EINVAL;
1204 			goto unlock_bo;
1205 		}
1206 
1207 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1208 		queued = bo->queued;
1209 		bo->queued = true;
1210 		if (queued) {
1211 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1212 			ret = -EINVAL;
1213 			goto unlock_bo;
1214 		}
1215 
1216 		bo->req_id = dbc->next_req_id++;
1217 
1218 		list_for_each_entry(slice, &bo->slices, slice) {
1219 			for (j = 0; j < slice->nents; j++)
1220 				slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1221 
1222 			if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset))
1223 				/* Configure the slice for no DMA transfer */
1224 				ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail);
1225 			else if (is_partial && pexec[i].resize < slice->offset + slice->size)
1226 				/* Configure the slice to be partially DMA transferred */
1227 				ret = copy_partial_exec_reqs(qdev, slice,
1228 							     pexec[i].resize - slice->offset, dbc,
1229 							     head, tail);
1230 			else
1231 				ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1232 			if (ret) {
1233 				bo->queued = false;
1234 				spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1235 				goto unlock_bo;
1236 			}
1237 		}
1238 		reinit_completion(&bo->xfer_done);
1239 		list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1240 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1241 		dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1242 		mutex_unlock(&bo->lock);
1243 	}
1244 
1245 	return 0;
1246 
1247 unlock_bo:
1248 	mutex_unlock(&bo->lock);
1249 failed_to_send_bo:
1250 	if (likely(obj))
1251 		drm_gem_object_put(obj);
1252 	for (j = 0; j < i; j++) {
1253 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1254 		bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1255 		obj = &bo->base;
1256 		bo->queued = false;
1257 		list_del(&bo->xfer_list);
1258 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1259 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1260 		drm_gem_object_put(obj);
1261 	}
1262 	return ret;
1263 }
1264 
1265 static void update_profiling_data(struct drm_file *file_priv,
1266 				  struct qaic_execute_entry *exec, unsigned int count,
1267 				  bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1268 {
1269 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1270 	struct drm_gem_object *obj;
1271 	struct qaic_bo *bo;
1272 	int i;
1273 
1274 	for (i = 0; i < count; i++) {
1275 		/*
1276 		 * Since we already committed the BO to hardware, the only way
1277 		 * this should fail is a pending signal. We can't cancel the
1278 		 * submit to hardware, so we have to just skip the profiling
1279 		 * data. In case the signal is not fatal to the process, we
1280 		 * return success so that the user doesn't try to resubmit.
1281 		 */
1282 		obj = drm_gem_object_lookup(file_priv,
1283 					    is_partial ? pexec[i].handle : exec[i].handle);
1284 		if (!obj)
1285 			break;
1286 		bo = to_qaic_bo(obj);
1287 		bo->perf_stats.req_received_ts = received_ts;
1288 		bo->perf_stats.req_submit_ts = submit_ts;
1289 		bo->perf_stats.queue_level_before = queue_level;
1290 		queue_level += bo->total_slice_nents;
1291 		drm_gem_object_put(obj);
1292 	}
1293 }
1294 
1295 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1296 				   bool is_partial)
1297 {
1298 	struct qaic_execute *args = data;
1299 	struct qaic_execute_entry *exec;
1300 	struct dma_bridge_chan *dbc;
1301 	int usr_rcu_id, qdev_rcu_id;
1302 	struct qaic_device *qdev;
1303 	struct qaic_user *usr;
1304 	u8 __user *user_data;
1305 	unsigned long n;
1306 	u64 received_ts;
1307 	u32 queue_level;
1308 	u64 submit_ts;
1309 	int rcu_id;
1310 	u32 head;
1311 	u32 tail;
1312 	u64 size;
1313 	int ret;
1314 
1315 	received_ts = ktime_get_ns();
1316 
1317 	size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1318 	n = (unsigned long)size * args->hdr.count;
1319 	if (args->hdr.count == 0 || n / args->hdr.count != size)
1320 		return -EINVAL;
1321 
1322 	user_data = u64_to_user_ptr(args->data);
1323 
1324 	exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1325 	if (!exec)
1326 		return -ENOMEM;
1327 
1328 	if (copy_from_user(exec, user_data, n)) {
1329 		ret = -EFAULT;
1330 		goto free_exec;
1331 	}
1332 
1333 	usr = file_priv->driver_priv;
1334 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1335 	if (!usr->qddev) {
1336 		ret = -ENODEV;
