xref: /linux/drivers/accel/qaic/qaic_control.c (revision 119ff04864a24470b1e531bb53e5c141aa8fefb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5 
6 #include <asm/byteorder.h>
7 #include <linux/completion.h>
8 #include <linux/crc32.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/kref.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/mm.h>
15 #include <linux/moduleparam.h>
16 #include <linux/mutex.h>
17 #include <linux/overflow.h>
18 #include <linux/pci.h>
19 #include <linux/scatterlist.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/workqueue.h>
23 #include <linux/wait.h>
24 #include <drm/drm_device.h>
25 #include <drm/drm_file.h>
26 #include <uapi/drm/qaic_accel.h>
27 
28 #include "qaic.h"
29 
30 #define MANAGE_MAGIC_NUMBER		((__force __le32)0x43494151) /* "QAIC" in little endian */
31 #define QAIC_DBC_Q_GAP			SZ_256
32 #define QAIC_DBC_Q_BUF_ALIGN		SZ_4K
33 #define QAIC_MANAGE_EXT_MSG_LENGTH	SZ_64K /* Max DMA message length */
34 #define QAIC_WRAPPER_MAX_SIZE		SZ_4K
35 #define QAIC_MHI_RETRY_WAIT_MS		100
36 #define QAIC_MHI_RETRY_MAX		20
37 
38 static unsigned int control_resp_timeout_s = 60; /* 60 sec default */
39 module_param(control_resp_timeout_s, uint, 0600);
40 MODULE_PARM_DESC(control_resp_timeout_s, "Timeout for NNC responses from QSM");
41 
42 struct manage_msg {
43 	u32 len;
44 	u32 count;
45 	u8 data[];
46 };
47 
48 /*
49  * wire encoding structures for the manage protocol.
50  * All fields are little endian on the wire
51  */
52 struct wire_msg_hdr {
53 	__le32 crc32; /* crc of everything following this field in the message */
54 	__le32 magic_number;
55 	__le32 sequence_number;
56 	__le32 len; /* length of this message */
57 	__le32 count; /* number of transactions in this message */
58 	__le32 handle; /* unique id to track the resources consumed */
59 	__le32 partition_id; /* partition id for the request (signed) */
60 	__le32 padding; /* must be 0 */
61 } __packed;
62 
63 struct wire_msg {
64 	struct wire_msg_hdr hdr;
65 	u8 data[];
66 } __packed;
67 
68 struct wire_trans_hdr {
69 	__le32 type;
70 	__le32 len;
71 } __packed;
72 
73 /* Each message sent from driver to device are organized in a list of wrapper_msg */
74 struct wrapper_msg {
75 	struct list_head list;
76 	struct kref ref_count;
77 	u32 len; /* length of data to transfer */
78 	struct wrapper_list *head;
79 	union {
80 		struct wire_msg msg;
81 		struct wire_trans_hdr trans;
82 	};
83 };
84 
85 struct wrapper_list {
86 	struct list_head list;
87 	spinlock_t lock; /* Protects the list state during additions and removals */
88 };
89 
90 struct wire_trans_passthrough {
91 	struct wire_trans_hdr hdr;
92 	u8 data[];
93 } __packed;
94 
95 struct wire_addr_size_pair {
96 	__le64 addr;
97 	__le64 size;
98 } __packed;
99 
100 struct wire_trans_dma_xfer {
101 	struct wire_trans_hdr hdr;
102 	__le32 tag;
103 	__le32 count;
104 	__le32 dma_chunk_id;
105 	__le32 padding;
106 	struct wire_addr_size_pair data[];
107 } __packed;
108 
109 /* Initiated by device to continue the DMA xfer of a large piece of data */
110 struct wire_trans_dma_xfer_cont {
111 	struct wire_trans_hdr hdr;
112 	__le32 dma_chunk_id;
113 	__le32 padding;
114 	__le64 xferred_size;
115 } __packed;
116 
117 struct wire_trans_activate_to_dev {
118 	struct wire_trans_hdr hdr;
119 	__le64 req_q_addr;
120 	__le64 rsp_q_addr;
121 	__le32 req_q_size;
122 	__le32 rsp_q_size;
123 	__le32 buf_len;
124 	__le32 options; /* unused, but BIT(16) has meaning to the device */
125 } __packed;
126 
127 struct wire_trans_activate_from_dev {
