1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <linux/bitfield.h> 7 #include <linux/bits.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-buf.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/list.h> 15 #include <linux/math64.h> 16 #include <linux/mm.h> 17 #include <linux/moduleparam.h> 18 #include <linux/scatterlist.h> 19 #include <linux/spinlock.h> 20 #include <linux/srcu.h> 21 #include <linux/types.h> 22 #include <linux/uaccess.h> 23 #include <linux/wait.h> 24 #include <drm/drm_file.h> 25 #include <drm/drm_gem.h> 26 #include <drm/drm_print.h> 27 #include <uapi/drm/qaic_accel.h> 28 29 #include "qaic.h" 30 31 #define SEM_VAL_MASK GENMASK_ULL(11, 0) 32 #define SEM_INDEX_MASK GENMASK_ULL(4, 0) 33 #define BULK_XFER BIT(3) 34 #define GEN_COMPLETION BIT(4) 35 #define INBOUND_XFER 1 36 #define OUTBOUND_XFER 2 37 #define REQHP_OFF 0x0 /* we read this */ 38 #define REQTP_OFF 0x4 /* we write this */ 39 #define RSPHP_OFF 0x8 /* we write this */ 40 #define RSPTP_OFF 0xc /* we read this */ 41 42 #define ENCODE_SEM(val, index, sync, cmd, flags) \ 43 ({ \ 44 FIELD_PREP(GENMASK(11, 0), (val)) | \ 45 FIELD_PREP(GENMASK(20, 16), (index)) | \ 46 FIELD_PREP(BIT(22), (sync)) | \ 47 FIELD_PREP(GENMASK(26, 24), (cmd)) | \ 48 FIELD_PREP(GENMASK(30, 29), (flags)) | \ 49 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ 50 }) 51 #define NUM_EVENTS 128 52 #define NUM_DELAYS 10 53 54 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ 55 module_param(wait_exec_default_timeout_ms, uint, 0600); 56 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); 57 58 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ 59 module_param(datapath_poll_interval_us, uint, 0600); 60 MODULE_PARM_DESC(datapath_poll_interval_us, 61 "Amount of time to sleep between activity when datapath polling is enabled"); 62 63 struct dbc_req { 64 /* 65 * A request ID is assigned to each memory handle going in DMA queue. 66 * As a single memory handle can enqueue multiple elements in DMA queue 67 * all of them will have the same request ID. 68 */ 69 __le16 req_id; 70 /* Future use */ 71 __u8 seq_id; 72 /* 73 * Special encoded variable 74 * 7 0 - Do not force to generate MSI after DMA is completed 75 * 1 - Force to generate MSI after DMA is completed 76 * 6:5 Reserved 77 * 4 1 - Generate completion element in the response queue 78 * 0 - No Completion Code 79 * 3 0 - DMA request is a Link list transfer 80 * 1 - DMA request is a Bulk transfer 81 * 2 Reserved 82 * 1:0 00 - No DMA transfer involved 83 * 01 - DMA transfer is part of inbound transfer 84 * 10 - DMA transfer has outbound transfer 85 * 11 - NA 86 */ 87 __u8 cmd; 88 __le32 resv; 89 /* Source address for the transfer */ 90 __le64 src_addr; 91 /* Destination address for the transfer */ 92 __le64 dest_addr; 93 /* Length of transfer request */ 94 __le32 len; 95 __le32 resv2; 96 /* Doorbell address */ 97 __le64 db_addr; 98 /* 99 * Special encoded variable 100 * 7 1 - Doorbell(db) write 101 * 0 - No doorbell write 102 * 6:2 Reserved 103 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary 104 * 01 - 16 bit access, db address must be aligned to 16bit-boundary 105 * 10 - 8 bit access, db address must be aligned to 8bit-boundary 106 * 11 - Reserved 107 */ 108 __u8 db_len; 109 __u8 resv3; 110 __le16 resv4; 111 /* 32 bit data written to doorbell address */ 112 __le32 db_data; 113 /* 114 * Special encoded variable 115 * All the fields of sem_cmdX are passed from user and all are ORed 116 * together to form sem_cmd. 117 * 0:11 Semaphore value 118 * 15:12 Reserved 119 * 20:16 Semaphore index 120 * 21 Reserved 121 * 22 Semaphore Sync 122 * 23 Reserved 123 * 26:24 Semaphore command 124 * 28:27 Reserved 125 * 29 Semaphore DMA out bound sync fence 126 * 30 Semaphore DMA in bound sync fence 127 * 31 Enable semaphore command 128 */ 129 __le32 sem_cmd0; 130 __le32 sem_cmd1; 131 __le32 sem_cmd2; 132 __le32 sem_cmd3; 133 } __packed; 134 135 struct dbc_rsp { 136 /* Request ID of the memory handle whose DMA transaction is completed */ 137 __le16 req_id; 138 /* Status of the DMA transaction. 0 : Success otherwise failure */ 139 __le16 status; 140 } __packed; 141 142 inline int get_dbc_req_elem_size(void) 143 { 144 return sizeof(struct dbc_req); 145 } 146 147 inline int get_dbc_rsp_elem_size(void) 148 { 149 return sizeof(struct dbc_rsp); 150 } 151 152 static void free_slice(struct kref *kref) 153 { 154 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); 155 156 list_del(&slice->slice); 157 drm_gem_object_put(&slice->bo->base); 158 sg_free_table(slice->sgt); 159 kfree(slice->sgt); 160 kfree(slice->reqs); 161 kfree(slice); 162 } 163 164 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, 165 struct sg_table *sgt_in, u64 size, u64 offset) 166 { 167 int total_len, len, nents, offf = 0, offl = 0; 168 struct scatterlist *sg, *sgn, *sgf, *sgl; 169 struct sg_table *sgt; 170 int ret, j; 171 172 /* find out number of relevant nents needed for this mem */ 173 total_len = 0; 174 sgf = NULL; 175 sgl = NULL; 176 nents = 0; 177 178 size = size ? size : PAGE_SIZE; 179 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) { 180 len = sg_dma_len(sg); 181 182 if (!len) 183 continue; 184 if (offset >= total_len && offset < total_len + len) { 185 sgf = sg; 186 offf = offset - total_len; 187 } 188 if (sgf) 189 nents++; 190 if (offset + size >= total_len && 191 offset + size <= total_len + len) { 192 sgl = sg; 193 offl = offset + size - total_len; 194 break; 195 } 196 total_len += len; 197 } 198 199 if (!sgf || !sgl) { 200 ret = -EINVAL; 201 goto out; 202 } 203 204 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 205 if (!sgt) { 206 ret = -ENOMEM; 207 goto out; 208 } 209 210 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 211 if (ret) 212 goto free_sgt; 213 214 /* copy relevant sg node and fix page and length */ 215 sgn = sgf; 216 for_each_sgtable_sg(sgt, sg, j) { 217 memcpy(sg, sgn, sizeof(*sg)); 218 if (sgn == sgf) { 219 sg_dma_address(sg) += offf; 220 sg_dma_len(sg) -= offf; 221 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); 222 } else { 223 offf = 0; 224 } 225 if (sgn == sgl) { 226 sg_dma_len(sg) = offl - offf; 227 sg_set_page(sg, sg_page(sgn), offl - offf, offf); 228 sg_mark_end(sg); 229 break; 230 } 231 sgn = sg_next(sgn); 232 } 233 234 *sgt_out = sgt; 235 return ret; 236 237 free_sgt: 238 kfree(sgt); 239 out: 240 *sgt_out = NULL; 241 return ret; 242 } 243 244 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, 245 struct