1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <linux/bitfield.h> 7 #include <linux/bits.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-buf.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/list.h> 15 #include <linux/math64.h> 16 #include <linux/mm.h> 17 #include <linux/moduleparam.h> 18 #include <linux/scatterlist.h> 19 #include <linux/spinlock.h> 20 #include <linux/srcu.h> 21 #include <linux/types.h> 22 #include <linux/uaccess.h> 23 #include <linux/wait.h> 24 #include <drm/drm_file.h> 25 #include <drm/drm_gem.h> 26 #include <drm/drm_prime.h> 27 #include <drm/drm_print.h> 28 #include <uapi/drm/qaic_accel.h> 29 30 #include "qaic.h" 31 32 #define SEM_VAL_MASK GENMASK_ULL(11, 0) 33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0) 34 #define BULK_XFER BIT(3) 35 #define GEN_COMPLETION BIT(4) 36 #define INBOUND_XFER 1 37 #define OUTBOUND_XFER 2 38 #define REQHP_OFF 0x0 /* we read this */ 39 #define REQTP_OFF 0x4 /* we write this */ 40 #define RSPHP_OFF 0x8 /* we write this */ 41 #define RSPTP_OFF 0xc /* we read this */ 42 43 #define ENCODE_SEM(val, index, sync, cmd, flags) \ 44 ({ \ 45 FIELD_PREP(GENMASK(11, 0), (val)) | \ 46 FIELD_PREP(GENMASK(20, 16), (index)) | \ 47 FIELD_PREP(BIT(22), (sync)) | \ 48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \ 49 FIELD_PREP(GENMASK(30, 29), (flags)) | \ 50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ 51 }) 52 #define NUM_EVENTS 128 53 #define NUM_DELAYS 10 54 55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ 56 module_param(wait_exec_default_timeout_ms, uint, 0600); 57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); 58 59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ 60 module_param(datapath_poll_interval_us, uint, 0600); 61 MODULE_PARM_DESC(datapath_poll_interval_us, 62 "Amount of time to sleep between activity when datapath polling is enabled"); 63 64 struct dbc_req { 65 /* 66 * A request ID is assigned to each memory handle going in DMA queue. 67 * As a single memory handle can enqueue multiple elements in DMA queue 68 * all of them will have the same request ID. 69 */ 70 __le16 req_id; 71 /* Future use */ 72 __u8 seq_id; 73 /* 74 * Special encoded variable 75 * 7 0 - Do not force to generate MSI after DMA is completed 76 * 1 - Force to generate MSI after DMA is completed 77 * 6:5 Reserved 78 * 4 1 - Generate completion element in the response queue 79 * 0 - No Completion Code 80 * 3 0 - DMA request is a Link list transfer 81 * 1 - DMA request is a Bulk transfer 82 * 2 Reserved 83 * 1:0 00 - No DMA transfer involved 84 * 01 - DMA transfer is part of inbound transfer 85 * 10 - DMA transfer has outbound transfer 86 * 11 - NA 87 */ 88 __u8 cmd; 89 __le32 resv; 90 /* Source address for the transfer */ 91 __le64 src_addr; 92 /* Destination address for the transfer */ 93 __le64 dest_addr; 94 /* Length of transfer request */ 95 __le32 len; 96 __le32 resv2; 97 /* Doorbell address */ 98 __le64 db_addr; 99 /* 100 * Special encoded variable 101 * 7 1 - Doorbell(db) write 102 * 0 - No doorbell write 103 * 6:2 Reserved 104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary 105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary 106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary 107 * 11 - Reserved 108 */ 109 __u8 db_len; 110 __u8 resv3; 111 __le16 resv4; 112 /* 32 bit data written to doorbell address */ 113 __le32 db_data; 114 /* 115 * Special encoded variable 116 * All the fields of sem_cmdX are passed from user and all are ORed 117 * together to form sem_cmd. 118 * 0:11 Semaphore value 119 * 15:12 Reserved 120 * 20:16 Semaphore index 121 * 21 Reserved 122 * 22 Semaphore Sync 123 * 23 Reserved 124 * 26:24 Semaphore command 125 * 28:27 Reserved 126 * 29 Semaphore DMA out bound sync fence 127 * 30 Semaphore DMA in bound sync fence 128 * 31 Enable semaphore command 129 */ 130 __le32 sem_cmd0; 131 __le32 sem_cmd1; 132 __le32 sem_cmd2; 133 __le32 sem_cmd3; 134 } __packed; 135 136 struct dbc_rsp { 137 /* Request ID of the memory handle whose DMA transaction is completed */ 138 __le16 req_id; 139 /* Status of the DMA transaction. 0 : Success otherwise failure */ 140 __le16 status; 141 } __packed; 142 143 inline int get_dbc_req_elem_size(void) 144 { 145 return sizeof(struct dbc_req); 146 } 147 148 inline int get_dbc_rsp_elem_size(void) 149 { 150 return sizeof(struct dbc_rsp); 151 } 152 153 static void free_slice(struct kref *kref) 154 { 155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); 156 157 slice->bo->total_slice_nents -= slice->nents; 158 list_del(&slice->slice); 159 drm_gem_object_put(&slice->bo->base); 160 sg_free_table(slice->sgt); 161 kfree(slice->sgt); 162 kfree(slice->reqs); 163 kfree(slice); 164 } 165 166 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, 167 struct sg_table *sgt_in, u64 size, u64 offset) 168 { 169 int total_len, len, nents, offf = 0, offl = 0; 170 struct scatterlist *sg, *sgn, *sgf, *sgl; 171 struct sg_table *sgt; 172 int ret, j; 173 174 /* find out number of relevant nents needed for this mem */ 175 total_len = 0; 176 sgf = NULL; 177 sgl = NULL; 178 nents = 0; 179 180 size = size ? size : PAGE_SIZE; 181 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) { 182 len = sg_dma_len(sg); 183 184 if (!len) 185 continue; 186 if (offset >= total_len && offset < total_len + len) { 187 sgf = sg; 188 offf = offset - total_len; 189 } 190 if (sgf) 191 nents++; 192 if (offset + size >= total_len && 193 offset + size <= total_len + len) { 194 sgl = sg; 195 offl = offset + size - total_len; 196 break; 197 } 198 total_len += len; 199 } 200 201 if (!sgf || !sgl) { 202 ret = -EINVAL; 203 goto out; 204 } 205 206 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 207 if (!sgt) { 208 ret = -ENOMEM; 209 goto out; 210 } 211 212 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 213 if (ret) 214 goto free_sgt; 215 216 /* copy relevant sg node and fix page and length */ 217 sgn = sgf; 218 for_each_sgtable_sg(sgt, sg, j) { 219 memcpy(sg, sgn, sizeof(*sg)); 220 if (sgn == sgf) { 221 sg_dma_address(sg) += offf; 222 sg_dma_len(sg) -= offf; 223 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); 224 } else { 225 offf = 0; 226 } 227 if (sgn == sgl) { 228 sg_dma_len(sg) = offl - offf; 229 sg_set_page(sg, sg_page(sgn), offl - offf, offf); 230 sg_mark_end(sg); 231 break; 232 } 233 sgn = sg_next(sgn); 234 } 235 236 *sgt_out = sgt; 237 return ret; 238 239 free_sgt: 240 kfree(sgt); 241 out: 242 *sgt_out = NULL; 243 return ret; 244 } 245 246 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, 247 struct qaic_attach_slice_entry *req) 248 { 249 __le64 db_addr = cpu_to_le64(req->db_addr); 250 __le32 db_data = cpu_to_le32(req->db_data); 251 struct scatterlist *sg; 252 __u8 cmd = BULK_XFER; 253 int presync_sem; 254 u64 dev_addr; 255 __u8 db_len; 256 int i; 257 258 if (!slice->no_xfer) 259 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); 260 261 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) 262 return -EINVAL; 263 264 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; 265 if (presync_sem > 1) 266 return -EINVAL; 267 268 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | 269 req->sem2.presync << 2 | req->sem3.presync << 3; 270 271 switch (req->db_len) { 272 case 32: 273 db_len = BIT(7); 274 break; 275 case 16: 276 db_len = BIT(7) | 1; 277 break; 278 case 8: 279 db_len = BIT(7) | 2; 280 break; 281 case 0: 282 db_len = 0; /* doorbell is not active for this command */ 283 break; 284 default: 285 return -EINVAL; /* should never hit this */ 286 } 287 288 /* 289 * When we end up splitting up a single request (ie a buf slice) into 290 * multiple DMA requests, we have to manage the sync data carefully. 