1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <linux/bitfield.h> 7 #include <linux/bits.h> 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-buf.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/list.h> 15 #include <linux/math64.h> 16 #include <linux/mm.h> 17 #include <linux/moduleparam.h> 18 #include <linux/scatterlist.h> 19 #include <linux/spinlock.h> 20 #include <linux/srcu.h> 21 #include <linux/types.h> 22 #include <linux/uaccess.h> 23 #include <linux/wait.h> 24 #include <drm/drm_file.h> 25 #include <drm/drm_gem.h> 26 #include <drm/drm_prime.h> 27 #include <drm/drm_print.h> 28 #include <uapi/drm/qaic_accel.h> 29 30 #include "qaic.h" 31 32 #define SEM_VAL_MASK GENMASK_ULL(11, 0) 33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0) 34 #define BULK_XFER BIT(3) 35 #define GEN_COMPLETION BIT(4) 36 #define INBOUND_XFER 1 37 #define OUTBOUND_XFER 2 38 #define REQHP_OFF 0x0 /* we read this */ 39 #define REQTP_OFF 0x4 /* we write this */ 40 #define RSPHP_OFF 0x8 /* we write this */ 41 #define RSPTP_OFF 0xc /* we read this */ 42 43 #define ENCODE_SEM(val, index, sync, cmd, flags) \ 44 ({ \ 45 FIELD_PREP(GENMASK(11, 0), (val)) | \ 46 FIELD_PREP(GENMASK(20, 16), (index)) | \ 47 FIELD_PREP(BIT(22), (sync)) | \ 48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \ 49 FIELD_PREP(GENMASK(30, 29), (flags)) | \ 50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \ 51 }) 52 #define NUM_EVENTS 128 53 #define NUM_DELAYS 10 54 #define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size()) 55 56 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */ 57 module_param(wait_exec_default_timeout_ms, uint, 0600); 58 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO"); 59 60 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */ 61 module_param(datapath_poll_interval_us, uint, 0600); 62 MODULE_PARM_DESC(datapath_poll_interval_us, 63 "Amount of time to sleep between activity when datapath polling is enabled"); 64 65 struct dbc_req { 66 /* 67 * A request ID is assigned to each memory handle going in DMA queue. 68 * As a single memory handle can enqueue multiple elements in DMA queue 69 * all of them will have the same request ID. 70 */ 71 __le16 req_id; 72 /* Future use */ 73 __u8 seq_id; 74 /* 75 * Special encoded variable 76 * 7 0 - Do not force to generate MSI after DMA is completed 77 * 1 - Force to generate MSI after DMA is completed 78 * 6:5 Reserved 79 * 4 1 - Generate completion element in the response queue 80 * 0 - No Completion Code 81 * 3 0 - DMA request is a Link list transfer 82 * 1 - DMA request is a Bulk transfer 83 * 2 Reserved 84 * 1:0 00 - No DMA transfer involved 85 * 01 - DMA transfer is part of inbound transfer 86 * 10 - DMA transfer has outbound transfer 87 * 11 - NA 88 */ 89 __u8 cmd; 90 __le32 resv; 91 /* Source address for the transfer */ 92 __le64 src_addr; 93 /* Destination address for the transfer */ 94 __le64 dest_addr; 95 /* Length of transfer request */ 96 __le32 len; 97 __le32 resv2; 98 /* Doorbell address */ 99 __le64 db_addr; 100 /* 101 * Special encoded variable 102 * 7 1 - Doorbell(db) write 103 * 0 - No doorbell write 104 * 6:2 Reserved 105 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary 106 * 01 - 16 bit access, db address must be aligned to 16bit-boundary 107 * 10 - 8 bit access, db address must be aligned to 8bit-boundary 108 * 11 - Reserved 109 */ 110 __u8 db_len; 111 __u8 resv3; 112 __le16 resv4; 113 /* 32 bit data written to doorbell address */ 114 __le32 db_data; 115 /* 116 * Special encoded variable 117 * All the fields of sem_cmdX are passed from user and all are ORed 118 * together to form sem_cmd. 119 * 0:11 Semaphore value 120 * 15:12 Reserved 121 * 20:16 Semaphore index 122 * 21 Reserved 123 * 22 Semaphore Sync 124 * 23 Reserved 125 * 26:24 Semaphore command 126 * 28:27 Reserved 127 * 29 Semaphore DMA out bound sync fence 128 * 30 Semaphore DMA in bound sync fence 129 * 31 Enable semaphore command 130 */ 131 __le32 sem_cmd0; 132 __le32 sem_cmd1; 133 __le32 sem_cmd2; 134 __le32 sem_cmd3; 135 } __packed; 136 137 struct dbc_rsp { 138 /* Request ID of the memory handle whose DMA transaction is completed */ 139 __le16 req_id; 140 /* Status of the DMA transaction. 0 : Success otherwise failure */ 141 __le16 status; 142 } __packed; 143 144 static inline bool bo_queued(struct qaic_bo *bo) 145 { 146 return !list_empty(&bo->xfer_list); 147 } 148 149 inline int get_dbc_req_elem_size(void) 150 { 151 return sizeof(struct dbc_req); 152 } 153 154 inline int get_dbc_rsp_elem_size(void) 155 { 156 return sizeof(struct dbc_rsp); 157 } 158 159 static void free_slice(struct kref *kref) 160 { 161 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count); 162 163 slice->bo->total_slice_nents -= slice->nents; 164 list_del(&slice->slice); 165 drm_gem_object_put(&slice->bo->base); 166 sg_free_table(slice->sgt); 167 kfree(slice->sgt); 168 kfree(slice->reqs); 169 kfree(slice); 170 } 171 172 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out, 173 struct sg_table *sgt_in, u64 size, u64 offset) 174 { 175 struct scatterlist *sg, *sgn, *sgf, *sgl; 176 unsigned int len, nents, offf, offl; 177 struct sg_table *sgt; 178 size_t total_len; 179 int ret, j; 180 181 /* find out number of relevant nents needed for this mem */ 182 total_len = 0; 183 sgf = NULL; 184 sgl = NULL; 185 nents = 0; 186 offf = 0; 187 offl = 0; 188 189 size = size ? size : PAGE_SIZE; 190 for_each_sgtable_dma_sg(sgt_in, sg, j) { 191 len = sg_dma_len(sg); 192 193 if (!len) 194 continue; 195 if (offset >= total_len && offset < total_len + len) { 196 sgf = sg; 197 offf = offset - total_len; 198 } 199 if (sgf) 200 nents++; 201 if (offset + size >= total_len && 202 offset + size <= total_len + len) { 203 sgl = sg; 204 offl = offset + size - total_len; 205 break; 206 } 207 total_len += len; 208 } 209 210 if (!sgf || !sgl) { 211 ret = -EINVAL; 212 goto out; 213 } 214 215 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 216 if (!sgt) { 217 ret = -ENOMEM; 218 goto out; 219 } 220 221 ret = sg_alloc_table(sgt, nents, GFP_KERNEL); 222 if (ret) 223 goto free_sgt; 224 225 /* copy relevant sg node and fix page and length */ 226 sgn = sgf; 227 for_each_sgtable_dma_sg(sgt, sg, j) { 228 memcpy(sg, sgn, sizeof(*sg)); 229 if (sgn == sgf) { 230 sg_dma_address(sg) += offf; 231 sg_dma_len(sg) -= offf; 232 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf); 233 } else { 234 offf = 0; 235 } 236 if (sgn == sgl) { 237 sg_dma_len(sg) = offl - offf; 238 sg_set_page(sg, sg_page(sgn), offl - offf, offf); 239 sg_mark_end(sg); 240 break; 241 } 242 sgn = sg_next(sgn); 243 } 244 245 *sgt_out = sgt; 246 return ret; 247 248 free_sgt: 249 kfree(sgt); 250 out: 251 *sgt_out = NULL; 252 return ret; 253 } 254 255 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice, 256 struct qaic_attach_slice_entry *req) 257 { 258 __le64 db_addr = cpu_to_le64(req->db_addr); 259 __le32 