128 	struct wire_trans_hdr hdr;
129 	__le32 status;
130 	__le32 dbc_id;
131 	__le64 options; /* unused */
132 } __packed;
133 
134 struct wire_trans_deactivate_from_dev {
135 	struct wire_trans_hdr hdr;
136 	__le32 status;
137 	__le32 dbc_id;
138 } __packed;
139 
140 struct wire_trans_terminate_to_dev {
141 	struct wire_trans_hdr hdr;
142 	__le32 handle;
143 	__le32 padding;
144 } __packed;
145 
146 struct wire_trans_terminate_from_dev {
147 	struct wire_trans_hdr hdr;
148 	__le32 status;
149 	__le32 padding;
150 } __packed;
151 
152 struct wire_trans_status_to_dev {
153 	struct wire_trans_hdr hdr;
154 } __packed;
155 
156 struct wire_trans_status_from_dev {
157 	struct wire_trans_hdr hdr;
158 	__le16 major;
159 	__le16 minor;
160 	__le32 status;
161 	__le64 status_flags;
162 } __packed;
163 
164 struct wire_trans_validate_part_to_dev {
165 	struct wire_trans_hdr hdr;
166 	__le32 part_id;
167 	__le32 padding;
168 } __packed;
169 
170 struct wire_trans_validate_part_from_dev {
171 	struct wire_trans_hdr hdr;
172 	__le32 status;
173 	__le32 padding;
174 } __packed;
175 
176 struct xfer_queue_elem {
177 	/*
178 	 * Node in list of ongoing transfer request on control channel.
179 	 * Maintained by root device struct.
180 	 */
181 	struct list_head list;
182 	/* Sequence number of this transfer request */
183 	u32 seq_num;
184 	/* This is used to wait on until completion of transfer request */
185 	struct completion xfer_done;
186 	/* Received data from device */
187 	void *buf;
188 };
189 
190 struct dma_xfer {
191 	/* Node in list of DMA transfers which is used for cleanup */
192 	struct list_head list;
193 	/* SG table of memory used for DMA */
194 	struct sg_table *sgt;
195 	/* Array pages used for DMA */
196 	struct page **page_list;
197 	/* Number of pages used for DMA */
198 	unsigned long nr_pages;
199 };
200 
201 struct ioctl_resources {
202 	/* List of all DMA transfers which is used later for cleanup */
203 	struct list_head dma_xfers;
204 	/* Base address of request queue which belongs to a DBC */
205 	void *buf;
206 	/*
207 	 * Base bus address of request queue which belongs to a DBC. Response
208 	 * queue base bus address can be calculated by adding size of request
209 	 * queue to base bus address of request queue.
210 	 */
211 	dma_addr_t dma_addr;
212 	/* Total size of request queue and response queue in byte */
213 	u32 total_size;
214 	/* Total number of elements that can be queued in each of request and response queue */
215 	u32 nelem;
216 	/* Base address of response queue which belongs to a DBC */
217 	void *rsp_q_base;
218 	/* Status of the NNC message received */
219 	u32 status;
220 	/* DBC id of the DBC received from device */
221 	u32 dbc_id;
222 	/*
223 	 * DMA transfer request messages can be big in size and it may not be
224 	 * possible to send them in one shot. In such cases the messages are
225 	 * broken into chunks, this field stores ID of such chunks.
226 	 */
227 	u32 dma_chunk_id;
228 	/* Total number of bytes transferred for a DMA xfer request */
229 	u64 xferred_dma_size;
230 	/* Header of transaction message received from user. Used during DMA xfer request. */
231 	void *trans_hdr;
232 };
233 
234 struct resp_work {
235 	struct work_struct work;
236 	struct qaic_device *qdev;
237 	void *buf;
238 };
239 
240 /*
241  * Since we're working with little endian messages, its useful to be able to
242  * increment without filling a whole line with conversions back and forth just
243  * to add one(1) to a message count.