qaic_attach_slice_entry *req) 246 { 247 __le64 db_addr = cpu_to_le64(req->db_addr); 248 __le32 db_data = cpu_to_le32(req->db_data); 249 struct scatterlist *sg; 250 __u8 cmd = BULK_XFER; 251 int presync_sem; 252 u64 dev_addr; 253 __u8 db_len; 254 int i; 255 256 if (!slice->no_xfer) 257 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); 258 259 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) 260 return -EINVAL; 261 262 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; 263 if (presync_sem > 1) 264 return -EINVAL; 265 266 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | 267 req->sem2.presync << 2 | req->sem3.presync << 3; 268 269 switch (req->db_len) { 270 case 32: 271 db_len = BIT(7); 272 break; 273 case 16: 274 db_len = BIT(7) | 1; 275 break; 276 case 8: 277 db_len = BIT(7) | 2; 278 break; 279 case 0: 280 db_len = 0; /* doorbell is not active for this command */ 281 break; 282 default: 283 return -EINVAL; /* should never hit this */ 284 } 285 286 /* 287 * When we end up splitting up a single request (ie a buf slice) into 288 * multiple DMA requests, we have to manage the sync data carefully. 289 * There can only be one presync sem. That needs to be on every xfer 290 * so that the DMA engine doesn't transfer data before the receiver is 291 * ready. We only do the doorbell and postsync sems after the xfer. 292 * To guarantee previous xfers for the request are complete, we use a 293 * fence. 294 */ 295 dev_addr = req->dev_addr; 296 for_each_sgtable_sg(slice->sgt, sg, i) { 297 slice->reqs[i].cmd = cmd; 298 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 299 sg_dma_address(sg) : dev_addr); 300 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 301 dev_addr : sg_dma_address(sg)); 302 /* 303 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA 304 * segment size is set to UINT_MAX by qaic and hence return 305 * values of sg_dma_len(sg) can never exceed u32 range. So, 306 * by down sizing we are not corrupting the value. 307 */ 308 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); 309 switch (presync_sem) { 310 case BIT(0): 311 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, 312 req->sem0.index, 313 req->sem0.presync, 314 req->sem0.cmd, 315 req->sem0.flags)); 316 break; 317 case BIT(1): 318 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, 319 req->sem1.index, 320 req->sem1.presync, 321 req->sem1.cmd, 322 req->sem1.flags)); 323 break; 324 case BIT(2): 325 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, 326 req->sem2.index, 327 req->sem2.presync, 328 req->sem2.cmd, 329 req->sem2.flags)); 330 break; 331 case BIT(3): 332 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, 333 req->sem3.index, 334 req->sem3.presync, 335 req->sem3.cmd, 336 req->sem3.flags)); 337 break; 338 } 339 dev_addr += sg_dma_len(sg); 340 } 341 /* add post transfer stuff to last segment */ 342 i--; 343 slice->reqs[i].cmd |= GEN_COMPLETION; 344 slice->reqs[i].db_addr = db_addr; 345 slice->reqs[i].db_len = db_len; 346 slice->reqs[i].db_data = db_data; 347 /* 348 * Add a fence if we have more than one request going to the hardware 349 * representing the entirety of the user request, and the user request 350 * has no presync condition. 351 * Fences are expensive, so we try to avoid them. We rely on the 352 * hardware behavior to avoid needing one when there is a presync 353 * condition. When a presync exists, all requests for that same 354 * presync will be queued into a fifo. Thus, since we queue the 355 * post xfer activity only on the last request we queue, the hardware 356 * will ensure that the last queued request is processed last, thus 357 * making sure the post xfer activity happens at the right time without 358 * a fence. 359 */ 360 if (i && !presync_sem) 361 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? 362 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); 363 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, 364 req->sem0.presync, req->sem0.cmd, 365 req->sem0.flags)); 366 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, 367 req->sem1.presync, req->sem1.cmd, 368 req->sem1.flags)); 369 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, 370 req->sem2.presync, req->sem2.cmd, 371 req->sem2.flags)); 372 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, 373 req->sem3.presync, req->sem3.cmd, 374 req->sem3.flags)); 375 376 return 0; 377 } 378 379 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, 380 struct qaic_attach_slice_entry *slice_ent) 381 { 382 struct sg_table *sgt = NULL; 383 struct bo_slice *slice; 384 int ret; 385 386 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); 387 if (ret) 388 goto out; 389 390 slice = kmalloc(sizeof(*slice), GFP_KERNEL); 391 if (!slice) { 392 ret = -ENOMEM; 393 goto free_sgt; 394 } 395 396 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); 397 if (!slice->reqs) { 398 ret = -ENOMEM; 399 goto free_slice; 400 } 401 402 slice->no_xfer = !slice_ent->size; 403 slice->sgt = sgt; 404 slice->nents = sgt->nents; 405 slice->dir = bo->dir; 406 slice->bo = bo; 407 slice->size = slice_ent->size; 408 slice->offset = slice_ent->offset; 409 410 ret = encode_reqs(qdev, slice, slice_ent); 411 if (ret) 412 goto free_req; 413 414 bo->total_slice_nents += sgt->nents; 415 kref_init(&slice->ref_count); 416 drm_gem_object_get(&bo->base); 417 list_add_tail(&slice->slice, &bo->slices); 418 419 return 0; 420 421 free_req: 422 kfree(slice->reqs); 423 free_slice: 424 kfree(slice); 425 free_sgt: 426 sg_free_table(sgt); 427 kfree(sgt); 428 out: 429 return ret; 430 } 431 432 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) 433 { 434 struct scatterlist *sg; 435 struct sg_table *sgt; 436 struct page **pages; 437 int *pages_order; 438 int buf_extra; 439 int max_order; 440 int nr_pages; 441 int ret = 0; 442 int i, j, k; 443 int order; 444 445 if (size) { 446 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); 447 /* 448 * calculate how much extra we are going to allocate, to remove 449 * later 450 */ 451 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; 452 max_order = min(MAX_ORDER - 1, get_order(size)); 453 } else { 454 /* allocate a single page for book keeping */ 455 nr_pages = 1; 456 buf_extra = 0; 457 max_order = 0; 458 } 459 460 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); 461 if (!pages) { 462 ret = -ENOMEM; 463 goto out; 464 } 465 pages_order = (void *)pages + sizeof(*pages) * nr_pages; 466 467 /* 468 * Allocate requested memory using alloc_pages. It is possible to allocate 469 * the requested memory in multiple chunks by calling alloc_pages 470 * multiple times. Use SG table to handle multiple allocated pages. 