291 * There can only be one presync sem. That needs to be on every xfer 292 * so that the DMA engine doesn't transfer data before the receiver is 293 * ready. We only do the doorbell and postsync sems after the xfer. 294 * To guarantee previous xfers for the request are complete, we use a 295 * fence. 296 */ 297 dev_addr = req->dev_addr; 298 for_each_sgtable_sg(slice->sgt, sg, i) { 299 slice->reqs[i].cmd = cmd; 300 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 301 sg_dma_address(sg) : dev_addr); 302 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 303 dev_addr : sg_dma_address(sg)); 304 /* 305 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA 306 * segment size is set to UINT_MAX by qaic and hence return 307 * values of sg_dma_len(sg) can never exceed u32 range. So, 308 * by down sizing we are not corrupting the value. 309 */ 310 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); 311 switch (presync_sem) { 312 case BIT(0): 313 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, 314 req->sem0.index, 315 req->sem0.presync, 316 req->sem0.cmd, 317 req->sem0.flags)); 318 break; 319 case BIT(1): 320 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, 321 req->sem1.index, 322 req->sem1.presync, 323 req->sem1.cmd, 324 req->sem1.flags)); 325 break; 326 case BIT(2): 327 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, 328 req->sem2.index, 329 req->sem2.presync, 330 req->sem2.cmd, 331 req->sem2.flags)); 332 break; 333 case BIT(3): 334 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, 335 req->sem3.index, 336 req->sem3.presync, 337 req->sem3.cmd, 338 req->sem3.flags)); 339 break; 340 } 341 dev_addr += sg_dma_len(sg); 342 } 343 /* add post transfer stuff to last segment */ 344 i--; 345 slice->reqs[i].cmd |= GEN_COMPLETION; 346 slice->reqs[i].db_addr = db_addr; 347 slice->reqs[i].db_len = db_len; 348 slice->reqs[i].db_data = db_data; 349 /* 350 * Add a fence if we have more than one request going to the hardware 351 * representing the entirety of the user request, and the user request 352 * has no presync condition. 353 * Fences are expensive, so we try to avoid them. We rely on the 354 * hardware behavior to avoid needing one when there is a presync 355 * condition. When a presync exists, all requests for that same 356 * presync will be queued into a fifo. Thus, since we queue the 357 * post xfer activity only on the last request we queue, the hardware 358 * will ensure that the last queued request is processed last, thus 359 * making sure the post xfer activity happens at the right time without 360 * a fence. 361 */ 362 if (i && !presync_sem) 363 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? 364 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); 365 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, 366 req->sem0.presync, req->sem0.cmd, 367 req->sem0.flags)); 368 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, 369 req->sem1.presync, req->sem1.cmd, 370 req->sem1.flags)); 371 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, 372 req->sem2.presync, req->sem2.cmd, 373 req->sem2.flags)); 374 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, 375 req->sem3.presync, req->sem3.cmd, 376 req->sem3.flags)); 377 378 return 0; 379 } 380 381 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, 382 struct qaic_attach_slice_entry *slice_ent) 383 { 384 struct sg_table *sgt = NULL; 385 struct bo_slice *slice; 386 int ret; 387 388 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); 389 if (ret) 390 goto out; 391 392 slice = kmalloc(sizeof(*slice), GFP_KERNEL); 393 if (!slice) { 394 ret = -ENOMEM; 395 goto free_sgt; 396 } 397 398 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); 399 if (!slice->reqs) { 400 ret = -ENOMEM; 401 goto free_slice; 402 } 403 404 slice->no_xfer = !slice_ent->size; 405 slice->sgt = sgt; 406 slice->nents = sgt->nents; 407 slice->dir = bo->dir; 408 slice->bo = bo; 409 slice->size = slice_ent->size; 410 slice->offset = slice_ent->offset; 411 412 ret = encode_reqs(qdev, slice, slice_ent); 413 if (ret) 414 goto free_req; 415 416 bo->total_slice_nents += sgt->nents; 417 kref_init(&slice->ref_count); 418 drm_gem_object_get(&bo->base); 419 list_add_tail(&slice->slice, &bo->slices); 420 421 return 0; 422 423 free_req: 424 kfree(slice->reqs); 425 free_slice: 426 kfree(slice); 427 free_sgt: 428 sg_free_table(sgt); 429 kfree(sgt); 430 out: 431 return ret; 432 } 433 434 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) 435 { 436 struct scatterlist *sg; 437 struct sg_table *sgt; 438 struct page **pages; 439 int *pages_order; 440 int buf_extra; 441 int max_order; 442 int nr_pages; 443 int ret = 0; 444 int i, j, k; 445 int order; 446 447 if (size) { 448 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); 449 /* 450 * calculate how much extra we are going to allocate, to remove 451 * later 452 */ 453 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; 454 max_order = min(MAX_ORDER - 1, get_order(size)); 455 } else { 456 /* allocate a single page for book keeping */ 457 nr_pages = 1; 458 buf_extra = 0; 459 max_order = 0; 460 } 461 462 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); 463 if (!pages) { 464 ret = -ENOMEM; 465 goto out; 466 } 467 pages_order = (void *)pages + sizeof(*pages) * nr_pages; 468 469 /* 470 * Allocate requested memory using alloc_pages. It is possible to allocate 471 * the requested memory in multiple chunks by calling alloc_pages 472 * multiple times. Use SG table to handle multiple allocated pages. 