xref: /linux/drivers/accel/qaic/qaic_data.c (revision 981368e1440b76f68b1ac8f5fb14e739f80ecc4e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5 
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29 
30 #include "qaic.h"
31 
32 #define SEM_VAL_MASK	GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK	GENMASK_ULL(4, 0)
34 #define BULK_XFER	BIT(3)
35 #define GEN_COMPLETION	BIT(4)
36 #define INBOUND_XFER	1
37 #define OUTBOUND_XFER	2
38 #define REQHP_OFF	0x0 /* we read this */
39 #define REQTP_OFF	0x4 /* we write this */
40 #define RSPHP_OFF	0x8 /* we write this */
41 #define RSPTP_OFF	0xc /* we read this */
42 
43 #define ENCODE_SEM(val, index, sync, cmd, flags)			\
44 		({							\
45 			FIELD_PREP(GENMASK(11, 0), (val)) |		\
46 			FIELD_PREP(GENMASK(20, 16), (index)) |		\
47 			FIELD_PREP(BIT(22), (sync)) |			\
48 			FIELD_PREP(GENMASK(26, 24), (cmd)) |		\
49 			FIELD_PREP(GENMASK(30, 29), (flags)) |		\
50 			FIELD_PREP(BIT(31), (cmd) ? 1 : 0);		\
51 		})
52 #define NUM_EVENTS	128
53 #define NUM_DELAYS	10
54 
55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
56 module_param(wait_exec_default_timeout_ms, uint, 0600);
57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
58 
59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
60 module_param(datapath_poll_interval_us, uint, 0600);
61 MODULE_PARM_DESC(datapath_poll_interval_us,
62 		 "Amount of time to sleep between activity when datapath polling is enabled");
63 
64 struct dbc_req {
65 	/*
66 	 * A request ID is assigned to each memory handle going in DMA queue.
67 	 * As a single memory handle can enqueue multiple elements in DMA queue
68 	 * all of them will have the same request ID.
69 	 */
70 	__le16	req_id;
71 	/* Future use */
72 	__u8	seq_id;
73 	/*
74 	 * Special encoded variable
75 	 * 7	0 - Do not force to generate MSI after DMA is completed
76 	 *	1 - Force to generate MSI after DMA is completed
77 	 * 6:5	Reserved
78 	 * 4	1 - Generate completion element in the response queue
79 	 *	0 - No Completion Code
80 	 * 3	0 - DMA request is a Link list transfer
81 	 *	1 - DMA request is a Bulk transfer
82 	 * 2	Reserved
83 	 * 1:0	00 - No DMA transfer involved
84 	 *	01 - DMA transfer is part of inbound transfer
85 	 *	10 - DMA transfer has outbound transfer
86 	 *	11 - NA
87 	 */
88 	__u8	cmd;
89 	__le32	resv;
90 	/* Source address for the transfer */
91 	__le64	src_addr;
92 	/* Destination address for the transfer */
93 	__le64	dest_addr;
94 	/* Length of transfer request */
95 	__le32	len;
96 	__le32	resv2;
97 	/* Doorbell address */
98 	__le64	db_addr;
99 	/*
100 	 * Special encoded variable
101 	 * 7	1 - Doorbell(db) write
102 	 *	0 - No doorbell write
103 	 * 6:2	Reserved
104 	 * 1:0	00 - 32 bit access, db address must be aligned to 32bit-boundary
105 	 *	01 - 16 bit access, db address must be aligned to 16bit-boundary
106 	 *	10 - 8 bit access, db address must be aligned to 8bit-boundary
107 	 *	11 - Reserved
108 	 */
109 	__u8	db_len;
110 	__u8	resv3;
111 	__le16	resv4;
112 	/* 32 bit data written to doorbell address */
113 	__le32	db_data;
114 	/*
115 	 * Special encoded variable
116 	 * All the fields of sem_cmdX are passed from user and all are ORed
117 	 * together to form sem_cmd.
118 	 * 0:11		Semaphore value
119 	 * 15:12	Reserved
120 	 * 20:16	Semaphore index
121 	 * 21		Reserved
122 	 * 22		Semaphore Sync
123 	 * 23		Reserved
124 	 * 26:24	Semaphore command
125 	 * 28:27	Reserved
126 	 * 29		Semaphore DMA out bound sync fence
127 	 * 30		Semaphore DMA in bound sync fence
128 	 * 31		Enable semaphore command
129 	 */
130 	__le32	sem_cmd0;
131 	__le32	sem_cmd1;
132 	__le32	sem_cmd2;
133 	__le32	sem_cmd3;
134 } __packed;
135 
136 struct dbc_rsp {
137 	/* Request ID of the memory handle whose DMA transaction is completed */
138 	__le16	req_id;
139 	/* Status of the DMA transaction. 0 : Success otherwise failure */
140 	__le16	status;
141 } __packed;
142 
143 inline int get_dbc_req_elem_size(void)
144 {
145 	return sizeof(struct dbc_req);
146 }
147 
148 inline int get_dbc_rsp_elem_size(void)
149 {
150 	return sizeof(struct dbc_rsp);
151 }
152 
153 static void free_slice(struct kref *kref)
154 {
155 	struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
156 
157 	list_del(&slice->slice);
158 	drm_gem_object_put(&slice->bo->base);
159 	sg_free_table(slice->sgt);
160 	kfree(slice->sgt);
161 	kfree(slice->reqs);
162 	kfree(slice);
163 }
164 
165 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
166 					struct sg_table *sgt_in, u64 size, u64 offset)
167 {
168 	int total_len, len, nents, offf = 0, offl = 0;
169 	struct scatterlist *sg, *sgn, *sgf, *sgl;
170 	struct sg_table *sgt;
171 	int ret, j;
172 
173 	/* find out number of relevant nents needed for this mem */
174 	total_len = 0;
175 	sgf = NULL;
176 	sgl = NULL;
177 	nents = 0;
178 
179 	size = size ? size : PAGE_SIZE;
180 	for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
181 		len = sg_dma_len(sg);
182 
183 		if (!len)
184 			continue;
185 		if (offset >= total_len && offset < total_len + len) {
186 			sgf = sg;
187 			offf = offset - total_len;
188 		}
189 		if (sgf)
190 			nents++;
191 		if (offset + size >= total_len &&
192 		    offset + size <= total_len + len) {
193 			sgl = sg;
194 			offl = offset + size - total_len;
195 			break;
196 		}
197 		total_len += len;
198 	}
199 
200 	if (!sgf || !sgl) {
201 		ret = -EINVAL;
202 		goto out;
203 	}
204 
205 	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
206 	if (!sgt) {
207 		ret = -ENOMEM;
208 		goto out;
209 	}
210 
211 	ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
212 	if (ret)
213 		goto free_sgt;
214 
215 	/* copy relevant sg node and fix page and length */
216 	sgn = sgf;
217 	for_each_sgtable_sg(sgt, sg, j) {
218 		memcpy(sg, sgn, sizeof(*sg));
219 		if (sgn == sgf) {
220 			sg_dma_address(sg) += offf;
221 			sg_dma_len(sg) -= offf;
222 			sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
223 		} else {
224 			offf = 0;
225 		}
226 		if (sgn == sgl) {
227 			sg_dma_len(sg) = offl - offf;
228 			sg_set_page(sg, sg_page(sgn), offl - offf, offf);
229 			sg_mark_end(sg);
230 			break;
231 		}
232 		sgn = sg_next(sgn);
233 	}
234 
235 	*sgt_out = sgt;
236 	return ret;
237 
238 free_sgt:
239 	kfree(sgt);
240 out:
241 	*sgt_out = NULL;
242 	return ret;
243 }
244 
245 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
246 		       struct qaic_attach_slice_entry *req)
247 {
248 	__le64 db_addr = cpu_to_le64(req->db_addr);
249 	__le32 db_data = cpu_to_le32(req->db_data);
250 	struct scatterlist *sg;
251 	__u8 cmd = BULK_XFER;
252 	int presync_sem;
253 	u64 dev_addr;
254 	__u8 db_len;
255 	int i;
256 
257 	if (!slice->no_xfer)
258 		cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
259 
260 	if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
261 		return -EINVAL;
262 
263 	presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
264 	if (presync_sem > 1)
265 		return -EINVAL;
266 
267 	presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
268 		      req->sem2.presync << 2 | req->sem3.presync << 3;
269 
270 	switch (req->db_len) {
271 	case 32:
272 		db_len = BIT(7);
273 		break;
274 	case 16:
275 		db_len = BIT(7) | 1;
276 		break;
277 	case 8:
278 		db_len = BIT(7) | 2;
279 		break;
280 	case 0:
281 		db_len = 0; /* doorbell is not active for this command */
282 		break;
283 	default:
284 		return -EINVAL; /* should never hit this */
285 	}
286 
287 	/*
288 	 * When we end up splitting up a single request (ie a buf slice) into
289 	 * multiple DMA requests, we have to manage the sync data carefully.
