1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <linux/bitfield.h> 7 #include <linux/bits.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-buf.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/list.h> 15 #include <linux/math64.h> 16 #include <linux/mm.h> 17 #include <linux/moduleparam.h> 18 #include <linux/scatterlist.h> 19 #include <linux/spinlock.h> 20 #include <linux/srcu.h> 21 #include <linux/types.h> 22 #include <linux/uaccess.h> 23 #include <linux/wait.h> 24 #include <drm/drm_file.h> 25 #include <drm/drm_gem.h> 26 #include <drm/drm_prime.h> 27 #include <drm/drm_print.h> 28 #include <uapi/drm/qaic_accel.h> 29 30 #include "qaic.h" 31 32 #define SEM_VAL_MASK GENMASK_ULL(11, 0) 33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0) 34 #define BULK_XFER BIT(3) 35 #define GEN_COMPLETION BIT(4) 36 #define INBOUND_XFER 1 37 #define OUTBOUND_XFER 2 38 #define REQHP_OFF 0x0 /* we read this */ 39 #define REQTP_OFF 0x4 /* we write this */ 40 #define RSPHP_OFF 0x8 /* we write this */ 41 #define RSPTP_OFF 0xc /* we read this */ 42 43 #define ENCODE_SEM(val, index, sync, cmd, flags) \ 44 ({ \ 45 FIELD_PREP(GENMASK(11, 0), (val)) | \ 46 FIELD_PREP(GENMASK(20, 16), (index)) | \ 47 FIELD_PREP(BIT(22), (sync)) | \ 48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \ 49 FIELD_PREP(GENMASK(30, 29), (flags)) | \ 50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ 51 }) 52 #define NUM_EVENTS 128 53 #define NUM_DELAYS 10 54 55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ 56 module_param(wait_exec_default_timeout_ms, uint, 0600); 57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); 58 59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ 60 module_param(datapath_poll_interval_us, uint, 0600); 61 MODULE_PARM_DESC(datapath_poll_interval_us, 62 "Amount of time to sleep between activity when datapath polling is enabled"); 63 64 struct dbc_req { 65 /* 66 * A request ID is assigned to each memory handle going in DMA queue. 67 * As a single memory handle can enqueue multiple elements in DMA queue 68 * all of them will have the same request ID. 69 */ 70 __le16 req_id; 71 /* Future use */ 72 __u8 seq_id; 73 /* 74 * Special encoded variable 75 * 7 0 - Do not force to generate MSI after DMA is completed 76 * 1 - Force to generate MSI after DMA is completed 77 * 6:5 Reserved 78 * 4 1 - Generate completion element in the response queue 79 * 0 - No Completion Code 80 * 3 0 - DMA request is a Link list transfer 81 * 1 - DMA request is a Bulk transfer 82 * 2 Reserved 83 * 1:0 00 - No DMA transfer involved 84 * 01 - DMA transfer is part of inbound transfer 85 * 10 - DMA transfer has outbound transfer 86 * 11 - NA 87 */ 88 __u8 cmd; 89 __le32 resv; 90 /* Source address for the transfer */ 91 __le64 src_addr; 92 /* Destination address for the transfer */ 93 __le64 dest_addr; 94 /* Length of transfer request */ 95 __le32 len; 96 __le32 resv2; 97 /* Doorbell address */ 98 __le64 db_addr; 99 /* 100 * Special encoded variable 101 * 7 1 - Doorbell(db) write 102 * 0 - No doorbell write 103 * 6:2 Reserved 104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary 105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary 106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary 107 * 11 - Reserved 108 */ 109 __u8 db_len; 110 __u8 resv3; 111 __le16 resv4; 112 /* 32 bit data written to doorbell address */ 113 __le32 db_data; 114 /* 115 * Special encoded variable 116 * All the fields of sem_cmdX are passed from user and all are ORed 117 * together to form sem_cmd. 118 * 0:11 Semaphore value 119 * 15:12 Reserved 120 * 20:16 Semaphore index 121 * 21 Reserved 122 * 22 Semaphore Sync 123 * 23 Reserved 124 * 26:24 Semaphore command 125 * 28:27 Reserved 126 * 29 Semaphore DMA out bound sync fence 127 * 30 Semaphore DMA in bound sync fence 128 * 31 Enable semaphore command 129 */ 130 __le32 sem_cmd0; 131 __le32 sem_cmd1; 132 __le32 sem_cmd2; 133 __le32 sem_cmd3; 134 } __packed; 135 136 struct dbc_rsp { 137 /* Request ID of the memory handle whose DMA transaction is completed */ 138 __le16 req_id; 139 /* Status of the DMA transaction. 0 : Success otherwise failure */ 140 __le16 status; 141 } __packed; 142 143 inline int get_dbc_req_elem_size(void) 144 { 145 return sizeof(struct dbc_req); 146 } 147 148 inline int get_dbc_rsp_elem_size(void) 149 { 150 return sizeof(struct dbc_rsp); 151 } 152 153 static void free_slice(struct kref *kref) 154 { 155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); 156 157 slice->bo->total_slice_nents -= slice->nents; 158 list_del(&slice->slice); 159 drm_gem_object_put(&slice->bo->base); 160 sg_free_table(slice->sgt); 161 kfree(slice->sgt); 162 kfree(slice->reqs); 163 kfree(slice); 164 } 165 166 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, 167 struct sg_table *sgt_in, u64 size, u64 offset) 168 { 169 int total_len, len, nents, offf = 0, offl = 0; 170 struct scatterlist *sg, *sgn, *sgf, *sgl; 171 struct sg_table *sgt; 172 int ret, j; 173 174 /* find out number of relevant nents needed for this mem */ 175 total_len = 0; 176 sgf = NULL; 177 sgl = NULL; 178 nents = 0; 179 180 size = size ? size : PAGE_SIZE; 181 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) { 182 len = sg_dma_len(sg); 183 184 if (!len) 185 continue; 186 if (offset >= total_len && offset < total_len + len) { 187 sgf = sg; 188 offf = offset - total_len; 189 } 190 if (sgf) 191 nents++; 192 if (offset + size >= total_len && 193 offset + size <= total_len + len) { 194 sgl = sg; 195 offl = offset + size - total_len; 196 break; 197 } 198 total_len += len; 199 } 200 201 if (!sgf || !sgl) { 202 ret = -EINVAL; 203 goto out; 204 } 205 206 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 207 if (!sgt) { 208 ret = -ENOMEM; 209 goto out; 210 } 211 212 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 213 if (ret) 214 goto free_sgt; 215 216 /* copy relevant sg node and fix page and length */ 217 sgn = sgf; 218 for_each_sgtable_sg(sgt, sg, j) { 219 memcpy(sg, sgn, sizeof(*sg)); 220 if (sgn == sgf) { 221 sg_dma_address(sg) += offf; 222 sg_dma_len(sg) -= offf; 223 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); 224 } else { 225 offf = 0; 226 } 227 if (sgn == sgl) { 228 sg_dma_len(sg) = offl - offf; 229 sg_set_page(sg, sg_page(sgn), offl - offf, offf); 230 sg_mark_end(sg); 231 break; 232 } 233 sgn = sg_next(sgn); 234 } 235 236 *sgt_out = sgt; 237 return ret; 238 239 free_sgt: 240 kfree(sgt); 241 out: 242 *sgt_out = NULL; 243 return ret; 244 } 245 246 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, 247 struct qaic_attach_slice_entry *req) 248 { 249 __le64 db_addr = cpu_to_le64(req->db_addr); 250 __le32 db_data = cpu_to_le32(req->db_data); 251 struct scatterlist *sg; 252 __u8 cmd = BULK_XFER; 253 int presync_sem; 254 u64 dev_addr; 255 __u8 db_len; 256 int i; 257 258 if (!slice->no_xfer) 259 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); 260 261 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) 262 return -EINVAL; 263 264 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; 265 if (presync_sem > 1) 266 return -EINVAL; 267 268 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | 269 req->sem2.presync << 2 | req->sem3.presync << 3; 270 271 switch (req->db_len) { 272 case 32: 273 db_len = BIT(7); 274 break; 275 case 16: 276 db_len = BIT(7) | 1; 277 break; 278 case 8: 279 db_len = BIT(7) | 2; 280 break; 281 case 0: 282 db_len = 0; /* doorbell is not active for this command */ 283 break; 284 default: 285 return -EINVAL; /* should never hit this */ 286 } 287 288 /* 289 * When we end up splitting up a single request (ie a buf slice) into 290 * multiple DMA requests, we have to manage the sync data carefully. 