db_data = cpu_to_le32(req->db_data); 260 struct scatterlist *sg; 261 __u8 cmd = BULK_XFER; 262 int presync_sem; 263 u64 dev_addr; 264 __u8 db_len; 265 int i; 266 267 if (!slice->no_xfer) 268 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER); 269 270 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8)) 271 return -EINVAL; 272 273 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync; 274 if (presync_sem > 1) 275 return -EINVAL; 276 277 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 | 278 req->sem2.presync << 2 | req->sem3.presync << 3; 279 280 switch (req->db_len) { 281 case 32: 282 db_len = BIT(7); 283 break; 284 case 16: 285 db_len = BIT(7) | 1; 286 break; 287 case 8: 288 db_len = BIT(7) | 2; 289 break; 290 case 0: 291 db_len = 0; /* doorbell is not active for this command */ 292 break; 293 default: 294 return -EINVAL; /* should never hit this */ 295 } 296 297 /* 298 * When we end up splitting up a single request (ie a buf slice) into 299 * multiple DMA requests, we have to manage the sync data carefully. 300 * There can only be one presync sem. That needs to be on every xfer 301 * so that the DMA engine doesn't transfer data before the receiver is 302 * ready. We only do the doorbell and postsync sems after the xfer. 303 * To guarantee previous xfers for the request are complete, we use a 304 * fence. 305 */ 306 dev_addr = req->dev_addr; 307 for_each_sgtable_dma_sg(slice->sgt, sg, i) { 308 slice->reqs[i].cmd = cmd; 309 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 310 sg_dma_address(sg) : dev_addr); 311 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ? 312 dev_addr : sg_dma_address(sg)); 313 /* 314 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA 315 * segment size is set to UINT_MAX by qaic and hence return 316 * values of sg_dma_len(sg) can never exceed u32 range. So, 317 * by down sizing we are not corrupting the value. 318 */ 319 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg)); 320 switch (presync_sem) { 321 case BIT(0): 322 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, 323 req->sem0.index, 324 req->sem0.presync, 325 req->sem0.cmd, 326 req->sem0.flags)); 327 break; 328 case BIT(1): 329 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, 330 req->sem1.index, 331 req->sem1.presync, 332 req->sem1.cmd, 333 req->sem1.flags)); 334 break; 335 case BIT(2): 336 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, 337 req->sem2.index, 338 req->sem2.presync, 339 req->sem2.cmd, 340 req->sem2.flags)); 341 break; 342 case BIT(3): 343 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, 344 req->sem3.index, 345 req->sem3.presync, 346 req->sem3.cmd, 347 req->sem3.flags)); 348 break; 349 } 350 dev_addr += sg_dma_len(sg); 351 } 352 /* add post transfer stuff to last segment */ 353 i--; 354 slice->reqs[i].cmd |= GEN_COMPLETION; 355 slice->reqs[i].db_addr = db_addr; 356 slice->reqs[i].db_len = db_len; 357 slice->reqs[i].db_data = db_data; 358 /* 359 * Add a fence if we have more than one request going to the hardware 360 * representing the entirety of the user request, and the user request 361 * has no presync condition. 362 * Fences are expensive, so we try to avoid them. We rely on the 363 * hardware behavior to avoid needing one when there is a presync 364 * condition. When a presync exists, all requests for that same 365 * presync will be queued into a fifo. Thus, since we queue the 366 * post xfer activity only on the last request we queue, the hardware 367 * will ensure that the last queued request is processed last, thus 368 * making sure the post xfer activity happens at the right time without 369 * a fence. 370 */ 371 if (i && !presync_sem) 372 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ? 373 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE); 374 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index, 375 req->sem0.presync, req->sem0.cmd, 376 req->sem0.flags)); 377 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index, 378 req->sem1.presync, req->sem1.cmd, 379 req->sem1.flags)); 380 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index, 381 req->sem2.presync, req->sem2.cmd, 382 req->sem2.flags)); 383 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index, 384 req->sem3.presync, req->sem3.cmd, 385 req->sem3.flags)); 386 387 return 0; 388 } 389 390 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo, 391 struct qaic_attach_slice_entry *slice_ent) 392 { 393 struct sg_table *sgt = NULL; 394 struct bo_slice *slice; 395 int ret; 396 397 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset); 398 if (ret) 399 goto out; 400 401 slice = kmalloc(sizeof(*slice), GFP_KERNEL); 402 if (!slice) { 403 ret = -ENOMEM; 404 goto free_sgt; 405 } 406 407 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL); 408 if (!slice->reqs) { 409 ret = -ENOMEM; 410 goto free_slice; 411 } 412 413 slice->no_xfer = !slice_ent->size; 414 slice->sgt = sgt; 415 slice->nents = sgt->nents; 416 slice->dir = bo->dir; 417 slice->bo = bo; 418 slice->size = slice_ent->size; 419 slice->offset = slice_ent->offset; 420 421 ret = encode_reqs(qdev, slice, slice_ent); 422 if (ret) 423 goto free_req; 424 425 bo->total_slice_nents += sgt->nents; 426 kref_init(&slice->ref_count); 427 drm_gem_object_get(&bo->base); 428 list_add_tail(&slice->slice, &bo->slices); 429 430 return 0; 431 432 free_req: 433 kfree(slice->reqs); 434 free_slice: 435 kfree(slice); 436 free_sgt: 437 sg_free_table(sgt); 438 kfree(sgt); 439 out: 440 return ret; 441 } 442 443 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size) 444 { 445 struct scatterlist *sg; 446 struct sg_table *sgt; 447 struct page **pages; 448 int *pages_order; 449 int buf_extra; 450 int max_order; 451 int nr_pages; 452 int ret = 0; 453 int i, j, k; 454 int order; 455 456 if (size) { 457 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE); 458 /* 459 * calculate how much extra we are going to allocate, to remove 460 * later 461 */ 462 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE; 463 max_order = min(MAX_PAGE_ORDER, get_order(size)); 464 } else { 465 /* allocate a single page for book keeping */ 466 nr_pages = 1; 467 buf_extra = 0; 468 max_order = 0; 469 } 470 471 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL); 472 if (!pages) { 473 ret = -ENOMEM; 474 goto out; 475 } 476 pages_order = (void *)pages + sizeof(*pages) * nr_pages; 477 478 /* 479 * Allocate requested memory using alloc_pages. It is possible to allocate 480 * the requested memory in multiple chunks by calling alloc_pages 481 * multiple times. Use SG table to handle multiple allocated pages. 