290 	 * There can only be one presync sem. That needs to be on every xfer
291 	 * so that the DMA engine doesn't transfer data before the receiver is
292 	 * ready. We only do the doorbell and postsync sems after the xfer.
293 	 * To guarantee previous xfers for the request are complete, we use a
294 	 * fence.
295 	 */
296 	dev_addr = req->dev_addr;
297 	for_each_sgtable_sg(slice->sgt, sg, i) {
298 		slice->reqs[i].cmd = cmd;
299 		slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
300 						      sg_dma_address(sg) : dev_addr);
301 		slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302 						       dev_addr : sg_dma_address(sg));
303 		/*
304 		 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
305 		 * segment size is set to UINT_MAX by qaic and hence return
306 		 * values of sg_dma_len(sg) can never exceed u32 range. So,
307 		 * by down sizing we are not corrupting the value.
308 		 */
309 		slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
310 		switch (presync_sem) {
311 		case BIT(0):
312 			slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
313 									 req->sem0.index,
314 									 req->sem0.presync,
315 									 req->sem0.cmd,
316 									 req->sem0.flags));
317 			break;
318 		case BIT(1):
319 			slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
320 									 req->sem1.index,
321 									 req->sem1.presync,
322 									 req->sem1.cmd,
323 									 req->sem1.flags));
324 			break;
325 		case BIT(2):
326 			slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
327 									 req->sem2.index,
328 									 req->sem2.presync,
329 									 req->sem2.cmd,
330 									 req->sem2.flags));
331 			break;
332 		case BIT(3):
333 			slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
334 									 req->sem3.index,
335 									 req->sem3.presync,
336 									 req->sem3.cmd,
337 									 req->sem3.flags));
338 			break;
339 		}
340 		dev_addr += sg_dma_len(sg);
341 	}
342 	/* add post transfer stuff to last segment */
343 	i--;
344 	slice->reqs[i].cmd |= GEN_COMPLETION;
345 	slice->reqs[i].db_addr = db_addr;
346 	slice->reqs[i].db_len = db_len;
347 	slice->reqs[i].db_data = db_data;
348 	/*
349 	 * Add a fence if we have more than one request going to the hardware
350 	 * representing the entirety of the user request, and the user request
351 	 * has no presync condition.
352 	 * Fences are expensive, so we try to avoid them. We rely on the
353 	 * hardware behavior to avoid needing one when there is a presync
354 	 * condition. When a presync exists, all requests for that same
355 	 * presync will be queued into a fifo. Thus, since we queue the
356 	 * post xfer activity only on the last request we queue, the hardware
357 	 * will ensure that the last queued request is processed last, thus
358 	 * making sure the post xfer activity happens at the right time without
359 	 * a fence.
360 	 */
361 	if (i && !presync_sem)
362 		req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
363 				    QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
364 	slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
365 							 req->sem0.presync, req->sem0.cmd,
366 							 req->sem0.flags));
367 	slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
368 							 req->sem1.presync, req->sem1.cmd,
369 							 req->sem1.flags));
370 	slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
371 							 req->sem2.presync, req->sem2.cmd,
372 							 req->sem2.flags));
373 	slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
374 							 req->sem3.presync, req->sem3.cmd,
375 							 req->sem3.flags));
376 
377 	return 0;
378 }
379 
380 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
381 			      struct qaic_attach_slice_entry *slice_ent)
382 {
383 	struct sg_table *sgt = NULL;
384 	struct bo_slice *slice;
385 	int ret;
386 
387 	ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
388 	if (ret)
389 		goto out;
390 
391 	slice = kmalloc(sizeof(*slice), GFP_KERNEL);
392 	if (!slice) {
393 		ret = -ENOMEM;
394 		goto free_sgt;
395 	}
396 
397 	slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
398 	if (!slice->reqs) {
399 		ret = -ENOMEM;
400 		goto free_slice;
401 	}
402 
403 	slice->no_xfer = !slice_ent->size;
404 	slice->sgt = sgt;
405 	slice->nents = sgt->nents;
406 	slice->dir = bo->dir;
407 	slice->bo = bo;
408 	slice->size = slice_ent->size;
409 	slice->offset = slice_ent->offset;
410 
411 	ret = encode_reqs(qdev, slice, slice_ent);
412 	if (ret)
413 		goto free_req;
414 
415 	bo->total_slice_nents += sgt->nents;
416 	kref_init(&slice->ref_count);
417 	drm_gem_object_get(&bo->base);
418 	list_add_tail(&slice->slice, &bo->slices);
419 
420 	return 0;
421 
422 free_req:
423 	kfree(slice->reqs);
424 free_slice:
425 	kfree(slice);
426 free_sgt:
427 	sg_free_table(sgt);
428 	kfree(sgt);
429 out:
430 	return ret;
431 }
432 
433 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
434 {
435 	struct scatterlist *sg;
436 	struct sg_table *sgt;
437 	struct page **pages;
438 	int *pages_order;
439 	int buf_extra;
440 	int max_order;
441 	int nr_pages;
442 	int ret = 0;
443 	int i, j, k;
444 	int order;
445 
446 	if (size) {
447 		nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
448 		/*
449 		 * calculate how much extra we are going to allocate, to remove
450 		 * later
451 		 */
452 		buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
453 		max_order = min(MAX_ORDER - 1, get_order(size));
454 	} else {
455 		/* allocate a single page for book keeping */
456 		nr_pages = 1;
457 		buf_extra = 0;
458 		max_order = 0;
459 	}
460 
461 	pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
462 	if (!pages) {
463 		ret = -ENOMEM;
464 		goto out;
465 	}
466 	pages_order = (void *)pages + sizeof(*pages) * nr_pages;
467 
468 	/*
469 	 * Allocate requested memory using alloc_pages. It is possible to allocate
470 	 * the requested memory in multiple chunks by calling alloc_pages
471 	 * multiple times. Use SG table to handle multiple allocated pages.