291 * There can only be one presync sem. That needs to be on every xfer 292 * so that the DMA engine doesn't transfer data before the receiver is 293 * ready. We only do the doorbell and postsync sems after the xfer. 294 * To guarantee previous xfers for the request are complete, we use a 295 * fence. 296 */ 297 dev_addr = req->dev_addr; 298 for_each_sgtable_sg(slice->sgt, sg, i) { 299 slice->reqs[i].cmd = cmd; 300 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 301 sg_dma_address(sg) : dev_addr); 302 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 303 dev_addr : sg_dma_address(sg)); 304 /* 305 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA 306 * segment size is set to UINT_MAX by qaic and hence return 307 * values of sg_dma_len(sg) can never exceed u32 range. So, 308 * by down sizing we are not corrupting the value. 309 */ 310 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); 311 switch (presync_sem) { 312 case BIT(0): 313 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, 314 req->sem0.index, 315 req->sem0.presync, 316 req->sem0.cmd, 317 req->sem0.flags)); 318 break; 319 case BIT(1): 320 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, 321 req->sem1.index, 322 req->sem1.presync, 323 req->sem1.cmd, 324 req->sem1.flags)); 325 break; 326 case BIT(2): 327 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, 328 req->sem2.index, 329 req->sem2.presync, 330 req->sem2.cmd, 331 req->sem2.flags)); 332 break; 333 case BIT(3): 334 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, 335 req->sem3.index, 336 req->sem3.presync, 337 req->sem3.cmd, 338 req->sem3.flags)); 339 break; 340 } 341 dev_addr += sg_dma_len(sg); 342 } 343 /* add post transfer stuff to last segment */ 344 i--; 345 slice->reqs[i].cmd |= GEN_COMPLETION; 346 slice->reqs[i].db_addr = db_addr; 347 slice->reqs[i].db_len = db_len; 348 slice->reqs[i].db_data = db_data; 349 /* 350 * Add a fence if we have more than one request going to the hardware 351 * representing the entirety of the user request, and the user request 352 * has no presync condition. 353 * Fences are expensive, so we try to avoid them. We rely on the 354 * hardware behavior to avoid needing one when there is a presync 355 * condition. When a presync exists, all requests for that same 356 * presync will be queued into a fifo. Thus, since we queue the 357 * post xfer activity only on the last request we queue, the hardware 358 * will ensure that the last queued request is processed last, thus 359 * making sure the post xfer activity happens at the right time without 360 * a fence. 361 */ 362 if (i && !presync_sem) 363 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? 364 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); 365 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, 366 req->sem0.presync, req->sem0.cmd, 367 req->sem0.flags)); 368 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, 369 req->sem1.presync, req->sem1.cmd, 370 req->sem1.flags)); 371 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, 372 req->sem2.presync, req->sem2.cmd, 373 req->sem2.flags)); 374 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, 375 req->sem3.presync, req->sem3.cmd, 376 req->sem3.flags)); 377 378 return 0; 379 } 380 381 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, 382 struct qaic_attach_slice_entry *slice_ent) 383 { 384 struct sg_table *sgt = NULL; 385 struct bo_slice *slice; 386 int ret; 387 388 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); 389 if (ret) 390 goto out; 391 392 slice = kmalloc(sizeof(*slice), GFP_KERNEL); 393 if (!slice) { 394 ret = -ENOMEM; 395 goto free_sgt; 396 } 397 398 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); 399 if (!slice->reqs) { 400 ret = -ENOMEM; 401 goto free_slice; 402 } 403 404 slice->no_xfer = !slice_ent->size; 405 slice->sgt = sgt; 406 slice->nents = sgt->nents; 407 slice->dir = bo->dir; 408 slice->bo = bo; 409 slice->size = slice_ent->size; 410 slice->offset = slice_ent->offset; 411 412 ret = encode_reqs(qdev, slice, slice_ent); 413 if (ret) 414 goto free_req; 415 416 bo->total_slice_nents += sgt->nents; 417 kref_init(&slice->ref_count); 418 drm_gem_object_get(&bo->base); 419 list_add_tail(&slice->slice, &bo->slices); 420 421 return 0; 422 423 free_req: 424 kfree(slice->reqs); 425 free_slice: 426 kfree(slice); 427 free_sgt: 428 sg_free_table(sgt); 429 kfree(sgt); 430 out: 431 return ret; 432 } 433 434 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) 435 { 436 struct scatterlist *sg; 437 struct sg_table *sgt; 438 struct page **pages; 439 int *pages_order; 440 int buf_extra; 441 int max_order; 442 int nr_pages; 443 int ret = 0; 444 int i, j, k; 445 int order; 446 447 if (size) { 448 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); 449 /* 450 * calculate how much extra we are going to allocate, to remove 451 * later 452 */ 453 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; 454 max_order = min(MAX_PAGE_ORDER - 1, get_order(size)); 455 } else { 456 /* allocate a single page for book keeping */ 457 nr_pages = 1; 458 buf_extra = 0; 459 max_order = 0; 460 } 461 462 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); 463 if (!pages) { 464 ret = -ENOMEM; 465 goto out; 466 } 467 pages_order = (void *)pages + sizeof(*pages) * nr_pages; 468 469 /* 470 * Allocate requested memory using alloc_pages. It is possible to allocate 471 * the requested memory in multiple chunks by calling alloc_pages 472 * multiple times. Use SG table to handle multiple allocated pages. 