471 */ 472 i = 0; 473 while (nr_pages > 0) { 474 order = min(get_order(nr_pages * PAGE_SIZE), max_order); 475 while (1) { 476 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | 477 __GFP_NOWARN | __GFP_ZERO | 478 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), 479 order); 480 if (pages[i]) 481 break; 482 if (!order--) { 483 ret = -ENOMEM; 484 goto free_partial_alloc; 485 } 486 } 487 488 max_order = order; 489 pages_order[i] = order; 490 491 nr_pages -= 1 << order; 492 if (nr_pages <= 0) 493 /* account for over allocation */ 494 buf_extra += abs(nr_pages) * PAGE_SIZE; 495 i++; 496 } 497 498 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 499 if (!sgt) { 500 ret = -ENOMEM; 501 goto free_partial_alloc; 502 } 503 504 if (sg_alloc_table(sgt, i, GFP_KERNEL)) { 505 ret = -ENOMEM; 506 goto free_sgt; 507 } 508 509 /* Populate the SG table with the allocated memory pages */ 510 sg = sgt->sgl; 511 for (k = 0; k < i; k++, sg = sg_next(sg)) { 512 /* Last entry requires special handling */ 513 if (k < i - 1) { 514 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); 515 } else { 516 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); 517 sg_mark_end(sg); 518 } 519 } 520 521 kvfree(pages); 522 *sgt_out = sgt; 523 return ret; 524 525 free_sgt: 526 kfree(sgt); 527 free_partial_alloc: 528 for (j = 0; j < i; j++) 529 __free_pages(pages[j], pages_order[j]); 530 kvfree(pages); 531 out: 532 *sgt_out = NULL; 533 return ret; 534 } 535 536 static bool invalid_sem(struct qaic_sem *sem) 537 { 538 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || 539 !(sem->presync == 0 || sem->presync == 1) || sem->pad || 540 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || 541 sem->cmd > QAIC_SEM_WAIT_GT_0) 542 return true; 543 return false; 544 } 545 546 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, 547 u32 count, u64 total_size) 548 { 549 int i; 550 551 for (i = 0; i < count; i++) { 552 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || 553 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || 554 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || 555 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) 556 return -EINVAL; 557 558 if (slice_ent[i].offset + slice_ent[i].size > total_size) 559 return -EINVAL; 560 } 561 562 return 0; 563 } 564 565 static void qaic_free_sgt(struct sg_table *sgt) 566 { 567 struct scatterlist *sg; 568 569 for (sg = sgt->sgl; sg; sg = sg_next(sg)) 570 if (sg_page(sg)) 571 __free_pages(sg_page(sg), get_order(sg->length)); 572 sg_free_table(sgt); 573 kfree(sgt); 574 } 575 576 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, 577 const struct drm_gem_object *obj) 578 { 579 struct qaic_bo *bo = to_qaic_bo(obj); 580 581 drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size); 582 } 583 584 static const struct vm_operations_struct drm_vm_ops = { 585 .open = drm_gem_vm_open, 586 .close = drm_gem_vm_close, 587 }; 588 589 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 590 { 591 struct qaic_bo *bo = to_qaic_bo(obj); 592 unsigned long offset = 0; 593 struct scatterlist *sg; 594 int ret; 595 596 if (obj->import_attach) 597 return -EINVAL; 598 599 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { 600 if (sg_page(sg)) { 601 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), 602 sg->length, vma->vm_page_prot); 603 if (ret) 604 goto out; 605 offset += sg->length; 606 } 607 } 608 609 out: 610 return ret; 611 } 612 613 static void qaic_free_object(struct drm_gem_object *obj) 614 { 615 struct qaic_bo *bo = to_qaic_bo(obj); 616 617 if (obj->import_attach) { 618 /* DMABUF/PRIME Path */ 619 dma_buf_detach(obj->import_attach->dmabuf, obj->import_attach); 620 dma_buf_put(obj->import_attach->dmabuf); 621 } else { 622 /* Private buffer allocation path */ 623 qaic_free_sgt(bo->sgt); 624 } 625 626 drm_gem_object_release(obj); 627 kfree(bo); 628 } 629 630 static const struct drm_gem_object_funcs qaic_gem_funcs = { 631 .free = qaic_free_object, 632 .print_info = qaic_gem_print_info, 633 .mmap = qaic_gem_object_mmap, 634 .vm_ops = &drm_vm_ops, 635 }; 636 637 static struct qaic_bo *qaic_alloc_init_bo(void) 638 { 639 struct qaic_bo *bo; 640 641 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 642 if (!bo) 643 return ERR_PTR(-ENOMEM); 644 645 INIT_LIST_HEAD(&bo->slices); 646 init_completion(&bo->xfer_done); 647 complete_all(&bo->xfer_done); 648 649 return bo; 650 } 651 652 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 653 { 654 struct qaic_create_bo *args = data; 655 int usr_rcu_id, qdev_rcu_id; 656 struct drm_gem_object *obj; 657 struct qaic_device *qdev; 658 struct qaic_user *usr; 659 struct qaic_bo *bo; 660 size_t size; 661 int ret; 662 663 if (args->pad) 664 return -EINVAL; 665 666 usr = file_priv->driver_priv; 667 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 668 if (!usr->qddev) { 669 ret = -ENODEV; 670 goto unlock_usr_srcu; 671 } 672 673 qdev = usr->qddev->qdev; 674 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 675 if (qdev->in_reset) { 676 ret = -ENODEV; 677 goto unlock_dev_srcu; 678 } 679 680 size = PAGE_ALIGN(args->size); 681 if (size == 0) { 682 ret = -EINVAL; 683 goto unlock_dev_srcu; 684 } 685 686 bo = qaic_alloc_init_bo(); 687 if (IS_ERR(bo)) { 688 ret = PTR_ERR(bo); 689 goto unlock_dev_srcu; 690 } 691 obj = &bo->base; 692 693 drm_gem_private_object_init(dev, obj, size); 694 695 obj->funcs = &qaic_gem_funcs; 696 ret = create_sgt(qdev, &bo->sgt, size); 697 if (ret) 698 goto free_bo; 699 700 bo->size = args->size; 701 702 ret = drm_gem_handle_create(file_priv, obj, &args->handle); 703 if (ret) 704 goto free_sgt; 705 706 bo->handle = args->handle; 707 drm_gem_object_put(obj); 708 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 709 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 710 711 return 0; 712 713 free_sgt: 714 qaic_free_sgt(bo->sgt); 715 free_bo: 716 kfree(bo); 717 unlock_dev_srcu: 718 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 719 unlock_usr_srcu: 720 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 721 return ret; 722 } 723 724 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 725 { 726 struct qaic_mmap_bo *args = data; 727 int usr_rcu_id, qdev_rcu_id; 728 struct drm_gem_object *obj; 729 struct qaic_device *qdev; 730 struct qaic_user *usr; 