472 	 */
473 	i = 0;
474 	while (nr_pages > 0) {
475 		order = min(get_order(nr_pages * PAGE_SIZE), max_order);
476 		while (1) {
477 			pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
478 					       __GFP_NOWARN | __GFP_ZERO |
479 					       (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
480 					       order);
481 			if (pages[i])
482 				break;
483 			if (!order--) {
484 				ret = -ENOMEM;
485 				goto free_partial_alloc;
486 			}
487 		}
488 
489 		max_order = order;
490 		pages_order[i] = order;
491 
492 		nr_pages -= 1 << order;
493 		if (nr_pages <= 0)
494 			/* account for over allocation */
495 			buf_extra += abs(nr_pages) * PAGE_SIZE;
496 		i++;
497 	}
498 
499 	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
500 	if (!sgt) {
501 		ret = -ENOMEM;
502 		goto free_partial_alloc;
503 	}
504 
505 	if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
506 		ret = -ENOMEM;
507 		goto free_sgt;
508 	}
509 
510 	/* Populate the SG table with the allocated memory pages */
511 	sg = sgt->sgl;
512 	for (k = 0; k < i; k++, sg = sg_next(sg)) {
513 		/* Last entry requires special handling */
514 		if (k < i - 1) {
515 			sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
516 		} else {
517 			sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
518 			sg_mark_end(sg);
519 		}
520 	}
521 
522 	kvfree(pages);
523 	*sgt_out = sgt;
524 	return ret;
525 
526 free_sgt:
527 	kfree(sgt);
528 free_partial_alloc:
529 	for (j = 0; j < i; j++)
530 		__free_pages(pages[j], pages_order[j]);
531 	kvfree(pages);
532 out:
533 	*sgt_out = NULL;
534 	return ret;
535 }
536 
537 static bool invalid_sem(struct qaic_sem *sem)
538 {
539 	if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
540 	    !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
541 	    sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
542 	    sem->cmd > QAIC_SEM_WAIT_GT_0)
543 		return true;
544 	return false;
545 }
546 
547 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
548 			     u32 count, u64 total_size)
549 {
550 	int i;
551 
552 	for (i = 0; i < count; i++) {
553 		if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
554 		      slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
555 		      invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
556 		      invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
557 			return -EINVAL;
558 
559 		if (slice_ent[i].offset + slice_ent[i].size > total_size)
560 			return -EINVAL;
561 	}
562 
563 	return 0;
564 }
565 
566 static void qaic_free_sgt(struct sg_table *sgt)
567 {
568 	struct scatterlist *sg;
569 
570 	for (sg = sgt->sgl; sg; sg = sg_next(sg))
571 		if (sg_page(sg))
572 			__free_pages(sg_page(sg), get_order(sg->length));
573 	sg_free_table(sgt);
574 	kfree(sgt);
575 }
576 
577 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
578 				const struct drm_gem_object *obj)
579 {
580 	struct qaic_bo *bo = to_qaic_bo(obj);
581 
582 	drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
583 }
584 
585 static const struct vm_operations_struct drm_vm_ops = {
586 	.open = drm_gem_vm_open,
587 	.close = drm_gem_vm_close,
588 };
589 
590 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
591 {
592 	struct qaic_bo *bo = to_qaic_bo(obj);
593 	unsigned long offset = 0;
594 	struct scatterlist *sg;
595 	int ret = 0;
596 
597 	if (obj->import_attach)
598 		return -EINVAL;
599 
600 	for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
601 		if (sg_page(sg)) {
602 			ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
603 					      sg->length, vma->vm_page_prot);
604 			if (ret)
605 				goto out;
606 			offset += sg->length;
607 		}
608 	}
609 
610 out:
611 	return ret;
612 }
613 
614 static void qaic_free_object(struct drm_gem_object *obj)
615 {
616 	struct qaic_bo *bo = to_qaic_bo(obj);
617 
618 	if (obj->import_attach) {
619 		/* DMABUF/PRIME Path */
620 		drm_prime_gem_destroy(obj, NULL);
621 	} else {
622 		/* Private buffer allocation path */
623 		qaic_free_sgt(bo->sgt);
624 	}
625 
626 	drm_gem_object_release(obj);
627 	kfree(bo);
628 }
629 
630 static const struct drm_gem_object_funcs qaic_gem_funcs = {
631 	.free = qaic_free_object,
632 	.print_info = qaic_gem_print_info,
633 	.mmap = qaic_gem_object_mmap,
634 	.vm_ops = &drm_vm_ops,
635 };
636 
637 static struct qaic_bo *qaic_alloc_init_bo(void)
638 {
639 	struct qaic_bo *bo;
640 
641 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
642 	if (!bo)
643 		return ERR_PTR(-ENOMEM);
644 
645 	INIT_LIST_HEAD(&bo->slices);
646 	init_completion(&bo->xfer_done);
647 	complete_all(&bo->xfer_done);
648 
649 	return bo;
650 }
651 
652 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
653 {
654 	struct qaic_create_bo *args = data;
655 	int usr_rcu_id, qdev_rcu_id;
656 	struct drm_gem_object *obj;
657 	struct qaic_device *qdev;
658 	struct qaic_user *usr;
659 	struct qaic_bo *bo;
660 	size_t size;
661 	int ret;
662 
663 	if (args->pad)
664 		return -EINVAL;
665 
666 	size = PAGE_ALIGN(args->size);
667 	if (size == 0)
668 		return -EINVAL;
669 
670 	usr = file_priv->driver_priv;
671 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
672 	if (!usr->qddev) {
673 		ret = -ENODEV;
674 		goto unlock_usr_srcu;
675 	}
676 
677 	qdev = usr->qddev->qdev;
678 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
679 	if (qdev->in_reset) {
680 		ret = -ENODEV;
681 		goto unlock_dev_srcu;
682 	}
683 
684 	bo = qaic_alloc_init_bo();
685 	if (IS_ERR(bo)) {
686 		ret = PTR_ERR(bo);
687 		goto unlock_dev_srcu;
688 	}
689 	obj = &bo->base;
690 
691 	drm_gem_private_object_init(dev, obj, size);
692 
693 	obj->funcs = &qaic_gem_funcs;
694 	ret = create_sgt(qdev, &bo->sgt, size);
695 	if (ret)
696 		goto free_bo;
697 
698 	bo->size = args->size;
699 
700 	ret = drm_gem_handle_create(file_priv, obj, &args->handle);
701 	if (ret)
702 		goto free_sgt;
703 
704 	bo->handle = args->handle;
705 	drm_gem_object_put(obj);
706 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
707 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
708 
709 	return 0;
710 
711 free_sgt:
712 	qaic_free_sgt(bo->sgt);
713 free_bo:
714 	kfree(bo);
715 unlock_dev_srcu:
716 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
717 unlock_usr_srcu:
718 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
719 	return ret;
720 }
721 
722 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
723 {
724 	struct qaic_mmap_bo *args = data;
725 	int usr_rcu_id, qdev_rcu_id;
726 	struct drm_gem_object *obj;
727 	struct qaic_device *qdev;
728 	struct qaic_user *usr;
729 	int ret;
730 
731 	usr = file_priv->driver_priv;
732 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
733 	if (!usr->qddev) {
734 		ret = -ENODEV;
735 		goto unlock_usr_srcu;
736 	}
737 
738 	qdev = usr->qddev->qdev;
739 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
740 	if (qdev->in_reset) {
741 		ret = -ENODEV;
742 		goto unlock_dev_srcu;
743 	}
744 
745 	obj = drm_gem_object_lookup(file_priv, args->handle);
746 	if (!obj) {
747 		ret = -ENOENT;
748 		goto unlock_dev_srcu;
749 	}
750 
751 	ret = drm_gem_create_mmap_offset(obj);
752 	if (ret == 0)
753 		args->offset = drm_vma_node_offset_addr(&obj->vma_node);
754 
755 	drm_gem_object_put(obj);
756 
757 unlock_dev_srcu:
758 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
759 unlock_usr_srcu:
760 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
761 	return ret;
762 }
763 
764 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
765 {
766 	struct dma_buf_attachment *attach;
767 	struct drm_gem_object *obj;
768 	struct qaic_bo *bo;
769 	size_t size;
770 	int ret;
771 
772 	bo = qaic_alloc_init_bo();
773 	if (IS_ERR(bo)) {
774 		ret = PTR_ERR(bo);
775 		goto out;
776 	}
777 
778 	obj = &bo->base;
779 	get_dma_buf(dma_buf);
780 
781 	attach = dma_buf_attach(dma_buf, dev->dev);
782 	if (IS_ERR(attach)) {
783 		ret = PTR_ERR(attach);
784 		goto attach_fail;
785 	}
786 
787 	size = PAGE_ALIGN(attach->dmabuf->size);
788 	if (size == 0) {
789 		ret = -EINVAL;
790 		goto size_align_fail;
791 	}
792 
793 	drm_gem_private_object_init(dev, obj, size);
794 	/*
795 	 * skipping dma_buf_map_attachment() as we do not know the direction
796 	 * just yet. Once the direction is known in the subsequent IOCTL to
797 	 * attach slicing, we can do it then.
798 	 */
799 
800 	obj->funcs = &qaic_gem_funcs;
801 	obj->import_attach = attach;
802 	obj->resv = dma_buf->resv;
803 
804 	return obj;
805 
806 size_align_fail:
807 	dma_buf_detach(dma_buf, attach);
808 attach_fail:
809 	dma_buf_put(dma_buf);
810 	kfree(bo);
811 out:
812 	return ERR_PTR(ret);
813 }
814 
815 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
816 {
817 	struct drm_gem_object *obj = &bo->base;
818 	struct sg_table *sgt;
819 	int ret;
820 
821 	if (obj->import_attach->dmabuf->size < hdr->size)
822 		return -EINVAL;
823 
824 	sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
825 	if (IS_ERR(sgt)) {
826 		ret = PTR_ERR(sgt);
827 		return ret;
828 	}
829 
830 	bo->sgt = sgt;
831 	bo->size = hdr->size;
832 
833 	return 0;
834 }
835 
836 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
837 				  struct qaic_attach_slice_hdr *hdr)
838 {
839 	int ret;
840 
841 	if (bo->size != hdr->size)
842 		return -EINVAL;
843 
844 	ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
845 	if (ret)
846 		return -EFAULT;
847 
848 	return 0;
849 }
850 
851 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
852 			   struct qaic_attach_slice_hdr *hdr)
853 {
854 	int ret;
855 
856 	if (bo->base.import_attach)
857 		ret = qaic_prepare_import_bo(bo, hdr);
858 	else
859 		ret = qaic_prepare_export_bo(qdev, bo, hdr);
860 
861 	if (ret == 0)
862 		bo->dir = hdr->dir;
863 
864 	return ret;
865 }
866 
867 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
868 {
869 	dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
870 	bo->sgt = NULL;
871 	bo->size = 0;
872 }
873 
874 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
875 {
876 	dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
877 }
878 
879 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
880 {
881 	if (bo->base.import_attach)
882 		qaic_unprepare_import_bo(bo);
883 	else
884 		qaic_unprepare_export_bo(qdev, bo);
885 
886 	bo->dir = 0;
887 }
888 
889 static void qaic_free_slices_bo(struct qaic_bo *bo)
890 {
891 	struct bo_slice *slice, *temp;
892 
893 	list_for_each_entry_safe(slice, temp, &bo->slices, slice)
894 		kref_put(&slice->ref_count, free_slice);
895 }
896 
897 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
898 				  struct qaic_attach_slice_hdr *hdr,
899 				  struct qaic_attach_slice_entry *slice_ent)
900 {
901 	int ret, i;
902 
903 	for (i = 0; i < hdr->count; i++) {
904 		ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
905 		if (ret) {
906 			qaic_free_slices_bo(bo);
907 			return ret;
908 		}
909 	}
910 
911 	if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
912 		qaic_free_slices_bo(bo);
913 		return -ENOSPC;
914 	}
915 
916 	bo->sliced = true;
917 	bo->nr_slice = hdr->count;
918 	list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
919 
920 	return 0;
921 }
922 
923 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
924 {
925 	struct qaic_attach_slice_entry *slice_ent;
926 	struct qaic_attach_slice *args = data;
927 	int rcu_id, usr_rcu_id, qdev_rcu_id;
928 	struct dma_bridge_chan	*dbc;
929 	struct drm_gem_object *obj;
930 	struct qaic_device *qdev;
931 	unsigned long arg_size;
932 	struct qaic_user *usr;
933 	u8 __user *user_data;
934 	struct qaic_bo *bo;
935 	int ret;
936 
937 	if (args->hdr.count == 0)
938 		return -EINVAL;
939 
940 	arg_size = args->hdr.count * sizeof(*slice_ent);
941 	if (arg_size / args->hdr.count != sizeof(*slice_ent))
942 		return -EINVAL;
943 
944 	if (args->hdr.size == 0)
945 		return -EINVAL;
946 
947 	if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
948 		return -EINVAL;
949 
950 	if (args->data == 0)
951 		return -EINVAL;
952 
953 	usr = file_priv->driver_priv;
954 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
955 	if (!usr->qddev) {
956 		ret = -ENODEV;
957 		goto unlock_usr_srcu;
958 	}
959 
960 	qdev = usr->qddev->qdev;
961 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
962 	if (qdev->in_reset) {
963 		ret = -ENODEV;
