1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */ 4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */ 5 6 #include <asm/byteorder.h> 7 #include <linux/completion.h> 8 #include <linux/crc32.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/kref.h> 12 #include <linux/list.h> 13 #include <linux/mhi.h> 14 #include <linux/mm.h> 15 #include <linux/moduleparam.h> 16 #include <linux/mutex.h> 17 #include <linux/pci.h> 18 #include <linux/scatterlist.h> 19 #include <linux/types.h> 20 #include <linux/uaccess.h> 21 #include <linux/workqueue.h> 22 #include <linux/wait.h> 23 #include <drm/drm_device.h> 24 #include <drm/drm_file.h> 25 #include <uapi/drm/qaic_accel.h> 26 27 #include "qaic.h" 28 29 #define MANAGE_MAGIC_NUMBER ((__force __le32)0x43494151) /* "QAIC" in little endian */ 30 #define QAIC_DBC_Q_GAP SZ_256 31 #define QAIC_DBC_Q_BUF_ALIGN SZ_4K 32 #define QAIC_MANAGE_EXT_MSG_LENGTH SZ_64K /* Max DMA message length */ 33 #define QAIC_WRAPPER_MAX_SIZE SZ_4K 34 #define QAIC_MHI_RETRY_WAIT_MS 100 35 #define QAIC_MHI_RETRY_MAX 20 36 37 static unsigned int control_resp_timeout_s = 60; /* 60 sec default */ 38 module_param(control_resp_timeout_s, uint, 0600); 39 MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM"); 40 41 struct manage_msg { 42 u32 len; 43 u32 count; 44 u8 data[]; 45 }; 46 47 /* 48 * wire encoding structures for the manage protocol. 49 * All fields are little endian on the wire 50 */ 51 struct wire_msg_hdr { 52 __le32 crc32; /* crc of everything following this field in the message */ 53 __le32 magic_number; 54 __le32 sequence_number; 55 __le32 len; /* length of this message */ 56 __le32 count; /* number of transactions in this message */ 57 __le32 handle; /* unique id to track the resources consumed */ 58 __le32 partition_id; /* partition id for the request (signed) */ 59 __le32 padding; /* must be 0 */ 60 } __packed; 61 62 struct wire_msg { 63 struct wire_msg_hdr hdr; 64 u8 data[]; 65 } __packed; 66 67 struct wire_trans_hdr { 68 __le32 type; 69 __le32 len; 70 } __packed; 71 72 /* Each message sent from driver to device are organized in a list of wrapper_msg */ 73 struct wrapper_msg { 74 struct list_head list; 75 struct kref ref_count; 76 u32 len; /* length of data to transfer */ 77 struct wrapper_list *head; 78 union { 79 struct wire_msg msg; 80 struct wire_trans_hdr trans; 81 }; 82 }; 83 84 struct wrapper_list { 85 struct list_head list; 86 spinlock_t lock; /* Protects the list state during additions and removals */ 87 }; 88 89 struct wire_trans_passthrough { 90 struct wire_trans_hdr hdr; 91 u8 data[]; 92 } __packed; 93 94 struct wire_addr_size_pair { 95 __le64 addr; 96 __le64 size; 97 } __packed; 98 99 struct wire_trans_dma_xfer { 100 struct wire_trans_hdr hdr; 101 __le32 tag; 102 __le32 count; 103 __le32 dma_chunk_id; 104 __le32 padding; 105 struct wire_addr_size_pair data[]; 106 } __packed; 107 108 /* Initiated by device to continue the DMA xfer of a large piece of data */ 109 struct wire_trans_dma_xfer_cont { 110 struct wire_trans_hdr hdr; 111 __le32 dma_chunk_id; 112 __le32 padding; 113 __le64 xferred_size; 114 } __packed; 115 116 struct wire_trans_activate_to_dev { 117 struct wire_trans_hdr hdr; 118 __le64 req_q_addr; 119 __le64 rsp_q_addr; 120 __le32 req_q_size; 121 __le32 rsp_q_size; 122 __le32 buf_len; 123 __le32 options; /* unused, but BIT(16) has meaning to the device */ 124 } __packed; 125 126 struct wire_trans_activate_from_dev { 127 struct wire_trans_hdr hdr; 128 __le32 status; 129 __le32 dbc_id; 130 __le64 options; /* unused */ 131 } __packed; 132 133 struct wire_trans_deactivate_from_dev { 134 struct wire_trans_hdr hdr; 135 __le32 status; 136 __le32 dbc_id; 137 } __packed; 138 139 struct wire_trans_terminate_to_dev { 140 struct wire_trans_hdr hdr; 141 __le32 handle; 142 __le32 padding; 143 } __packed; 144 145 struct wire_trans_terminate_from_dev { 146 struct wire_trans_hdr hdr; 147 __le32 status; 148 __le32 padding; 149 } __packed; 150 151 struct wire_trans_status_to_dev { 152 struct wire_trans_hdr hdr; 153 } __packed; 154 155 struct wire_trans_status_from_dev { 156 struct wire_trans_hdr hdr; 157 __le16 major; 158 __le16 minor; 159 __le32 status; 160 __le64 status_flags; 161 } __packed; 162 163 struct wire_trans_validate_part_to_dev { 164 struct wire_trans_hdr hdr; 165 __le32 part_id; 166 __le32 padding; 167 } __packed; 168 169 struct wire_trans_validate_part_from_dev { 170 struct wire_trans_hdr hdr; 171 __le32 status; 172 __le32 padding; 173 } __packed; 174 175 struct xfer_queue_elem { 176 /* 177 * Node in list of ongoing transfer request on control channel. 178 * Maintained by root device struct. 179 */ 180 struct list_head list; 181 /* Sequence number of this transfer request */ 182 u32 seq_num; 183 /* This is used to wait on until completion of transfer request */ 184 struct completion xfer_done; 185 /* Received data from device */ 186 void *buf; 187 }; 188 189 struct dma_xfer { 190 /* Node in list of DMA transfers which is used for cleanup */ 191 struct list_head list; 192 /* SG table of memory used for DMA */ 193 struct sg_table *sgt; 194 /* Array pages used for DMA */ 195 struct page **page_list; 196 /* Number of pages used for DMA */ 197 unsigned long nr_pages; 198 }; 199 200 struct ioctl_resources { 201 /* List of all DMA transfers which is used later for cleanup */ 202 struct list_head dma_xfers; 203 /* Base address of request queue which belongs to a DBC */ 204 void *buf; 205 /* 206 * Base bus address of request queue which belongs to a DBC. Response 207 * queue base bus address can be calculated by adding size of request 208 * queue to base bus address of request queue. 