473 */ 474 i = 0; 475 while (nr_pages > 0) { 476 order = min(get_order(nr_pages * PAGE_SIZE), max_order); 477 while (1) { 478 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | 479 __GFP_NOWARN | __GFP_ZERO | 480 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), 481 order); 482 if (pages[i]) 483 break; 484 if (!order--) { 485 ret = -ENOMEM; 486 goto free_partial_alloc; 487 } 488 } 489 490 max_order = order; 491 pages_order[i] = order; 492 493 nr_pages -= 1 << order; 494 if (nr_pages <= 0) 495 /* account for over allocation */ 496 buf_extra += abs(nr_pages) * PAGE_SIZE; 497 i++; 498 } 499 500 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 501 if (!sgt) { 502 ret = -ENOMEM; 503 goto free_partial_alloc; 504 } 505 506 if (sg_alloc_table(sgt, i, GFP_KERNEL)) { 507 ret = -ENOMEM; 508 goto free_sgt; 509 } 510 511 /* Populate the SG table with the allocated memory pages */ 512 sg = sgt->sgl; 513 for (k = 0; k < i; k++, sg = sg_next(sg)) { 514 /* Last entry requires special handling */ 515 if (k < i - 1) { 516 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); 517 } else { 518 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); 519 sg_mark_end(sg); 520 } 521 } 522 523 kvfree(pages); 524 *sgt_out = sgt; 525 return ret; 526 527 free_sgt: 528 kfree(sgt); 529 free_partial_alloc: 530 for (j = 0; j < i; j++) 531 __free_pages(pages[j], pages_order[j]); 532 kvfree(pages); 533 out: 534 *sgt_out = NULL; 535 return ret; 536 } 537 538 static bool invalid_sem(struct qaic_sem *sem) 539 { 540 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || 541 !(sem->presync == 0 || sem->presync == 1) || sem->pad || 542 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || 543 sem->cmd > QAIC_SEM_WAIT_GT_0) 544 return true; 545 return false; 546 } 547 548 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, 549 u32 count, u64 total_size) 550 { 551 int i; 552 553 for (i = 0; i < count; i++) { 554 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || 555 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || 556 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || 557 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) 558 return -EINVAL; 559 560 if (slice_ent[i].offset + slice_ent[i].size > total_size) 561 return -EINVAL; 562 } 563 564 return 0; 565 } 566 567 static void qaic_free_sgt(struct sg_table *sgt) 568 { 569 struct scatterlist *sg; 570 571 for (sg = sgt->sgl; sg; sg = sg_next(sg)) 572 if (sg_page(sg)) 573 __free_pages(sg_page(sg), get_order(sg->length)); 574 sg_free_table(sgt); 575 kfree(sgt); 576 } 577 578 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, 579 const struct drm_gem_object *obj) 580 { 581 struct qaic_bo *bo = to_qaic_bo(obj); 582 583 drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir); 584 } 585 586 static const struct vm_operations_struct drm_vm_ops = { 587 .open = drm_gem_vm_open, 588 .close = drm_gem_vm_close, 589 }; 590 591 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 592 { 593 struct qaic_bo *bo = to_qaic_bo(obj); 594 unsigned long offset = 0; 595 struct scatterlist *sg; 596 int ret = 0; 597 598 if (obj->import_attach) 599 return -EINVAL; 600 601 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { 602 if (sg_page(sg)) { 603 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), 604 sg->length, vma->vm_page_prot); 605 if (ret) 606 goto out; 607 offset += sg->length; 608 } 609 } 610 611 out: 612 return ret; 613 } 614 615 static void qaic_free_object(struct drm_gem_object *obj) 616 { 617 struct qaic_bo *bo = to_qaic_bo(obj); 618 619 if (obj->import_attach) { 620 /* DMABUF/PRIME Path */ 621 drm_prime_gem_destroy(obj, NULL); 622 } else { 623 /* Private buffer allocation path */ 624 qaic_free_sgt(bo->sgt); 625 } 626 627 mutex_destroy(&bo->lock); 628 drm_gem_object_release(obj); 629 kfree(bo); 630 } 631 632 static const struct drm_gem_object_funcs qaic_gem_funcs = { 633 .free = qaic_free_object, 634 .print_info = qaic_gem_print_info, 635 .mmap = qaic_gem_object_mmap, 636 .vm_ops = &drm_vm_ops, 637 }; 638 639 static void qaic_init_bo(struct qaic_bo *bo, bool reinit) 640 { 641 if (reinit) { 642 bo->sliced = false; 643 reinit_completion(&bo->xfer_done); 644 } else { 645 mutex_init(&bo->lock); 646 init_completion(&bo->xfer_done); 647 } 648 complete_all(&bo->xfer_done); 649 INIT_LIST_HEAD(&bo->slices); 650 } 651 652 static struct qaic_bo *qaic_alloc_init_bo(void) 653 { 654 struct qaic_bo *bo; 655 656 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 657 if (!bo) 658 return ERR_PTR(-ENOMEM); 659 660 qaic_init_bo(bo, false); 661 662 return bo; 663 } 664 665 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 666 { 667 struct qaic_create_bo *args = data; 668 int usr_rcu_id, qdev_rcu_id; 669 struct drm_gem_object *obj; 670 struct qaic_device *qdev; 671 struct qaic_user *usr; 672 struct qaic_bo *bo; 673 size_t size; 674 int ret; 675 676 if (args->pad) 677 return -EINVAL; 678 679 size = PAGE_ALIGN(args->size); 680 if (size == 0) 681 return -EINVAL; 682 683 usr = file_priv->driver_priv; 684 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 685 if (!usr->qddev) { 686 ret = -ENODEV; 687 goto unlock_usr_srcu; 688 } 689 690 qdev = usr->qddev->qdev; 691 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 692 if (qdev->in_reset) { 693 ret = -ENODEV; 694 goto unlock_dev_srcu; 695 } 696 697 bo = qaic_alloc_init_bo(); 698 if (IS_ERR(bo)) { 699 ret = PTR_ERR(bo); 700 goto unlock_dev_srcu; 701 } 702 obj = &bo->base; 703 704 drm_gem_private_object_init(dev, obj, size); 705 706 obj->funcs = &qaic_gem_funcs; 707 ret = create_sgt(qdev, &bo->sgt, size); 708 if (ret) 709 goto free_bo; 710 711 ret = drm_gem_handle_create(file_priv, obj, &args->handle); 712 if (ret) 713 goto free_sgt; 714 715 bo->handle = args->handle; 716 drm_gem_object_put(obj); 717 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 719 720 return 0; 721 722 free_sgt: 723 qaic_free_sgt(bo->sgt); 724 free_bo: 725 kfree(bo); 726 unlock_dev_srcu: 727 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 728 unlock_usr_srcu: 729 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 730 return ret; 731 } 732 733 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 734 { 735 struct qaic_mmap_bo *args = data; 736 int usr_rcu_id, qdev_rcu_id; 737 struct drm_gem_object *obj; 738 struct qaic_device *qdev; 739 struct qaic_user *usr; 740 int ret; 741 742 usr = file_priv->driver_priv; 743 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 744 if (!usr->qddev) { 745 ret = -ENODEV; 746 goto unlock_usr_srcu; 747 } 748 749 qdev = usr->qddev->qdev; 750 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 751 if (qdev->in_reset) { 752 ret = -ENODEV; 753 goto unlock_dev_srcu; 754 } 755 756 obj = drm_gem_object_lookup(file_priv, args->handle); 757 if (!obj) { 758 ret = -ENOENT; 759 goto unlock_dev_srcu; 760 } 761 762 ret = drm_gem_create_mmap_offset(obj); 763 if (ret == 0) 764 args->offset = drm_vma_node_offset_addr(&obj->vma_node); 765 766 drm_gem_object_put(obj); 767 768 unlock_dev_srcu: 769 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 770 unlock_usr_srcu: 771 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 