964 		goto unlock_dev_srcu;
965 	}
966 
967 	if (args->hdr.dbc_id >= qdev->num_dbc) {
968 		ret = -EINVAL;
969 		goto unlock_dev_srcu;
970 	}
971 
972 	user_data = u64_to_user_ptr(args->data);
973 
974 	slice_ent = kzalloc(arg_size, GFP_KERNEL);
975 	if (!slice_ent) {
976 		ret = -EINVAL;
977 		goto unlock_dev_srcu;
978 	}
979 
980 	ret = copy_from_user(slice_ent, user_data, arg_size);
981 	if (ret) {
982 		ret = -EFAULT;
983 		goto free_slice_ent;
984 	}
985 
986 	ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
987 	if (ret)
988 		goto free_slice_ent;
989 
990 	obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
991 	if (!obj) {
992 		ret = -ENOENT;
993 		goto free_slice_ent;
994 	}
995 
996 	bo = to_qaic_bo(obj);
997 
998 	if (bo->sliced) {
999 		ret = -EINVAL;
1000 		goto put_bo;
1001 	}
1002 
1003 	dbc = &qdev->dbc[args->hdr.dbc_id];
1004 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1005 	if (dbc->usr != usr) {
1006 		ret = -EINVAL;
1007 		goto unlock_ch_srcu;
1008 	}
1009 
1010 	ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1011 	if (ret)
1012 		goto unlock_ch_srcu;
1013 
1014 	ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1015 	if (ret)
1016 		goto unprepare_bo;
1017 
1018 	if (args->hdr.dir == DMA_TO_DEVICE)
1019 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1020 
1021 	bo->dbc = dbc;
1022 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1023 	drm_gem_object_put(obj);
1024 	kfree(slice_ent);
1025 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1026 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1027 
1028 	return 0;
1029 
1030 unprepare_bo:
1031 	qaic_unprepare_bo(qdev, bo);
1032 unlock_ch_srcu:
1033 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1034 put_bo:
1035 	drm_gem_object_put(obj);
1036 free_slice_ent:
1037 	kfree(slice_ent);
1038 unlock_dev_srcu:
1039 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1040 unlock_usr_srcu:
1041 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1042 	return ret;
1043 }
1044 
1045 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1046 				 u32 head, u32 *ptail)
1047 {
1048 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1049 	struct dbc_req *reqs = slice->reqs;
1050 	u32 tail = *ptail;
1051 	u32 avail;
1052 
1053 	avail = head - tail;
1054 	if (head <= tail)
1055 		avail += dbc->nelem;
1056 
1057 	--avail;
1058 
1059 	if (avail < slice->nents)
1060 		return -EAGAIN;
1061 
1062 	if (tail + slice->nents > dbc->nelem) {
1063 		avail = dbc->nelem - tail;
1064 		avail = min_t(u32, avail, slice->nents);
1065 		memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1066 		       sizeof(*reqs) * avail);
1067 		reqs += avail;
1068 		avail = slice->nents - avail;
1069 		if (avail)
1070 			memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1071 	} else {
1072 		memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1073 		       sizeof(*reqs) * slice->nents);
1074 	}
1075 
1076 	*ptail = (tail + slice->nents) % dbc->nelem;
1077 
1078 	return 0;
1079 }
1080 
1081 /*
1082  * Based on the value of resize we may only need to transmit first_n
1083  * entries and the last entry, with last_bytes to send from the last entry.
1084  * Note that first_n could be 0.
1085  */
1086 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1087 					 u64 resize, u32 dbc_id, u32 head, u32 *ptail)
1088 {
1089 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1090 	struct dbc_req *reqs = slice->reqs;
1091 	struct dbc_req *last_req;
1092 	u32 tail = *ptail;
1093 	u64 total_bytes;
1094 	u64 last_bytes;
1095 	u32 first_n;
1096 	u32 avail;
1097 	int ret;
1098 	int i;
1099 
1100 	avail = head - tail;
1101 	if (head <= tail)
1102 		avail += dbc->nelem;
1103 
1104 	--avail;
1105 
1106 	total_bytes = 0;
1107 	for (i = 0; i < slice->nents; i++) {
1108 		total_bytes += le32_to_cpu(reqs[i].len);
1109 		if (total_bytes >= resize)
1110 			break;
1111 	}
1112 
1113 	if (total_bytes < resize) {
1114 		/* User space should have used the full buffer path. */
1115 		ret = -EINVAL;
1116 		return ret;
1117 	}
1118 
1119 	first_n = i;
1120 	last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
1121 
1122 	if (avail < (first_n + 1))
1123 		return -EAGAIN;
1124 
1125 	if (first_n) {
1126 		if (tail + first_n > dbc->nelem) {
1127 			avail = dbc->nelem - tail;
1128 			avail = min_t(u32, avail, first_n);
1129 			memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1130 			       sizeof(*reqs) * avail);
1131 			last_req = reqs + avail;
1132 			avail = first_n - avail;
1133 			if (avail)
1134 				memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1135 		} else {
1136 			memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1137 			       sizeof(*reqs) * first_n);
1138 		}
1139 	}
1140 
1141 	/* Copy over the last entry. Here we need to adjust len to the left over
1142 	 * size, and set src and dst to the entry it is copied to.
1143 	 */
1144 	last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
1145 	memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1146 
1147 	/*
1148 	 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1149 	 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1150 	 * range. So, by down sizing we are not corrupting the value.
1151 	 */
1152 	last_req->len = cpu_to_le32((u32)last_bytes);
1153 	last_req->src_addr = reqs[first_n].src_addr;
1154 	last_req->dest_addr = reqs[first_n].dest_addr;
1155 
1156 	*ptail = (tail + first_n + 1) % dbc->nelem;
1157 
1158 	return 0;
1159 }
1160 
1161 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1162 				  struct qaic_execute_entry *exec, unsigned int count,
1163 				  bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1164 				  u32 *tail)
1165 {
1166 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1167 	struct drm_gem_object *obj;
1168 	struct bo_slice *slice;
1169 	unsigned long flags;
1170 	struct qaic_bo *bo;
1171 	bool queued;
1172 	int i, j;
1173 	int ret;
1174 
1175 	for (i = 0; i < count; i++) {
1176 		/*
1177 		 * ref count will be decremented when the transfer of this
1178 		 * buffer is complete. It is inside dbc_irq_threaded_fn().