209 */ 210 dma_addr_t dma_addr; 211 /* Total size of request queue and response queue in byte */ 212 u32 total_size; 213 /* Total number of elements that can be queued in each of request and response queue */ 214 u32 nelem; 215 /* Base address of response queue which belongs to a DBC */ 216 void *rsp_q_base; 217 /* Status of the NNC message received */ 218 u32 status; 219 /* DBC id of the DBC received from device */ 220 u32 dbc_id; 221 /* 222 * DMA transfer request messages can be big in size and it may not be 223 * possible to send them in one shot. In such cases the messages are 224 * broken into chunks, this field stores ID of such chunks. 225 */ 226 u32 dma_chunk_id; 227 /* Total number of bytes transferred for a DMA xfer request */ 228 u64 xferred_dma_size; 229 /* Header of transaction message received from user. Used during DMA xfer request. */ 230 void *trans_hdr; 231 }; 232 233 struct resp_work { 234 struct work_struct work; 235 struct qaic_device *qdev; 236 void *buf; 237 }; 238 239 /* 240 * Since we're working with little endian messages, its useful to be able to 241 * increment without filling a whole line with conversions back and forth just 242 * to add one(1) to a message count. 243 */ 244 static __le32 incr_le32(__le32 val) 245 { 246 return cpu_to_le32(le32_to_cpu(val) + 1); 247 } 248 249 static u32 gen_crc(void *msg) 250 { 251 struct wrapper_list *wrappers = msg; 252 struct wrapper_msg *w; 253 u32 crc = ~0; 254 255 list_for_each_entry(w, &wrappers->list, list) 256 crc = crc32(crc, &w->msg, w->len); 257 258 return crc ^ ~0; 259 } 260 261 static u32 gen_crc_stub(void *msg) 262 { 263 return 0; 264 } 265 266 static bool valid_crc(void *msg) 267 { 268 struct wire_msg_hdr *hdr = msg; 269 bool ret; 270 u32 crc; 271 272 /* 273 * The output of this algorithm is always converted to the native 274 * endianness. 275 */ 276 crc = le32_to_cpu(hdr->crc32); 277 hdr->crc32 = 0; 278 ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc; 279 hdr->crc32 = cpu_to_le32(crc); 280 return ret; 281 } 282 283 static bool valid_crc_stub(void *msg) 284 { 285 return true; 286 } 287 288 static void free_wrapper(struct kref *ref) 289 { 290 struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count); 291 292 list_del(&wrapper->list); 293 kfree(wrapper); 294 } 295 296 static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources, 297 struct qaic_user *usr) 298 { 299 u32 dbc_id = resources->dbc_id; 300 301 if (resources->buf) { 302 wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use); 303 qdev->dbc[dbc_id].req_q_base = resources->buf; 304 qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base; 305 qdev->dbc[dbc_id].dma_addr = resources->dma_addr; 306 qdev->dbc[dbc_id].total_size = resources->total_size; 307 qdev->dbc[dbc_id].nelem = resources->nelem; 308 enable_dbc(qdev, dbc_id, usr); 309 qdev->dbc[dbc_id].in_use = true; 310 resources->buf = NULL; 311 } 312 } 313 314 static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources) 315 { 316 if (resources->buf) 317 dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf, 318 resources->dma_addr); 319 resources->buf = NULL; 320 } 321 322 static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources) 323 { 324 struct dma_xfer *xfer; 325 struct dma_xfer *x; 326 int i; 327 328 list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) { 329 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0); 330 sg_free_table(xfer->sgt); 331 kfree(xfer->sgt); 332 for (i = 0; i < xfer->nr_pages; ++i) 333 put_page(xfer->page_list[i]); 334 kfree(xfer->page_list); 335 list_del(&xfer->list); 336 kfree(xfer); 337 } 338 } 339 340 static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size) 341 { 342 struct wrapper_msg *w = kzalloc(size, GFP_KERNEL); 343 344 if (!w) 345 return NULL; 346 list_add_tail(&w->list, &wrappers->list); 347 kref_init(&w->ref_count); 348 w->head = wrappers; 349 return w; 350 } 351 352 static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 353 u32 *user_len) 354 { 355 struct qaic_manage_trans_passthrough *in_trans = trans; 356 struct wire_trans_passthrough *out_trans; 357 struct wrapper_msg *trans_wrapper; 358 struct wrapper_msg *wrapper; 359 struct wire_msg *msg; 360 u32 msg_hdr_len; 361 362 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 363 msg = &wrapper->msg; 364 msg_hdr_len = le32_to_cpu(msg->hdr.len); 365 366 if (in_trans->hdr.len % 8 != 0) 367 return -EINVAL; 368 369 if (msg_hdr_len + in_trans->hdr.len > QAIC_MANAGE_EXT_MSG_LENGTH) 370 return -ENOSPC; 371 372 trans_wrapper = add_wrapper(wrappers, 373 offsetof(struct wrapper_msg, trans) + in_trans->hdr.len); 374 if (!trans_wrapper) 375 return -ENOMEM; 376 trans_wrapper->len = in_trans->hdr.len; 377 out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans; 378 379 memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr)); 380 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len); 381 msg->hdr.count = incr_le32(msg->hdr.count); 382 *user_len += in_trans->hdr.len; 383 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV); 384 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len); 385 386 return 0; 387 } 388 389 /* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */ 390 static int find_and_map_user_pages(struct qaic_device *qdev, 391 struct qaic_manage_trans_dma_xfer *in_trans, 392 struct ioctl_resources *resources, struct dma_xfer *xfer) 393 { 394 