772 return ret; 773 } 774 775 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) 776 { 777 struct dma_buf_attachment *attach; 778 struct drm_gem_object *obj; 779 struct qaic_bo *bo; 780 size_t size; 781 int ret; 782 783 bo = qaic_alloc_init_bo(); 784 if (IS_ERR(bo)) { 785 ret = PTR_ERR(bo); 786 goto out; 787 } 788 789 obj = &bo->base; 790 get_dma_buf(dma_buf); 791 792 attach = dma_buf_attach(dma_buf, dev->dev); 793 if (IS_ERR(attach)) { 794 ret = PTR_ERR(attach); 795 goto attach_fail; 796 } 797 798 size = PAGE_ALIGN(attach->dmabuf->size); 799 if (size == 0) { 800 ret = -EINVAL; 801 goto size_align_fail; 802 } 803 804 drm_gem_private_object_init(dev, obj, size); 805 /* 806 * skipping dma_buf_map_attachment() as we do not know the direction 807 * just yet. Once the direction is known in the subsequent IOCTL to 808 * attach slicing, we can do it then. 809 */ 810 811 obj->funcs = &qaic_gem_funcs; 812 obj->import_attach = attach; 813 obj->resv = dma_buf->resv; 814 815 return obj; 816 817 size_align_fail: 818 dma_buf_detach(dma_buf, attach); 819 attach_fail: 820 dma_buf_put(dma_buf); 821 kfree(bo); 822 out: 823 return ERR_PTR(ret); 824 } 825 826 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) 827 { 828 struct drm_gem_object *obj = &bo->base; 829 struct sg_table *sgt; 830 int ret; 831 832 if (obj->import_attach->dmabuf->size < hdr->size) 833 return -EINVAL; 834 835 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); 836 if (IS_ERR(sgt)) { 837 ret = PTR_ERR(sgt); 838 return ret; 839 } 840 841 bo->sgt = sgt; 842 843 return 0; 844 } 845 846 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, 847 struct qaic_attach_slice_hdr *hdr) 848 { 849 int ret; 850 851 if (bo->base.size < hdr->size) 852 return -EINVAL; 853 854 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); 855 if (ret) 856 return -EFAULT; 857 858 return 0; 859 } 860 861 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, 862 struct qaic_attach_slice_hdr *hdr) 863 { 864 int ret; 865 866 if (bo->base.import_attach) 867 ret = qaic_prepare_import_bo(bo, hdr); 868 else 869 ret = qaic_prepare_export_bo(qdev, bo, hdr); 870 bo->dir = hdr->dir; 871 bo->dbc = &qdev->dbc[hdr->dbc_id]; 872 bo->nr_slice = hdr->count; 873 874 return ret; 875 } 876 877 static void qaic_unprepare_import_bo(struct qaic_bo *bo) 878 { 879 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); 880 bo->sgt = NULL; 881 } 882 883 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) 884 { 885 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); 886 } 887 888 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) 889 { 890 if (bo->base.import_attach) 891 qaic_unprepare_import_bo(bo); 892 else 893 qaic_unprepare_export_bo(qdev, bo); 894 895 bo->dir = 0; 896 bo->dbc = NULL; 897 bo->nr_slice = 0; 898 } 899 900 static void qaic_free_slices_bo(struct qaic_bo *bo) 901 { 902 struct bo_slice *slice, *temp; 903 904 list_for_each_entry_safe(slice, temp, &bo->slices, slice) 905 kref_put(&slice->ref_count, free_slice); 906 if (WARN_ON_ONCE(bo->total_slice_nents != 0)) 907 bo->total_slice_nents = 0; 908 bo->nr_slice = 0; 909 } 910 911 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, 912 struct qaic_attach_slice_hdr *hdr, 913 struct qaic_attach_slice_entry *slice_ent) 914 { 915 int ret, i; 916 917 for (i = 0; i < hdr->count; i++) { 918 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); 919 if (ret) { 920 qaic_free_slices_bo(bo); 921 return ret; 922 } 923 } 924 925 if (bo->total_slice_nents > bo->dbc->nelem) { 926 qaic_free_slices_bo(bo); 927 return -ENOSPC; 928 } 929 930 return 0; 931 } 932 933 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 934 { 935 struct qaic_attach_slice_entry *slice_ent; 936 struct qaic_attach_slice *args = data; 937 int rcu_id, usr_rcu_id, qdev_rcu_id; 938 struct dma_bridge_chan *dbc; 939 struct drm_gem_object *obj; 940 struct qaic_device *qdev; 941 unsigned long arg_size; 942 struct qaic_user *usr; 943 u8 __user *user_data; 944 struct qaic_bo *bo; 945 int ret; 946 947 if (args->hdr.count == 0) 948 return -EINVAL; 949 950 arg_size = args->hdr.count * sizeof(*slice_ent); 951 if (arg_size / args->hdr.count != sizeof(*slice_ent)) 952 return -EINVAL; 953 954 if (args->hdr.size == 0) 955 return -EINVAL; 956 957 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) 958 return -EINVAL; 959 960 if (args->data == 0) 961 return -EINVAL; 962 963 usr = file_priv->driver_priv; 964 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 965 if (!usr->qddev) { 966 ret = -ENODEV; 967 goto unlock_usr_srcu; 968 } 969 970 qdev = usr->qddev->qdev; 971 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 972 if (qdev->in_reset) { 973 ret = -ENODEV; 974 goto unlock_dev_srcu; 975 } 976 977 if (args->hdr.dbc_id >= qdev->num_dbc) { 978 ret = -EINVAL; 979 goto unlock_dev_srcu; 980 } 981 982 user_data = u64_to_user_ptr(args->data); 983 984 slice_ent = kzalloc(arg_size, GFP_KERNEL); 985 if (!slice_ent) { 986 ret = -EINVAL; 987 goto unlock_dev_srcu; 988 } 989 990 ret = copy_from_user(slice_ent, user_data, arg_size); 991 if (ret) { 992 ret = -EFAULT; 993 goto free_slice_ent; 994 } 995 996 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size); 997 if (ret) 998 goto free_slice_ent; 999 1000 obj = drm_gem_object_lookup(file_priv, args->hdr.handle); 1001 if (!obj) { 1002 ret = -ENOENT; 1003 goto free_slice_ent; 1004 } 1005 1006 bo = to_qaic_bo(obj); 1007 ret = mutex_lock_interruptible(&bo->lock); 1008 if (ret) 1009 goto put_bo; 1010 1011 if (bo->sliced) { 1012 ret = -EINVAL; 1013 goto unlock_bo; 1014 } 1015 1016 dbc = &qdev->dbc[args->hdr.dbc_id]; 1017 rcu_id = srcu_read_lock(&dbc->ch_lock); 1018 if (dbc->usr != usr) { 1019 ret = -EINVAL; 1020 goto unlock_ch_srcu; 1021 } 1022 1023 ret = qaic_prepare_bo(qdev, bo, &args->hdr); 1024 if (ret) 1025 goto unlock_ch_srcu; 1026 1027 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); 1028 if (ret) 1029 goto unprepare_bo; 1030 1031 if (args->hdr.dir == DMA_TO_DEVICE) 1032 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); 1033 1034 bo->sliced = true; 1035 list_add_tail(&bo->bo_list, &bo->dbc->bo_lists); 1036 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1037 mutex_unlock(&bo->lock); 1038 kfree(slice_ent); 1039 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1040 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1041 1042 return 0; 1043 1044 unprepare_bo: 1045 qaic_unprepare_bo(qdev, bo); 1046 unlock_ch_srcu: 1047 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1048 unlock_bo: 1049 mutex_unlock(&bo->lock); 1050 put_bo: 1051 drm_gem_object_put(obj); 1052 free_slice_ent: 1053 kfree(slice_ent); 1054 unlock_dev_srcu: 1055 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1056 unlock_usr_srcu: 1057 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1058 