1179 		 */
1180 		obj = drm_gem_object_lookup(file_priv,
1181 					    is_partial ? pexec[i].handle : exec[i].handle);
1182 		if (!obj) {
1183 			ret = -ENOENT;
1184 			goto failed_to_send_bo;
1185 		}
1186 
1187 		bo = to_qaic_bo(obj);
1188 
1189 		if (!bo->sliced) {
1190 			ret = -EINVAL;
1191 			goto failed_to_send_bo;
1192 		}
1193 
1194 		if (is_partial && pexec[i].resize > bo->size) {
1195 			ret = -EINVAL;
1196 			goto failed_to_send_bo;
1197 		}
1198 
1199 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1200 		queued = bo->queued;
1201 		bo->queued = true;
1202 		if (queued) {
1203 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1204 			ret = -EINVAL;
1205 			goto failed_to_send_bo;
1206 		}
1207 
1208 		bo->req_id = dbc->next_req_id++;
1209 
1210 		list_for_each_entry(slice, &bo->slices, slice) {
1211 			/*
1212 			 * If this slice does not fall under the given
1213 			 * resize then skip this slice and continue the loop
1214 			 */
1215 			if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
1216 				continue;
1217 
1218 			for (j = 0; j < slice->nents; j++)
1219 				slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1220 
1221 			/*
1222 			 * If it is a partial execute ioctl call then check if
1223 			 * resize has cut this slice short then do a partial copy
1224 			 * else do complete copy
1225 			 */
1226 			if (is_partial && pexec[i].resize &&
1227 			    pexec[i].resize < slice->offset + slice->size)
1228 				ret = copy_partial_exec_reqs(qdev, slice,
1229 							     pexec[i].resize - slice->offset,
1230 							     dbc->id, head, tail);
1231 			else
1232 				ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1233 			if (ret) {
1234 				bo->queued = false;
1235 				spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1236 				goto failed_to_send_bo;
1237 			}
1238 		}
1239 		reinit_completion(&bo->xfer_done);
1240 		list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1241 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1242 		dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1243 	}
1244 
1245 	return 0;
1246 
1247 failed_to_send_bo:
1248 	if (likely(obj))
1249 		drm_gem_object_put(obj);
1250 	for (j = 0; j < i; j++) {
1251 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1252 		bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1253 		obj = &bo->base;
1254 		bo->queued = false;
1255 		list_del(&bo->xfer_list);
1256 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1257 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1258 		drm_gem_object_put(obj);
1259 	}
1260 	return ret;
1261 }
1262 
1263 static void update_profiling_data(struct drm_file *file_priv,
1264 				  struct qaic_execute_entry *exec, unsigned int count,
1265 				  bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1266 {
1267 	struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1268 	struct drm_gem_object *obj;
1269 	struct qaic_bo *bo;
1270 	int i;
1271 
1272 	for (i = 0; i < count; i++) {
1273 		/*
1274 		 * Since we already committed the BO to hardware, the only way
1275 		 * this should fail is a pending signal. We can't cancel the
1276 		 * submit to hardware, so we have to just skip the profiling
1277 		 * data. In case the signal is not fatal to the process, we
1278 		 * return success so that the user doesn't try to resubmit.
1279 		 */
1280 		obj = drm_gem_object_lookup(file_priv,
1281 					    is_partial ? pexec[i].handle : exec[i].handle);
1282 		if (!obj)
1283 			break;
1284 		bo = to_qaic_bo(obj);
1285 		bo->perf_stats.req_received_ts = received_ts;
1286 		bo->perf_stats.req_submit_ts = submit_ts;
1287 		bo->perf_stats.queue_level_before = queue_level;
1288 		queue_level += bo->total_slice_nents;
1289 		drm_gem_object_put(obj);
1290 	}
1291 }
1292 
1293 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1294 				   bool is_partial)
1295 {
1296 	struct qaic_execute *args = data;
1297 	struct qaic_execute_entry *exec;
1298 	struct dma_bridge_chan *dbc;
1299 	int usr_rcu_id, qdev_rcu_id;
1300 	struct qaic_device *qdev;
1301 	struct qaic_user *usr;
1302 	u8 __user *user_data;
1303 	unsigned long n;
1304 	u64 received_ts;
1305 	u32 queue_level;
1306 	u64 submit_ts;
1307 	int rcu_id;
1308 	u32 head;
1309 	u32 tail;
1310 	u64 size;
1311 	int ret;
1312 
1313 	received_ts = ktime_get_ns();
1314 
1315 	size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1316 	n = (unsigned long)size * args->hdr.count;
1317 	if (args->hdr.count == 0 || n / args->hdr.count != size)
1318 		return -EINVAL;
1319 
1320 	user_data = u64_to_user_ptr(args->data);
1321 
1322 	exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1323 	if (!exec)
1324 		return -ENOMEM;
1325 
1326 	if (copy_from_user(exec, user_data, n)) {
1327 		ret = -EFAULT;
1328 		goto free_exec;
1329 	}
1330 
1331 	usr = file_priv->driver_priv;
1332 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1333 	if (!usr->qddev) {
1334 		ret = -ENODEV;
1335 		goto unlock_usr_srcu;
1336 	}
1337 
1338 	qdev = usr->qddev->qdev;
1339 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1340 	if (qdev->in_reset) {
1341 		ret = -ENODEV;
1342 		goto unlock_dev_srcu;
1343 	}
1344 
1345 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1346 		ret = -EINVAL;
1347 		goto unlock_dev_srcu;
1348 	}
1349 
1350 	dbc = &qdev->dbc[args->hdr.dbc_id];
1351 
1352 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1353 	if (!dbc->usr || dbc->usr->handle != usr->handle) {
1354 		ret = -EPERM;
1355 		goto release_ch_rcu;
1356 	}
1357 
1358 	head = readl(dbc->dbc_base + REQHP_OFF);
1359 	tail = readl(dbc->dbc_base + REQTP_OFF);
1360 
1361 	if (head == U32_MAX || tail == U32_MAX) {
1362 		/* PCI link error */
1363 		ret = -ENODEV;
1364 		goto release_ch_rcu;
1365 	}
1366 
1367 	queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1368 
1369 	ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1370 				     head, &tail);
1371 	if (ret)
1372 		goto release_ch_rcu;
1373 
1374 	/* Finalize commit to hardware */
1375 	submit_ts = ktime_get_ns();
1376 	writel(tail, dbc->dbc_base + REQTP_OFF);
1377 
1378 	update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1379 			      submit_ts, queue_level);
1380 
1381 	if (datapath_polling)
1382 		schedule_work(&dbc->poll_work);
1383 
1384 release_ch_rcu:
1385 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1386 unlock_dev_srcu:
1387 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1388 unlock_usr_srcu:
1389 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1390 free_exec:
1391 	kfree(exec);
1392 	return ret;
1393 }
1394 
1395 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1396 {
1397 	return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1398 }
1399 
1400 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1401 {
1402 	return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1403 }
1404 
1405 /*
1406  * Our interrupt handling is a bit more complicated than a simple ideal, but
1407  * sadly necessary.
1408  *
1409  * Each dbc has a completion queue. Entries in the queue correspond to DMA
1410  * requests which the device has processed. The hardware already has a built
1411  * in irq mitigation. When the device puts an entry into the queue, it will
1412  * only trigger an interrupt if the queue was empty. Therefore, when adding
1413  * the Nth event to a non-empty queue, the hardware doesn't trigger an
1414  * interrupt. This means the host doesn't get additional interrupts signaling
1415  * the same thing - the queue has something to process.
1416  * This behavior can be overridden in the DMA request.
1417  * This means that when the host receives an interrupt, it is required to
1418  * drain the queue.
1419  *
1420  * This behavior is what NAPI attempts to accomplish, although we can't use
1421  * NAPI as we don't have a netdev. We use threaded irqs instead.
1422  *
1423  * However, there is a situation where the host drains the queue fast enough
1424  * that every event causes an interrupt. Typically this is not a problem as
1425  * the rate of events would be low. However, that is not the case with
1426  * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1427  * lprnet, the host receives roughly 80k interrupts per second from the device
1428  * (per /proc/interrupts). While NAPI documentation indicates the host should
1429  * just chug along, sadly that behavior causes instability in some hosts.
1430  *
1431  * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1432  * key difference is that we will delay after draining the queue for a small
1433  * time to allow additional events to come in via polling. Using the above
1434  * lprnet workload, this reduces the number of interrupts processed from
1435  * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1436  * instability.