731 int ret; 732 733 usr = file_priv->driver_priv; 734 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 735 if (!usr->qddev) { 736 ret = -ENODEV; 737 goto unlock_usr_srcu; 738 } 739 740 qdev = usr->qddev->qdev; 741 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 742 if (qdev->in_reset) { 743 ret = -ENODEV; 744 goto unlock_dev_srcu; 745 } 746 747 obj = drm_gem_object_lookup(file_priv, args->handle); 748 if (!obj) { 749 ret = -ENOENT; 750 goto unlock_dev_srcu; 751 } 752 753 ret = drm_gem_create_mmap_offset(obj); 754 if (ret == 0) 755 args->offset = drm_vma_node_offset_addr(&obj->vma_node); 756 757 drm_gem_object_put(obj); 758 759 unlock_dev_srcu: 760 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 761 unlock_usr_srcu: 762 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 763 return ret; 764 } 765 766 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) 767 { 768 struct dma_buf_attachment *attach; 769 struct drm_gem_object *obj; 770 struct qaic_bo *bo; 771 size_t size; 772 int ret; 773 774 bo = qaic_alloc_init_bo(); 775 if (IS_ERR(bo)) { 776 ret = PTR_ERR(bo); 777 goto out; 778 } 779 780 obj = &bo->base; 781 get_dma_buf(dma_buf); 782 783 attach = dma_buf_attach(dma_buf, dev->dev); 784 if (IS_ERR(attach)) { 785 ret = PTR_ERR(attach); 786 goto attach_fail; 787 } 788 789 size = PAGE_ALIGN(attach->dmabuf->size); 790 if (size == 0) { 791 ret = -EINVAL; 792 goto size_align_fail; 793 } 794 795 drm_gem_private_object_init(dev, obj, size); 796 /* 797 * skipping dma_buf_map_attachment() as we do not know the direction 798 * just yet. Once the direction is known in the subsequent IOCTL to 799 * attach slicing, we can do it then. 800 */ 801 802 obj->funcs = &qaic_gem_funcs; 803 obj->import_attach = attach; 804 obj->resv = dma_buf->resv; 805 806 return obj; 807 808 size_align_fail: 809 dma_buf_detach(dma_buf, attach); 810 attach_fail: 811 dma_buf_put(dma_buf); 812 kfree(bo); 813 out: 814 return ERR_PTR(ret); 815 } 816 817 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) 818 { 819 struct drm_gem_object *obj = &bo->base; 820 struct sg_table *sgt; 821 int ret; 822 823 if (obj->import_attach->dmabuf->size < hdr->size) 824 return -EINVAL; 825 826 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); 827 if (IS_ERR(sgt)) { 828 ret = PTR_ERR(sgt); 829 return ret; 830 } 831 832 bo->sgt = sgt; 833 bo->size = hdr->size; 834 835 return 0; 836 } 837 838 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, 839 struct qaic_attach_slice_hdr *hdr) 840 { 841 int ret; 842 843 if (bo->size != hdr->size) 844 return -EINVAL; 845 846 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); 847 if (ret) 848 return -EFAULT; 849 850 return 0; 851 } 852 853 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, 854 struct qaic_attach_slice_hdr *hdr) 855 { 856 int ret; 857 858 if (bo->base.import_attach) 859 ret = qaic_prepare_import_bo(bo, hdr); 860 else 861 ret = qaic_prepare_export_bo(qdev, bo, hdr); 862 863 if (ret == 0) 864 bo->dir = hdr->dir; 865 866 return ret; 867 } 868 869 static void qaic_unprepare_import_bo(struct qaic_bo *bo) 870 { 871 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); 872 bo->sgt = NULL; 873 bo->size = 0; 874 } 875 876 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) 877 { 878 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); 879 } 880 881 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) 882 { 883 if (bo->base.import_attach) 884 qaic_unprepare_import_bo(bo); 885 else 886 qaic_unprepare_export_bo(qdev, bo); 887 888 bo->dir = 0; 889 } 890 891 static void qaic_free_slices_bo(struct qaic_bo *bo) 892 { 893 struct bo_slice *slice, *temp; 894 895 list_for_each_entry_safe(slice, temp, &bo->slices, slice) 896 kref_put(&slice->ref_count, free_slice); 897 } 898 899 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, 900 struct qaic_attach_slice_hdr *hdr, 901 struct qaic_attach_slice_entry *slice_ent) 902 { 903 int ret, i; 904 905 for (i = 0; i < hdr->count; i++) { 906 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); 907 if (ret) { 908 qaic_free_slices_bo(bo); 909 return ret; 910 } 911 } 912 913 if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) { 914 qaic_free_slices_bo(bo); 915 return -ENOSPC; 916 } 917 918 bo->sliced = true; 919 bo->nr_slice = hdr->count; 920 list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists); 921 922 return 0; 923 } 924 925 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 926 { 927 struct qaic_attach_slice_entry *slice_ent; 928 struct qaic_attach_slice *args = data; 929 struct dma_bridge_chan *dbc; 930 int usr_rcu_id, qdev_rcu_id; 931 struct drm_gem_object *obj; 932 struct qaic_device *qdev; 933 unsigned long arg_size; 934 struct qaic_user *usr; 935 u8 __user *user_data; 936 struct qaic_bo *bo; 937 int ret; 938 939 usr = file_priv->driver_priv; 940 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 941 if (!usr->qddev) { 942 ret = -ENODEV; 943 goto unlock_usr_srcu; 944 } 945 946 qdev = usr->qddev->qdev; 947 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 948 if (qdev->in_reset) { 949 ret = -ENODEV; 950 goto unlock_dev_srcu; 951 } 952 953 if (args->hdr.count == 0) { 954 ret = -EINVAL; 955 goto unlock_dev_srcu; 956 } 957 958 arg_size = args->hdr.count * sizeof(*slice_ent); 959 if (arg_size / args->hdr.count != sizeof(*slice_ent)) { 960 ret = -EINVAL; 961 goto unlock_dev_srcu; 962 } 963 964 if (args->hdr.dbc_id >= qdev->num_dbc) { 965 ret = -EINVAL; 966 goto unlock_dev_srcu; 967 } 968 969 if (args->hdr.size == 0) { 970 ret = -EINVAL; 971 goto unlock_dev_srcu; 972 } 973 974 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) { 975 ret = -EINVAL; 976 goto unlock_dev_srcu; 977 } 978 979 dbc = &qdev->dbc[args->hdr.dbc_id]; 980 if (dbc->usr != usr) { 981 ret = -EINVAL; 982 goto unlock_dev_srcu; 983 } 984 985 if (args->data == 0) { 986 ret = -EINVAL; 987 goto unlock_dev_srcu; 988 } 989 990 user_data = u64_to_user_ptr(args->data); 991 992 slice_ent = kzalloc(arg_size, GFP_KERNEL); 993 if (!slice_ent) { 994 ret = -EINVAL; 995 goto unlock_dev_srcu; 996 } 997 998 ret = copy_from_user(slice_ent, user_data, arg_size); 999 if (ret) { 1000 ret = -EFAULT; 1001 goto free_slice_ent; 1002 } 1003 1004 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size); 1005 if (ret) 1006 goto free_slice_ent; 1007 1008 obj = drm_gem_object_lookup(file_priv, args->hdr.handle); 1009 if (!obj) { 1010 ret = -ENOENT; 1011 goto free_slice_ent; 1012 } 1013 1014 bo = to_qaic_bo(obj); 