482 */ 483 i = 0; 484 while (nr_pages > 0) { 485 order = min(get_order(nr_pages * PAGE_SIZE), max_order); 486 while (1) { 487 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER | 488 __GFP_NOWARN | __GFP_ZERO | 489 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL), 490 order); 491 if (pages[i]) 492 break; 493 if (!order--) { 494 ret = -ENOMEM; 495 goto free_partial_alloc; 496 } 497 } 498 499 max_order = order; 500 pages_order[i] = order; 501 502 nr_pages -= 1 << order; 503 if (nr_pages <= 0) 504 /* account for over allocation */ 505 buf_extra += abs(nr_pages) * PAGE_SIZE; 506 i++; 507 } 508 509 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 510 if (!sgt) { 511 ret = -ENOMEM; 512 goto free_partial_alloc; 513 } 514 515 if (sg_alloc_table(sgt, i, GFP_KERNEL)) { 516 ret = -ENOMEM; 517 goto free_sgt; 518 } 519 520 /* Populate the SG table with the allocated memory pages */ 521 sg = sgt->sgl; 522 for (k = 0; k < i; k++, sg = sg_next(sg)) { 523 /* Last entry requires special handling */ 524 if (k < i - 1) { 525 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0); 526 } else { 527 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0); 528 sg_mark_end(sg); 529 } 530 } 531 532 kvfree(pages); 533 *sgt_out = sgt; 534 return ret; 535 536 free_sgt: 537 kfree(sgt); 538 free_partial_alloc: 539 for (j = 0; j < i; j++) 540 __free_pages(pages[j], pages_order[j]); 541 kvfree(pages); 542 out: 543 *sgt_out = NULL; 544 return ret; 545 } 546 547 static bool invalid_sem(struct qaic_sem *sem) 548 { 549 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK || 550 !(sem->presync == 0 || sem->presync == 1) || sem->pad || 551 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) || 552 sem->cmd > QAIC_SEM_WAIT_GT_0) 553 return true; 554 return false; 555 } 556 557 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent, 558 u32 count, u64 total_size) 559 { 560 u64 total; 561 int i; 562 563 for (i = 0; i < count; i++) { 564 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 || 565 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) || 566 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) || 567 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3)) 568 return -EINVAL; 569 570 if (check_add_overflow(slice_ent[i].offset, slice_ent[i].size, &total) || 571 total > total_size) 572 return -EINVAL; 573 } 574 575 return 0; 576 } 577 578 static void qaic_free_sgt(struct sg_table *sgt) 579 { 580 struct scatterlist *sg; 581 582 if (!sgt) 583 return; 584 585 for (sg = sgt->sgl; sg; sg = sg_next(sg)) 586 if (sg_page(sg)) 587 __free_pages(sg_page(sg), get_order(sg->length)); 588 sg_free_table(sgt); 589 kfree(sgt); 590 } 591 592 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent, 593 const struct drm_gem_object *obj) 594 { 595 struct qaic_bo *bo = to_qaic_bo(obj); 596 597 drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir); 598 } 599 600 static const struct vm_operations_struct drm_vm_ops = { 601 .open = drm_gem_vm_open, 602 .close = drm_gem_vm_close, 603 }; 604 605 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) 606 { 607 struct qaic_bo *bo = to_qaic_bo(obj); 608 unsigned long offset = 0; 609 struct scatterlist *sg; 610 int ret = 0; 611 612 if (obj->import_attach) 613 return -EINVAL; 614 615 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) { 616 if (sg_page(sg)) { 617 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)), 618 sg->length, vma->vm_page_prot); 619 if (ret) 620 goto out; 621 offset += sg->length; 622 } 623 } 624 625 out: 626 return ret; 627 } 628 629 static void qaic_free_object(struct drm_gem_object *obj) 630 { 631 struct qaic_bo *bo = to_qaic_bo(obj); 632 633 if (obj->import_attach) { 634 /* DMABUF/PRIME Path */ 635 drm_prime_gem_destroy(obj, NULL); 636 } else { 637 /* Private buffer allocation path */ 638 qaic_free_sgt(bo->sgt); 639 } 640 641 mutex_destroy(&bo->lock); 642 drm_gem_object_release(obj); 643 kfree(bo); 644 } 645 646 static const struct drm_gem_object_funcs qaic_gem_funcs = { 647 .free = qaic_free_object, 648 .print_info = qaic_gem_print_info, 649 .mmap = qaic_gem_object_mmap, 650 .vm_ops = &drm_vm_ops, 651 }; 652 653 static void qaic_init_bo(struct qaic_bo *bo, bool reinit) 654 { 655 if (reinit) { 656 bo->sliced = false; 657 reinit_completion(&bo->xfer_done); 658 } else { 659 mutex_init(&bo->lock); 660 init_completion(&bo->xfer_done); 661 } 662 complete_all(&bo->xfer_done); 663 INIT_LIST_HEAD(&bo->slices); 664 INIT_LIST_HEAD(&bo->xfer_list); 665 } 666 667 static struct qaic_bo *qaic_alloc_init_bo(void) 668 { 669 struct qaic_bo *bo; 670 671 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 672 if (!bo) 673 return ERR_PTR(-ENOMEM); 674 675 qaic_init_bo(bo, false); 676 677 return bo; 678 } 679 680 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 681 { 682 struct qaic_create_bo *args = data; 683 int usr_rcu_id, qdev_rcu_id; 684 struct drm_gem_object *obj; 685 struct qaic_device *qdev; 686 struct qaic_user *usr; 687 struct qaic_bo *bo; 688 size_t size; 689 int ret; 690 691 if (args->pad) 692 return -EINVAL; 693 694 size = PAGE_ALIGN(args->size); 695 if (size == 0) 696 return -EINVAL; 697 698 usr = file_priv->driver_priv; 699 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 700 if (!usr->qddev) { 701 ret = -ENODEV; 702 goto unlock_usr_srcu; 703 } 704 705 qdev = usr->qddev->qdev; 706 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 707 if (qdev->dev_state != QAIC_ONLINE) { 708 ret = -ENODEV; 709 goto unlock_dev_srcu; 710 } 711 712 bo = qaic_alloc_init_bo(); 713 if (IS_ERR(bo)) { 714 ret = PTR_ERR(bo); 715 goto unlock_dev_srcu; 716 } 717 obj = &bo->base; 718 719 drm_gem_private_object_init(dev, obj, size); 720 721 obj->funcs = &qaic_gem_funcs; 722 ret = create_sgt(qdev, &bo->sgt, size); 723 if (ret) 724 goto free_bo; 725 726 ret = drm_gem_create_mmap_offset(obj); 727 if (ret) 728 goto free_bo; 729 730 ret = drm_gem_handle_create(file_priv, obj, &args->handle); 731 if (ret) 732 goto free_bo; 733 734 bo->handle = args->handle; 735 drm_gem_object_put(obj); 736 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 737 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 738 739 return 0; 740 741 free_bo: 742 drm_gem_object_put(obj); 743 unlock_dev_srcu: 744 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 745 unlock_usr_srcu: 746 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 747 return ret; 748 } 749 750 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 751 { 752 struct qaic_mmap_bo *args = data; 753 int usr_rcu_id, qdev_rcu_id; 754 struct drm_gem_object *obj; 755 struct qaic_device *qdev; 756 struct qaic_user *usr; 757 int ret = 0; 758 759 usr = file_priv->driver_priv; 760 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 761 if (!usr->qddev) { 762 ret = -ENODEV; 763 goto unlock_usr_srcu; 764 } 765 766 qdev = usr->qddev->qdev; 767 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 768 if (qdev->dev_state != QAIC_ONLINE) { 769 ret = -ENODEV; 770 goto unlock_dev_srcu; 771 } 772 773 obj = drm_gem_object_lookup(file_priv, args->handle); 774 if (!obj) { 775 ret = -ENOENT; 776 goto unlock_dev_srcu; 777 } 778 779 args->offset = drm_vma_node_offset_addr(&obj->vma_node); 