return ret; 1059 } 1060 1061 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, 1062 u32 head, u32 *ptail) 1063 { 1064 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1065 struct dbc_req *reqs = slice->reqs; 1066 u32 tail = *ptail; 1067 u32 avail; 1068 1069 avail = head - tail; 1070 if (head <= tail) 1071 avail += dbc->nelem; 1072 1073 --avail; 1074 1075 if (avail < slice->nents) 1076 return -EAGAIN; 1077 1078 if (tail + slice->nents > dbc->nelem) { 1079 avail = dbc->nelem - tail; 1080 avail = min_t(u32, avail, slice->nents); 1081 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1082 sizeof(*reqs) * avail); 1083 reqs += avail; 1084 avail = slice->nents - avail; 1085 if (avail) 1086 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); 1087 } else { 1088 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1089 sizeof(*reqs) * slice->nents); 1090 } 1091 1092 *ptail = (tail + slice->nents) % dbc->nelem; 1093 1094 return 0; 1095 } 1096 1097 /* 1098 * Based on the value of resize we may only need to transmit first_n 1099 * entries and the last entry, with last_bytes to send from the last entry. 1100 * Note that first_n could be 0. 1101 */ 1102 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, 1103 u64 resize, u32 dbc_id, u32 head, u32 *ptail) 1104 { 1105 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1106 struct dbc_req *reqs = slice->reqs; 1107 struct dbc_req *last_req; 1108 u32 tail = *ptail; 1109 u64 total_bytes; 1110 u64 last_bytes; 1111 u32 first_n; 1112 u32 avail; 1113 int ret; 1114 int i; 1115 1116 avail = head - tail; 1117 if (head <= tail) 1118 avail += dbc->nelem; 1119 1120 --avail; 1121 1122 total_bytes = 0; 1123 for (i = 0; i < slice->nents; i++) { 1124 total_bytes += le32_to_cpu(reqs[i].len); 1125 if (total_bytes >= resize) 1126 break; 1127 } 1128 1129 if (total_bytes < resize) { 1130 /* User space should have used the full buffer path. */ 1131 ret = -EINVAL; 1132 return ret; 1133 } 1134 1135 first_n = i; 1136 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize; 1137 1138 if (avail < (first_n + 1)) 1139 return -EAGAIN; 1140 1141 if (first_n) { 1142 if (tail + first_n > dbc->nelem) { 1143 avail = dbc->nelem - tail; 1144 avail = min_t(u32, avail, first_n); 1145 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1146 sizeof(*reqs) * avail); 1147 last_req = reqs + avail; 1148 avail = first_n - avail; 1149 if (avail) 1150 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); 1151 } else { 1152 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1153 sizeof(*reqs) * first_n); 1154 } 1155 } 1156 1157 /* Copy over the last entry. Here we need to adjust len to the left over 1158 * size, and set src and dst to the entry it is copied to. 1159 */ 1160 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size(); 1161 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); 1162 1163 /* 1164 * last_bytes holds size of a DMA segment, maximum DMA segment size is 1165 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 1166 * range. So, by down sizing we are not corrupting the value. 1167 */ 1168 last_req->len = cpu_to_le32((u32)last_bytes); 1169 last_req->src_addr = reqs[first_n].src_addr; 1170 last_req->dest_addr = reqs[first_n].dest_addr; 1171 1172 *ptail = (tail + first_n + 1) % dbc->nelem; 1173 1174 return 0; 1175 } 1176 1177 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, 1178 struct qaic_execute_entry *exec, unsigned int count, 1179 bool is_partial, struct dma_bridge_chan *dbc, u32 head, 1180 u32 *tail) 1181 { 1182 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1183 struct drm_gem_object *obj; 1184 struct bo_slice *slice; 1185 unsigned long flags; 1186 struct qaic_bo *bo; 1187 bool queued; 1188 int i, j; 1189 int ret; 1190 1191 for (i = 0; i < count; i++) { 1192 /* 1193 * ref count will be decremented when the transfer of this 1194 * buffer is complete. It is inside dbc_irq_threaded_fn(). 1195 */ 1196 obj = drm_gem_object_lookup(file_priv, 1197 is_partial ? pexec[i].handle : exec[i].handle); 1198 if (!obj) { 1199 ret = -ENOENT; 1200 goto failed_to_send_bo; 1201 } 1202 1203 bo = to_qaic_bo(obj); 1204 ret = mutex_lock_interruptible(&bo->lock); 1205 if (ret) 1206 goto failed_to_send_bo; 1207 1208 if (!bo->sliced) { 1209 ret = -EINVAL; 1210 goto unlock_bo; 1211 } 1212 1213 if (is_partial && pexec[i].resize > bo->base.size) { 1214 ret = -EINVAL; 1215 goto unlock_bo; 1216 } 1217 1218 spin_lock_irqsave(&dbc->xfer_lock, flags); 1219 queued = bo->queued; 1220 bo->queued = true; 1221 if (queued) { 1222 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1223 ret = -EINVAL; 1224 goto unlock_bo; 1225 } 1226 1227 bo->req_id = dbc->next_req_id++; 1228 1229 list_for_each_entry(slice, &bo->slices, slice) { 1230 /* 1231 * If this slice does not fall under the given 1232 * resize then skip this slice and continue the loop 1233 */ 1234 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset) 1235 continue; 1236 1237 for (j = 0; j < slice->nents; j++) 1238 slice->reqs[j].req_id = cpu_to_le16(bo->req_id); 1239 1240 /* 1241 * If it is a partial execute ioctl call then check if 1242 * resize has cut this slice short then do a partial copy 1243 * else do complete copy 1244 */ 1245 if (is_partial && pexec[i].resize && 1246 pexec[i].resize < slice->offset + slice->size) 1247 ret = copy_partial_exec_reqs(qdev, slice, 1248 pexec[i].resize - slice->offset, 1249 dbc->id, head, tail); 1250 else 1251 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); 1252 if (ret) { 1253 bo->queued = false; 1254 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1255 goto unlock_bo; 1256 } 1257 } 1258 reinit_completion(&bo->xfer_done); 1259 list_add_tail(&bo->xfer_list, &dbc->xfer_list); 1260 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1261 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); 1262 mutex_unlock(&bo->lock); 1263 } 1264 1265 return 0; 1266 1267 unlock_bo: 1268 mutex_unlock(&bo->lock); 1269 failed_to_send_bo: 1270 if (likely(obj)) 1271 drm_gem_object_put(obj); 1272 for (j = 0; j < i; j++) { 1273 spin_lock_irqsave(&dbc->xfer_lock, flags); 1274 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); 1275 obj = &bo->base; 1276 bo->queued = false; 1277 list_del(&bo->xfer_list); 1278 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1279 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1280 drm_gem_object_put(obj); 1281 } 1282 return ret; 1283 } 1284 1285 static void update_profiling_data(struct drm_file *file_priv, 1286 struct qaic_execute_entry *exec, unsigned int count, 1287 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) 1288 { 1289 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1290 struct drm_gem_object *obj; 1291 struct qaic_bo *bo; 1292 int i; 1293 1294 for (i = 0; i < count; i++) { 1295 /* 1296 * Since we already committed the BO to hardware, the only way 1297 * this should fail is a pending signal. We can't cancel the 1298 * submit to hardware, so we have to just skip the profiling 1299 * data. In case the signal is not fatal to the process, we 1300 * return success so that the user doesn't try to resubmit. 