1337 		goto unlock_usr_srcu;
1338 	}
1339 
1340 	qdev = usr->qddev->qdev;
1341 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1342 	if (qdev->dev_state != QAIC_ONLINE) {
1343 		ret = -ENODEV;
1344 		goto unlock_dev_srcu;
1345 	}
1346 
1347 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1348 		ret = -EINVAL;
1349 		goto unlock_dev_srcu;
1350 	}
1351 
1352 	dbc = &qdev->dbc[args->hdr.dbc_id];
1353 
1354 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1355 	if (!dbc->usr || dbc->usr->handle != usr->handle) {
1356 		ret = -EPERM;
1357 		goto release_ch_rcu;
1358 	}
1359 
1360 	head = readl(dbc->dbc_base + REQHP_OFF);
1361 	tail = readl(dbc->dbc_base + REQTP_OFF);
1362 
1363 	if (head == U32_MAX || tail == U32_MAX) {
1364 		/* PCI link error */
1365 		ret = -ENODEV;
1366 		goto release_ch_rcu;
1367 	}
1368 
1369 	queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1370 
1371 	ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1372 				     head, &tail);
1373 	if (ret)
1374 		goto release_ch_rcu;
1375 
1376 	/* Finalize commit to hardware */
1377 	submit_ts = ktime_get_ns();
1378 	writel(tail, dbc->dbc_base + REQTP_OFF);
1379 
1380 	update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1381 			      submit_ts, queue_level);
1382 
1383 	if (datapath_polling)
1384 		schedule_work(&dbc->poll_work);
1385 
1386 release_ch_rcu:
1387 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1388 unlock_dev_srcu:
1389 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1390 unlock_usr_srcu:
1391 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1392 free_exec:
1393 	kfree(exec);
1394 	return ret;
1395 }
1396 
1397 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1398 {
1399 	return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1400 }
1401 
1402 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1403 {
1404 	return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1405 }
1406 
1407 /*
1408  * Our interrupt handling is a bit more complicated than a simple ideal, but
1409  * sadly necessary.
1410  *
1411  * Each dbc has a completion queue. Entries in the queue correspond to DMA
1412  * requests which the device has processed. The hardware already has a built
1413  * in irq mitigation. When the device puts an entry into the queue, it will
1414  * only trigger an interrupt if the queue was empty. Therefore, when adding
1415  * the Nth event to a non-empty queue, the hardware doesn't trigger an
1416  * interrupt. This means the host doesn't get additional interrupts signaling
1417  * the same thing - the queue has something to process.
1418  * This behavior can be overridden in the DMA request.
1419  * This means that when the host receives an interrupt, it is required to
1420  * drain the queue.
1421  *
1422  * This behavior is what NAPI attempts to accomplish, although we can't use
1423  * NAPI as we don't have a netdev. We use threaded irqs instead.
1424  *
1425  * However, there is a situation where the host drains the queue fast enough
1426  * that every event causes an interrupt. Typically this is not a problem as
1427  * the rate of events would be low. However, that is not the case with
1428  * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1429  * lprnet, the host receives roughly 80k interrupts per second from the device
1430  * (per /proc/interrupts). While NAPI documentation indicates the host should
1431  * just chug along, sadly that behavior causes instability in some hosts.
1432  *
1433  * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1434  * key difference is that we will delay after draining the queue for a small
1435  * time to allow additional events to come in via polling. Using the above
1436  * lprnet workload, this reduces the number of interrupts processed from
1437  * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1438  * instability.
1439  */
1440 irqreturn_t dbc_irq_handler(int irq, void *data)
1441 {
1442 	struct dma_bridge_chan *dbc = data;
1443 	int rcu_id;
1444 	u32 head;
1445 	u32 tail;
1446 
1447 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1448 
1449 	if (datapath_polling) {
1450 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1451 		/*
1452 		 * Normally datapath_polling will not have irqs enabled, but
1453 		 * when running with only one MSI the interrupt is shared with
1454 		 * MHI so it cannot be disabled. Return ASAP instead.