473 */ 474 i = 0; 475 while (nr_pages > 0) { 476 order = min(get_order(nr_pages * PAGE_SIZE), max_order); 477 while (1) { 478 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | 479 __GFP_NOWARN | __GFP_ZERO | 480 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), 481 order); 482 if (pages[i]) 483 break; 484 if (!order--) { 485 ret = -ENOMEM; 486 goto free_partial_alloc; 487 } 488 } 489 490 max_order = order; 491 pages_order[i] = order; 492 493 nr_pages -= 1 << order; 494 if (nr_pages <= 0) 495 /* account for over allocation */ 496 buf_extra += abs(nr_pages) * PAGE_SIZE; 497 i++; 498 } 499 500 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 501 if (!sgt) { 502 ret = -ENOMEM; 503 goto free_partial_alloc; 504 } 505 506 if (sg_alloc_table(sgt, i, GFP_KERNEL)) { 507 ret = -ENOMEM; 508 goto free_sgt; 509 } 510 511 /* Populate the SG table with the allocated memory pages */ 512 sg = sgt->sgl; 513 for (k = 0; k < i; k++, sg = sg_next(sg)) { 514 /* Last entry requires special handling */ 515 if (k < i - 1) { 516 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); 517 } else { 518 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); 519 sg_mark_end(sg); 520 } 521 } 522 523 kvfree(pages); 524 *sgt_out = sgt; 525 return ret; 526 527 free_sgt: 528 kfree(sgt); 529 free_partial_alloc: 530 for (j = 0; j < i; j++) 531 __free_pages(pages[j], pages_order[j]); 532 kvfree(pages); 533 out: 534 *sgt_out = NULL; 535 return ret; 536 } 537 538 static bool invalid_sem(struct qaic_sem *sem) 539 { 540 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || 541 !(sem->presync == 0 || sem->presync == 1) || sem->pad || 542 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || 543 sem->cmd > QAIC_SEM_WAIT_GT_0) 544 return true; 545 return false; 546 } 547 548 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, 549 u32 count, u64 total_size) 550 { 551 int i; 552 553 for (i = 0; i < count; i++) { 554 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || 555 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || 556 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || 557 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) 558 return -EINVAL; 559 560 if (slice_ent[i].offset + slice_ent[i].size > total_size) 561 return -EINVAL; 562 } 563 564 return 0; 565 } 566 567 static void qaic_free_sgt(struct sg_table *sgt) 568 { 569 struct scatterlist *sg; 570 571 for (sg = sgt->sgl; sg; sg = sg_next(sg)) 572 if (sg_page(sg)) 573 __free_pages(sg_page(sg), get_order(sg->length)); 574 sg_free_table(sgt); 575 kfree(sgt); 576 } 577 578 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, 579 const struct drm_gem_object *obj) 580 { 581 struct qaic_bo *bo = to_qaic_bo(obj); 582 583 drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir); 584 } 585 586 static const struct vm_operations_struct drm_vm_ops = { 587 .open = drm_gem_vm_open, 588 .close = drm_gem_vm_close, 589 }; 590 591 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 592 { 593 struct qaic_bo *bo = to_qaic_bo(obj); 594 unsigned long offset = 0; 595 struct scatterlist *sg; 596 int ret = 0; 597 598 if (obj->import_attach) 599 return -EINVAL; 600 601 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { 602 if (sg_page(sg)) { 603 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), 604 sg->length, vma->vm_page_prot); 605 if (ret) 606 goto out; 607 offset += sg->length; 608 } 609 } 610 611 out: 612 return ret; 613 } 614 615 static void qaic_free_object(struct drm_gem_object *obj) 616 { 617 struct qaic_bo *bo = to_qaic_bo(obj); 618 619 if (obj->import_attach) { 620 /* DMABUF/PRIME Path */ 621 drm_prime_gem_destroy(obj, NULL); 622 } else { 623 /* Private buffer allocation path */ 624 qaic_free_sgt(bo->sgt); 625 } 626 627 mutex_destroy(&bo->lock); 628 drm_gem_object_release(obj); 629 kfree(bo); 630 } 631 632 static const struct drm_gem_object_funcs qaic_gem_funcs = { 633 .free = qaic_free_object, 634 .print_info = qaic_gem_print_info, 635 .mmap = qaic_gem_object_mmap, 636 .vm_ops = &drm_vm_ops, 637 }; 638 639 static void qaic_init_bo(struct qaic_bo *bo, bool reinit) 640 { 641 if (reinit) { 642 bo->sliced = false; 643 reinit_completion(&bo->xfer_done); 644 } else { 645 mutex_init(&bo->lock); 646 init_completion(&bo->xfer_done); 647 } 648 complete_all(&bo->xfer_done); 649 INIT_LIST_HEAD(&bo->slices); 650 } 651 652 static struct qaic_bo *qaic_alloc_init_bo(void) 653 { 654 struct qaic_bo *bo; 655 656 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 657 if (!bo) 658 return ERR_PTR(-ENOMEM); 659 660 qaic_init_bo(bo, false); 661 662 return bo; 663 } 664 665 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 666 { 667 struct qaic_create_bo *args = data; 668 int usr_rcu_id, qdev_rcu_id; 669 struct drm_gem_object *obj; 670 struct qaic_device *qdev; 671 struct qaic_user *usr; 672 struct qaic_bo *bo; 673 size_t size; 674 int ret; 675 676 if (args->pad) 677 return -EINVAL; 678 679 size = PAGE_ALIGN(args->size); 680 if (size == 0) 681 return -EINVAL; 682 683 usr = file_priv->driver_priv; 684 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 685 if (!usr->qddev) { 686 ret = -ENODEV; 687 goto unlock_usr_srcu; 688 } 689 690 qdev = usr->qddev->qdev; 691 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 692 if (qdev->in_reset) { 693 ret = -ENODEV; 694 goto unlock_dev_srcu; 695 } 696 697 bo = qaic_alloc_init_bo(); 698 if (IS_ERR(bo)) { 699 ret = PTR_ERR(bo); 700 goto unlock_dev_srcu; 701 } 702 obj = &bo->base; 703 704 drm_gem_private_object_init(dev, obj, size); 705 706 obj->funcs = &qaic_gem_funcs; 707 ret = create_sgt(qdev, &bo->sgt, size); 708 if (ret) 709 goto free_bo; 710 711 ret = drm_gem_handle_create(file_priv, obj, &args->handle); 712 if (ret) 713 goto free_sgt; 714 715 bo->handle = args->handle; 716 drm_gem_object_put(obj); 717 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 719 720 return 0; 721 722 free_sgt: 723 qaic_free_sgt(bo->sgt); 724 free_bo: 725 kfree(bo); 726 unlock_dev_srcu: 727 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 728 unlock_usr_srcu: 729 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 730 return ret; 731 } 732 733 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 734 { 735 struct qaic_mmap_bo *args = data; 736 int usr_rcu_id, qdev_rcu_id; 737 struct drm_gem_object *obj; 738 struct qaic_device *qdev; 739 struct qaic_user *usr; 740 int ret; 741 742 usr = file_priv->driver_priv; 743 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 744 if (!usr->qddev) { 745 ret = -ENODEV; 746 goto unlock_usr_srcu; 747 } 748 749 qdev = usr->qddev->qdev; 750 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 751 if (qdev->in_reset) { 752 ret = -ENODEV; 753 goto unlock_dev_srcu; 754 } 755 756 obj = drm_gem_object_lookup(file_priv, args->handle); 757 if (!obj) { 758 ret = -ENOENT; 759 goto unlock_dev_srcu; 760 } 761 762 ret = drm_gem_create_mmap_offset(obj); 763 if (ret == 0) 764 args->offset = drm_vma_node_offset_addr(&obj->vma_node); 765 766 drm_gem_object_put(obj); 767 768 unlock_dev_srcu: 769 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 770 unlock_usr_srcu: 771 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 