1301 */ 1302 obj = drm_gem_object_lookup(file_priv, 1303 is_partial ? pexec[i].handle : exec[i].handle); 1304 if (!obj) 1305 break; 1306 bo = to_qaic_bo(obj); 1307 bo->perf_stats.req_received_ts = received_ts; 1308 bo->perf_stats.req_submit_ts = submit_ts; 1309 bo->perf_stats.queue_level_before = queue_level; 1310 queue_level += bo->total_slice_nents; 1311 drm_gem_object_put(obj); 1312 } 1313 } 1314 1315 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, 1316 bool is_partial) 1317 { 1318 struct qaic_execute *args = data; 1319 struct qaic_execute_entry *exec; 1320 struct dma_bridge_chan *dbc; 1321 int usr_rcu_id, qdev_rcu_id; 1322 struct qaic_device *qdev; 1323 struct qaic_user *usr; 1324 u8 __user *user_data; 1325 unsigned long n; 1326 u64 received_ts; 1327 u32 queue_level; 1328 u64 submit_ts; 1329 int rcu_id; 1330 u32 head; 1331 u32 tail; 1332 u64 size; 1333 int ret; 1334 1335 received_ts = ktime_get_ns(); 1336 1337 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec); 1338 n = (unsigned long)size * args->hdr.count; 1339 if (args->hdr.count == 0 || n / args->hdr.count != size) 1340 return -EINVAL; 1341 1342 user_data = u64_to_user_ptr(args->data); 1343 1344 exec = kcalloc(args->hdr.count, size, GFP_KERNEL); 1345 if (!exec) 1346 return -ENOMEM; 1347 1348 if (copy_from_user(exec, user_data, n)) { 1349 ret = -EFAULT; 1350 goto free_exec; 1351 } 1352 1353 usr = file_priv->driver_priv; 1354 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1355 if (!usr->qddev) { 1356 ret = -ENODEV; 1357 goto unlock_usr_srcu; 1358 } 1359 1360 qdev = usr->qddev->qdev; 1361 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1362 if (qdev->in_reset) { 1363 ret = -ENODEV; 1364 goto unlock_dev_srcu; 1365 } 1366 1367 if (args->hdr.dbc_id >= qdev->num_dbc) { 1368 ret = -EINVAL; 1369 goto unlock_dev_srcu; 1370 } 1371 1372 dbc = &qdev->dbc[args->hdr.dbc_id]; 1373 1374 rcu_id = srcu_read_lock(&dbc->ch_lock); 1375 if (!dbc->usr || dbc->usr->handle != usr->handle) { 1376 ret = -EPERM; 1377 goto release_ch_rcu; 1378 } 1379 1380 head = readl(dbc->dbc_base + REQHP_OFF); 1381 tail = readl(dbc->dbc_base + REQTP_OFF); 1382 1383 if (head == U32_MAX || tail == U32_MAX) { 1384 /* PCI link error */ 1385 ret = -ENODEV; 1386 goto release_ch_rcu; 1387 } 1388 1389 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); 1390 1391 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, 1392 head, &tail); 1393 if (ret) 1394 goto release_ch_rcu; 1395 1396 /* Finalize commit to hardware */ 1397 submit_ts = ktime_get_ns(); 1398 writel(tail, dbc->dbc_base + REQTP_OFF); 1399 1400 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, 1401 submit_ts, queue_level); 1402 1403 if (datapath_polling) 1404 schedule_work(&dbc->poll_work); 1405 1406 release_ch_rcu: 1407 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1408 unlock_dev_srcu: 1409 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1410 unlock_usr_srcu: 1411 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1412 free_exec: 1413 kfree(exec); 1414 return ret; 1415 } 1416 1417 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1418 { 1419 return __qaic_execute_bo_ioctl(dev, data, file_priv, false); 1420 } 1421 1422 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1423 { 1424 return __qaic_execute_bo_ioctl(dev, data, file_priv, true); 1425 } 1426 1427 /* 1428 * Our interrupt handling is a bit more complicated than a simple ideal, but 1429 * sadly necessary. 1430 * 1431 * Each dbc has a completion queue. Entries in the queue correspond to DMA 1432 * requests which the device has processed. The hardware already has a built 1433 * in irq mitigation. When the device puts an entry into the queue, it will 1434 * only trigger an interrupt if the queue was empty. Therefore, when adding 1435 * the Nth event to a non-empty queue, the hardware doesn't trigger an 1436 * interrupt. This means the host doesn't get additional interrupts signaling 1437 * the same thing - the queue has something to process. 1438 * This behavior can be overridden in the DMA request. 1439 * This means that when the host receives an interrupt, it is required to 1440 * drain the queue. 1441 * 1442 * This behavior is what NAPI attempts to accomplish, although we can't use 1443 * NAPI as we don't have a netdev. We use threaded irqs instead. 1444 * 1445 * However, there is a situation where the host drains the queue fast enough 1446 * that every event causes an interrupt. Typically this is not a problem as 1447 * the rate of events would be low. However, that is not the case with 1448 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of 1449 * lprnet, the host receives roughly 80k interrupts per second from the device 1450 * (per /proc/interrupts). While NAPI documentation indicates the host should 1451 * just chug along, sadly that behavior causes instability in some hosts. 1452 * 1453 * Therefore, we implement an interrupt disable scheme similar to NAPI. The 1454 * key difference is that we will delay after draining the queue for a small 1455 * time to allow additional events to come in via polling. Using the above 1456 * lprnet workload, this reduces the number of interrupts processed from 1457 * ~80k/sec to about 64 in 5 minutes and appears to solve the system 1458 * instability. 1459 */ 1460 irqreturn_t dbc_irq_handler(int irq, void *data) 1461 { 1462 struct dma_bridge_chan *dbc = data; 1463 int rcu_id; 1464 u32 head; 1465 u32 tail; 1466 1467 rcu_id = srcu_read_lock(&dbc->ch_lock); 1468 1469 if (!dbc->usr) { 1470 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1471 return IRQ_HANDLED; 1472 } 1473 1474 head = readl(dbc->dbc_base + RSPHP_OFF); 1475 if (head == U32_MAX) { /* PCI link error */ 1476 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1477 return IRQ_NONE; 1478 } 1479 1480 tail = readl(dbc->dbc_base + RSPTP_OFF); 1481 if (tail == U32_MAX) { /* PCI link error */ 1482 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1483 return IRQ_NONE; 1484 } 1485 1486 if (head == tail) { /* queue empty */ 1487 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1488 return IRQ_NONE; 1489 } 1490 1491 disable_irq_nosync(irq); 1492 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1493 return IRQ_WAKE_THREAD; 1494 } 1495 1496 void irq_polling_work(struct work_struct *work) 1497 { 1498 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); 1499 unsigned long flags; 1500 int rcu_id; 1501 u32 head; 1502 u32 tail; 