1437  */
1438 irqreturn_t dbc_irq_handler(int irq, void *data)
1439 {
1440 	struct dma_bridge_chan *dbc = data;
1441 	int rcu_id;
1442 	u32 head;
1443 	u32 tail;
1444 
1445 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1446 
1447 	if (!dbc->usr) {
1448 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1449 		return IRQ_HANDLED;
1450 	}
1451 
1452 	head = readl(dbc->dbc_base + RSPHP_OFF);
1453 	if (head == U32_MAX) { /* PCI link error */
1454 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1455 		return IRQ_NONE;
1456 	}
1457 
1458 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1459 	if (tail == U32_MAX) { /* PCI link error */
1460 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1461 		return IRQ_NONE;
1462 	}
1463 
1464 	if (head == tail) { /* queue empty */
1465 		srcu_read_unlock(&dbc->ch_lock, rcu_id);
1466 		return IRQ_NONE;
1467 	}
1468 
1469 	disable_irq_nosync(irq);
1470 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1471 	return IRQ_WAKE_THREAD;
1472 }
1473 
1474 void irq_polling_work(struct work_struct *work)
1475 {
1476 	struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan,  poll_work);
1477 	unsigned long flags;
1478 	int rcu_id;
1479 	u32 head;
1480 	u32 tail;
1481 
1482 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1483 
1484 	while (1) {
1485 		if (dbc->qdev->in_reset) {
1486 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1487 			return;
1488 		}
1489 		if (!dbc->usr) {
1490 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1491 			return;
1492 		}
1493 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1494 		if (list_empty(&dbc->xfer_list)) {
1495 			spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1496 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1497 			return;
1498 		}
1499 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1500 
1501 		head = readl(dbc->dbc_base + RSPHP_OFF);
1502 		if (head == U32_MAX) { /* PCI link error */
1503 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1504 			return;
1505 		}
1506 
1507 		tail = readl(dbc->dbc_base + RSPTP_OFF);
1508 		if (tail == U32_MAX) { /* PCI link error */
1509 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1510 			return;
1511 		}
1512 
1513 		if (head != tail) {
1514 			irq_wake_thread(dbc->irq, dbc);
1515 			srcu_read_unlock(&dbc->ch_lock, rcu_id);
1516 			return;
1517 		}
1518 
1519 		cond_resched();
1520 		usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1521 	}
1522 }
1523 
1524 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1525 {
1526 	struct dma_bridge_chan *dbc = data;
1527 	int event_count = NUM_EVENTS;
1528 	int delay_count = NUM_DELAYS;
1529 	struct qaic_device *qdev;
1530 	struct qaic_bo *bo, *i;
1531 	struct dbc_rsp *rsp;
1532 	unsigned long flags;
1533 	int rcu_id;
1534 	u16 status;
1535 	u16 req_id;
1536 	u32 head;
1537 	u32 tail;
1538 
1539 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1540 
1541 	head = readl(dbc->dbc_base + RSPHP_OFF);
1542 	if (head == U32_MAX) /* PCI link error */
1543 		goto error_out;
1544 
1545 	qdev = dbc->qdev;
1546 read_fifo:
1547 
1548 	if (!event_count) {
1549 		event_count = NUM_EVENTS;
1550 		cond_resched();
1551 	}
1552 
1553 	/*
1554 	 * if this channel isn't assigned or gets unassigned during processing
1555 	 * we have nothing further to do
1556 	 */
1557 	if (!dbc->usr)
1558 		goto error_out;
1559 
1560 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1561 	if (tail == U32_MAX) /* PCI link error */
1562 		goto error_out;
1563 
1564 	if (head == tail) { /* queue empty */
1565 		if (delay_count) {
1566 			--delay_count;
1567 			usleep_range(100, 200);
1568 			goto read_fifo; /* check for a new event */
1569 		}
1570 		goto normal_out;
1571 	}
1572 
1573 	delay_count = NUM_DELAYS;
1574 	while (head != tail) {
1575 		if (!event_count)
1576 			break;
1577 		--event_count;
1578 		rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1579 		req_id = le16_to_cpu(rsp->req_id);
1580 		status = le16_to_cpu(rsp->status);
1581 		if (status)
1582 			pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1583 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1584 		/*
1585 		 * A BO can receive multiple interrupts, since a BO can be
1586 		 * divided into multiple slices and a buffer receives as many
1587 		 * interrupts as slices. So until it receives interrupts for
1588 		 * all the slices we cannot mark that buffer complete.
1589 		 */
1590 		list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1591 			if (bo->req_id == req_id)
1592 				bo->nr_slice_xfer_done++;
1593 			else
1594 				continue;
1595 
1596 			if (bo->nr_slice_xfer_done < bo->nr_slice)
1597 				break;
1598 
1599 			/*
1600 			 * At this point we have received all the interrupts for
1601 			 * BO, which means BO execution is complete.
1602 			 */
1603 			dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1604 			bo->nr_slice_xfer_done = 0;
1605 			bo->queued = false;
1606 			list_del(&bo->xfer_list);
1607 			bo->perf_stats.req_processed_ts = ktime_get_ns();
1608 			complete_all(&bo->xfer_done);
1609 			drm_gem_object_put(&bo->base);
1610 			break;
1611 		}
1612 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1613 		head = (head + 1) % dbc->nelem;
1614 	}
1615 
1616 	/*
1617 	 * Update the head pointer of response queue and let the device know
1618 	 * that we have consumed elements from the queue.