772 return ret; 773 } 774 775 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) 776 { 777 struct dma_buf_attachment *attach; 778 struct drm_gem_object *obj; 779 struct qaic_bo *bo; 780 int ret; 781 782 bo = qaic_alloc_init_bo(); 783 if (IS_ERR(bo)) { 784 ret = PTR_ERR(bo); 785 goto out; 786 } 787 788 obj = &bo->base; 789 get_dma_buf(dma_buf); 790 791 attach = dma_buf_attach(dma_buf, dev->dev); 792 if (IS_ERR(attach)) { 793 ret = PTR_ERR(attach); 794 goto attach_fail; 795 } 796 797 if (!attach->dmabuf->size) { 798 ret = -EINVAL; 799 goto size_align_fail; 800 } 801 802 drm_gem_private_object_init(dev, obj, attach->dmabuf->size); 803 /* 804 * skipping dma_buf_map_attachment() as we do not know the direction 805 * just yet. Once the direction is known in the subsequent IOCTL to 806 * attach slicing, we can do it then. 807 */ 808 809 obj->funcs = &qaic_gem_funcs; 810 obj->import_attach = attach; 811 obj->resv = dma_buf->resv; 812 813 return obj; 814 815 size_align_fail: 816 dma_buf_detach(dma_buf, attach); 817 attach_fail: 818 dma_buf_put(dma_buf); 819 kfree(bo); 820 out: 821 return ERR_PTR(ret); 822 } 823 824 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) 825 { 826 struct drm_gem_object *obj = &bo->base; 827 struct sg_table *sgt; 828 int ret; 829 830 if (obj->import_attach->dmabuf->size < hdr->size) 831 return -EINVAL; 832 833 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); 834 if (IS_ERR(sgt)) { 835 ret = PTR_ERR(sgt); 836 return ret; 837 } 838 839 bo->sgt = sgt; 840 841 return 0; 842 } 843 844 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, 845 struct qaic_attach_slice_hdr *hdr) 846 { 847 int ret; 848 849 if (bo->base.size < hdr->size) 850 return -EINVAL; 851 852 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); 853 if (ret) 854 return -EFAULT; 855 856 return 0; 857 } 858 859 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, 860 struct qaic_attach_slice_hdr *hdr) 861 { 862 int ret; 863 864 if (bo->base.import_attach) 865 ret = qaic_prepare_import_bo(bo, hdr); 866 else 867 ret = qaic_prepare_export_bo(qdev, bo, hdr); 868 bo->dir = hdr->dir; 869 bo->dbc = &qdev->dbc[hdr->dbc_id]; 870 bo->nr_slice = hdr->count; 871 872 return ret; 873 } 874 875 static void qaic_unprepare_import_bo(struct qaic_bo *bo) 876 { 877 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); 878 bo->sgt = NULL; 879 } 880 881 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) 882 { 883 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); 884 } 885 886 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) 887 { 888 if (bo->base.import_attach) 889 qaic_unprepare_import_bo(bo); 890 else 891 qaic_unprepare_export_bo(qdev, bo); 892 893 bo->dir = 0; 894 bo->dbc = NULL; 895 bo->nr_slice = 0; 896 } 897 898 static void qaic_free_slices_bo(struct qaic_bo *bo) 899 { 900 struct bo_slice *slice, *temp; 901 902 list_for_each_entry_safe(slice, temp, &bo->slices, slice) 903 kref_put(&slice->ref_count, free_slice); 904 if (WARN_ON_ONCE(bo->total_slice_nents != 0)) 905 bo->total_slice_nents = 0; 906 bo->nr_slice = 0; 907 } 908 909 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, 910 struct qaic_attach_slice_hdr *hdr, 911 struct qaic_attach_slice_entry *slice_ent) 912 { 913 int ret, i; 914 915 for (i = 0; i < hdr->count; i++) { 916 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); 917 if (ret) { 918 qaic_free_slices_bo(bo); 919 return ret; 920 } 921 } 922 923 if (bo->total_slice_nents > bo->dbc->nelem) { 924 qaic_free_slices_bo(bo); 925 return -ENOSPC; 926 } 927 928 return 0; 929 } 930 931 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 932 { 933 struct qaic_attach_slice_entry *slice_ent; 934 struct qaic_attach_slice *args = data; 935 int rcu_id, usr_rcu_id, qdev_rcu_id; 936 struct dma_bridge_chan *dbc; 937 struct drm_gem_object *obj; 938 struct qaic_device *qdev; 939 unsigned long arg_size; 940 struct qaic_user *usr; 941 u8 __user *user_data; 942 struct qaic_bo *bo; 943 int ret; 944 945 if (args->hdr.count == 0) 946 return -EINVAL; 947 948 arg_size = args->hdr.count * sizeof(*slice_ent); 949 if (arg_size / args->hdr.count != sizeof(*slice_ent)) 950 return -EINVAL; 951 952 if (args->hdr.size == 0) 953 return -EINVAL; 954 955 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) 956 return -EINVAL; 957 958 if (args->data == 0) 959 return -EINVAL; 960 961 usr = file_priv->driver_priv; 962 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 963 if (!usr->qddev) { 964 ret = -ENODEV; 965 goto unlock_usr_srcu; 966 } 967 968 qdev = usr->qddev->qdev; 969 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 970 if (qdev->in_reset) { 971 ret = -ENODEV; 972 goto unlock_dev_srcu; 973 } 974 975 if (args->hdr.dbc_id >= qdev->num_dbc) { 976 ret = -EINVAL; 977 goto unlock_dev_srcu; 978 } 979 980 user_data = u64_to_user_ptr(args->data); 981 982 slice_ent = kzalloc(arg_size, GFP_KERNEL); 983 if (!slice_ent) { 984 ret = -EINVAL; 985 goto unlock_dev_srcu; 986 } 987 988 ret = copy_from_user(slice_ent, user_data, arg_size); 989 if (ret) { 990 ret = -EFAULT; 991 goto free_slice_ent; 992 } 993 994 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size); 995 if (ret) 996 goto free_slice_ent; 997 998 obj = drm_gem_object_lookup(file_priv, args->hdr.handle); 999 if (!obj) { 1000 ret = -ENOENT; 1001 goto free_slice_ent; 1002 } 1003 1004 bo = to_qaic_bo(obj); 1005 ret = mutex_lock_interruptible(&bo->lock); 1006 if (ret) 1007 goto put_bo; 1008 1009 if (bo->sliced) { 1010 ret = -EINVAL; 1011 goto unlock_bo; 1012 } 1013 1014 dbc = &qdev->dbc[args->hdr.dbc_id]; 1015 rcu_id = srcu_read_lock(&dbc->ch_lock); 1016 if (dbc->usr != usr) { 1017 ret = -EINVAL; 1018 goto unlock_ch_srcu; 1019 } 1020 1021 ret = qaic_prepare_bo(qdev, bo, &args->hdr); 1022 if (ret) 1023 goto unlock_ch_srcu; 1024 1025 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); 1026 if (ret) 1027 goto unprepare_bo; 1028 1029 if (args->hdr.dir == DMA_TO_DEVICE) 1030 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); 1031 1032 bo->sliced = true; 1033 list_add_tail(&bo->bo_list, &bo->dbc->bo_lists); 1034 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1035 mutex_unlock(&bo->lock); 1036 kfree(slice_ent); 1037 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1038 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1039 1040 return 0; 1041 1042 unprepare_bo: 1043 qaic_unprepare_bo(qdev, bo); 1044 unlock_ch_srcu: 1045 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1046 unlock_bo: 1047 mutex_unlock(&bo->lock); 1048 put_bo: 1049 drm_gem_object_put(obj); 1050 free_slice_ent: 1051 kfree(slice_ent); 1052 unlock_dev_srcu: 1053 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1054 unlock_usr_srcu: 1055 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1056 