780 781 drm_gem_object_put(obj); 782 783 unlock_dev_srcu: 784 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 785 unlock_usr_srcu: 786 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 787 return ret; 788 } 789 790 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf) 791 { 792 struct dma_buf_attachment *attach; 793 struct drm_gem_object *obj; 794 struct qaic_bo *bo; 795 int ret; 796 797 bo = qaic_alloc_init_bo(); 798 if (IS_ERR(bo)) { 799 ret = PTR_ERR(bo); 800 goto out; 801 } 802 803 obj = &bo->base; 804 get_dma_buf(dma_buf); 805 806 attach = dma_buf_attach(dma_buf, dev->dev); 807 if (IS_ERR(attach)) { 808 ret = PTR_ERR(attach); 809 goto attach_fail; 810 } 811 812 if (!attach->dmabuf->size) { 813 ret = -EINVAL; 814 goto size_align_fail; 815 } 816 817 drm_gem_private_object_init(dev, obj, attach->dmabuf->size); 818 /* 819 * skipping dma_buf_map_attachment() as we do not know the direction 820 * just yet. Once the direction is known in the subsequent IOCTL to 821 * attach slicing, we can do it then. 822 */ 823 824 obj->funcs = &qaic_gem_funcs; 825 obj->import_attach = attach; 826 obj->resv = dma_buf->resv; 827 828 return obj; 829 830 size_align_fail: 831 dma_buf_detach(dma_buf, attach); 832 attach_fail: 833 dma_buf_put(dma_buf); 834 kfree(bo); 835 out: 836 return ERR_PTR(ret); 837 } 838 839 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr) 840 { 841 struct drm_gem_object *obj = &bo->base; 842 struct sg_table *sgt; 843 int ret; 844 845 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir); 846 if (IS_ERR(sgt)) { 847 ret = PTR_ERR(sgt); 848 return ret; 849 } 850 851 bo->sgt = sgt; 852 853 return 0; 854 } 855 856 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo, 857 struct qaic_attach_slice_hdr *hdr) 858 { 859 int ret; 860 861 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0); 862 if (ret) 863 return -EFAULT; 864 865 return 0; 866 } 867 868 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo, 869 struct qaic_attach_slice_hdr *hdr) 870 { 871 int ret; 872 873 if (bo->base.import_attach) 874 ret = qaic_prepare_import_bo(bo, hdr); 875 else 876 ret = qaic_prepare_export_bo(qdev, bo, hdr); 877 bo->dir = hdr->dir; 878 bo->dbc = &qdev->dbc[hdr->dbc_id]; 879 bo->nr_slice = hdr->count; 880 881 return ret; 882 } 883 884 static void qaic_unprepare_import_bo(struct qaic_bo *bo) 885 { 886 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir); 887 bo->sgt = NULL; 888 } 889 890 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo) 891 { 892 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0); 893 } 894 895 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo) 896 { 897 if (bo->base.import_attach) 898 qaic_unprepare_import_bo(bo); 899 else 900 qaic_unprepare_export_bo(qdev, bo); 901 902 bo->dir = 0; 903 bo->dbc = NULL; 904 bo->nr_slice = 0; 905 } 906 907 static void qaic_free_slices_bo(struct qaic_bo *bo) 908 { 909 struct bo_slice *slice, *temp; 910 911 list_for_each_entry_safe(slice, temp, &bo->slices, slice) 912 kref_put(&slice->ref_count, free_slice); 913 if (WARN_ON_ONCE(bo->total_slice_nents != 0)) 914 bo->total_slice_nents = 0; 915 bo->nr_slice = 0; 916 } 917 918 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo, 919 struct qaic_attach_slice_hdr *hdr, 920 struct qaic_attach_slice_entry *slice_ent) 921 { 922 int ret, i; 923 924 for (i = 0; i < hdr->count; i++) { 925 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]); 926 if (ret) { 927 qaic_free_slices_bo(bo); 928 return ret; 929 } 930 } 931 932 if (bo->total_slice_nents > bo->dbc->nelem) { 933 qaic_free_slices_bo(bo); 934 return -ENOSPC; 935 } 936 937 return 0; 938 } 939 940 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 941 { 942 struct qaic_attach_slice_entry *slice_ent; 943 struct qaic_attach_slice *args = data; 944 int rcu_id, usr_rcu_id, qdev_rcu_id; 945 struct dma_bridge_chan *dbc; 946 struct drm_gem_object *obj; 947 struct qaic_device *qdev; 948 unsigned long arg_size; 949 struct qaic_user *usr; 950 u8 __user *user_data; 951 struct qaic_bo *bo; 952 int ret; 953 954 if (args->hdr.count == 0) 955 return -EINVAL; 956 957 arg_size = args->hdr.count * sizeof(*slice_ent); 958 if (arg_size / args->hdr.count != sizeof(*slice_ent)) 959 return -EINVAL; 960 961 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE)) 962 return -EINVAL; 963 964 if (args->data == 0) 965 return -EINVAL; 966 967 usr = file_priv->driver_priv; 968 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 969 if (!usr->qddev) { 970 ret = -ENODEV; 971 goto unlock_usr_srcu; 972 } 973 974 qdev = usr->qddev->qdev; 975 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 976 if (qdev->dev_state != QAIC_ONLINE) { 977 ret = -ENODEV; 978 goto unlock_dev_srcu; 979 } 980 981 if (args->hdr.dbc_id >= qdev->num_dbc) { 982 ret = -EINVAL; 983 goto unlock_dev_srcu; 984 } 985 986 user_data = u64_to_user_ptr(args->data); 987 988 slice_ent = kzalloc(arg_size, GFP_KERNEL); 989 if (!slice_ent) { 990 ret = -EINVAL; 991 goto unlock_dev_srcu; 992 } 993 994 ret = copy_from_user(slice_ent, user_data, arg_size); 995 if (ret) { 996 ret = -EFAULT; 997 goto free_slice_ent; 998 } 999 1000 obj = drm_gem_object_lookup(file_priv, args->hdr.handle); 1001 if (!obj) { 1002 ret = -ENOENT; 1003 goto free_slice_ent; 1004 } 1005 1006 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, obj->size); 1007 if (ret) 1008 goto put_bo; 1009 1010 bo = to_qaic_bo(obj); 1011 ret = mutex_lock_interruptible(&bo->lock); 1012 if (ret) 1013 goto put_bo; 1014 1015 if (bo->sliced) { 1016 ret = -EINVAL; 1017 goto unlock_bo; 1018 } 1019 1020 dbc = &qdev->dbc[args->hdr.dbc_id]; 1021 rcu_id = srcu_read_lock(&dbc->ch_lock); 1022 if (dbc->usr != usr) { 1023 ret = -EINVAL; 1024 goto unlock_ch_srcu; 1025 } 1026 1027 ret = qaic_prepare_bo(qdev, bo, &args->hdr); 1028 if (ret) 1029 goto unlock_ch_srcu; 1030 1031 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent); 1032 if (ret) 1033 goto unprepare_bo; 1034 1035 if (args->hdr.dir == DMA_TO_DEVICE) 1036 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir); 1037 1038 bo->sliced = true; 1039 list_add_tail(&bo->bo_list, &bo->dbc->bo_lists); 1040 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1041 mutex_unlock(&bo->lock); 1042 kfree(slice_ent); 1043 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1044 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1045 1046 return 0; 1047 1048 unprepare_bo: 1049 qaic_unprepare_bo(qdev, bo); 1050 unlock_ch_srcu: 1051 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1052 unlock_bo: 1053 mutex_unlock(&bo->lock); 1054 put_bo: 1055 drm_gem_object_put(obj); 1056 free_slice_ent: 1057 kfree(slice_ent); 1058 unlock_dev_srcu: 1059 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1060 unlock_usr_srcu: 1061 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1062 return ret; 1063 } 1064 1065 static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size) 