1015 1016 ret = qaic_prepare_bo(qdev, bo, &args->hdr); 1017 if (ret) 1018 goto put_bo; 1019 1020 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); 1021 if (ret) 1022 goto unprepare_bo; 1023 1024 if (args->hdr.dir == DMA_TO_DEVICE) 1025 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); 1026 1027 bo->dbc = dbc; 1028 drm_gem_object_put(obj); 1029 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1030 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1031 1032 return 0; 1033 1034 unprepare_bo: 1035 qaic_unprepare_bo(qdev, bo); 1036 put_bo: 1037 drm_gem_object_put(obj); 1038 free_slice_ent: 1039 kfree(slice_ent); 1040 unlock_dev_srcu: 1041 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1042 unlock_usr_srcu: 1043 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1044 return ret; 1045 } 1046 1047 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, 1048 u32 head, u32 *ptail) 1049 { 1050 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1051 struct dbc_req *reqs = slice->reqs; 1052 u32 tail = *ptail; 1053 u32 avail; 1054 1055 avail = head - tail; 1056 if (head <= tail) 1057 avail += dbc->nelem; 1058 1059 --avail; 1060 1061 if (avail < slice->nents) 1062 return -EAGAIN; 1063 1064 if (tail + slice->nents > dbc->nelem) { 1065 avail = dbc->nelem - tail; 1066 avail = min_t(u32, avail, slice->nents); 1067 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1068 sizeof(*reqs) * avail); 1069 reqs += avail; 1070 avail = slice->nents - avail; 1071 if (avail) 1072 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); 1073 } else { 1074 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1075 sizeof(*reqs) * slice->nents); 1076 } 1077 1078 *ptail = (tail + slice->nents) % dbc->nelem; 1079 1080 return 0; 1081 } 1082 1083 /* 1084 * Based on the value of resize we may only need to transmit first_n 1085 * entries and the last entry, with last_bytes to send from the last entry. 1086 * Note that first_n could be 0. 1087 */ 1088 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, 1089 u64 resize, u32 dbc_id, u32 head, u32 *ptail) 1090 { 1091 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1092 struct dbc_req *reqs = slice->reqs; 1093 struct dbc_req *last_req; 1094 u32 tail = *ptail; 1095 u64 total_bytes; 1096 u64 last_bytes; 1097 u32 first_n; 1098 u32 avail; 1099 int ret; 1100 int i; 1101 1102 avail = head - tail; 1103 if (head <= tail) 1104 avail += dbc->nelem; 1105 1106 --avail; 1107 1108 total_bytes = 0; 1109 for (i = 0; i < slice->nents; i++) { 1110 total_bytes += le32_to_cpu(reqs[i].len); 1111 if (total_bytes >= resize) 1112 break; 1113 } 1114 1115 if (total_bytes < resize) { 1116 /* User space should have used the full buffer path. */ 1117 ret = -EINVAL; 1118 return ret; 1119 } 1120 1121 first_n = i; 1122 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize; 1123 1124 if (avail < (first_n + 1)) 1125 return -EAGAIN; 1126 1127 if (first_n) { 1128 if (tail + first_n > dbc->nelem) { 1129 avail = dbc->nelem - tail; 1130 avail = min_t(u32, avail, first_n); 1131 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1132 sizeof(*reqs) * avail); 1133 last_req = reqs + avail; 1134 avail = first_n - avail; 1135 if (avail) 1136 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); 1137 } else { 1138 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1139 sizeof(*reqs) * first_n); 1140 } 1141 } 1142 1143 /* Copy over the last entry. Here we need to adjust len to the left over 1144 * size, and set src and dst to the entry it is copied to. 1145 */ 1146 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size(); 1147 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); 1148 1149 /* 1150 * last_bytes holds size of a DMA segment, maximum DMA segment size is 1151 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 1152 * range. So, by down sizing we are not corrupting the value. 1153 */ 1154 last_req->len = cpu_to_le32((u32)last_bytes); 1155 last_req->src_addr = reqs[first_n].src_addr; 1156 last_req->dest_addr = reqs[first_n].dest_addr; 1157 1158 *ptail = (tail + first_n + 1) % dbc->nelem; 1159 1160 return 0; 1161 } 1162 1163 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, 1164 struct qaic_execute_entry *exec, unsigned int count, 1165 bool is_partial, struct dma_bridge_chan *dbc, u32 head, 1166 u32 *tail) 1167 { 1168 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1169 struct drm_gem_object *obj; 1170 struct bo_slice *slice; 1171 unsigned long flags; 1172 struct qaic_bo *bo; 1173 bool queued; 1174 int i, j; 1175 int ret; 1176 1177 for (i = 0; i < count; i++) { 1178 /* 1179 * ref count will be decremented when the transfer of this 1180 * buffer is complete. It is inside dbc_irq_threaded_fn(). 1181 */ 1182 obj = drm_gem_object_lookup(file_priv, 1183 is_partial ? pexec[i].handle : exec[i].handle); 1184 if (!obj) { 1185 ret = -ENOENT; 1186 goto failed_to_send_bo; 1187 } 1188 1189 bo = to_qaic_bo(obj); 1190 1191 if (!bo->sliced) { 1192 ret = -EINVAL; 1193 goto failed_to_send_bo; 1194 } 1195 1196 if (is_partial && pexec[i].resize > bo->size) { 1197 ret = -EINVAL; 1198 goto failed_to_send_bo; 1199 } 1200 1201 spin_lock_irqsave(&dbc->xfer_lock, flags); 1202 queued = bo->queued; 1203 bo->queued = true; 1204 if (queued) { 1205 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1206 ret = -EINVAL; 1207 goto failed_to_send_bo; 1208 } 1209 1210 bo->req_id = dbc->next_req_id++; 1211 1212 list_for_each_entry(slice, &bo->slices, slice) { 1213 /* 1214 * If this slice does not fall under the given 1215 * resize then skip this slice and continue the loop 1216 */ 1217 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset) 1218 continue; 1219 1220 for (j = 0; j < slice->nents; j++) 1221 slice->reqs[j].req_id = cpu_to_le16(bo->req_id); 1222 1223 /* 1224 * If it is a partial execute ioctl call then check if 1225 * resize has cut this slice short then do a partial copy 1226 * else do complete copy 1227 */ 1228 if (is_partial && pexec[i].resize && 1229 pexec[i].resize < slice->offset + slice->size) 1230 ret = copy_partial_exec_reqs(qdev, slice, 1231 pexec[i].resize - slice->offset, 1232 dbc->id, head, tail); 1233 else 1234 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); 1235 if (ret) { 1236 bo->queued = false; 1237 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1238 goto failed_to_send_bo; 1239 } 1240 } 1241 reinit_completion(&bo->xfer_done); 1242 list_add_tail(&bo->xfer_list, &dbc->xfer_list); 1243 