return ret; 1057 } 1058 1059 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, 1060 u32 head, u32 *ptail) 1061 { 1062 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1063 struct dbc_req *reqs = slice->reqs; 1064 u32 tail = *ptail; 1065 u32 avail; 1066 1067 avail = head - tail; 1068 if (head <= tail) 1069 avail += dbc->nelem; 1070 1071 --avail; 1072 1073 if (avail < slice->nents) 1074 return -EAGAIN; 1075 1076 if (tail + slice->nents > dbc->nelem) { 1077 avail = dbc->nelem - tail; 1078 avail = min_t(u32, avail, slice->nents); 1079 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1080 sizeof(*reqs) * avail); 1081 reqs += avail; 1082 avail = slice->nents - avail; 1083 if (avail) 1084 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); 1085 } else { 1086 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1087 sizeof(*reqs) * slice->nents); 1088 } 1089 1090 *ptail = (tail + slice->nents) % dbc->nelem; 1091 1092 return 0; 1093 } 1094 1095 /* 1096 * Based on the value of resize we may only need to transmit first_n 1097 * entries and the last entry, with last_bytes to send from the last entry. 1098 * Note that first_n could be 0. 1099 */ 1100 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, 1101 u64 resize, u32 dbc_id, u32 head, u32 *ptail) 1102 { 1103 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1104 struct dbc_req *reqs = slice->reqs; 1105 struct dbc_req *last_req; 1106 u32 tail = *ptail; 1107 u64 total_bytes; 1108 u64 last_bytes; 1109 u32 first_n; 1110 u32 avail; 1111 int ret; 1112 int i; 1113 1114 avail = head - tail; 1115 if (head <= tail) 1116 avail += dbc->nelem; 1117 1118 --avail; 1119 1120 total_bytes = 0; 1121 for (i = 0; i < slice->nents; i++) { 1122 total_bytes += le32_to_cpu(reqs[i].len); 1123 if (total_bytes >= resize) 1124 break; 1125 } 1126 1127 if (total_bytes < resize) { 1128 /* User space should have used the full buffer path. */ 1129 ret = -EINVAL; 1130 return ret; 1131 } 1132 1133 first_n = i; 1134 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize; 1135 1136 if (avail < (first_n + 1)) 1137 return -EAGAIN; 1138 1139 if (first_n) { 1140 if (tail + first_n > dbc->nelem) { 1141 avail = dbc->nelem - tail; 1142 avail = min_t(u32, avail, first_n); 1143 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1144 sizeof(*reqs) * avail); 1145 last_req = reqs + avail; 1146 avail = first_n - avail; 1147 if (avail) 1148 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); 1149 } else { 1150 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs, 1151 sizeof(*reqs) * first_n); 1152 } 1153 } 1154 1155 /* Copy over the last entry. Here we need to adjust len to the left over 1156 * size, and set src and dst to the entry it is copied to. 1157 */ 1158 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size(); 1159 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); 1160 1161 /* 1162 * last_bytes holds size of a DMA segment, maximum DMA segment size is 1163 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 1164 * range. So, by down sizing we are not corrupting the value. 1165 */ 1166 last_req->len = cpu_to_le32((u32)last_bytes); 1167 last_req->src_addr = reqs[first_n].src_addr; 1168 last_req->dest_addr = reqs[first_n].dest_addr; 1169 1170 *ptail = (tail + first_n + 1) % dbc->nelem; 1171 1172 return 0; 1173 } 1174 1175 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, 1176 struct qaic_execute_entry *exec, unsigned int count, 1177 bool is_partial, struct dma_bridge_chan *dbc, u32 head, 1178 u32 *tail) 1179 { 1180 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1181 struct drm_gem_object *obj; 1182 struct bo_slice *slice; 1183 unsigned long flags; 1184 struct qaic_bo *bo; 1185 bool queued; 1186 int i, j; 1187 int ret; 1188 1189 for (i = 0; i < count; i++) { 1190 /* 1191 * ref count will be decremented when the transfer of this 1192 * buffer is complete. It is inside dbc_irq_threaded_fn(). 1193 */ 1194 obj = drm_gem_object_lookup(file_priv, 1195 is_partial ? pexec[i].handle : exec[i].handle); 1196 if (!obj) { 1197 ret = -ENOENT; 1198 goto failed_to_send_bo; 1199 } 1200 1201 bo = to_qaic_bo(obj); 1202 ret = mutex_lock_interruptible(&bo->lock); 1203 if (ret) 1204 goto failed_to_send_bo; 1205 1206 if (!bo->sliced) { 1207 ret = -EINVAL; 1208 goto unlock_bo; 1209 } 1210 1211 if (is_partial && pexec[i].resize > bo->base.size) { 1212 ret = -EINVAL; 1213 goto unlock_bo; 1214 } 1215 1216 spin_lock_irqsave(&dbc->xfer_lock, flags); 1217 queued = bo->queued; 1218 bo->queued = true; 1219 if (queued) { 1220 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1221 ret = -EINVAL; 1222 goto unlock_bo; 1223 } 1224 1225 bo->req_id = dbc->next_req_id++; 1226 1227 list_for_each_entry(slice, &bo->slices, slice) { 1228 /* 1229 * If this slice does not fall under the given 1230 * resize then skip this slice and continue the loop 1231 */ 1232 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset) 1233 continue; 1234 1235 for (j = 0; j < slice->nents; j++) 1236 slice->reqs[j].req_id = cpu_to_le16(bo->req_id); 1237 1238 /* 1239 * If it is a partial execute ioctl call then check if 1240 * resize has cut this slice short then do a partial copy 1241 * else do complete copy 1242 */ 1243 if (is_partial && pexec[i].resize && 1244 pexec[i].resize < slice->offset + slice->size) 1245 ret = copy_partial_exec_reqs(qdev, slice, 1246 pexec[i].resize - slice->offset, 1247 dbc->id, head, tail); 1248 else 1249 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); 1250 if (ret) { 1251 bo->queued = false; 1252 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1253 goto unlock_bo; 1254 } 1255 } 1256 reinit_completion(&bo->xfer_done); 1257 list_add_tail(&bo->xfer_list, &dbc->xfer_list); 1258 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1259 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); 1260 mutex_unlock(&bo->lock); 1261 } 1262 1263 return 0; 1264 1265 unlock_bo: 1266 mutex_unlock(&bo->lock); 1267 failed_to_send_bo: 1268 if (likely(obj)) 1269 drm_gem_object_put(obj); 1270 for (j = 0; j < i; j++) { 1271 spin_lock_irqsave(&dbc->xfer_lock, flags); 1272 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); 1273 obj = &bo->base; 1274 bo->queued = false; 1275 list_del(&bo->xfer_list); 1276 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1277 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1278 drm_gem_object_put(obj); 1279 } 1280 return ret; 1281 } 1282 1283 static void update_profiling_data(struct drm_file *file_priv, 1284 struct qaic_execute_entry *exec, unsigned int count, 1285 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) 1286 { 1287 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1288 struct drm_gem_object *obj; 1289 struct qaic_bo *bo; 1290 int i; 1291 1292 for (i = 0; i < count; i++) { 1293 /* 1294 * Since we already committed the BO to hardware, the only way 1295 * this should fail is a pending signal. We can't cancel the 1296 * submit to hardware, so we have to just skip the profiling 1297 * data. In case the signal is not fatal to the process, we 1298 * return success so that the user doesn't try to resubmit. 