244  */
245 static __le32 incr_le32(__le32 val)
246 {
247 	return cpu_to_le32(le32_to_cpu(val) + 1);
248 }
249 
250 static u32 gen_crc(void *msg)
251 {
252 	struct wrapper_list *wrappers = msg;
253 	struct wrapper_msg *w;
254 	u32 crc = ~0;
255 
256 	list_for_each_entry(w, &wrappers->list, list)
257 		crc = crc32(crc, &w->msg, w->len);
258 
259 	return crc ^ ~0;
260 }
261 
262 static u32 gen_crc_stub(void *msg)
263 {
264 	return 0;
265 }
266 
267 static bool valid_crc(void *msg)
268 {
269 	struct wire_msg_hdr *hdr = msg;
270 	bool ret;
271 	u32 crc;
272 
273 	/*
274 	 * The output of this algorithm is always converted to the native
275 	 * endianness.
276 	 */
277 	crc = le32_to_cpu(hdr->crc32);
278 	hdr->crc32 = 0;
279 	ret = (crc32(~0, msg, le32_to_cpu(hdr->len)) ^ ~0) == crc;
280 	hdr->crc32 = cpu_to_le32(crc);
281 	return ret;
282 }
283 
284 static bool valid_crc_stub(void *msg)
285 {
286 	return true;
287 }
288 
289 static void free_wrapper(struct kref *ref)
290 {
291 	struct wrapper_msg *wrapper = container_of(ref, struct wrapper_msg, ref_count);
292 
293 	list_del(&wrapper->list);
294 	kfree(wrapper);
295 }
296 
297 static void save_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources,
298 			 struct qaic_user *usr)
299 {
300 	u32 dbc_id = resources->dbc_id;
301 
302 	if (resources->buf) {
303 		wait_event_interruptible(qdev->dbc[dbc_id].dbc_release, !qdev->dbc[dbc_id].in_use);
304 		qdev->dbc[dbc_id].req_q_base = resources->buf;
305 		qdev->dbc[dbc_id].rsp_q_base = resources->rsp_q_base;
306 		qdev->dbc[dbc_id].dma_addr = resources->dma_addr;
307 		qdev->dbc[dbc_id].total_size = resources->total_size;
308 		qdev->dbc[dbc_id].nelem = resources->nelem;
309 		enable_dbc(qdev, dbc_id, usr);
310 		qdev->dbc[dbc_id].in_use = true;
311 		resources->buf = NULL;
312 	}
313 }
314 
315 static void free_dbc_buf(struct qaic_device *qdev, struct ioctl_resources *resources)
316 {
317 	if (resources->buf)
318 		dma_free_coherent(&qdev->pdev->dev, resources->total_size, resources->buf,
319 				  resources->dma_addr);
320 	resources->buf = NULL;
321 }
322 
323 static void free_dma_xfers(struct qaic_device *qdev, struct ioctl_resources *resources)
324 {
325 	struct dma_xfer *xfer;
326 	struct dma_xfer *x;
327 	int i;
328 
329 	list_for_each_entry_safe(xfer, x, &resources->dma_xfers, list) {
330 		dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
331 		sg_free_table(xfer->sgt);
332 		kfree(xfer->sgt);
333 		for (i = 0; i < xfer->nr_pages; ++i)
334 			put_page(xfer->page_list[i]);
335 		kfree(xfer->page_list);
336 		list_del(&xfer->list);
337 		kfree(xfer);
338 	}
339 }
340 
341 static struct wrapper_msg *add_wrapper(struct wrapper_list *wrappers, u32 size)
342 {
343 	struct wrapper_msg *w = kzalloc(size, GFP_KERNEL);
344 
345 	if (!w)
346 		return NULL;
347 	list_add_tail(&w->list, &wrappers->list);
348 	kref_init(&w->ref_count);
349 	w->head = wrappers;
350 	return w;
351 }
352 
353 static int encode_passthrough(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
354 			      u32 *user_len)
355 {
356 	struct qaic_manage_trans_passthrough *in_trans = trans;