1619 	 */
1620 	writel(head, dbc->dbc_base + RSPHP_OFF);
1621 
1622 	/* elements might have been put in the queue while we were processing */
1623 	goto read_fifo;
1624 
1625 normal_out:
1626 	if (likely(!datapath_polling))
1627 		enable_irq(irq);
1628 	else
1629 		schedule_work(&dbc->poll_work);
1630 	/* checking the fifo and enabling irqs is a race, missed event check */
1631 	tail = readl(dbc->dbc_base + RSPTP_OFF);
1632 	if (tail != U32_MAX && head != tail) {
1633 		if (likely(!datapath_polling))
1634 			disable_irq_nosync(irq);
1635 		goto read_fifo;
1636 	}
1637 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1638 	return IRQ_HANDLED;
1639 
1640 error_out:
1641 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1642 	if (likely(!datapath_polling))
1643 		enable_irq(irq);
1644 	else
1645 		schedule_work(&dbc->poll_work);
1646 
1647 	return IRQ_HANDLED;
1648 }
1649 
1650 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1651 {
1652 	struct qaic_wait *args = data;
1653 	int usr_rcu_id, qdev_rcu_id;
1654 	struct dma_bridge_chan *dbc;
1655 	struct drm_gem_object *obj;
1656 	struct qaic_device *qdev;
1657 	unsigned long timeout;
1658 	struct qaic_user *usr;
1659 	struct qaic_bo *bo;
1660 	int rcu_id;
1661 	int ret;
1662 
1663 	if (args->pad != 0)
1664 		return -EINVAL;
1665 
1666 	usr = file_priv->driver_priv;
1667 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1668 	if (!usr->qddev) {
1669 		ret = -ENODEV;
1670 		goto unlock_usr_srcu;
1671 	}
1672 
1673 	qdev = usr->qddev->qdev;
1674 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1675 	if (qdev->in_reset) {
1676 		ret = -ENODEV;
1677 		goto unlock_dev_srcu;
1678 	}
1679 
1680 	if (args->dbc_id >= qdev->num_dbc) {
1681 		ret = -EINVAL;
1682 		goto unlock_dev_srcu;
1683 	}
1684 
1685 	dbc = &qdev->dbc[args->dbc_id];
1686 
1687 	rcu_id = srcu_read_lock(&dbc->ch_lock);
1688 	if (dbc->usr != usr) {
1689 		ret = -EPERM;
1690 		goto unlock_ch_srcu;
1691 	}
1692 
1693 	obj = drm_gem_object_lookup(file_priv, args->handle);
1694 	if (!obj) {
1695 		ret = -ENOENT;
1696 		goto unlock_ch_srcu;
1697 	}
1698 
1699 	bo = to_qaic_bo(obj);
1700 	timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1701 	timeout = msecs_to_jiffies(timeout);
1702 	ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1703 	if (!ret) {
1704 		ret = -ETIMEDOUT;
1705 		goto put_obj;
1706 	}
1707 	if (ret > 0)
1708 		ret = 0;
1709 
1710 	if (!dbc->usr)
1711 		ret = -EPERM;
1712 
1713 put_obj:
1714 	drm_gem_object_put(obj);
1715 unlock_ch_srcu:
1716 	srcu_read_unlock(&dbc->ch_lock, rcu_id);
1717 unlock_dev_srcu:
1718 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1719 unlock_usr_srcu:
1720 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1721 	return ret;
1722 }
1723 
1724 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1725 {
1726 	struct qaic_perf_stats_entry *ent = NULL;
1727 	struct qaic_perf_stats *args = data;
1728 	int usr_rcu_id, qdev_rcu_id;
1729 	struct drm_gem_object *obj;
1730 	struct qaic_device *qdev;
1731 	struct qaic_user *usr;
1732 	struct qaic_bo *bo;
1733 	int ret, i;
1734 
1735 	usr = file_priv->driver_priv;
1736 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1737 	if (!usr->qddev) {
1738 		ret = -ENODEV;
1739 		goto unlock_usr_srcu;
1740 	}
1741 
1742 	qdev = usr->qddev->qdev;
1743 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1744 	if (qdev->in_reset) {
1745 		ret = -ENODEV;
1746 		goto unlock_dev_srcu;
1747 	}
1748 
1749 	if (args->hdr.dbc_id >= qdev->num_dbc) {
1750 		ret = -EINVAL;
1751 		goto unlock_dev_srcu;
1752 	}
1753 
1754 	ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1755 	if (!ent) {
1756 		ret = -EINVAL;
1757 		goto unlock_dev_srcu;
1758 	}
1759 
1760 	ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1761 	if (ret) {
1762 		ret = -EFAULT;
1763 		goto free_ent;
1764 	}
1765 
1766 	for (i = 0; i < args->hdr.count; i++) {
1767 		obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1768 		if (!obj) {
1769 			ret = -ENOENT;
1770 			goto free_ent;
1771 		}
1772 		bo = to_qaic_bo(obj);
1773 		/*
1774 		 * perf stats ioctl is called before wait ioctl is complete then
1775 		 * the latency information is invalid.
1776 		 */
1777 		if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1778 			ent[i].device_latency_us = 0;
1779 		} else {
1780 			ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1781 							    bo->perf_stats.req_submit_ts), 1000);
1782 		}
1783 		ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1784 						    bo->perf_stats.req_received_ts), 1000);
1785 		ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1786 		ent[i].num_queue_element = bo->total_slice_nents;
1787 		drm_gem_object_put(obj);
1788 	}
1789 
1790 	if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1791 		ret = -EFAULT;
1792 
1793 free_ent:
1794 	kfree(ent);
1795 unlock_dev_srcu:
1796 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1797 unlock_usr_srcu:
1798 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1799 	return ret;
1800 }
1801 
1802 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1803 {
1804 	unsigned long flags;
1805 	struct qaic_bo *bo;
1806 
1807 	spin_lock_irqsave(&dbc->xfer_lock, flags);
1808 	while (!list_empty(&dbc->xfer_list)) {
1809 		bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1810 		bo->queued = false;
1811 		list_del(&bo->xfer_list);
1812 		spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1813 		dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1814 		complete_all(&bo->xfer_done);
1815 		drm_gem_object_put(&bo->base);
1816 		spin_lock_irqsave(&dbc->xfer_lock, flags);
1817 	}
1818 	spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1819 }
1820 
1821 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1822 {
1823 	if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1824 		return -EPERM;
1825 
1826 	qdev->dbc[dbc_id].usr = NULL;
1827 	synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1828 	return 0;
1829 }
1830 
1831 /**
1832  * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1833  * user. Add user context back to DBC to enable it. This function trusts the
1834  * DBC ID passed and expects the DBC to be disabled.
1835  * @qdev: Qranium device handle
1836  * @dbc_id: ID of the DBC
1837  * @usr: User context
1838  */
1839 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1840 {
1841 	qdev->dbc[dbc_id].usr = usr;
1842 }
1843 
1844 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1845 {
1846 	struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1847 
1848 	dbc->usr = NULL;
1849 	empty_xfer_list(qdev, dbc);
1850 	synchronize_srcu(&dbc->ch_lock);
1851 	/*
1852 	 * Threads holding channel lock, may add more elements in the xfer_list.
1853 	 * Flush out these elements from xfer_list.
1854 	 */
1855 	empty_xfer_list(qdev, dbc);
1856 }
1857 
1858 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1859 {
1860 	struct bo_slice *slice, *slice_temp;
1861 	struct qaic_bo *bo, *bo_temp;
1862 	struct dma_bridge_chan *dbc;
1863 
1864 	dbc = &qdev->dbc[dbc_id];
1865 	if (!dbc->in_use)
1866 		return;
1867 
1868 	wakeup_dbc(qdev, dbc_id);
1869 
1870 	dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1871 	dbc->total_size = 0;
1872 	dbc->req_q_base = NULL;
1873 	dbc->dma_addr = 0;
1874 	dbc->nelem = 0;
1875 	dbc->usr = NULL;
1876 
1877 	list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1878 		list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
1879 			kref_put(&slice->ref_count, free_slice);
1880 		bo->sliced = false;
1881 		INIT_LIST_HEAD(&bo->slices);
1882 		bo->total_slice_nents = 0;
1883 		bo->dir = 0;
1884 		bo->dbc = NULL;
1885 		bo->nr_slice = 0;
1886 		bo->nr_slice_xfer_done = 0;
1887 		bo->queued = false;
1888 		bo->req_id = 0;
1889 		init_completion(&bo->xfer_done);
1890 		complete_all(&bo->xfer_done);
1891 		list_del(&bo->bo_list);
1892 		bo->perf_stats.req_received_ts = 0;
1893 		bo->perf_stats.req_submit_ts = 0;
1894 		bo->perf_stats.req_processed_ts = 0;
1895 		bo->perf_stats.queue_level_before = 0;
1896 	}
1897 
1898 	dbc->in_use = false;
1899 	wake_up(&dbc->dbc_release);
1900 }
1901