1299 */ 1300 obj = drm_gem_object_lookup(file_priv, 1301 is_partial ? pexec[i].handle : exec[i].handle); 1302 if (!obj) 1303 break; 1304 bo = to_qaic_bo(obj); 1305 bo->perf_stats.req_received_ts = received_ts; 1306 bo->perf_stats.req_submit_ts = submit_ts; 1307 bo->perf_stats.queue_level_before = queue_level; 1308 queue_level += bo->total_slice_nents; 1309 drm_gem_object_put(obj); 1310 } 1311 } 1312 1313 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, 1314 bool is_partial) 1315 { 1316 struct qaic_execute *args = data; 1317 struct qaic_execute_entry *exec; 1318 struct dma_bridge_chan *dbc; 1319 int usr_rcu_id, qdev_rcu_id; 1320 struct qaic_device *qdev; 1321 struct qaic_user *usr; 1322 u8 __user *user_data; 1323 unsigned long n; 1324 u64 received_ts; 1325 u32 queue_level; 1326 u64 submit_ts; 1327 int rcu_id; 1328 u32 head; 1329 u32 tail; 1330 u64 size; 1331 int ret; 1332 1333 received_ts = ktime_get_ns(); 1334 1335 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec); 1336 n = (unsigned long)size * args->hdr.count; 1337 if (args->hdr.count == 0 || n / args->hdr.count != size) 1338 return -EINVAL; 1339 1340 user_data = u64_to_user_ptr(args->data); 1341 1342 exec = kcalloc(args->hdr.count, size, GFP_KERNEL); 1343 if (!exec) 1344 return -ENOMEM; 1345 1346 if (copy_from_user(exec, user_data, n)) { 1347 ret = -EFAULT; 1348 goto free_exec; 1349 } 1350 1351 usr = file_priv->driver_priv; 1352 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1353 if (!usr->qddev) { 1354 ret = -ENODEV; 1355 goto unlock_usr_srcu; 1356 } 1357 1358 qdev = usr->qddev->qdev; 1359 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1360 if (qdev->in_reset) { 1361 ret = -ENODEV; 1362 goto unlock_dev_srcu; 1363 } 1364 1365 if (args->hdr.dbc_id >= qdev->num_dbc) { 1366 ret = -EINVAL; 1367 goto unlock_dev_srcu; 1368 } 1369 1370 dbc = &qdev->dbc[args->hdr.dbc_id]; 1371 1372 rcu_id = srcu_read_lock(&dbc->ch_lock); 1373 if (!dbc->usr || dbc->usr->handle != usr->handle) { 1374 ret = -EPERM; 1375 goto release_ch_rcu; 1376 } 1377 1378 head = readl(dbc->dbc_base + REQHP_OFF); 1379 tail = readl(dbc->dbc_base + REQTP_OFF); 1380 1381 if (head == U32_MAX || tail == U32_MAX) { 1382 /* PCI link error */ 1383 ret = -ENODEV; 1384 goto release_ch_rcu; 1385 } 1386 1387 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); 1388 1389 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, 1390 head, &tail); 1391 if (ret) 1392 goto release_ch_rcu; 1393 1394 /* Finalize commit to hardware */ 1395 submit_ts = ktime_get_ns(); 1396 writel(tail, dbc->dbc_base + REQTP_OFF); 1397 1398 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, 1399 submit_ts, queue_level); 1400 1401 if (datapath_polling) 1402 schedule_work(&dbc->poll_work); 1403 1404 release_ch_rcu: 1405 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1406 unlock_dev_srcu: 1407 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1408 unlock_usr_srcu: 1409 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1410 free_exec: 1411 kfree(exec); 1412 return ret; 1413 } 1414 1415 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1416 { 1417 return __qaic_execute_bo_ioctl(dev, data, file_priv, false); 1418 } 1419 1420 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1421 { 1422 return __qaic_execute_bo_ioctl(dev, data, file_priv, true); 1423 } 1424 1425 /* 1426 * Our interrupt handling is a bit more complicated than a simple ideal, but 1427 * sadly necessary. 1428 * 1429 * Each dbc has a completion queue. Entries in the queue correspond to DMA 1430 * requests which the device has processed. The hardware already has a built 1431 * in irq mitigation. When the device puts an entry into the queue, it will 1432 * only trigger an interrupt if the queue was empty. Therefore, when adding 1433 * the Nth event to a non-empty queue, the hardware doesn't trigger an 1434 * interrupt. This means the host doesn't get additional interrupts signaling 1435 * the same thing - the queue has something to process. 1436 * This behavior can be overridden in the DMA request. 1437 * This means that when the host receives an interrupt, it is required to 1438 * drain the queue. 1439 * 1440 * This behavior is what NAPI attempts to accomplish, although we can't use 1441 * NAPI as we don't have a netdev. We use threaded irqs instead. 1442 * 1443 * However, there is a situation where the host drains the queue fast enough 1444 * that every event causes an interrupt. Typically this is not a problem as 1445 * the rate of events would be low. However, that is not the case with 1446 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of 1447 * lprnet, the host receives roughly 80k interrupts per second from the device 1448 * (per /proc/interrupts). While NAPI documentation indicates the host should 1449 * just chug along, sadly that behavior causes instability in some hosts. 1450 * 1451 * Therefore, we implement an interrupt disable scheme similar to NAPI. The 1452 * key difference is that we will delay after draining the queue for a small 1453 * time to allow additional events to come in via polling. Using the above 1454 * lprnet workload, this reduces the number of interrupts processed from 1455 * ~80k/sec to about 64 in 5 minutes and appears to solve the system 1456 * instability. 1457 */ 1458 irqreturn_t dbc_irq_handler(int irq, void *data) 1459 { 1460 struct dma_bridge_chan *dbc = data; 1461 int rcu_id; 1462 u32 head; 1463 u32 tail; 1464 1465 rcu_id = srcu_read_lock(&dbc->ch_lock); 1466 1467 if (!dbc->usr) { 1468 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1469 return IRQ_HANDLED; 1470 } 1471 1472 head = readl(dbc->dbc_base + RSPHP_OFF); 1473 if (head == U32_MAX) { /* PCI link error */ 1474 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1475 return IRQ_NONE; 1476 } 1477 1478 tail = readl(dbc->dbc_base + RSPTP_OFF); 1479 if (tail == U32_MAX) { /* PCI link error */ 1480 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1481 return IRQ_NONE; 1482 } 1483 1484 if (head == tail) { /* queue empty */ 1485 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1486 return IRQ_NONE; 1487 } 1488 1489 disable_irq_nosync(irq); 1490 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1491 return IRQ_WAKE_THREAD; 1492 } 1493 1494 void irq_polling_work(struct work_struct *work) 1495 { 1496 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); 1497 unsigned long flags; 1498 int rcu_id; 1499 u32 head; 1500 u32 tail; 1501 1502 