1503 1504 rcu_id = srcu_read_lock(&dbc->ch_lock); 1505 1506 while (1) { 1507 if (dbc->qdev->in_reset) { 1508 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1509 return; 1510 } 1511 if (!dbc->usr) { 1512 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1513 return; 1514 } 1515 spin_lock_irqsave(&dbc->xfer_lock, flags); 1516 if (list_empty(&dbc->xfer_list)) { 1517 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1518 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1519 return; 1520 } 1521 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1522 1523 head = readl(dbc->dbc_base + RSPHP_OFF); 1524 if (head == U32_MAX) { /* PCI link error */ 1525 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1526 return; 1527 } 1528 1529 tail = readl(dbc->dbc_base + RSPTP_OFF); 1530 if (tail == U32_MAX) { /* PCI link error */ 1531 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1532 return; 1533 } 1534 1535 if (head != tail) { 1536 irq_wake_thread(dbc->irq, dbc); 1537 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1538 return; 1539 } 1540 1541 cond_resched(); 1542 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); 1543 } 1544 } 1545 1546 irqreturn_t dbc_irq_threaded_fn(int irq, void *data) 1547 { 1548 struct dma_bridge_chan *dbc = data; 1549 int event_count = NUM_EVENTS; 1550 int delay_count = NUM_DELAYS; 1551 struct qaic_device *qdev; 1552 struct qaic_bo *bo, *i; 1553 struct dbc_rsp *rsp; 1554 unsigned long flags; 1555 int rcu_id; 1556 u16 status; 1557 u16 req_id; 1558 u32 head; 1559 u32 tail; 1560 1561 rcu_id = srcu_read_lock(&dbc->ch_lock); 1562 1563 head = readl(dbc->dbc_base + RSPHP_OFF); 1564 if (head == U32_MAX) /* PCI link error */ 1565 goto error_out; 1566 1567 qdev = dbc->qdev; 1568 read_fifo: 1569 1570 if (!event_count) { 1571 event_count = NUM_EVENTS; 1572 cond_resched(); 1573 } 1574 1575 /* 1576 * if this channel isn't assigned or gets unassigned during processing 1577 * we have nothing further to do 1578 */ 1579 if (!dbc->usr) 1580 goto error_out; 1581 1582 tail = readl(dbc->dbc_base + RSPTP_OFF); 1583 if (tail == U32_MAX) /* PCI link error */ 1584 goto error_out; 1585 1586 if (head == tail) { /* queue empty */ 1587 if (delay_count) { 1588 --delay_count; 1589 usleep_range(100, 200); 1590 goto read_fifo; /* check for a new event */ 1591 } 1592 goto normal_out; 1593 } 1594 1595 delay_count = NUM_DELAYS; 1596 while (head != tail) { 1597 if (!event_count) 1598 break; 1599 --event_count; 1600 rsp = dbc->rsp_q_base + head * sizeof(*rsp); 1601 req_id = le16_to_cpu(rsp->req_id); 1602 status = le16_to_cpu(rsp->status); 1603 if (status) 1604 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); 1605 spin_lock_irqsave(&dbc->xfer_lock, flags); 1606 /* 1607 * A BO can receive multiple interrupts, since a BO can be 1608 * divided into multiple slices and a buffer receives as many 1609 * interrupts as slices. So until it receives interrupts for 1610 * all the slices we cannot mark that buffer complete. 1611 */ 1612 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { 1613 if (bo->req_id == req_id) 1614 bo->nr_slice_xfer_done++; 1615 else 1616 continue; 1617 1618 if (bo->nr_slice_xfer_done < bo->nr_slice) 1619 break; 1620 1621 /* 1622 * At this point we have received all the interrupts for 1623 * BO, which means BO execution is complete. 1624 */ 1625 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1626 bo->nr_slice_xfer_done = 0; 1627 bo->queued = false; 1628 list_del(&bo->xfer_list); 1629 bo->perf_stats.req_processed_ts = ktime_get_ns(); 1630 complete_all(&bo->xfer_done); 1631 drm_gem_object_put(&bo->base); 1632 break; 1633 } 1634 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1635 head = (head + 1) % dbc->nelem; 1636 } 1637 1638 /* 1639 * Update the head pointer of response queue and let the device know 1640 * that we have consumed elements from the queue. 1641 */ 1642 writel(head, dbc->dbc_base + RSPHP_OFF); 1643 1644 /* elements might have been put in the queue while we were processing */ 1645 goto read_fifo; 1646 1647 normal_out: 1648 if (likely(!datapath_polling)) 1649 enable_irq(irq); 1650 else 1651 schedule_work(&dbc->poll_work); 1652 /* checking the fifo and enabling irqs is a race, missed event check */ 1653 tail = readl(dbc->dbc_base + RSPTP_OFF); 1654 if (tail != U32_MAX && head != tail) { 1655 if (likely(!datapath_polling)) 1656 disable_irq_nosync(irq); 1657 goto read_fifo; 1658 } 1659 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1660 return IRQ_HANDLED; 1661 1662 error_out: 1663 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1664 if (likely(!datapath_polling)) 1665 enable_irq(irq); 1666 else 1667 schedule_work(&dbc->poll_work); 1668 1669 return IRQ_HANDLED; 1670 } 1671 1672 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1673 { 1674 struct qaic_wait *args = data; 1675 int usr_rcu_id, qdev_rcu_id; 1676 struct dma_bridge_chan *dbc; 1677 struct drm_gem_object *obj; 1678 struct qaic_device *qdev; 1679 unsigned long timeout; 1680 struct qaic_user *usr; 1681 struct qaic_bo *bo; 1682 int rcu_id; 1683 int ret; 1684 1685 if (args->pad != 0) 1686 return -EINVAL; 1687 1688 usr = file_priv->driver_priv; 1689 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1690 if (!usr->qddev) { 1691 ret = -ENODEV; 1692 goto unlock_usr_srcu; 1693 } 1694 1695 qdev = usr->qddev->qdev; 1696 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1697 if (qdev->in_reset) { 1698 ret = -ENODEV; 1699 goto unlock_dev_srcu; 1700 } 1701 1702 if (args->dbc_id >= qdev->num_dbc) { 1703 ret = -EINVAL; 1704 goto unlock_dev_srcu; 1705 } 1706 1707 dbc = &qdev->dbc[args->dbc_id]; 1708 1709 rcu_id = srcu_read_lock(&dbc->ch_lock); 1710 if (dbc->usr != usr) { 1711 ret = -EPERM; 1712 goto unlock_ch_srcu; 1713 } 1714 1715 obj = drm_gem_object_lookup(file_priv, args->handle); 1716 if (!obj) { 1717 ret = -ENOENT; 1718 goto unlock_ch_srcu; 1719 } 1720 1721 bo = to_qaic_bo(obj); 1722 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; 1723 timeout = msecs_to_jiffies(timeout); 1724 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); 1725 if (!ret) { 1726 ret = -ETIMEDOUT; 1727 goto put_obj; 1728 } 1729 if (ret > 0) 1730 ret = 0; 1731 1732 if (!dbc->usr) 1733 ret = -EPERM; 1734 1735 put_obj: 1736 drm_gem_object_put(obj); 1737 unlock_ch_srcu: 1738 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1739 unlock_dev_srcu: 1740 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1741 unlock_usr_srcu: 1742 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1743 return ret; 1744 } 1745 1746 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1747 { 1748 struct qaic_perf_stats_entry *ent = NULL; 1749 struct qaic_perf_stats *args = data; 1750 int usr_rcu_id, qdev_rcu_id; 1751 struct drm_gem_object *obj; 1752 struct qaic_device *qdev; 