1455 		 */
1456 		return IRQ_HANDLED;
1457 	}
1458 
1459 	if (!dbc->usr) {
1460 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1461 		return IRQ_HANDLED;
1462 	}
1463 
1464 	head = readl(dbc->dbc_base + RSPHP_OFF);
1465 	if (head == U32_MAX) { /* PCI link error */
1466 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1467 		return IRQ_NONE;
1468 	}
1469 
1470 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1471 	if (tail == U32_MAX) { /* PCI link error */
1472 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1473 		return IRQ_NONE;
1474 	}
1475 
1476 	if (head == tail) { /* queue empty */
1477 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1478 		return IRQ_NONE;
1479 	}
1480 
1481 	if (!dbc->qdev->single_msi)
1482 		disable_irq_nosync(irq);
1483 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1484 	return IRQ_WAKE_THREAD;
1485 }
1486 
1487 void irq_polling_work(struct work_struct *work)
1488 {
1489 	struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan,  poll_work);
1490 	unsigned long flags;
1491 	int rcu_id;
1492 	u32 head;
1493 	u32 tail;
1494 
1495 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1496 
1497 	while (1) {
1498 		if (dbc->qdev->dev_state != QAIC_ONLINE) {
1499 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1500 			return;
1501 		}
1502 		if (!dbc->usr) {
1503 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1504 			return;
1505 		}
1506 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1507 		if (list_empty(&dbc->xfer_list)) {
1508 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1509 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1510 			return;
1511 		}
1512 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1513 
1514 		head = readl(dbc->dbc_base + RSPHP_OFF);
1515 		if (head == U32_MAX) { /* PCI link error */
1516 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1517 			return;
1518 		}
1519 
1520 		tail = readl(dbc->dbc_base + RSPTP_OFF);
1521 		if (tail == U32_MAX) { /* PCI link error */
1522 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1523 			return;
1524 		}
1525 
1526 		if (head != tail) {
1527 			irq_wake_thread(dbc->irq, dbc);
1528 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1529 			return;
1530 		}
1531 
1532 		cond_resched();
1533 		usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1534 	}
1535 }
1536 
1537 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1538 {
1539 	struct dma_bridge_chan *dbc = data;
1540 	int event_count = NUM_EVENTS;
1541 	int delay_count = NUM_DELAYS;
1542 	struct qaic_device *qdev;
1543 	struct qaic_bo *bo, *i;
1544 	struct dbc_rsp *rsp;
1545 	unsigned long flags;
1546 	int rcu_id;
1547 	u16 status;
1548 	u16 req_id;
1549 	u32 head;
1550 	u32 tail;
1551 
1552 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1553 	qdev = dbc->qdev;
1554 
1555 	head = readl(dbc->dbc_base + RSPHP_OFF);
1556 	if (head == U32_MAX) /* PCI link error */
1557 		goto error_out;
1558 
1559 read_fifo:
1560 
1561 	if (!event_count) {
1562 		event_count = NUM_EVENTS;
1563 		cond_resched();
1564 	}
1565 
1566 	/*
1567 	 * if this channel isn't assigned or gets unassigned during processing
1568 	 * we have nothing further to do
1569 	 */
1570 	if (!dbc->usr)
1571 		goto error_out;
1572 
1573 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1574 	if (tail == U32_MAX) /* PCI link error */
1575 		goto error_out;
1576 
1577 	if (head == tail) { /* queue empty */
1578 		if (delay_count) {
1579 			--delay_count;
1580 			usleep_range(100, 200);
1581 			goto read_fifo; /* check for a new event */
1582 		}
1583 		goto normal_out;
1584 	}
1585 
1586 	delay_count = NUM_DELAYS;
1587 	while (head != tail) {
1588 		if (!event_count)
1589 			break;
1590 		--event_count;
1591 		rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1592 		req_id = le16_to_cpu(rsp->req_id);
1593 		status = le16_to_cpu(rsp->status);
1594 		if (status)
1595 			pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1596 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1597 		/*
1598 		 * A BO can receive multiple interrupts, since a BO can be
1599 		 * divided into multiple slices and a buffer receives as many
1600 		 * interrupts as slices. So until it receives interrupts for
1601 		 * all the slices we cannot mark that buffer complete.