rcu_id = srcu_read_lock(&dbc->ch_lock); 1503 1504 while (1) { 1505 if (dbc->qdev->in_reset) { 1506 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1507 return; 1508 } 1509 if (!dbc->usr) { 1510 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1511 return; 1512 } 1513 spin_lock_irqsave(&dbc->xfer_lock, flags); 1514 if (list_empty(&dbc->xfer_list)) { 1515 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1516 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1517 return; 1518 } 1519 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1520 1521 head = readl(dbc->dbc_base + RSPHP_OFF); 1522 if (head == U32_MAX) { /* PCI link error */ 1523 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1524 return; 1525 } 1526 1527 tail = readl(dbc->dbc_base + RSPTP_OFF); 1528 if (tail == U32_MAX) { /* PCI link error */ 1529 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1530 return; 1531 } 1532 1533 if (head != tail) { 1534 irq_wake_thread(dbc->irq, dbc); 1535 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1536 return; 1537 } 1538 1539 cond_resched(); 1540 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); 1541 } 1542 } 1543 1544 irqreturn_t dbc_irq_threaded_fn(int irq, void *data) 1545 { 1546 struct dma_bridge_chan *dbc = data; 1547 int event_count = NUM_EVENTS; 1548 int delay_count = NUM_DELAYS; 1549 struct qaic_device *qdev; 1550 struct qaic_bo *bo, *i; 1551 struct dbc_rsp *rsp; 1552 unsigned long flags; 1553 int rcu_id; 1554 u16 status; 1555 u16 req_id; 1556 u32 head; 1557 u32 tail; 1558 1559 rcu_id = srcu_read_lock(&dbc->ch_lock); 1560 1561 head = readl(dbc->dbc_base + RSPHP_OFF); 1562 if (head == U32_MAX) /* PCI link error */ 1563 goto error_out; 1564 1565 qdev = dbc->qdev; 1566 read_fifo: 1567 1568 if (!event_count) { 1569 event_count = NUM_EVENTS; 1570 cond_resched(); 1571 } 1572 1573 /* 1574 * if this channel isn't assigned or gets unassigned during processing 1575 * we have nothing further to do 1576 */ 1577 if (!dbc->usr) 1578 goto error_out; 1579 1580 tail = readl(dbc->dbc_base + RSPTP_OFF); 1581 if (tail == U32_MAX) /* PCI link error */ 1582 goto error_out; 1583 1584 if (head == tail) { /* queue empty */ 1585 if (delay_count) { 1586 --delay_count; 1587 usleep_range(100, 200); 1588 goto read_fifo; /* check for a new event */ 1589 } 1590 goto normal_out; 1591 } 1592 1593 delay_count = NUM_DELAYS; 1594 while (head != tail) { 1595 if (!event_count) 1596 break; 1597 --event_count; 1598 rsp = dbc->rsp_q_base + head * sizeof(*rsp); 1599 req_id = le16_to_cpu(rsp->req_id); 1600 status = le16_to_cpu(rsp->status); 1601 if (status) 1602 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); 1603 spin_lock_irqsave(&dbc->xfer_lock, flags); 1604 /* 1605 * A BO can receive multiple interrupts, since a BO can be 1606 * divided into multiple slices and a buffer receives as many 1607 * interrupts as slices. So until it receives interrupts for 1608 * all the slices we cannot mark that buffer complete. 1609 */ 1610 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { 1611 if (bo->req_id == req_id) 1612 bo->nr_slice_xfer_done++; 1613 else 1614 continue; 1615 1616 if (bo->nr_slice_xfer_done < bo->nr_slice) 1617 break; 1618 1619 /* 1620 * At this point we have received all the interrupts for 1621 * BO, which means BO execution is complete. 1622 */ 1623 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1624 bo->nr_slice_xfer_done = 0; 1625 bo->queued = false; 1626 list_del(&bo->xfer_list); 1627 bo->perf_stats.req_processed_ts = ktime_get_ns(); 1628 complete_all(&bo->xfer_done); 1629 drm_gem_object_put(&bo->base); 1630 break; 1631 } 1632 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1633 head = (head + 1) % dbc->nelem; 1634 } 1635 1636 /* 1637 * Update the head pointer of response queue and let the device know 1638 * that we have consumed elements from the queue. 1639 */ 1640 writel(head, dbc->dbc_base + RSPHP_OFF); 1641 1642 /* elements might have been put in the queue while we were processing */ 1643 goto read_fifo; 1644 1645 normal_out: 1646 if (likely(!datapath_polling)) 1647 enable_irq(irq); 1648 else 1649 schedule_work(&dbc->poll_work); 1650 /* checking the fifo and enabling irqs is a race, missed event check */ 1651 tail = readl(dbc->dbc_base + RSPTP_OFF); 1652 if (tail != U32_MAX && head != tail) { 1653 if (likely(!datapath_polling)) 1654 disable_irq_nosync(irq); 1655 goto read_fifo; 1656 } 1657 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1658 return IRQ_HANDLED; 1659 1660 error_out: 1661 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1662 if (likely(!datapath_polling)) 1663 enable_irq(irq); 1664 else 1665 schedule_work(&dbc->poll_work); 1666 1667 return IRQ_HANDLED; 1668 } 1669 1670 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1671 { 1672 struct qaic_wait *args = data; 1673 int usr_rcu_id, qdev_rcu_id; 1674 struct dma_bridge_chan *dbc; 1675 struct drm_gem_object *obj; 1676 struct qaic_device *qdev; 1677 unsigned long timeout; 1678 struct qaic_user *usr; 1679 struct qaic_bo *bo; 1680 int rcu_id; 1681 int ret; 1682 1683 if (args->pad != 0) 1684 return -EINVAL; 1685 1686 usr = file_priv->driver_priv; 1687 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1688 if (!usr->qddev) { 1689 ret = -ENODEV; 1690 goto unlock_usr_srcu; 1691 } 1692 1693 qdev = usr->qddev->qdev; 1694 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1695 if (qdev->in_reset) { 1696 ret = -ENODEV; 1697 goto unlock_dev_srcu; 1698 } 1699 1700 if (args->dbc_id >= qdev->num_dbc) { 1701 ret = -EINVAL; 1702 goto unlock_dev_srcu; 1703 } 1704 1705 dbc = &qdev->dbc[args->dbc_id]; 1706 1707 rcu_id = srcu_read_lock(&dbc->ch_lock); 1708 if (dbc->usr != usr) { 1709 ret = -EPERM; 1710 goto unlock_ch_srcu; 1711 } 1712 1713 obj = drm_gem_object_lookup(file_priv, args->handle); 1714 if (!obj) { 1715 ret = -ENOENT; 1716 goto unlock_ch_srcu; 1717 } 1718 1719 bo = to_qaic_bo(obj); 1720 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; 1721 timeout = msecs_to_jiffies(timeout); 1722 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); 1723 if (!ret) { 1724 ret = -ETIMEDOUT; 1725 goto put_obj; 1726 } 1727 if (ret > 0) 1728 ret = 0; 1729 1730 if (!dbc->usr) 1731 ret = -EPERM; 1732 1733 put_obj: 1734 drm_gem_object_put(obj); 1735 unlock_ch_srcu: 1736 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1737 unlock_dev_srcu: 1738 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1739 unlock_usr_srcu: 1740 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1741 return ret; 1742 } 1743 1744 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1745 { 1746 struct qaic_perf_stats_entry *ent = NULL; 1747 struct qaic_perf_stats *args = data; 1748 int usr_rcu_id, qdev_rcu_id; 1749 struct drm_gem_object *obj; 1750 struct qaic_device *qdev; 