1066 { 1067 u32 avail = head - tail - 1; 1068 1069 if (head <= tail) 1070 avail += q_size; 1071 1072 return avail; 1073 } 1074 1075 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id, 1076 u32 head, u32 *ptail) 1077 { 1078 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1079 struct dbc_req *reqs = slice->reqs; 1080 u32 tail = *ptail; 1081 u32 avail; 1082 1083 avail = fifo_space_avail(head, tail, dbc->nelem); 1084 if (avail < slice->nents) 1085 return -EAGAIN; 1086 1087 if (tail + slice->nents > dbc->nelem) { 1088 avail = dbc->nelem - tail; 1089 avail = min_t(u32, avail, slice->nents); 1090 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail); 1091 reqs += avail; 1092 avail = slice->nents - avail; 1093 if (avail) 1094 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail); 1095 } else { 1096 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents); 1097 } 1098 1099 *ptail = (tail + slice->nents) % dbc->nelem; 1100 1101 return 0; 1102 } 1103 1104 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, 1105 u64 resize, struct dma_bridge_chan *dbc, u32 head, 1106 u32 *ptail) 1107 { 1108 struct dbc_req *reqs = slice->reqs; 1109 struct dbc_req *last_req; 1110 u32 tail = *ptail; 1111 u64 last_bytes; 1112 u32 first_n; 1113 u32 avail; 1114 1115 avail = fifo_space_avail(head, tail, dbc->nelem); 1116 1117 /* 1118 * After this for loop is complete, first_n represents the index 1119 * of the last DMA request of this slice that needs to be 1120 * transferred after resizing and last_bytes represents DMA size 1121 * of that request. 1122 */ 1123 last_bytes = resize; 1124 for (first_n = 0; first_n < slice->nents; first_n++) 1125 if (last_bytes > le32_to_cpu(reqs[first_n].len)) 1126 last_bytes -= le32_to_cpu(reqs[first_n].len); 1127 else 1128 break; 1129 1130 if (avail < (first_n + 1)) 1131 return -EAGAIN; 1132 1133 if (first_n) { 1134 if (tail + first_n > dbc->nelem) { 1135 avail = dbc->nelem - tail; 1136 avail = min_t(u32, avail, first_n); 1137 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail); 1138 last_req = reqs + avail; 1139 avail = first_n - avail; 1140 if (avail) 1141 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail); 1142 } else { 1143 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n); 1144 } 1145 } 1146 1147 /* 1148 * Copy over the last entry. Here we need to adjust len to the left over 1149 * size, and set src and dst to the entry it is copied to. 1150 */ 1151 last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem); 1152 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs)); 1153 1154 /* 1155 * last_bytes holds size of a DMA segment, maximum DMA segment size is 1156 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32 1157 * range. So, by down sizing we are not corrupting the value. 1158 */ 1159 last_req->len = cpu_to_le32((u32)last_bytes); 1160 last_req->src_addr = reqs[first_n].src_addr; 1161 last_req->dest_addr = reqs[first_n].dest_addr; 1162 if (!last_bytes) 1163 /* Disable DMA transfer */ 1164 last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd; 1165 1166 *ptail = (tail + first_n + 1) % dbc->nelem; 1167 1168 return 0; 1169 } 1170 1171 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv, 1172 struct qaic_execute_entry *exec, unsigned int count, 1173 bool is_partial, struct dma_bridge_chan *dbc, u32 head, 1174 u32 *tail) 1175 { 1176 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1177 struct drm_gem_object *obj; 1178 struct bo_slice *slice; 1179 unsigned long flags; 1180 struct qaic_bo *bo; 1181 int i, j; 1182 int ret; 1183 1184 for (i = 0; i < count; i++) { 1185 /* 1186 * ref count will be decremented when the transfer of this 1187 * buffer is complete. It is inside dbc_irq_threaded_fn(). 1188 */ 1189 obj = drm_gem_object_lookup(file_priv, 1190 is_partial ? pexec[i].handle : exec[i].handle); 1191 if (!obj) { 1192 ret = -ENOENT; 1193 goto failed_to_send_bo; 1194 } 1195 1196 bo = to_qaic_bo(obj); 1197 ret = mutex_lock_interruptible(&bo->lock); 1198 if (ret) 1199 goto failed_to_send_bo; 1200 1201 if (!bo->sliced) { 1202 ret = -EINVAL; 1203 goto unlock_bo; 1204 } 1205 1206 if (is_partial && pexec[i].resize > bo->base.size) { 1207 ret = -EINVAL; 1208 goto unlock_bo; 1209 } 1210 1211 spin_lock_irqsave(&dbc->xfer_lock, flags); 1212 if (bo_queued(bo)) { 1213 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1214 ret = -EINVAL; 1215 goto unlock_bo; 1216 } 1217 1218 bo->req_id = dbc->next_req_id++; 1219 1220 list_for_each_entry(slice, &bo->slices, slice) { 1221 for (j = 0; j < slice->nents; j++) 1222 slice->reqs[j].req_id = cpu_to_le16(bo->req_id); 1223 1224 if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset)) 1225 /* Configure the slice for no DMA transfer */ 1226 ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail); 1227 else if (is_partial && pexec[i].resize < slice->offset + slice->size) 1228 /* Configure the slice to be partially DMA transferred */ 1229 ret = copy_partial_exec_reqs(qdev, slice, 1230 pexec[i].resize - slice->offset, dbc, 1231 head, tail); 1232 else 1233 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail); 1234 if (ret) { 1235 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1236 goto unlock_bo; 1237 } 1238 } 1239 reinit_completion(&bo->xfer_done); 1240 list_add_tail(&bo->xfer_list, &dbc->xfer_list); 1241 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1242 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir); 1243 mutex_unlock(&bo->lock); 1244 } 1245 1246 return 0; 1247 1248 unlock_bo: 1249 mutex_unlock(&bo->lock); 1250 failed_to_send_bo: 1251 if (likely(obj)) 1252 drm_gem_object_put(obj); 1253 for (j = 0; j < i; j++) { 1254 spin_lock_irqsave(&dbc->xfer_lock, flags); 1255 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list); 1256 obj = &bo->base; 1257 list_del_init(&bo->xfer_list); 1258 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1259 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1260 drm_gem_object_put(obj); 1261 } 1262 return ret; 1263 } 1264 1265 static void update_profiling_data(struct drm_file *file_priv, 1266 struct qaic_execute_entry *exec, unsigned int count, 1267 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level) 1268 { 1269 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec; 1270 struct drm_gem_object *obj; 1271 struct qaic_bo *bo; 1272 int i; 1273 1274 for (i = 0; i < count; i++) { 1275 /* 1276 * Since we already committed the BO to hardware, the only way 1277 * this should fail is a pending signal. We can't cancel the 1278 * submit to hardware, so we have to just skip the profiling 1279 * data. In case the signal is not fatal to the process, we 1280 * return success so that the user doesn't try to resubmit. 