unsigned long need_pages; 395 struct page **page_list; 396 unsigned long nr_pages; 397 struct sg_table *sgt; 398 u64 xfer_start_addr; 399 int ret; 400 int i; 401 402 xfer_start_addr = in_trans->addr + resources->xferred_dma_size; 403 404 need_pages = DIV_ROUND_UP(in_trans->size + offset_in_page(xfer_start_addr) - 405 resources->xferred_dma_size, PAGE_SIZE); 406 407 nr_pages = need_pages; 408 409 while (1) { 410 page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN); 411 if (!page_list) { 412 nr_pages = nr_pages / 2; 413 if (!nr_pages) 414 return -ENOMEM; 415 } else { 416 break; 417 } 418 } 419 420 ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list); 421 if (ret < 0 || ret != nr_pages) { 422 ret = -EFAULT; 423 goto free_page_list; 424 } 425 426 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); 427 if (!sgt) { 428 ret = -ENOMEM; 429 goto put_pages; 430 } 431 432 ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages, 433 offset_in_page(xfer_start_addr), 434 in_trans->size - resources->xferred_dma_size, GFP_KERNEL); 435 if (ret) { 436 ret = -ENOMEM; 437 goto free_sgt; 438 } 439 440 ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0); 441 if (ret) 442 goto free_table; 443 444 xfer->sgt = sgt; 445 xfer->page_list = page_list; 446 xfer->nr_pages = nr_pages; 447 448 return need_pages > nr_pages ? 1 : 0; 449 450 free_table: 451 sg_free_table(sgt); 452 free_sgt: 453 kfree(sgt); 454 put_pages: 455 for (i = 0; i < nr_pages; ++i) 456 put_page(page_list[i]); 457 free_page_list: 458 kfree(page_list); 459 return ret; 460 } 461 462 /* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */ 463 static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers, 464 struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size, 465 struct wire_trans_dma_xfer **out_trans) 466 { 467 struct wrapper_msg *trans_wrapper; 468 struct sg_table *sgt = xfer->sgt; 469 struct wire_addr_size_pair *asp; 470 struct scatterlist *sg; 471 struct wrapper_msg *w; 472 unsigned int dma_len; 473 u64 dma_chunk_len; 474 void *boundary; 475 int nents_dma; 476 int nents; 477 int i; 478 479 nents = sgt->nents; 480 nents_dma = nents; 481 *size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans); 482 for_each_sgtable_sg(sgt, sg, i) { 483 *size -= sizeof(*asp); 484 /* Save 1K for possible follow-up transactions. */ 485 if (*size < SZ_1K) { 486 nents_dma = i; 487 break; 488 } 489 } 490 491 trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE); 492 if (!trans_wrapper) 493 return -ENOMEM; 494 *out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans; 495 496 asp = (*out_trans)->data; 497 boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE; 498 *size = 0; 499 500 dma_len = 0; 501 w = trans_wrapper; 502 dma_chunk_len = 0; 503 for_each_sg(sgt->sgl, sg, nents_dma, i) { 504 asp->size = cpu_to_le64(dma_len); 505 dma_chunk_len += dma_len; 506 if (dma_len) { 507 asp++; 508 if ((void *)asp + sizeof(*asp) > boundary) { 509 w->len = (void *)asp - (void *)&w->msg; 510 *size += w->len; 511 w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE); 512 if (!w) 513 return -ENOMEM; 514 boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE; 515 asp = (struct wire_addr_size_pair *)&w->msg; 516 } 517 } 518 asp->addr = cpu_to_le64(sg_dma_address(sg)); 519 dma_len = sg_dma_len(sg); 520 } 521 /* finalize the last segment */ 522 asp->size = cpu_to_le64(dma_len); 523 w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg; 524 *size += w->len; 525 dma_chunk_len += dma_len; 526 resources->xferred_dma_size += dma_chunk_len; 527 528 return nents_dma < nents ? 1 : 0; 529 } 530 531 static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer) 532 { 533 int i; 534 535 dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0); 536 sg_free_table(xfer->sgt); 537 kfree(xfer->sgt); 538 for (i = 0; i < xfer->nr_pages; ++i) 539 put_page(xfer->page_list[i]); 540 kfree(xfer->page_list); 541 } 542 543 static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 544 u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr) 545 { 546 struct qaic_manage_trans_dma_xfer *in_trans = trans; 547 struct wire_trans_dma_xfer *out_trans; 548 struct wrapper_msg *wrapper; 549 struct dma_xfer *xfer; 550 struct wire_msg *msg; 551 bool need_cont_dma; 552 u32 msg_hdr_len; 553 u32 size; 554 int ret; 555 556 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 557 msg = &wrapper->msg; 558 msg_hdr_len = le32_to_cpu(msg->hdr.len); 559 560 if (msg_hdr_len > (UINT_MAX - QAIC_MANAGE_EXT_MSG_LENGTH)) 561 return -EINVAL; 562 563 /* There should be enough space to hold at least one ASP entry. */ 564 if (msg_hdr_len + sizeof(*out_trans) + sizeof(struct wire_addr_size_pair) > 565 QAIC_MANAGE_EXT_MSG_LENGTH) 566 return -ENOMEM; 567 568 if (in_trans->addr + in_trans->size < in_trans->addr || !in_trans->size) 569 return -EINVAL; 570 571 xfer = kmalloc(sizeof(*xfer), GFP_KERNEL); 572 if (!xfer) 573 return -ENOMEM; 574 575 ret = find_and_map_user_pages(qdev, in_trans, resources, xfer); 576 if (ret < 0) 577 goto free_xfer; 578 579 need_cont_dma = (bool)ret; 580 581 ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans); 582 if (ret < 0) 583 goto cleanup_xfer; 584 585 need_cont_dma = need_cont_dma || (bool)ret; 586 587 msg->hdr.len = cpu_to_le32(msg_hdr_len + size); 588 msg->hdr.count = incr_le32(msg->hdr.count); 589 590 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV); 591 out_trans->hdr.len = cpu_to_le32(size); 592 out_trans->tag = cpu_to_le32(in_trans->tag); 593 