1602 		 */
1603 		list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1604 			if (bo->req_id == req_id)
1605 				bo->nr_slice_xfer_done++;
1606 			else
1607 				continue;
1608 
1609 			if (bo->nr_slice_xfer_done < bo->nr_slice)
1610 				break;
1611 
1612 			/*
1613 			 * At this point we have received all the interrupts for
1614 			 * BO, which means BO execution is complete.
1615 			 */
1616 			dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1617 			bo->nr_slice_xfer_done = 0;
1618 			bo->queued = false;
1619 			list_del(&bo->xfer_list);
1620 			bo->perf_stats.req_processed_ts = ktime_get_ns();
1621 			complete_all(&bo->xfer_done);
1622 			drm_gem_object_put(&bo->base);
1623 			break;
1624 		}
1625 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1626 		head = (head + 1) % dbc->nelem;
1627 	}
1628 
1629 	/*
1630 	 * Update the head pointer of response queue and let the device know
1631 	 * that we have consumed elements from the queue.
1632 	 */
1633 	writel(head, dbc->dbc_base + RSPHP_OFF);
1634 
1635 	/* elements might have been put in the queue while we were processing */
1636 	goto read_fifo;
1637 
1638 normal_out:
1639 	if (!qdev->single_msi && likely(!datapath_polling))
1640 		enable_irq(irq);
1641 	else if (unlikely(datapath_polling))
1642 		schedule_work(&dbc->poll_work);
1643 	/* checking the fifo and enabling irqs is a race, missed event check */
1644 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1645 	if (tail != U32_MAX && head != tail) {
1646 		if (!qdev->single_msi && likely(!datapath_polling))
1647 			disable_irq_nosync(irq);
1648 		goto read_fifo;
1649 	}
1650 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1651 	return IRQ_HANDLED;
1652 
1653 error_out:
1654 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1655 	if (!qdev->single_msi && likely(!datapath_polling))
1656 		enable_irq(irq);
1657 	else if (unlikely(datapath_polling))
1658 		schedule_work(&dbc->poll_work);
1659 
1660 	return IRQ_HANDLED;
1661 }
1662 
1663 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1664 {
1665 	struct qaic_wait *args = data;
1666 	int usr_rcu_id, qdev_rcu_id;
1667 	struct dma_bridge_chan *dbc;
1668 	struct drm_gem_object *obj;
1669 	struct qaic_device *qdev;
1670 	unsigned long timeout;
1671 	struct qaic_user *usr;
1672 	struct qaic_bo *bo;
1673 	int rcu_id;
1674 	int ret;
1675 
1676 	if (args->pad != 0)
1677 		return -EINVAL;
1678 
1679 	usr = file_priv->driver_priv;
1680 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1681 	if (!usr->qddev) {
1682 		ret = -ENODEV;
1683 		goto unlock_usr_srcu;
1684 	}
1685 
1686 	qdev = usr->qddev->qdev;
1687 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1688 	if (qdev->dev_state != QAIC_ONLINE) {
1689 		ret = -ENODEV;
1690 		goto unlock_dev_srcu;
1691 	}
1692 
1693 	if (args->dbc_id >= qdev->num_dbc) {
1694 		ret = -EINVAL;
1695 		goto unlock_dev_srcu;
1696 	}
1697 
1698 	dbc = &qdev->dbc[args->dbc_id];
1699 
1700 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1701 	if (dbc->usr != usr) {
1702 		ret = -EPERM;
1703 		goto unlock_ch_srcu;
1704 	}
1705 
1706 	obj = drm_gem_object_lookup(file_priv, args->handle);
1707 	if (!obj) {
1708 		ret = -ENOENT;
1709 		goto unlock_ch_srcu;
1710 	}
1711 
1712 	bo = to_qaic_bo(obj);
1713 	timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1714 	timeout = msecs_to_jiffies(timeout);
1715 	ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1716 	if (!ret) {
1717 		ret = -ETIMEDOUT;
1718 		goto put_obj;
1719 	}
1720 	if (ret > 0)
1721 		ret = 0;
1722 
1723 	if (!dbc->usr)
1724 		ret = -EPERM;
1725 
1726 put_obj:
1727 	drm_gem_object_put(obj);
1728 unlock_ch_srcu:
1729 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1730 unlock_dev_srcu:
1731 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1732 unlock_usr_srcu:
1733 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1734 	return ret;
1735 }
1736 
1737 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1738 {
1739 	struct qaic_perf_stats_entry *ent = NULL;
1740 	struct qaic_perf_stats *args = data;
1741 	int usr_rcu_id, qdev_rcu_id;
1742 	struct drm_gem_object *obj;
1743 	struct qaic_device *qdev;
1744 	struct qaic_user *usr;
1745 	struct qaic_bo *bo;
1746 	int ret, i;
1747 
1748 	usr = file_priv->driver_priv;
1749 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1750 	if (!usr->qddev) {
1751 		ret = -ENODEV;
1752 		goto unlock_usr_srcu;
1753 	}
1754 
1755 	qdev = usr->qddev->qdev;
1756 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1757 	if (qdev->dev_state != QAIC_ONLINE) {
1758 		ret = -ENODEV;
1759 		goto unlock_dev_srcu;
1760 	}
1761 
1762 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1763 		ret = -EINVAL;
1764 		goto unlock_dev_srcu;
1765 	}
1766 
1767 	ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1768 	if (!ent) {
1769 		ret = -EINVAL;
1770 		goto unlock_dev_srcu;
1771 	}
1772 
1773 	ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1774 	if (ret) {
1775 		ret = -EFAULT;
1776 		goto free_ent;
1777 	}
1778 
1779 	for (i = 0; i < args->hdr.count; i++) {
1780 		obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1781 		if (!obj) {
1782 			ret = -ENOENT;
1783 			goto free_ent;
1784 		}
1785 		bo = to_qaic_bo(obj);
1786 		/*
1787 		 * perf stats ioctl is called before wait ioctl is complete then
1788 		 * the latency information is invalid.
1789 		 */
1790 		if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1791 			ent[i].device_latency_us = 0;
1792 		} else {
1793 			ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1794 							    bo->perf_stats.req_submit_ts), 1000);
1795 		}
1796 		ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1797 						    bo->perf_stats.req_received_ts), 1000);
1798 		ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1799 		ent[i].num_queue_element = bo->total_slice_nents;
1800 		drm_gem_object_put(obj);
1801 	}
1802 
1803 	if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1804 		ret = -EFAULT;
1805 
1806 free_ent:
1807 	kfree(ent);
1808 unlock_dev_srcu:
1809 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1810 unlock_usr_srcu:
1811 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1812 	return ret;
1813 }
1814 
1815 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo)
1816 {
1817 	qaic_free_slices_bo(bo);
1818 	qaic_unprepare_bo(qdev, bo);
1819 	qaic_init_bo(bo, true);
1820 	list_del(&bo->bo_list);
1821 	drm_gem_object_put(&bo->base);
1822 }
1823 
1824 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1825 {
1826 	struct qaic_detach_slice *args = data;
1827 	int rcu_id, usr_rcu_id, qdev_rcu_id;
1828 	struct dma_bridge_chan *dbc;
1829 	struct drm_gem_object *obj;
1830 	struct qaic_device *qdev;
1831 	struct qaic_user *usr;
1832 	unsigned long flags;
1833 	struct qaic_bo *bo;
1834 	int ret;
1835 
1836 	if (args->pad != 0)
1837 		return -EINVAL;
1838 
1839 	usr = file_priv->driver_priv;
1840 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1841 	if (!usr->qddev) {
1842 		ret = -ENODEV;
1843 		goto unlock_usr_srcu;
1844 	}
1845 
1846 	qdev = usr->qddev->qdev;
1847 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1848 	if (qdev->dev_state != QAIC_ONLINE) {
1849 		ret = -ENODEV;
1850 		goto unlock_dev_srcu;
1851 	}
1852 
1853 	obj = drm_gem_object_lookup(file_priv, args->handle);
1854 	if (!obj) {
1855 		ret = -ENOENT;
1856 		goto unlock_dev_srcu;
1857 	}
1858 
1859 	bo = to_qaic_bo(obj);
1860 	ret = mutex_lock_interruptible(&bo->lock);
1861 	if (ret)
1862 		goto put_bo;
1863 