1281 */ 1282 obj = drm_gem_object_lookup(file_priv, 1283 is_partial ? pexec[i].handle : exec[i].handle); 1284 if (!obj) 1285 break; 1286 bo = to_qaic_bo(obj); 1287 bo->perf_stats.req_received_ts = received_ts; 1288 bo->perf_stats.req_submit_ts = submit_ts; 1289 bo->perf_stats.queue_level_before = queue_level; 1290 queue_level += bo->total_slice_nents; 1291 drm_gem_object_put(obj); 1292 } 1293 } 1294 1295 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv, 1296 bool is_partial) 1297 { 1298 struct qaic_execute *args = data; 1299 struct qaic_execute_entry *exec; 1300 struct dma_bridge_chan *dbc; 1301 int usr_rcu_id, qdev_rcu_id; 1302 struct qaic_device *qdev; 1303 struct qaic_user *usr; 1304 u8 __user *user_data; 1305 unsigned long n; 1306 u64 received_ts; 1307 u32 queue_level; 1308 u64 submit_ts; 1309 int rcu_id; 1310 u32 head; 1311 u32 tail; 1312 u64 size; 1313 int ret; 1314 1315 received_ts = ktime_get_ns(); 1316 1317 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec); 1318 n = (unsigned long)size * args->hdr.count; 1319 if (args->hdr.count == 0 || n / args->hdr.count != size) 1320 return -EINVAL; 1321 1322 user_data = u64_to_user_ptr(args->data); 1323 1324 exec = kcalloc(args->hdr.count, size, GFP_KERNEL); 1325 if (!exec) 1326 return -ENOMEM; 1327 1328 if (copy_from_user(exec, user_data, n)) { 1329 ret = -EFAULT; 1330 goto free_exec; 1331 } 1332 1333 usr = file_priv->driver_priv; 1334 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1335 if (!usr->qddev) { 1336 ret = -ENODEV; 1337 goto unlock_usr_srcu; 1338 } 1339 1340 qdev = usr->qddev->qdev; 1341 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1342 if (qdev->dev_state != QAIC_ONLINE) { 1343 ret = -ENODEV; 1344 goto unlock_dev_srcu; 1345 } 1346 1347 if (args->hdr.dbc_id >= qdev->num_dbc) { 1348 ret = -EINVAL; 1349 goto unlock_dev_srcu; 1350 } 1351 1352 dbc = &qdev->dbc[args->hdr.dbc_id]; 1353 1354 rcu_id = srcu_read_lock(&dbc->ch_lock); 1355 if (!dbc->usr || dbc->usr->handle != usr->handle) { 1356 ret = -EPERM; 1357 goto release_ch_rcu; 1358 } 1359 1360 head = readl(dbc->dbc_base + REQHP_OFF); 1361 tail = readl(dbc->dbc_base + REQTP_OFF); 1362 1363 if (head == U32_MAX || tail == U32_MAX) { 1364 /* PCI link error */ 1365 ret = -ENODEV; 1366 goto release_ch_rcu; 1367 } 1368 1369 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail); 1370 1371 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc, 1372 head, &tail); 1373 if (ret) 1374 goto release_ch_rcu; 1375 1376 /* Finalize commit to hardware */ 1377 submit_ts = ktime_get_ns(); 1378 writel(tail, dbc->dbc_base + REQTP_OFF); 1379 1380 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts, 1381 submit_ts, queue_level); 1382 1383 if (datapath_polling) 1384 schedule_work(&dbc->poll_work); 1385 1386 release_ch_rcu: 1387 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1388 unlock_dev_srcu: 1389 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1390 unlock_usr_srcu: 1391 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1392 free_exec: 1393 kfree(exec); 1394 return ret; 1395 } 1396 1397 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1398 { 1399 return __qaic_execute_bo_ioctl(dev, data, file_priv, false); 1400 } 1401 1402 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1403 { 1404 return __qaic_execute_bo_ioctl(dev, data, file_priv, true); 1405 } 1406 1407 /* 1408 * Our interrupt handling is a bit more complicated than a simple ideal, but 1409 * sadly necessary. 1410 * 1411 * Each dbc has a completion queue. Entries in the queue correspond to DMA 1412 * requests which the device has processed. The hardware already has a built 1413 * in irq mitigation. When the device puts an entry into the queue, it will 1414 * only trigger an interrupt if the queue was empty. Therefore, when adding 1415 * the Nth event to a non-empty queue, the hardware doesn't trigger an 1416 * interrupt. This means the host doesn't get additional interrupts signaling 1417 * the same thing - the queue has something to process. 1418 * This behavior can be overridden in the DMA request. 1419 * This means that when the host receives an interrupt, it is required to 1420 * drain the queue. 1421 * 1422 * This behavior is what NAPI attempts to accomplish, although we can't use 1423 * NAPI as we don't have a netdev. We use threaded irqs instead. 1424 * 1425 * However, there is a situation where the host drains the queue fast enough 1426 * that every event causes an interrupt. Typically this is not a problem as 1427 * the rate of events would be low. However, that is not the case with 1428 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of 1429 * lprnet, the host receives roughly 80k interrupts per second from the device 1430 * (per /proc/interrupts). While NAPI documentation indicates the host should 1431 * just chug along, sadly that behavior causes instability in some hosts. 1432 * 1433 * Therefore, we implement an interrupt disable scheme similar to NAPI. The 1434 * key difference is that we will delay after draining the queue for a small 1435 * time to allow additional events to come in via polling. Using the above 1436 * lprnet workload, this reduces the number of interrupts processed from 1437 * ~80k/sec to about 64 in 5 minutes and appears to solve the system 1438 * instability. 1439 */ 1440 irqreturn_t dbc_irq_handler(int irq, void *data) 1441 { 1442 struct dma_bridge_chan *dbc = data; 1443 int rcu_id; 1444 u32 head; 1445 u32 tail; 1446 1447 rcu_id = srcu_read_lock(&dbc->ch_lock); 1448 1449 if (datapath_polling) { 1450 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1451 /* 1452 * Normally datapath_polling will not have irqs enabled, but 1453 * when running with only one MSI the interrupt is shared with 1454 * MHI so it cannot be disabled. Return ASAP instead. 1455 */ 1456 return IRQ_HANDLED; 1457 } 1458 1459 if (!dbc->usr) { 1460 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1461 return IRQ_HANDLED; 1462 } 1463 1464 head = readl(dbc->dbc_base + RSPHP_OFF); 1465 if (head == U32_MAX) { /* PCI link error */ 1466 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1467 return IRQ_NONE; 1468 } 1469 1470 tail = readl(dbc->dbc_base + RSPTP_OFF); 1471 if (tail == U32_MAX) { /* PCI link error */ 1472 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1473 return IRQ_NONE; 1474 } 1475 1476 if (head == tail) { /* queue empty */ 1477 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1478 return IRQ_NONE; 1479 } 1480 1481 if (!dbc->qdev->single_msi) 1482 disable_irq_nosync(irq); 1483 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1484 return IRQ_WAKE_THREAD; 1485 } 1486 1487 void irq_polling_work(struct work_struct *work) 1488 { 1489 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work); 1490 unsigned long flags; 1491 int rcu_id; 1492 u32 head; 1493 u32 tail; 1494 1495 rcu_id = srcu_read_lock(&dbc->ch_lock); 1496 1497 while (1) { 1498 if (dbc->qdev->dev_state != QAIC_ONLINE) { 1499 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1500 return; 1501 } 1502 if (!dbc->usr) { 1503 