1751 struct qaic_user *usr; 1752 struct qaic_bo *bo; 1753 int ret, i; 1754 1755 usr = file_priv->driver_priv; 1756 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1757 if (!usr->qddev) { 1758 ret = -ENODEV; 1759 goto unlock_usr_srcu; 1760 } 1761 1762 qdev = usr->qddev->qdev; 1763 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1764 if (qdev->in_reset) { 1765 ret = -ENODEV; 1766 goto unlock_dev_srcu; 1767 } 1768 1769 if (args->hdr.dbc_id >= qdev->num_dbc) { 1770 ret = -EINVAL; 1771 goto unlock_dev_srcu; 1772 } 1773 1774 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); 1775 if (!ent) { 1776 ret = -EINVAL; 1777 goto unlock_dev_srcu; 1778 } 1779 1780 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); 1781 if (ret) { 1782 ret = -EFAULT; 1783 goto free_ent; 1784 } 1785 1786 for (i = 0; i < args->hdr.count; i++) { 1787 obj = drm_gem_object_lookup(file_priv, ent[i].handle); 1788 if (!obj) { 1789 ret = -ENOENT; 1790 goto free_ent; 1791 } 1792 bo = to_qaic_bo(obj); 1793 /* 1794 * perf stats ioctl is called before wait ioctl is complete then 1795 * the latency information is invalid. 1796 */ 1797 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { 1798 ent[i].device_latency_us = 0; 1799 } else { 1800 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - 1801 bo->perf_stats.req_submit_ts), 1000); 1802 } 1803 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - 1804 bo->perf_stats.req_received_ts), 1000); 1805 ent[i].queue_level_before = bo->perf_stats.queue_level_before; 1806 ent[i].num_queue_element = bo->total_slice_nents; 1807 drm_gem_object_put(obj); 1808 } 1809 1810 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) 1811 ret = -EFAULT; 1812 1813 free_ent: 1814 kfree(ent); 1815 unlock_dev_srcu: 1816 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1817 unlock_usr_srcu: 1818 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1819 return ret; 1820 } 1821 1822 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo) 1823 { 1824 qaic_free_slices_bo(bo); 1825 qaic_unprepare_bo(qdev, bo); 1826 qaic_init_bo(bo, true); 1827 list_del(&bo->bo_list); 1828 drm_gem_object_put(&bo->base); 1829 } 1830 1831 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1832 { 1833 struct qaic_detach_slice *args = data; 1834 int rcu_id, usr_rcu_id, qdev_rcu_id; 1835 struct dma_bridge_chan *dbc; 1836 struct drm_gem_object *obj; 1837 struct qaic_device *qdev; 1838 struct qaic_user *usr; 1839 unsigned long flags; 1840 struct qaic_bo *bo; 1841 int ret; 1842 1843 if (args->pad != 0) 1844 return -EINVAL; 1845 1846 usr = file_priv->driver_priv; 1847 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1848 if (!usr->qddev) { 1849 ret = -ENODEV; 1850 goto unlock_usr_srcu; 1851 } 1852 1853 qdev = usr->qddev->qdev; 1854 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1855 if (qdev->in_reset) { 1856 ret = -ENODEV; 1857 goto unlock_dev_srcu; 1858 } 1859 1860 obj = drm_gem_object_lookup(file_priv, args->handle); 1861 if (!obj) { 1862 ret = -ENOENT; 1863 goto unlock_dev_srcu; 1864 } 1865 1866 bo = to_qaic_bo(obj); 1867 ret = mutex_lock_interruptible(&bo->lock); 1868 if (ret) 1869 goto put_bo; 1870 1871 if (!bo->sliced) { 1872 ret = -EINVAL; 1873 goto unlock_bo; 1874 } 1875 1876 dbc = bo->dbc; 1877 rcu_id = srcu_read_lock(&dbc->ch_lock); 1878 if (dbc->usr != usr) { 1879 ret = -EINVAL; 1880 goto unlock_ch_srcu; 1881 } 1882 1883 /* Check if BO is committed to H/W for DMA */ 1884 spin_lock_irqsave(&dbc->xfer_lock, flags); 1885 if (bo->queued) { 1886 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1887 ret = -EBUSY; 1888 goto unlock_ch_srcu; 1889 } 1890 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1891 1892 detach_slice_bo(qdev, bo); 1893 1894 unlock_ch_srcu: 1895 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1896 unlock_bo: 1897 mutex_unlock(&bo->lock); 1898 put_bo: 1899 drm_gem_object_put(obj); 1900 unlock_dev_srcu: 1901 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1902 unlock_usr_srcu: 1903 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1904 return ret; 1905 } 1906 1907 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) 1908 { 1909 unsigned long flags; 1910 struct qaic_bo *bo; 1911 1912 spin_lock_irqsave(&dbc->xfer_lock, flags); 1913 while (!list_empty(&dbc->xfer_list)) { 1914 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); 1915 bo->queued = false; 1916 list_del(&bo->xfer_list); 1917 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1918 bo->nr_slice_xfer_done = 0; 1919 bo->req_id = 0; 1920 bo->perf_stats.req_received_ts = 0; 1921 bo->perf_stats.req_submit_ts = 0; 1922 bo->perf_stats.req_processed_ts = 0; 1923 bo->perf_stats.queue_level_before = 0; 1924 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1925 complete_all(&bo->xfer_done); 1926 drm_gem_object_put(&bo->base); 1927 spin_lock_irqsave(&dbc->xfer_lock, flags); 1928 } 1929 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1930 } 1931 1932 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1933 { 1934 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) 1935 return -EPERM; 1936 1937 qdev->dbc[dbc_id].usr = NULL; 1938 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); 1939 return 0; 1940 } 1941 1942 /** 1943 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of 1944 * user. Add user context back to DBC to enable it. This function trusts the 1945 * DBC ID passed and expects the DBC to be disabled. 1946 * @qdev: Qranium device handle 1947 * @dbc_id: ID of the DBC 1948 * @usr: User context 1949 */ 1950 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1951 { 1952 qdev->dbc[dbc_id].usr = usr; 1953 } 1954 1955 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) 1956 { 1957 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1958 1959 dbc->usr = NULL; 1960 empty_xfer_list(qdev, dbc); 1961 synchronize_srcu(&dbc->ch_lock); 1962 /* 1963 * Threads holding channel lock, may add more elements in the xfer_list. 1964 * Flush out these elements from xfer_list. 1965 */ 1966 empty_xfer_list(qdev, dbc); 1967 } 1968 1969 void release_dbc(struct qaic_device *qdev, u32 dbc_id) 1970 { 1971 struct qaic_bo *bo, *bo_temp; 1972 struct dma_bridge_chan *dbc; 1973 1974 dbc = &qdev->dbc[dbc_id]; 1975 if (!dbc->in_use) 1976 return; 1977 1978 wakeup_dbc(qdev, dbc_id); 1979 1980 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); 1981 dbc->total_size = 0; 1982 dbc->req_q_base = NULL; 1983 dbc->dma_addr = 0; 1984 dbc->nelem = 0; 1985 dbc->usr = NULL; 1986 1987 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { 1988 drm_gem_object_get(&bo->base); 1989 mutex_lock(&bo->lock); 1990 detach_slice_bo(qdev, bo); 1991 mutex_unlock(&bo->lock); 1992 drm_gem_object_put(&bo->base); 1993 } 1994 1995 dbc->in_use = false; 1996 wake_up(&dbc->dbc_release); 1997 } 1998