out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) / 594 sizeof(struct wire_addr_size_pair)); 595 596 *user_len += in_trans->hdr.len; 597 598 if (resources->dma_chunk_id) { 599 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id); 600 } else if (need_cont_dma) { 601 while (resources->dma_chunk_id == 0) 602 resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id); 603 604 out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id); 605 } 606 resources->trans_hdr = trans; 607 608 list_add(&xfer->list, &resources->dma_xfers); 609 return 0; 610 611 cleanup_xfer: 612 cleanup_xfer(qdev, xfer); 613 free_xfer: 614 kfree(xfer); 615 return ret; 616 } 617 618 static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 619 u32 *user_len, struct ioctl_resources *resources) 620 { 621 struct qaic_manage_trans_activate_to_dev *in_trans = trans; 622 struct wire_trans_activate_to_dev *out_trans; 623 struct wrapper_msg *trans_wrapper; 624 struct wrapper_msg *wrapper; 625 struct wire_msg *msg; 626 dma_addr_t dma_addr; 627 u32 msg_hdr_len; 628 void *buf; 629 u32 nelem; 630 u32 size; 631 int ret; 632 633 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 634 msg = &wrapper->msg; 635 msg_hdr_len = le32_to_cpu(msg->hdr.len); 636 637 if (msg_hdr_len + sizeof(*out_trans) > QAIC_MANAGE_MAX_MSG_LENGTH) 638 return -ENOSPC; 639 640 if (!in_trans->queue_size) 641 return -EINVAL; 642 643 if (in_trans->pad) 644 return -EINVAL; 645 646 nelem = in_trans->queue_size; 647 size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem; 648 if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) 649 return -EINVAL; 650 651 if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size) 652 return -EINVAL; 653 654 size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN); 655 656 buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL); 657 if (!buf) 658 return -ENOMEM; 659 660 trans_wrapper = add_wrapper(wrappers, 661 offsetof(struct wrapper_msg, trans) + sizeof(*out_trans)); 662 if (!trans_wrapper) { 663 ret = -ENOMEM; 664 goto free_dma; 665 } 666 trans_wrapper->len = sizeof(*out_trans); 667 out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans; 668 669 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV); 670 out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans)); 671 out_trans->buf_len = cpu_to_le32(size); 672 out_trans->req_q_addr = cpu_to_le64(dma_addr); 673 out_trans->req_q_size = cpu_to_le32(nelem); 674 out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size()); 675 out_trans->rsp_q_size = cpu_to_le32(nelem); 676 out_trans->options = cpu_to_le32(in_trans->options); 677 678 *user_len += in_trans->hdr.len; 679 msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans)); 680 msg->hdr.count = incr_le32(msg->hdr.count); 681 682 resources->buf = buf; 683 resources->dma_addr = dma_addr; 684 resources->total_size = size; 685 resources->nelem = nelem; 686 resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size(); 687 return 0; 688 689 free_dma: 690 dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr); 691 return ret; 692 } 693 694 static int encode_deactivate(struct qaic_device *qdev, void *trans, 695 u32 *user_len, struct qaic_user *usr) 696 { 697 struct qaic_manage_trans_deactivate *in_trans = trans; 698 699 if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad) 700 return -EINVAL; 701 702 *user_len += in_trans->hdr.len; 703 704 return disable_dbc(qdev, in_trans->dbc_id, usr); 705 } 706 707 static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers, 708 u32 *user_len) 709 { 710 struct qaic_manage_trans_status_to_dev *in_trans = trans; 711 struct wire_trans_status_to_dev *out_trans; 712 struct wrapper_msg *trans_wrapper; 713 struct wrapper_msg *wrapper; 714 struct wire_msg *msg; 715 u32 msg_hdr_len; 716 717 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 718 msg = &wrapper->msg; 719 msg_hdr_len = le32_to_cpu(msg->hdr.len); 720 721 if (msg_hdr_len + in_trans->hdr.len > QAIC_MANAGE_MAX_MSG_LENGTH) 722 return -ENOSPC; 723 724 trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper)); 725 if (!trans_wrapper) 726 return -ENOMEM; 727 728 trans_wrapper->len = sizeof(*out_trans); 729 out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans; 730 731 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV); 732 out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len); 733 msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len); 734 msg->hdr.count = incr_le32(msg->hdr.count); 735 *user_len += in_trans->hdr.len; 736 737 return 0; 738 } 739 740 static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg, 741 struct wrapper_list *wrappers, struct ioctl_resources *resources, 742 struct qaic_user *usr) 743 { 744 struct qaic_manage_trans_hdr *trans_hdr; 745 struct wrapper_msg *wrapper; 746 struct wire_msg *msg; 747 u32 user_len = 0; 748 int ret; 749 int i; 750 751 if (!user_msg->count) { 752 ret = -EINVAL; 753 goto out; 754 } 755 756 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 757 msg = &wrapper->msg; 758 759 msg->hdr.len = cpu_to_le32(sizeof(msg->hdr)); 760 761 if (resources->dma_chunk_id) { 762 ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr); 763 msg->hdr.count = cpu_to_le32(1); 764 goto out; 765 } 766 767 for (i = 0; i < user_msg->count; ++i) { 768 if (user_len >= user_msg->len) { 769 ret = -EINVAL; 770 break; 771 } 772 trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len); 773 if (user_len + trans_hdr->len > user_msg->len) { 774 ret = -EINVAL; 775 break; 776 } 777 778 switch (trans_hdr->type) { 779 case QAIC_TRANS_PASSTHROUGH_FROM_USR: 780 ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len); 781 break; 782 case QAIC_TRANS_DMA_XFER_FROM_USR: 783 ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr); 784 break; 785 case QAIC_TRANS_ACTIVATE_FROM_USR: 786 ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources); 787 break; 788 case QAIC_TRANS_DEACTIVATE_FROM_USR: 789 ret = encode_deactivate(qdev, trans_hdr, &user_len, usr); 790 break; 791 case QAIC_TRANS_STATUS_FROM_USR: 792 ret = encode_status(qdev, trans_hdr, wrappers, &user_len); 793 break; 794 default: 795 ret = -EINVAL; 796 break; 797 } 798 799 if (ret) 800 break; 801 } 802 803 if (user_len != user_msg->len) 804 ret = -EINVAL; 805 out: 806 if (ret) { 807 free_dma_xfers(qdev, resources); 808 free_dbc_buf(qdev, resources); 809 return ret; 810 } 811 812 return 0; 813 } 814 815 static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 816 u32 *msg_len) 817 { 818 struct qaic_manage_trans_passthrough *out_trans; 819 struct wire_trans_passthrough *in_trans = trans; 820 u32 len; 821 822 out_trans = (void *)user_msg->data + user_msg->len; 823 824 len = le32_to_cpu(in_trans->hdr.len); 825 if (len % 8 != 0) 826 return -EINVAL; 827 828 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 829 return -ENOSPC; 830 831 memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr)); 832 user_msg->len += len; 833 *msg_len += len; 834 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type); 835 out_trans->hdr.len = len; 836 837 return 0; 838 } 839 840 static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 841 u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr) 842 { 843 struct qaic_manage_trans_activate_from_dev *out_trans; 844 struct wire_trans_activate_from_dev *in_trans = trans; 845 u32 len; 846 847 out_trans = (void *)user_msg->data + user_msg->len; 848 849 len = le32_to_cpu(in_trans->hdr.len); 850 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 851 return -ENOSPC; 852 853 user_msg->len += len; 854 *msg_len += len; 855 out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type); 856 out_trans->hdr.len = len; 857 out_trans->status = le32_to_cpu(in_trans->status); 858 out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id); 859 out_trans->options = le64_to_cpu(in_trans->options); 860 861 if (!resources->buf) 862 /* how did we get an activate response without a request? */ 863 return -EINVAL; 864 865 if (out_trans->dbc_id >= qdev->num_dbc) 866 /* 867 * The device assigned an invalid resource, which should never 868 * happen. Return an error so the user can try to recover. 869 */ 870 return -ENODEV; 871 872 if (out_trans->status) 873 /* 874 * Allocating resources failed on device side. This is not an 875 * expected behaviour, user is expected to handle this situation. 876 */ 877 return -ECANCELED; 878 879 resources->status = out_trans->status; 880 resources->dbc_id = out_trans->dbc_id; 881 save_dbc_buf(qdev, resources, usr); 882 883 return 0; 884 } 885 886 static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len, 887 struct qaic_user *usr) 888 { 889 struct wire_trans_deactivate_from_dev *in_trans = trans; 890 u32 dbc_id = le32_to_cpu(in_trans->dbc_id); 891 u32 status = le32_to_cpu(in_trans->status); 892 893 if (dbc_id >= qdev->num_dbc) 894 /* 895 * The device assigned an invalid resource, which should never 896 * happen. Inject an error so the user can try to recover. 897 */ 898 return -ENODEV; 899 900 if (status) { 901 /* 902 * Releasing resources failed on the device side, which puts 903 * us in a bind since they may still be in use, so enable the 904 * dbc. User is expected to retry deactivation. 905 */ 906 enable_dbc(qdev, dbc_id, usr); 907 return -ECANCELED; 908 } 909 910 release_dbc(qdev, dbc_id); 911 *msg_len += sizeof(*in_trans); 912 913 return 0; 914 } 915 916 static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg, 917 u32 *user_len, struct wire_msg *msg) 918 { 919 struct qaic_manage_trans_status_from_dev *out_trans; 920 struct wire_trans_status_from_dev *in_trans = trans; 921 u32 len; 922 923 out_trans = (void *)user_msg->data + user_msg->len; 924 925 len = le32_to_cpu(in_trans->hdr.len); 926 if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH) 927 return -ENOSPC; 928 929 out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV; 930 out_trans->hdr.len = len; 931 out_trans->major = le16_to_cpu(in_trans->major); 932 out_trans->minor = le16_to_cpu(in_trans->minor); 933 out_trans->status_flags = le64_to_cpu(in_trans->status_flags); 934 out_trans->status = le32_to_cpu(in_trans->status); 935 *user_len += le32_to_cpu(in_trans->hdr.len); 936 user_msg->len += len; 937 938 if (out_trans->status) 939 return -ECANCELED; 940 if (out_trans->status_flags & BIT(0) && !valid_crc(msg)) 941 return -EPIPE; 942 943 return 0; 944 } 945 946 static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg, 947 struct wire_msg *msg, struct ioctl_resources *resources, 948 struct qaic_user *usr) 949 { 950 u32 msg_hdr_len = le32_to_cpu(msg->hdr.len); 951 struct wire_trans_hdr *trans_hdr; 952 u32 msg_len = 0; 953 int ret; 954 int i; 955 956 if (msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH) 957 return -EINVAL; 958 959 user_msg->len = 0; 960 user_msg->count = le32_to_cpu(msg->hdr.count); 961 962 for (i = 0; i < user_msg->count; ++i) { 963 trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len); 964 if (msg_len + le32_to_cpu(trans_hdr->len) > msg_hdr_len) 965 return -EINVAL; 966 967 switch (le32_to_cpu(trans_hdr->type)) { 