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1244 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); 1245 } 1246 1247 return 0; 1248 1249 failed_to_send_bo: 1250 if (likely(obj)) 1251 drm_gem_object_put(obj); 1252 for (j = 0; j < i; j++) { 1253 spin_lock_irqsave(&dbc->xfer_lock, flags); 1254 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); 1255 obj = &bo->base; 1256 bo->queued = false; 1257 list_del(&bo->xfer_list); 1258 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1259 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1260 drm_gem_object_put(obj); 1261 } 1262 return ret; 1263 } 1264 1265 static void update_profiling_data(struct drm_file *file_priv, 1266 struct qaic_execute_entry *exec, unsigned int count, 1267 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) 1268 { 1269 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1270 struct drm_gem_object *obj; 1271 struct qaic_bo *bo; 1272 int i; 1273 1274 for (i = 0; i < count; i++) { 1275 /* 1276 * Since we already committed the BO to hardware, the only way 1277 * this should fail is a pending signal. We can't cancel the 1278 * submit to hardware, so we have to just skip the profiling 1279 * data. In case the signal is not fatal to the process, we 1280 * return success so that the user doesn't try to resubmit. 1281 */ 1282 obj = drm_gem_object_lookup(file_priv, 1283 is_partial ? pexec[i].handle : exec[i].handle); 1284 if (!obj) 1285 break; 1286 bo = to_qaic_bo(obj); 1287 bo->perf_stats.req_received_ts = received_ts; 1288 bo->perf_stats.req_submit_ts = submit_ts; 1289 bo->perf_stats.queue_level_before = queue_level; 1290 queue_level += bo->total_slice_nents; 1291 drm_gem_object_put(obj); 1292 } 1293 } 1294 1295 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, 1296 bool is_partial) 1297 { 1298 struct qaic_partial_execute_entry *pexec; 1299 struct qaic_execute *args = data; 1300 struct qaic_execute_entry *exec; 1301 struct dma_bridge_chan *dbc; 1302 int usr_rcu_id, qdev_rcu_id; 1303 struct qaic_device *qdev; 1304 struct qaic_user *usr; 1305 u8 __user *user_data; 1306 unsigned long n; 1307 u64 received_ts; 1308 u32 queue_level; 1309 u64 submit_ts; 1310 int rcu_id; 1311 u32 head; 1312 u32 tail; 1313 u64 size; 1314 int ret; 1315 1316 received_ts = ktime_get_ns(); 1317 1318 size = is_partial ? sizeof(*pexec) : sizeof(*exec); 1319 1320 n = (unsigned long)size * args->hdr.count; 1321 if (args->hdr.count == 0 || n / args->hdr.count != size) 1322 return -EINVAL; 1323 1324 user_data = u64_to_user_ptr(args->data); 1325 1326 exec = kcalloc(args->hdr.count, size, GFP_KERNEL); 1327 pexec = (struct qaic_partial_execute_entry *)exec; 1328 if (!exec) 1329 return -ENOMEM; 1330 1331 if (copy_from_user(exec, user_data, n)) { 1332 ret = -EFAULT; 1333 goto free_exec; 1334 } 1335 1336 usr = file_priv->driver_priv; 1337 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1338 if (!usr->qddev) { 1339 ret = -ENODEV; 1340 goto unlock_usr_srcu; 1341 } 1342 1343 qdev = usr->qddev->qdev; 1344 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1345 if (qdev->in_reset) { 1346 ret = -ENODEV; 1347 goto unlock_dev_srcu; 1348 } 1349 1350 if (args->hdr.dbc_id >= qdev->num_dbc) { 1351 ret = -EINVAL; 1352 goto unlock_dev_srcu; 1353 } 1354 1355 dbc = &qdev->dbc[args->hdr.dbc_id]; 1356 1357 rcu_id = srcu_read_lock(&dbc->ch_lock); 1358 if (!dbc->usr || dbc->usr->handle != usr->handle) { 1359 ret = -EPERM; 1360 goto release_ch_rcu; 1361 } 1362 1363 head = readl(dbc->dbc_base + REQHP_OFF); 1364 tail = readl(dbc->dbc_base + REQTP_OFF); 1365 1366 if (head == U32_MAX || tail == U32_MAX) { 1367 /* PCI link error */ 1368 ret = -ENODEV; 1369 goto release_ch_rcu; 1370 } 1371 1372 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); 1373 1374 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, 1375 head, &tail); 1376 if (ret) 1377 goto release_ch_rcu; 1378 1379 /* Finalize commit to hardware */ 1380 submit_ts = ktime_get_ns(); 1381 writel(tail, dbc->dbc_base + REQTP_OFF); 1382 1383 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, 1384 submit_ts, queue_level); 1385 1386 if (datapath_polling) 1387 schedule_work(&dbc->poll_work); 1388 1389 release_ch_rcu: 1390 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1391 unlock_dev_srcu: 1392 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1393 unlock_usr_srcu: 1394 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1395 free_exec: 1396 kfree(exec); 1397 return ret; 1398 } 1399 1400 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1401 { 1402 return __qaic_execute_bo_ioctl(dev, data, file_priv, false); 1403 } 1404 1405 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1406 { 1407 return __qaic_execute_bo_ioctl(dev, data, file_priv, true); 1408 } 1409 1410 /* 1411 * Our interrupt handling is a bit more complicated than a simple ideal, but 1412 * sadly necessary. 1413 * 1414 * Each dbc has a completion queue. Entries in the queue correspond to DMA 1415 * requests which the device has processed. The hardware already has a built 1416 * in irq mitigation. When the device puts an entry into the queue, it will 1417 * only trigger an interrupt if the queue was empty. Therefore, when adding 1418 * the Nth event to a non-empty queue, the hardware doesn't trigger an 1419 * interrupt. This means the host doesn't get additional interrupts signaling 1420 * the same thing - the queue has something to process. 1421 * This behavior can be overridden in the DMA request. 1422 * This means that when the host receives an interrupt, it is required to 1423 * drain the queue. 1424 * 1425 * This behavior is what NAPI attempts to accomplish, although we can't use 1426 * NAPI as we don't have a netdev. We use threaded irqs instead. 1427 * 1428 * However, there is a situation where the host drains the queue fast enough 1429 * that every event causes an interrupt. Typically this is not a problem as 1430 * the rate of events would be low. However, that is not the case with 1431 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of 1432 * lprnet, the host receives roughly 80k interrupts per second from the device 1433 * (per /proc/interrupts). While NAPI documentation indicates the host should 1434 * just chug along, sadly that behavior causes instability in some hosts. 