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1504 return; 1505 } 1506 spin_lock_irqsave(&dbc->xfer_lock, flags); 1507 if (list_empty(&dbc->xfer_list)) { 1508 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1509 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1510 return; 1511 } 1512 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1513 1514 head = readl(dbc->dbc_base + RSPHP_OFF); 1515 if (head == U32_MAX) { /* PCI link error */ 1516 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1517 return; 1518 } 1519 1520 tail = readl(dbc->dbc_base + RSPTP_OFF); 1521 if (tail == U32_MAX) { /* PCI link error */ 1522 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1523 return; 1524 } 1525 1526 if (head != tail) { 1527 irq_wake_thread(dbc->irq, dbc); 1528 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1529 return; 1530 } 1531 1532 cond_resched(); 1533 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us); 1534 } 1535 } 1536 1537 irqreturn_t dbc_irq_threaded_fn(int irq, void *data) 1538 { 1539 struct dma_bridge_chan *dbc = data; 1540 int event_count = NUM_EVENTS; 1541 int delay_count = NUM_DELAYS; 1542 struct qaic_device *qdev; 1543 struct qaic_bo *bo, *i; 1544 struct dbc_rsp *rsp; 1545 unsigned long flags; 1546 int rcu_id; 1547 u16 status; 1548 u16 req_id; 1549 u32 head; 1550 u32 tail; 1551 1552 rcu_id = srcu_read_lock(&dbc->ch_lock); 1553 qdev = dbc->qdev; 1554 1555 head = readl(dbc->dbc_base + RSPHP_OFF); 1556 if (head == U32_MAX) /* PCI link error */ 1557 goto error_out; 1558 1559 read_fifo: 1560 1561 if (!event_count) { 1562 event_count = NUM_EVENTS; 1563 cond_resched(); 1564 } 1565 1566 /* 1567 * if this channel isn't assigned or gets unassigned during processing 1568 * we have nothing further to do 1569 */ 1570 if (!dbc->usr) 1571 goto error_out; 1572 1573 tail = readl(dbc->dbc_base + RSPTP_OFF); 1574 if (tail == U32_MAX) /* PCI link error */ 1575 goto error_out; 1576 1577 if (head == tail) { /* queue empty */ 1578 if (delay_count) { 1579 --delay_count; 1580 usleep_range(100, 200); 1581 goto read_fifo; /* check for a new event */ 1582 } 1583 goto normal_out; 1584 } 1585 1586 delay_count = NUM_DELAYS; 1587 while (head != tail) { 1588 if (!event_count) 1589 break; 1590 --event_count; 1591 rsp = dbc->rsp_q_base + head * sizeof(*rsp); 1592 req_id = le16_to_cpu(rsp->req_id); 1593 status = le16_to_cpu(rsp->status); 1594 if (status) 1595 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status); 1596 spin_lock_irqsave(&dbc->xfer_lock, flags); 1597 /* 1598 * A BO can receive multiple interrupts, since a BO can be 1599 * divided into multiple slices and a buffer receives as many 1600 * interrupts as slices. So until it receives interrupts for 1601 * all the slices we cannot mark that buffer complete. 1602 */ 1603 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) { 1604 if (bo->req_id == req_id) 1605 bo->nr_slice_xfer_done++; 1606 else 1607 continue; 1608 1609 if (bo->nr_slice_xfer_done < bo->nr_slice) 1610 break; 1611 1612 /* 1613 * At this point we have received all the interrupts for 1614 * BO, which means BO execution is complete. 1615 */ 1616 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1617 bo->nr_slice_xfer_done = 0; 1618 list_del_init(&bo->xfer_list); 1619 bo->perf_stats.req_processed_ts = ktime_get_ns(); 1620 complete_all(&bo->xfer_done); 1621 drm_gem_object_put(&bo->base); 1622 break; 1623 } 1624 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1625 head = (head + 1) % dbc->nelem; 1626 } 1627 1628 /* 1629 * Update the head pointer of response queue and let the device know 1630 * that we have consumed elements from the queue. 1631 */ 1632 writel(head, dbc->dbc_base + RSPHP_OFF); 1633 1634 /* elements might have been put in the queue while we were processing */ 1635 goto read_fifo; 1636 1637 normal_out: 1638 if (!qdev->single_msi && likely(!datapath_polling)) 1639 enable_irq(irq); 1640 else if (unlikely(datapath_polling)) 1641 schedule_work(&dbc->poll_work); 1642 /* checking the fifo and enabling irqs is a race, missed event check */ 1643 tail = readl(dbc->dbc_base + RSPTP_OFF); 1644 if (tail != U32_MAX && head != tail) { 1645 if (!qdev->single_msi && likely(!datapath_polling)) 1646 disable_irq_nosync(irq); 1647 goto read_fifo; 1648 } 1649 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1650 return IRQ_HANDLED; 1651 1652 error_out: 1653 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1654 if (!qdev->single_msi && likely(!datapath_polling)) 1655 enable_irq(irq); 1656 else if (unlikely(datapath_polling)) 1657 schedule_work(&dbc->poll_work); 1658 1659 return IRQ_HANDLED; 1660 } 1661 1662 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1663 { 1664 struct qaic_wait *args = data; 1665 int usr_rcu_id, qdev_rcu_id; 1666 struct dma_bridge_chan *dbc; 1667 struct drm_gem_object *obj; 1668 struct qaic_device *qdev; 1669 unsigned long timeout; 1670 struct qaic_user *usr; 1671 struct qaic_bo *bo; 1672 int rcu_id; 1673 int ret; 1674 1675 if (args->pad != 0) 1676 return -EINVAL; 1677 1678 usr = file_priv->driver_priv; 1679 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1680 if (!usr->qddev) { 1681 ret = -ENODEV; 1682 goto unlock_usr_srcu; 1683 } 1684 1685 qdev = usr->qddev->qdev; 1686 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1687 if (qdev->dev_state != QAIC_ONLINE) { 1688 ret = -ENODEV; 1689 goto unlock_dev_srcu; 1690 } 1691 1692 if (args->dbc_id >= qdev->num_dbc) { 1693 ret = -EINVAL; 1694 goto unlock_dev_srcu; 1695 } 1696 1697 dbc = &qdev->dbc[args->dbc_id]; 1698 1699 rcu_id = srcu_read_lock(&dbc->ch_lock); 1700 if (dbc->usr != usr) { 1701 ret = -EPERM; 1702 goto unlock_ch_srcu; 1703 } 1704 1705 obj = drm_gem_object_lookup(file_priv, args->handle); 1706 if (!obj) { 1707 ret = -ENOENT; 1708 goto unlock_ch_srcu; 1709 } 1710 1711 bo = to_qaic_bo(obj); 1712 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms; 1713 timeout = msecs_to_jiffies(timeout); 1714 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout); 1715 if (!ret) { 1716 ret = -ETIMEDOUT; 1717 goto put_obj; 1718 } 1719 if (ret > 0) 1720 ret = 0; 1721 1722 if (!dbc->usr) 1723 ret = -EPERM; 1724 1725 put_obj: 1726 drm_gem_object_put(obj); 1727 unlock_ch_srcu: 1728 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1729 unlock_dev_srcu: 1730 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1731 unlock_usr_srcu: 1732 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1733 return ret; 1734 } 1735 1736 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1737 { 1738 struct qaic_perf_stats_entry *ent = NULL; 1739 struct qaic_perf_stats *args = data; 1740 int usr_rcu_id, qdev_rcu_id; 1741 struct drm_gem_object *obj; 1742 struct qaic_device *qdev; 1743 struct qaic_user *usr; 1744 struct qaic_bo *bo; 1745 int ret, i; 1746 1747 usr = file_priv->driver_priv; 1748 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1749 if (!usr->qddev) { 1750 ret = -ENODEV; 1751 goto unlock_usr_srcu; 1752 } 1753 1754 qdev = usr->qddev->qdev; 1755 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1756 if (qdev->dev_state != QAIC_ONLINE) { 1757 ret = -ENODEV; 1758 goto unlock_dev_srcu; 1759 } 1760 1761 if (args->hdr.dbc_id >= qdev->num_dbc) { 1762 ret = -EINVAL; 1763 goto unlock_dev_srcu; 1764 } 1765 1766 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL); 1767 if (!ent) { 1768 ret = -EINVAL; 1769 goto unlock_dev_srcu; 1770 } 1771 1772 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent)); 1773 if (ret) { 1774 ret = -EFAULT; 1775 goto free_ent; 1776 } 1777 1778 for (i = 0; i < args->hdr.count; i++) { 1779 obj = drm_gem_object_lookup(file_priv, ent[i].handle); 1780 if (!obj) { 1781 ret = -ENOENT; 1782 goto free_ent; 1783 } 1784 bo = to_qaic_bo(obj); 1785 /* 1786 * perf stats ioctl is called before wait ioctl is complete then 1787 * the latency information is invalid. 