968 case QAIC_TRANS_PASSTHROUGH_FROM_DEV: 969 ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len); 970 break; 971 case QAIC_TRANS_ACTIVATE_FROM_DEV: 972 ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr); 973 break; 974 case QAIC_TRANS_DEACTIVATE_FROM_DEV: 975 ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr); 976 break; 977 case QAIC_TRANS_STATUS_FROM_DEV: 978 ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg); 979 break; 980 default: 981 return -EINVAL; 982 } 983 984 if (ret) 985 return ret; 986 } 987 988 if (msg_len != (msg_hdr_len - sizeof(msg->hdr))) 989 return -EINVAL; 990 991 return 0; 992 } 993 994 static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num, 995 bool ignore_signal) 996 { 997 struct xfer_queue_elem elem; 998 struct wire_msg *out_buf; 999 struct wrapper_msg *w; 1000 int retry_count; 1001 long ret; 1002 1003 if (qdev->in_reset) { 1004 mutex_unlock(&qdev->cntl_mutex); 1005 return ERR_PTR(-ENODEV); 1006 } 1007 1008 elem.seq_num = seq_num; 1009 elem.buf = NULL; 1010 init_completion(&elem.xfer_done); 1011 if (likely(!qdev->cntl_lost_buf)) { 1012 /* 1013 * The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH. 1014 * The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH. 1015 */ 1016 out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL); 1017 if (!out_buf) { 1018 mutex_unlock(&qdev->cntl_mutex); 1019 return ERR_PTR(-ENOMEM); 1020 } 1021 1022 ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf, 1023 QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT); 1024 if (ret) { 1025 mutex_unlock(&qdev->cntl_mutex); 1026 return ERR_PTR(ret); 1027 } 1028 } else { 1029 /* 1030 * we lost a buffer because we queued a recv buf, but then 1031 * queuing the corresponding tx buf failed. To try to avoid 1032 * a memory leak, lets reclaim it and use it for this 1033 * transaction. 1034 */ 1035 qdev->cntl_lost_buf = false; 1036 } 1037 1038 list_for_each_entry(w, &wrappers->list, list) { 1039 kref_get(&w->ref_count); 1040 retry_count = 0; 1041 retry: 1042 ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len, 1043 list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN); 1044 if (ret) { 1045 if (ret == -EAGAIN && retry_count++ < QAIC_MHI_RETRY_MAX) { 1046 msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS); 1047 if (!signal_pending(current)) 1048 goto retry; 1049 } 1050 1051 qdev->cntl_lost_buf = true; 1052 kref_put(&w->ref_count, free_wrapper); 1053 mutex_unlock(&qdev->cntl_mutex); 1054 return ERR_PTR(ret); 1055 } 1056 } 1057 1058 list_add_tail(&elem.list, &qdev->cntl_xfer_list); 1059 mutex_unlock(&qdev->cntl_mutex); 1060 1061 if (ignore_signal) 1062 ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ); 1063 else 1064 ret = wait_for_completion_interruptible_timeout(&elem.xfer_done, 1065 control_resp_timeout_s * HZ); 1066 /* 1067 * not using _interruptable because we have to cleanup or we'll 1068 * likely cause memory corruption 1069 */ 1070 mutex_lock(&qdev->cntl_mutex); 1071 if (!list_empty(&elem.list)) 1072 list_del(&elem.list); 1073 if (!ret && !elem.buf) 1074 ret = -ETIMEDOUT; 1075 else if (ret > 0 && !elem.buf) 1076 ret = -EIO; 1077 mutex_unlock(&qdev->cntl_mutex); 1078 1079 if (ret < 0) { 1080 kfree(elem.buf); 1081 return ERR_PTR(ret); 1082 } else if (!qdev->valid_crc(elem.buf)) { 1083 kfree(elem.buf); 1084 return ERR_PTR(-EPIPE); 1085 } 1086 1087 return elem.buf; 1088 } 1089 1090 /* Add a transaction to abort the outstanding DMA continuation */ 1091 static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id) 1092 { 1093 struct wire_trans_dma_xfer *out_trans; 1094 u32 size = sizeof(*out_trans); 1095 struct wrapper_msg *wrapper; 1096 struct wrapper_msg *w; 1097 struct wire_msg *msg; 1098 1099 wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list); 1100 msg = &wrapper->msg; 1101 1102 /* Remove all but the first wrapper which has the msg header */ 1103 list_for_each_entry_safe(wrapper, w, &wrappers->list, list) 1104 if (!list_is_first(&wrapper->list, &wrappers->list)) 1105 kref_put(&wrapper->ref_count, free_wrapper); 1106 1107 wrapper = add_wrapper(wrappers, offsetof(struct wrapper_msg, trans) + sizeof(*out_trans)); 1108 1109 if (!wrapper) 1110 return -ENOMEM; 1111 1112 out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans; 1113 out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV); 1114 out_trans->hdr.len = cpu_to_le32(size); 1115 out_trans->tag = cpu_to_le32(0); 1116 out_trans->count = cpu_to_le32(0); 1117 out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id); 1118 1119 msg->hdr.len = cpu_to_le32(size + sizeof(*msg)); 1120 msg->hdr.count = cpu_to_le32(1); 1121 wrapper->len = size; 1122 1123 return 0; 1124 } 1125 1126 static struct wrapper_list *alloc_wrapper_list(void) 1127 { 1128 struct wrapper_list *wrappers; 1129 1130 wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL); 1131 if (!wrappers) 1132 return NULL; 1133 INIT_LIST_HEAD(&wrappers->list); 1134 spin_lock_init(&wrappers->lock); 1135 1136 return wrappers; 1137 } 1138 1139 static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr, 1140 struct manage_msg *user_msg, struct ioctl_resources *resources, 1141 struct wire_msg **rsp) 1142 { 1143 struct wrapper_list *wrappers; 1144 struct wrapper_msg *wrapper; 1145 struct wrapper_msg *w; 1146 bool all_done = false; 1147 struct wire_msg *msg; 1148 int ret; 1149 1150 wrappers = alloc_wrapper_list(); 1151 if (!wrappers) 1152 return -ENOMEM; 1153 1154 wrapper = add_wrapper(wrappers, sizeof(*wrapper)); 1155 if (!wrapper) { 1156 kfree(wrappers); 1157 return -ENOMEM; 1158 } 1159 1160 msg = &wrapper->msg; 1161 wrapper->len = sizeof(*msg); 1162 1163 ret = encode_message(qdev, user_msg, wrappers, resources, usr); 1164 if (ret && resources->dma_chunk_id) 1165 ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id); 1166 if (ret) 1167 goto encode_failed; 1168 1169 ret = mutex_lock_interruptible(&qdev->cntl_mutex); 1170 if (ret) 1171 goto lock_failed; 1172 1173 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER; 1174 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++); 1175 1176 if (usr) { 1177 msg->hdr.handle = cpu_to_le32(usr->handle); 1178 msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id); 1179 } else { 1180 msg->hdr.handle = 0; 1181 msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION); 1182 } 1183 1184 msg->hdr.padding = cpu_to_le32(0); 1185 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers)); 1186 1187 /* msg_xfer releases the mutex */ 1188 *rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false); 1189 if (IS_ERR(*rsp)) 1190 ret = PTR_ERR(*rsp); 1191 1192 lock_failed: 1193 free_dma_xfers(qdev, resources); 1194 encode_failed: 1195 spin_lock(&wrappers->lock); 1196 list_for_each_entry_safe(wrapper, w, &wrappers->list, list) 1197 kref_put(&wrapper->ref_count, free_wrapper); 1198 all_done = list_empty(&wrappers->list); 1199 spin_unlock(&wrappers->lock); 1200 if (all_done) 1201 kfree(wrappers); 1202 1203 return ret; 1204 } 1205 1206 static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg) 1207 { 1208 struct wire_trans_dma_xfer_cont *dma_cont = NULL; 1209 struct ioctl_resources resources; 1210 struct wire_msg *rsp = NULL; 1211 int ret; 1212 1213 memset(&resources, 0, sizeof(struct ioctl_resources)); 1214 1215 INIT_LIST_HEAD(&resources.dma_xfers); 1216 1217 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH || 1218 user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr)) 1219 return -EINVAL; 1220 1221 dma_xfer_continue: 1222 ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp); 1223 if (ret) 1224 return ret; 1225 /* dma_cont should be the only transaction if present */ 1226 if (le32_to_cpu(rsp->hdr.count) == 1) { 1227 dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data; 1228 if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT) 1229 dma_cont = NULL; 1230 } 1231 if (dma_cont) { 1232 if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id && 1233 le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) { 1234 kfree(rsp); 1235 goto dma_xfer_continue; 1236 } 1237 1238 ret = -EINVAL; 1239 goto dma_cont_failed; 1240 } 1241 1242 ret = decode_message(qdev, user_msg, rsp, &resources, usr); 1243 1244 dma_cont_failed: 1245 free_dbc_buf(qdev, &resources); 1246 kfree(rsp); 1247 return ret; 1248 } 1249 1250 int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) 1251 { 1252 struct qaic_manage_msg *user_msg; 1253 struct qaic_device *qdev; 1254 struct manage_msg *msg; 1255 struct qaic_user *usr; 1256 u8 __user *user_data; 1257 int qdev_rcu_id; 1258 int usr_rcu_id; 1259 int ret; 1260 1261 usr = file_priv->driver_priv; 1262 1263 usr_rcu_id = srcu_read_lock(&usr->qddev_lock); 1264 if (!usr->qddev) { 1265 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1266 return -ENODEV; 1267 } 1268 1269 qdev = usr->qddev->qdev; 1270 1271 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock); 1272 if (qdev->in_reset) { 1273 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1274 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1275 return -ENODEV; 1276 } 1277 1278 user_msg = data; 1279 1280 if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH) { 1281 ret = -EINVAL; 1282 goto out; 1283 } 1284 1285 msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL); 1286 if (!msg) { 1287 ret = -ENOMEM; 1288 goto out; 1289 } 1290 1291 msg->len = user_msg->len; 1292 msg->count = user_msg->count; 1293 1294 user_data = u64_to_user_ptr(user_msg->data); 1295 1296 if (copy_from_user(msg->data, user_data, user_msg->len)) { 1297 ret = -EFAULT; 1298 goto free_msg; 1299 } 1300 1301 ret = qaic_manage(qdev, usr, msg); 1302 1303 /* 1304 * If the qaic_manage() is successful then we copy the message onto 1305 * userspace memory but we have an exception for -ECANCELED. 1306 * For -ECANCELED, it means that device has NACKed the message with a 1307 * status error code which userspace would like to know. 1308 */ 1309 if (ret == -ECANCELED || !ret) { 1310 if (copy_to_user(user_data, msg->data, msg->len)) { 1311 ret = -EFAULT; 1312 } else { 1313 user_msg->len = msg->len; 1314 user_msg->count = msg->count; 1315 } 1316 } 1317 1318 free_msg: 1319 kfree(msg); 1320 out: 1321 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id); 1322 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id); 1323 return ret; 1324 } 1325 1326 int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor) 1327 { 1328 struct qaic_manage_trans_status_from_dev *status_result; 1329 struct qaic_manage_trans_status_to_dev *status_query; 1330 struct manage_msg *user_msg; 1331 int ret; 1332 1333 user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL); 1334 if (!user_msg) { 1335 ret = -ENOMEM; 1336 goto out; 1337 } 1338 user_msg->len = sizeof(*status_query); 1339 user_msg->count = 1; 1340 1341 status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data; 1342 status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR; 1343 status_query->hdr.len = sizeof(status_query->hdr); 1344 1345 ret = qaic_manage(qdev, usr, user_msg); 1346 