1435 * 1436 * Therefore, we implement an interrupt disable scheme similar to NAPI. The 1437 * key difference is that we will delay after draining the queue for a small 1438 * time to allow additional events to come in via polling. Using the above 1439 * lprnet workload, this reduces the number of interrupts processed from 1440 * ~80k/sec to about 64 in 5 minutes and appears to solve the system 1441 * instability. 1442 */ 1443 irqreturn_t dbc_irq_handler(int irq, void *data) 1444 { 1445 struct dma_bridge_chan *dbc = data; 1446 int rcu_id; 1447 u32 head; 1448 u32 tail; 1449 1450 rcu_id = srcu_read_lock(&dbc->ch_lock); 1451 1452 if (!dbc->usr) { 1453 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1454 return IRQ_HANDLED; 1455 } 1456 1457 head = readl(dbc->dbc_base + RSPHP_OFF); 1458 if (head == U32_MAX) { /* PCI link error */ 1459 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1460 return IRQ_NONE; 1461 } 1462 1463 tail = readl(dbc->dbc_base + RSPTP_OFF); 1464 if (tail == U32_MAX) { /* PCI link error */ 1465 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1466 return IRQ_NONE; 1467 } 1468 1469 if (head == tail) { /* queue empty */ 1470 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1471 return IRQ_NONE; 1472 } 1473 1474 disable_irq_nosync(irq); 1475 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1476 return IRQ_WAKE_THREAD; 1477 } 1478 1479 void irq_polling_work(struct work_struct *work) 1480 { 1481 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); 1482 unsigned long flags; 1483 int rcu_id; 1484 u32 head; 1485 u32 tail; 1486 1487 rcu_id = srcu_read_lock(&dbc->ch_lock); 1488 1489 while (1) { 1490 if (dbc->qdev->in_reset) { 1491 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1492 return; 1493 } 1494 if (!dbc->usr) { 1495 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1496 return; 1497 } 1498 spin_lock_irqsave(&dbc->xfer_lock, flags); 1499 if (list_empty(&dbc->xfer_list)) { 1500 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1501 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1502 return; 1503 } 1504 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1505 1506 head = readl(dbc->dbc_base + RSPHP_OFF); 1507 if (head == U32_MAX) { /* PCI link error */ 1508 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1509 return; 1510 } 1511 1512 tail = readl(dbc->dbc_base + RSPTP_OFF); 1513 if (tail == U32_MAX) { /* PCI link error */ 1514 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1515 return; 1516 } 1517 1518 if (head != tail) { 1519 irq_wake_thread(dbc->irq, dbc); 1520 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1521 return; 1522 } 1523 1524 cond_resched(); 1525 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); 1526 } 1527 } 1528 1529 irqreturn_t dbc_irq_threaded_fn(int irq, void *data) 1530 { 1531 struct dma_bridge_chan *dbc = data; 1532 int event_count = NUM_EVENTS; 1533 int delay_count = NUM_DELAYS; 1534 struct qaic_device *qdev; 1535 struct qaic_bo *bo, *i; 1536 struct dbc_rsp *rsp; 1537 unsigned long flags; 1538 int rcu_id; 1539 u16 status; 1540 u16 req_id; 1541 u32 head; 1542 u32 tail; 1543 1544 rcu_id = srcu_read_lock(&dbc->ch_lock); 1545 1546 head = readl(dbc->dbc_base + RSPHP_OFF); 1547 if (head == U32_MAX) /* PCI link error */ 1548 goto error_out; 1549 1550 qdev = dbc->qdev; 1551 read_fifo: 1552 1553 if (!event_count) { 1554 event_count = NUM_EVENTS; 1555 cond_resched(); 1556 } 1557 1558 /* 1559 * if this channel isn't assigned or gets unassigned during processing 1560 * we have nothing further to do 1561 */ 1562 if (!dbc->usr) 1563 goto error_out; 1564 1565 tail = readl(dbc->dbc_base + RSPTP_OFF); 1566 if (tail == U32_MAX) /* PCI link error */ 1567 goto error_out; 1568 1569 if (head == tail) { /* queue empty */ 1570 if (delay_count) { 1571 --delay_count; 1572 usleep_range(100, 200); 1573 goto read_fifo; /* check for a new event */ 1574 } 1575 goto normal_out; 1576 } 1577 1578 delay_count = NUM_DELAYS; 1579 while (head != tail) { 1580 if (!event_count) 1581 break; 1582 --event_count; 1583 rsp = dbc->rsp_q_base + head * sizeof(*rsp); 1584 req_id = le16_to_cpu(rsp->req_id); 1585 status = le16_to_cpu(rsp->status); 1586 if (status) 1587 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); 1588 spin_lock_irqsave(&dbc->xfer_lock, flags); 1589 /* 1590 * A BO can receive multiple interrupts, since a BO can be 1591 * divided into multiple slices and a buffer receives as many 1592 * interrupts as slices. So until it receives interrupts for 1593 * all the slices we cannot mark that buffer complete. 1594 */ 1595 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { 1596 if (bo->req_id == req_id) 1597 bo->nr_slice_xfer_done++; 1598 else 1599 continue; 1600 1601 if (bo->nr_slice_xfer_done < bo->nr_slice) 1602 break; 1603 1604 /* 1605 * At this point we have received all the interrupts for 1606 * BO, which means BO execution is complete. 1607 */ 1608 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1609 bo->nr_slice_xfer_done = 0; 1610 bo->queued = false; 1611 list_del(&bo->xfer_list); 1612 bo->perf_stats.req_processed_ts = ktime_get_ns(); 1613 complete_all(&bo->xfer_done); 1614 drm_gem_object_put(&bo->base); 1615 break; 1616 } 1617 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1618 head = (head + 1) % dbc->nelem; 1619 } 1620 1621 /* 1622 * Update the head pointer of response queue and let the device know 1623 * that we have consumed elements from the queue. 1624 */ 1625 writel(head, dbc->dbc_base + RSPHP_OFF); 1626 1627 /* elements might have been put in the queue while we were processing */ 1628 goto read_fifo; 1629 1630 normal_out: 1631 if (likely(!datapath_polling)) 1632 enable_irq(irq); 1633 else 1634 schedule_work(&dbc->poll_work); 1635 /* checking the fifo and enabling irqs is a race, missed event check */ 1636 tail = readl(dbc->dbc_base + RSPTP_OFF); 1637 if (tail != U32_MAX && head != tail) { 1638 if (likely(!datapath_polling)) 1639 disable_irq_nosync(irq); 1640 goto read_fifo; 1641 } 1642 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1643 return IRQ_HANDLED; 1644 1645 error_out: 1646 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1647 if (likely(!datapath_polling)) 1648 enable_irq(irq); 1649 else 1650 schedule_work(&dbc->poll_work); 1651 1652 return IRQ_HANDLED; 1653 } 1654 1655 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1656 { 1657 struct qaic_wait *args = data; 1658 int usr_rcu_id, qdev_rcu_id; 1659 struct dma_bridge_chan *dbc; 1660 struct drm_gem_object *obj; 1661 struct qaic_device *qdev; 1662 unsigned long timeout; 1663 struct qaic_user *usr; 1664 struct qaic_bo *bo; 1665 int rcu_id; 1666 int ret; 1667 1668 usr = file_priv->driver_priv; 1669 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1670 if (!usr->qddev) { 1671 ret = -ENODEV; 1672 goto unlock_usr_srcu; 1673 } 1674 1675 qdev = usr->qddev->qdev; 1676 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1677 if (qdev->in_reset) { 1678 ret = -ENODEV; 1679 goto unlock_dev_srcu; 1680 } 1681 1682 if (args->pad != 0) { 1683 ret = -EINVAL; 1684 goto unlock_dev_srcu; 1685 } 1686 1687 if (args->dbc_id >= qdev->num_dbc) { 1688 ret = -EINVAL; 1689 goto unlock_dev_srcu; 1690 } 1691 1692 dbc = &qdev->dbc[args->dbc_id]; 1693 1694 rcu_id = srcu_read_lock(&dbc->ch_lock); 1695 if (dbc->usr != usr) { 1696 ret = -EPERM; 1697 goto unlock_ch_srcu; 1698 } 1699 1700 obj = drm_gem_object_lookup(file_priv, args->handle); 1701 if (!obj) { 1702 ret = -ENOENT; 1703 goto unlock_ch_srcu; 1704 } 1705 1706 bo = to_qaic_bo(obj); 1707 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; 1708 timeout = msecs_to_jiffies(timeout); 1709 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); 1710 if (!ret) { 1711 ret = -ETIMEDOUT; 1712 goto put_obj; 1713 } 1714 if (ret > 0) 1715 ret = 0; 1716 1717 if (!dbc->usr) 1718 ret = -EPERM; 1719 1720 put_obj: 1721 drm_gem_object_put(obj); 1722 unlock_ch_srcu: 1723 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1724 unlock_dev_srcu: 1725 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1726 unlock_usr_srcu: 1727 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1728 return ret; 1729 } 1730 1731 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1732 { 1733 struct qaic_perf_stats_entry *ent = NULL; 1734 struct qaic_perf_stats *args = data; 1735 int usr_rcu_id, qdev_rcu_id; 1736 struct drm_gem_object *obj; 1737 struct qaic_device *qdev; 1738 struct qaic_user *usr; 1739 struct qaic_bo *bo; 1740 int ret, i; 1741 1742 usr = file_priv->driver_priv; 1743 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1744 if (!usr->qddev) { 1745 ret = -ENODEV; 1746 goto unlock_usr_srcu; 1747 } 1748 1749 qdev = usr->qddev->qdev; 1750 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1751 if (qdev->in_reset) { 1752 ret = -ENODEV; 1753 goto unlock_dev_srcu; 1754 } 1755 1756 if (args->hdr.dbc_id >= qdev->num_dbc) { 1757 ret = -EINVAL; 1758 goto unlock_dev_srcu; 1759 } 1760 1761 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); 1762 if (!ent) { 1763 ret = -EINVAL; 1764 goto unlock_dev_srcu; 1765 } 1766 1767 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); 1768 if (ret) { 1769 ret = -EFAULT; 1770 goto free_ent; 1771 } 1772 1773 for (i = 0; i < args->hdr.count; i++) { 1774 obj = drm_gem_object_lookup(file_priv, ent[i].handle); 1775 if (!obj) { 1776 ret = -ENOENT; 1777 goto free_ent; 1778 } 1779 bo = to_qaic_bo(obj); 1780 /* 1781 * perf stats ioctl is called before wait ioctl is complete then 1782 * the latency information is invalid. 1783 */ 1784 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { 1785 ent[i].device_latency_us = 0; 1786 } else { 1787 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - 1788 bo->perf_stats.req_submit_ts), 1000); 1789 } 1790 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - 1791 bo->perf_stats.req_received_ts), 1000); 1792 ent[i].queue_level_before = bo->perf_stats.queue_level_before; 1793 ent[i].num_queue_element = bo->total_slice_nents; 1794 drm_gem_object_put(obj); 1795 } 1796 1797 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) 1798 ret = -EFAULT; 1799 1800 free_ent: 1801 kfree(ent); 1802 unlock_dev_srcu: 1803 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1804 unlock_usr_srcu: 1805 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1806 return ret; 1807 } 1808 1809 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) 1810 { 1811 unsigned long flags; 1812 struct qaic_bo *bo; 1813 1814 spin_lock_irqsave(&dbc->xfer_lock, flags); 1815 while (!list_empty(&dbc->xfer_list)) { 1816 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); 1817 bo->queued = false; 1818 list_del(&bo->xfer_list); 1819 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1820 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1821 complete_all(&bo->xfer_done); 1822 drm_gem_object_put(&bo->base); 1823 spin_lock_irqsave(&dbc->xfer_lock, flags); 1824 } 1825 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1826 } 1827 1828 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1829 { 1830 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) 1831 return -EPERM; 1832 1833 qdev->dbc[dbc_id].usr = NULL; 1834 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); 1835 return 0; 1836 } 1837 1838 /** 1839 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of 1840 * user. Add user context back to DBC to enable it. This function trusts the 1841 * DBC ID passed and expects the DBC to be disabled. 1842 * @qdev: Qranium device handle 1843 * @dbc_id: ID of the DBC 1844 * @usr: User context 1845 */ 1846 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1847 { 1848 qdev->dbc[dbc_id].usr = usr; 1849 } 1850 1851 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) 1852 { 1853 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1854 1855 dbc->usr = NULL; 1856 empty_xfer_list(qdev, dbc); 1857 synchronize_srcu(&dbc->ch_lock); 1858 } 1859 1860 void release_dbc(struct qaic_device *qdev, u32 dbc_id) 1861 { 1862 struct bo_slice *slice, *slice_temp; 1863 struct qaic_bo *bo, *bo_temp; 1864 struct dma_bridge_chan *dbc; 1865 1866 dbc = &qdev->dbc[dbc_id]; 1867 if (!dbc->in_use) 1868 return; 1869 1870 wakeup_dbc(qdev, dbc_id); 1871 1872 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); 1873 dbc->total_size = 0; 1874 dbc->req_q_base = NULL; 1875 dbc->dma_addr = 0; 1876 dbc->nelem = 0; 1877 dbc->usr = NULL; 1878 1879 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { 1880 list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice) 1881 kref_put(&slice->ref_count, free_slice); 1882 bo->sliced = false; 1883 INIT_LIST_HEAD(&bo->slices); 1884 bo->total_slice_nents = 0; 1885 bo->dir = 0; 1886 bo->dbc = NULL; 1887 bo->nr_slice = 0; 1888 bo->nr_slice_xfer_done = 0; 1889 bo->queued = false; 1890 bo->req_id = 0; 1891 init_completion(&bo->xfer_done); 1892 complete_all(&bo->xfer_done); 1893 list_del(&bo->bo_list); 1894 bo->perf_stats.req_received_ts = 0; 1895 bo->perf_stats.req_submit_ts = 0; 1896 bo->perf_stats.req_processed_ts = 0; 1897 bo->perf_stats.queue_level_before = 0; 1898 } 1899 1900 dbc->in_use = false; 1901 wake_up(&dbc->dbc_release); 1902 } 1903