1753 struct qaic_user *usr; 1754 struct qaic_bo *bo; 1755 int ret, i; 1756 1757 usr = file_priv->driver_priv; 1758 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1759 if (!usr->qddev) { 1760 ret = -ENODEV; 1761 goto unlock_usr_srcu; 1762 } 1763 1764 qdev = usr->qddev->qdev; 1765 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1766 if (qdev->in_reset) { 1767 ret = -ENODEV; 1768 goto unlock_dev_srcu; 1769 } 1770 1771 if (args->hdr.dbc_id >= qdev->num_dbc) { 1772 ret = -EINVAL; 1773 goto unlock_dev_srcu; 1774 } 1775 1776 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); 1777 if (!ent) { 1778 ret = -EINVAL; 1779 goto unlock_dev_srcu; 1780 } 1781 1782 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); 1783 if (ret) { 1784 ret = -EFAULT; 1785 goto free_ent; 1786 } 1787 1788 for (i = 0; i < args->hdr.count; i++) { 1789 obj = drm_gem_object_lookup(file_priv, ent[i].handle); 1790 if (!obj) { 1791 ret = -ENOENT; 1792 goto free_ent; 1793 } 1794 bo = to_qaic_bo(obj); 1795 /* 1796 * perf stats ioctl is called before wait ioctl is complete then 1797 * the latency information is invalid. 1798 */ 1799 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { 1800 ent[i].device_latency_us = 0; 1801 } else { 1802 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - 1803 bo->perf_stats.req_submit_ts), 1000); 1804 } 1805 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - 1806 bo->perf_stats.req_received_ts), 1000); 1807 ent[i].queue_level_before = bo->perf_stats.queue_level_before; 1808 ent[i].num_queue_element = bo->total_slice_nents; 1809 drm_gem_object_put(obj); 1810 } 1811 1812 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) 1813 ret = -EFAULT; 1814 1815 free_ent: 1816 kfree(ent); 1817 unlock_dev_srcu: 1818 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1819 unlock_usr_srcu: 1820 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1821 return ret; 1822 } 1823 1824 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo) 1825 { 1826 qaic_free_slices_bo(bo); 1827 qaic_unprepare_bo(qdev, bo); 1828 qaic_init_bo(bo, true); 1829 list_del(&bo->bo_list); 1830 drm_gem_object_put(&bo->base); 1831 } 1832 1833 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1834 { 1835 struct qaic_detach_slice *args = data; 1836 int rcu_id, usr_rcu_id, qdev_rcu_id; 1837 struct dma_bridge_chan *dbc; 1838 struct drm_gem_object *obj; 1839 struct qaic_device *qdev; 1840 struct qaic_user *usr; 1841 unsigned long flags; 1842 struct qaic_bo *bo; 1843 int ret; 1844 1845 if (args->pad != 0) 1846 return -EINVAL; 1847 1848 usr = file_priv->driver_priv; 1849 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1850 if (!usr->qddev) { 1851 ret = -ENODEV; 1852 goto unlock_usr_srcu; 1853 } 1854 1855 qdev = usr->qddev->qdev; 1856 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1857 if (qdev->in_reset) { 1858 ret = -ENODEV; 1859 goto unlock_dev_srcu; 1860 } 1861 1862 obj = drm_gem_object_lookup(file_priv, args->handle); 1863 if (!obj) { 1864 ret = -ENOENT; 1865 goto unlock_dev_srcu; 1866 } 1867 1868 bo = to_qaic_bo(obj); 1869 ret = mutex_lock_interruptible(&bo->lock); 1870 if (ret) 1871 goto put_bo; 1872 1873 if (!bo->sliced) { 1874 ret = -EINVAL; 1875 goto unlock_bo; 1876 } 1877 1878 dbc = bo->dbc; 1879 rcu_id = srcu_read_lock(&dbc->ch_lock); 1880 if (dbc->usr != usr) { 1881 ret = -EINVAL; 1882 goto unlock_ch_srcu; 1883 } 1884 1885 /* Check if BO is committed to H/W for DMA */ 1886 spin_lock_irqsave(&dbc->xfer_lock, flags); 1887 if (bo->queued) { 1888 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1889 ret = -EBUSY; 1890 goto unlock_ch_srcu; 1891 } 1892 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1893 1894 detach_slice_bo(qdev, bo); 1895 1896 unlock_ch_srcu: 1897 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1898 unlock_bo: 1899 mutex_unlock(&bo->lock); 1900 put_bo: 1901 drm_gem_object_put(obj); 1902 unlock_dev_srcu: 1903 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1904 unlock_usr_srcu: 1905 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1906 return ret; 1907 } 1908 1909 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) 1910 { 1911 unsigned long flags; 1912 struct qaic_bo *bo; 1913 1914 spin_lock_irqsave(&dbc->xfer_lock, flags); 1915 while (!list_empty(&dbc->xfer_list)) { 1916 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); 1917 bo->queued = false; 1918 list_del(&bo->xfer_list); 1919 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1920 bo->nr_slice_xfer_done = 0; 1921 bo->req_id = 0; 1922 bo->perf_stats.req_received_ts = 0; 1923 bo->perf_stats.req_submit_ts = 0; 1924 bo->perf_stats.req_processed_ts = 0; 1925 bo->perf_stats.queue_level_before = 0; 1926 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1927 complete_all(&bo->xfer_done); 1928 drm_gem_object_put(&bo->base); 1929 spin_lock_irqsave(&dbc->xfer_lock, flags); 1930 } 1931 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1932 } 1933 1934 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1935 { 1936 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) 1937 return -EPERM; 1938 1939 qdev->dbc[dbc_id].usr = NULL; 1940 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); 1941 return 0; 1942 } 1943 1944 /** 1945 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of 1946 * user. Add user context back to DBC to enable it. This function trusts the 1947 * DBC ID passed and expects the DBC to be disabled. 1948 * @qdev: Qranium device handle 1949 * @dbc_id: ID of the DBC 1950 * @usr: User context 1951 */ 1952 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1953 { 1954 qdev->dbc[dbc_id].usr = usr; 1955 } 1956 1957 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) 1958 { 1959 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1960 1961 dbc->usr = NULL; 1962 empty_xfer_list(qdev, dbc); 1963 synchronize_srcu(&dbc->ch_lock); 1964 /* 1965 * Threads holding channel lock, may add more elements in the xfer_list. 1966 * Flush out these elements from xfer_list. 1967 */ 1968 empty_xfer_list(qdev, dbc); 1969 } 1970 1971 void release_dbc(struct qaic_device *qdev, u32 dbc_id) 1972 { 1973 struct qaic_bo *bo, *bo_temp; 1974 struct dma_bridge_chan *dbc; 1975 1976 dbc = &qdev->dbc[dbc_id]; 1977 if (!dbc->in_use) 1978 return; 1979 1980 wakeup_dbc(qdev, dbc_id); 1981 1982 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); 1983 dbc->total_size = 0; 1984 dbc->req_q_base = NULL; 1985 dbc->dma_addr = 0; 1986 dbc->nelem = 0; 1987 dbc->usr = NULL; 1988 1989 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { 1990 drm_gem_object_get(&bo->base); 1991 mutex_lock(&bo->lock); 1992 detach_slice_bo(qdev, bo); 1993 mutex_unlock(&bo->lock); 1994 drm_gem_object_put(&bo->base); 1995 } 1996 1997 dbc->in_use = false; 1998 wake_up(&dbc->dbc_release); 1999 } 2000