if (ret) 1347 goto kfree_user_msg; 1348 status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data; 1349 *major = status_result->major; 1350 *minor = status_result->minor; 1351 1352 if (status_result->status_flags & BIT(0)) { /* device is using CRC */ 1353 /* By default qdev->gen_crc is programmed to generate CRC */ 1354 qdev->valid_crc = valid_crc; 1355 } else { 1356 /* By default qdev->valid_crc is programmed to bypass CRC */ 1357 qdev->gen_crc = gen_crc_stub; 1358 } 1359 1360 kfree_user_msg: 1361 kfree(user_msg); 1362 out: 1363 return ret; 1364 } 1365 1366 static void resp_worker(struct work_struct *work) 1367 { 1368 struct resp_work *resp = container_of(work, struct resp_work, work); 1369 struct qaic_device *qdev = resp->qdev; 1370 struct wire_msg *msg = resp->buf; 1371 struct xfer_queue_elem *elem; 1372 struct xfer_queue_elem *i; 1373 bool found = false; 1374 1375 mutex_lock(&qdev->cntl_mutex); 1376 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) { 1377 if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) { 1378 found = true; 1379 list_del_init(&elem->list); 1380 elem->buf = msg; 1381 complete_all(&elem->xfer_done); 1382 break; 1383 } 1384 } 1385 mutex_unlock(&qdev->cntl_mutex); 1386 1387 if (!found) 1388 /* request must have timed out, drop packet */ 1389 kfree(msg); 1390 1391 kfree(resp); 1392 } 1393 1394 static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper) 1395 { 1396 bool all_done = false; 1397 1398 spin_lock(&wrappers->lock); 1399 kref_put(&wrapper->ref_count, free_wrapper); 1400 all_done = list_empty(&wrappers->list); 1401 spin_unlock(&wrappers->lock); 1402 1403 if (all_done) 1404 kfree(wrappers); 1405 } 1406 1407 void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result) 1408 { 1409 struct wire_msg *msg = mhi_result->buf_addr; 1410 struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg); 1411 1412 free_wrapper_from_list(wrapper->head, wrapper); 1413 } 1414 1415 void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result) 1416 { 1417 struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev); 1418 struct wire_msg *msg = mhi_result->buf_addr; 1419 struct resp_work *resp; 1420 1421 if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) { 1422 kfree(msg); 1423 return; 1424 } 1425 1426 resp = kmalloc(sizeof(*resp), GFP_ATOMIC); 1427 if (!resp) { 1428 kfree(msg); 1429 return; 1430 } 1431 1432 INIT_WORK(&resp->work, resp_worker); 1433 resp->qdev = qdev; 1434 resp->buf = msg; 1435 queue_work(qdev->cntl_wq, &resp->work); 1436 } 1437 1438 int qaic_control_open(struct qaic_device *qdev) 1439 { 1440 if (!qdev->cntl_ch) 1441 return -ENODEV; 1442 1443 qdev->cntl_lost_buf = false; 1444 /* 1445 * By default qaic should assume that device has CRC enabled. 1446 * Qaic comes to know if device has CRC enabled or disabled during the 1447 * device status transaction, which is the first transaction performed 1448 * on control channel. 1449 * 1450 * So CRC validation of first device status transaction response is 1451 * ignored (by calling valid_crc_stub) and is done later during decoding 1452 * if device has CRC enabled. 1453 * Now that qaic knows whether device has CRC enabled or not it acts 1454 * accordingly. 1455 */ 1456 qdev->gen_crc = gen_crc; 1457 qdev->valid_crc = valid_crc_stub; 1458 1459 return mhi_prepare_for_transfer(qdev->cntl_ch); 1460 } 1461 1462 void qaic_control_close(struct qaic_device *qdev) 1463 { 1464 mhi_unprepare_from_transfer(qdev->cntl_ch); 1465 } 1466 1467 void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr) 1468 { 1469 struct wire_trans_terminate_to_dev *trans; 1470 struct wrapper_list *wrappers; 1471 struct wrapper_msg *wrapper; 1472 struct wire_msg *msg; 1473 struct wire_msg *rsp; 1474 1475 wrappers = alloc_wrapper_list(); 1476 if (!wrappers) 1477 return; 1478 1479 wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans)); 1480 if (!wrapper) 1481 return; 1482 1483 msg = &wrapper->msg; 1484 1485 trans = (struct wire_trans_terminate_to_dev *)msg->data; 1486 1487 trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV); 1488 trans->hdr.len = cpu_to_le32(sizeof(*trans)); 1489 trans->handle = cpu_to_le32(usr->handle); 1490 1491 mutex_lock(&qdev->cntl_mutex); 1492 wrapper->len = sizeof(msg->hdr) + sizeof(*trans); 1493 msg->hdr.magic_number = MANAGE_MAGIC_NUMBER; 1494 msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++); 1495 msg->hdr.len = cpu_to_le32(wrapper->len); 1496 msg->hdr.count = cpu_to_le32(1); 1497 msg->hdr.handle = cpu_to_le32(usr->handle); 1498 msg->hdr.padding = cpu_to_le32(0); 1499 msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers)); 1500 1501 /* 1502 * msg_xfer releases the mutex 1503 * We don't care about the return of msg_xfer since we will not do 1504 * anything different based on what happens. 1505 * We ignore pending signals since one will be set if the user is 1506 * killed, and we need give the device a chance to cleanup, otherwise 1507 * DMA may still be in progress when we return. 1508 */ 1509 rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true); 1510 if (!IS_ERR(rsp)) 1511 kfree(rsp); 1512 free_wrapper_from_list(wrappers, wrapper); 1513 } 1514 1515 void wake_all_cntl(struct qaic_device *qdev) 1516 { 1517 struct xfer_queue_elem *elem; 1518 struct xfer_queue_elem *i; 1519 1520 mutex_lock(&qdev->cntl_mutex); 1521 list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) { 1522 list_del_init(&elem->list); 1523 complete_all(&elem->xfer_done); 1524 } 1525 mutex_unlock(&qdev->cntl_mutex); 1526 } 1527