1788 */ 1789 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) { 1790 ent[i].device_latency_us = 0; 1791 } else { 1792 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts - 1793 bo->perf_stats.req_submit_ts), 1000); 1794 } 1795 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts - 1796 bo->perf_stats.req_received_ts), 1000); 1797 ent[i].queue_level_before = bo->perf_stats.queue_level_before; 1798 ent[i].num_queue_element = bo->total_slice_nents; 1799 drm_gem_object_put(obj); 1800 } 1801 1802 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent))) 1803 ret = -EFAULT; 1804 1805 free_ent: 1806 kfree(ent); 1807 unlock_dev_srcu: 1808 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1809 unlock_usr_srcu: 1810 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1811 return ret; 1812 } 1813 1814 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo) 1815 { 1816 qaic_free_slices_bo(bo); 1817 qaic_unprepare_bo(qdev, bo); 1818 qaic_init_bo(bo, true); 1819 list_del(&bo->bo_list); 1820 drm_gem_object_put(&bo->base); 1821 } 1822 1823 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1824 { 1825 struct qaic_detach_slice *args = data; 1826 int rcu_id, usr_rcu_id, qdev_rcu_id; 1827 struct dma_bridge_chan *dbc; 1828 struct drm_gem_object *obj; 1829 struct qaic_device *qdev; 1830 struct qaic_user *usr; 1831 unsigned long flags; 1832 struct qaic_bo *bo; 1833 int ret; 1834 1835 if (args->pad != 0) 1836 return -EINVAL; 1837 1838 usr = file_priv->driver_priv; 1839 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1840 if (!usr->qddev) { 1841 ret = -ENODEV; 1842 goto unlock_usr_srcu; 1843 } 1844 1845 qdev = usr->qddev->qdev; 1846 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1847 if (qdev->dev_state != QAIC_ONLINE) { 1848 ret = -ENODEV; 1849 goto unlock_dev_srcu; 1850 } 1851 1852 obj = drm_gem_object_lookup(file_priv, args->handle); 1853 if (!obj) { 1854 ret = -ENOENT; 1855 goto unlock_dev_srcu; 1856 } 1857 1858 bo = to_qaic_bo(obj); 1859 ret = mutex_lock_interruptible(&bo->lock); 1860 if (ret) 1861 goto put_bo; 1862 1863 if (!bo->sliced) { 1864 ret = -EINVAL; 1865 goto unlock_bo; 1866 } 1867 1868 dbc = bo->dbc; 1869 rcu_id = srcu_read_lock(&dbc->ch_lock); 1870 if (dbc->usr != usr) { 1871 ret = -EINVAL; 1872 goto unlock_ch_srcu; 1873 } 1874 1875 /* Check if BO is committed to H/W for DMA */ 1876 spin_lock_irqsave(&dbc->xfer_lock, flags); 1877 if (bo_queued(bo)) { 1878 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1879 ret = -EBUSY; 1880 goto unlock_ch_srcu; 1881 } 1882 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1883 1884 detach_slice_bo(qdev, bo); 1885 1886 unlock_ch_srcu: 1887 srcu_read_unlock(&dbc->ch_lock, rcu_id); 1888 unlock_bo: 1889 mutex_unlock(&bo->lock); 1890 put_bo: 1891 drm_gem_object_put(obj); 1892 unlock_dev_srcu: 1893 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1894 unlock_usr_srcu: 1895 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1896 return ret; 1897 } 1898 1899 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc) 1900 { 1901 unsigned long flags; 1902 struct qaic_bo *bo; 1903 1904 spin_lock_irqsave(&dbc->xfer_lock, flags); 1905 while (!list_empty(&dbc->xfer_list)) { 1906 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list); 1907 list_del_init(&bo->xfer_list); 1908 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1909 bo->nr_slice_xfer_done = 0; 1910 bo->req_id = 0; 1911 bo->perf_stats.req_received_ts = 0; 1912 bo->perf_stats.req_submit_ts = 0; 1913 bo->perf_stats.req_processed_ts = 0; 1914 bo->perf_stats.queue_level_before = 0; 1915 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir); 1916 complete_all(&bo->xfer_done); 1917 drm_gem_object_put(&bo->base); 1918 spin_lock_irqsave(&dbc->xfer_lock, flags); 1919 } 1920 spin_unlock_irqrestore(&dbc->xfer_lock, flags); 1921 } 1922 1923 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1924 { 1925 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle) 1926 return -EPERM; 1927 1928 qdev->dbc[dbc_id].usr = NULL; 1929 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock); 1930 return 0; 1931 } 1932 1933 /** 1934 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of 1935 * user. Add user context back to DBC to enable it. This function trusts the 1936 * DBC ID passed and expects the DBC to be disabled. 1937 * @qdev: Qranium device handle 1938 * @dbc_id: ID of the DBC 1939 * @usr: User context 1940 */ 1941 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr) 1942 { 1943 qdev->dbc[dbc_id].usr = usr; 1944 } 1945 1946 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id) 1947 { 1948 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id]; 1949 1950 dbc->usr = NULL; 1951 empty_xfer_list(qdev, dbc); 1952 synchronize_srcu(&dbc->ch_lock); 1953 /* 1954 * Threads holding channel lock, may add more elements in the xfer_list. 1955 * Flush out these elements from xfer_list. 1956 */ 1957 empty_xfer_list(qdev, dbc); 1958 } 1959 1960 void release_dbc(struct qaic_device *qdev, u32 dbc_id) 1961 { 1962 struct qaic_bo *bo, *bo_temp; 1963 struct dma_bridge_chan *dbc; 1964 1965 dbc = &qdev->dbc[dbc_id]; 1966 if (!dbc->in_use) 1967 return; 1968 1969 wakeup_dbc(qdev, dbc_id); 1970 1971 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr); 1972 dbc->total_size = 0; 1973 dbc->req_q_base = NULL; 1974 dbc->dma_addr = 0; 1975 dbc->nelem = 0; 1976 dbc->usr = NULL; 1977 1978 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) { 1979 drm_gem_object_get(&bo->base); 1980 mutex_lock(&bo->lock); 1981 detach_slice_bo(qdev, bo); 1982 mutex_unlock(&bo->lock); 1983 drm_gem_object_put(&bo->base); 1984 } 1985 1986 dbc->in_use = false; 1987 wake_up(&dbc->dbc_release); 1988 } 1989 1990 void qaic_data_get_fifo_info(struct dma_bridge_chan *dbc, u32 *head, u32 *tail) 1991 { 1992 if (!dbc || !head || !tail) 1993 return; 1994 1995 *head = readl(dbc->dbc_base + REQHP_OFF); 1996 *tail = readl(dbc->dbc_base + REQTP_OFF); 1997 } 1998