1864 	if (!bo->sliced) {
1865 		ret = -EINVAL;
1866 		goto unlock_bo;
1867 	}
1868 
1869 	dbc = bo->dbc;
1870 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1871 	if (dbc->usr != usr) {
1872 		ret = -EINVAL;
1873 		goto unlock_ch_srcu;
1874 	}
1875 
1876 	/* Check if BO is committed to H/W for DMA */
1877 	spin_lock_irqsave(&dbc->xfer_lock, flags);
1878 	if (bo->queued) {
1879 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1880 		ret = -EBUSY;
1881 		goto unlock_ch_srcu;
1882 	}
1883 	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1884 
1885 	detach_slice_bo(qdev, bo);
1886 
1887 unlock_ch_srcu:
1888 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1889 unlock_bo:
1890 	mutex_unlock(&bo->lock);
1891 put_bo:
1892 	drm_gem_object_put(obj);
1893 unlock_dev_srcu:
1894 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1895 unlock_usr_srcu:
1896 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1897 	return ret;
1898 }
1899 
1900 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1901 {
1902 	unsigned long flags;
1903 	struct qaic_bo *bo;
1904 
1905 	spin_lock_irqsave(&dbc->xfer_lock, flags);
1906 	while (!list_empty(&dbc->xfer_list)) {
1907 		bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1908 		bo->queued = false;
1909 		list_del(&bo->xfer_list);
1910 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1911 		bo->nr_slice_xfer_done = 0;
1912 		bo->req_id = 0;
1913 		bo->perf_stats.req_received_ts = 0;
1914 		bo->perf_stats.req_submit_ts = 0;
1915 		bo->perf_stats.req_processed_ts = 0;
1916 		bo->perf_stats.queue_level_before = 0;
1917 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1918 		complete_all(&bo->xfer_done);
1919 		drm_gem_object_put(&bo->base);
1920 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1921 	}
1922 	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1923 }
1924 
1925 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1926 {
1927 	if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1928 		return -EPERM;
1929 
1930 	qdev->dbc[dbc_id].usr = NULL;
1931 	synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1932 	return 0;
1933 }
1934 
1935 /**
1936  * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1937  * user. Add user context back to DBC to enable it. This function trusts the
1938  * DBC ID passed and expects the DBC to be disabled.
1939  * @qdev: Qranium device handle
1940  * @dbc_id: ID of the DBC
1941  * @usr: User context
1942  */
1943 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1944 {
1945 	qdev->dbc[dbc_id].usr = usr;
1946 }
1947 
1948 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1949 {
1950 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1951 
1952 	dbc->usr = NULL;
1953 	empty_xfer_list(qdev, dbc);
1954 	synchronize_srcu(&dbc->ch_lock);
1955 	/*
1956 	 * Threads holding channel lock, may add more elements in the xfer_list.
1957 	 * Flush out these elements from xfer_list.
1958 	 */
1959 	empty_xfer_list(qdev, dbc);
1960 }
1961 
1962 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1963 {
1964 	struct qaic_bo *bo, *bo_temp;
1965 	struct dma_bridge_chan *dbc;
1966 
1967 	dbc = &qdev->dbc[dbc_id];
1968 	if (!dbc->in_use)
1969 		return;
1970 
1971 	wakeup_dbc(qdev, dbc_id);
1972 
1973 	dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1974 	dbc->total_size = 0;
1975 	dbc->req_q_base = NULL;
1976 	dbc->dma_addr = 0;
1977 	dbc->nelem = 0;
1978 	dbc->usr = NULL;
1979 
1980 	list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1981 		drm_gem_object_get(&bo->base);
1982 		mutex_lock(&bo->lock);
1983 		detach_slice_bo(qdev, bo);
1984 		mutex_unlock(&bo->lock);
1985 		drm_gem_object_put(&bo->base);
1986 	}
1987 
1988 	dbc->in_use = false;
1989 	wake_up(&dbc->dbc_release);
1990 }
1991