357 	struct wire_trans_passthrough *out_trans;
358 	struct wrapper_msg *trans_wrapper;
359 	struct wrapper_msg *wrapper;
360 	struct wire_msg *msg;
361 	u32 msg_hdr_len;
362 
363 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
364 	msg = &wrapper->msg;
365 	msg_hdr_len = le32_to_cpu(msg->hdr.len);
366 
367 	if (in_trans->hdr.len % 8 != 0)
368 		return -EINVAL;
369 
370 	if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_EXT_MSG_LENGTH)
371 		return -ENOSPC;
372 
373 	trans_wrapper = add_wrapper(wrappers,
374 				    offsetof(struct wrapper_msg, trans) + in_trans->hdr.len);
375 	if (!trans_wrapper)
376 		return -ENOMEM;
377 	trans_wrapper->len = in_trans->hdr.len;
378 	out_trans = (struct wire_trans_passthrough *)&trans_wrapper->trans;
379 
380 	memcpy(out_trans->data, in_trans->data, in_trans->hdr.len - sizeof(in_trans->hdr));
381 	msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
382 	msg->hdr.count = incr_le32(msg->hdr.count);
383 	*user_len += in_trans->hdr.len;
384 	out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_PASSTHROUGH_TO_DEV);
385 	out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
386 
387 	return 0;
388 }
389 
390 /* returns error code for failure, 0 if enough pages alloc'd, 1 if dma_cont is needed */
391 static int find_and_map_user_pages(struct qaic_device *qdev,
392 				   struct qaic_manage_trans_dma_xfer *in_trans,
393 				   struct ioctl_resources *resources, struct dma_xfer *xfer)
394 {
395 	u64 xfer_start_addr, remaining, end, total;
396 	unsigned long need_pages;
397 	struct page **page_list;
398 	unsigned long nr_pages;
399 	struct sg_table *sgt;
400 	int ret;
401 	int i;
402 
403 	if (check_add_overflow(in_trans->addr, resources->xferred_dma_size, &xfer_start_addr))
404 		return -EINVAL;
405 
406 	if (in_trans->size < resources->xferred_dma_size)
407 		return -EINVAL;
408 	remaining = in_trans->size - resources->xferred_dma_size;
409 	if (remaining == 0)
410 		return 0;
411 
412 	if (check_add_overflow(xfer_start_addr, remaining, &end))
413 		return -EINVAL;
414 
415 	total = remaining + offset_in_page(xfer_start_addr);
416 	if (total >= SIZE_MAX)
417 		return -EINVAL;
418 
419 	need_pages = DIV_ROUND_UP(total, PAGE_SIZE);
420 
421 	nr_pages = need_pages;
422 
423 	while (1) {
424 		page_list = kmalloc_array(nr_pages, sizeof(*page_list), GFP_KERNEL | __GFP_NOWARN);
425 		if (!page_list) {
426 			nr_pages = nr_pages / 2;
427 			if (!nr_pages)
428 				return -ENOMEM;
429 		} else {
430 			break;
431 		}
432 	}
433 
434 	ret = get_user_pages_fast(xfer_start_addr, nr_pages, 0, page_list);
435 	if (ret < 0)
436 		goto free_page_list;
437 	if (ret != nr_pages) {
438 		nr_pages = ret;
439 		ret = -EFAULT;
440 		goto put_pages;
441 	}
442 
443 	sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
444 	if (!sgt) {
445 		ret = -ENOMEM;
446 		goto put_pages;
447 	}
448 
449 	ret = sg_alloc_table_from_pages(sgt, page_list, nr_pages,
450 					offset_in_page(xfer_start_addr),
451 					remaining, GFP_KERNEL);
452 	if (ret) {
453 		ret = -ENOMEM;
454 		goto free_sgt;
455 	}
456 
457 	ret = dma_map_sgtable(&qdev->pdev->dev, sgt, DMA_TO_DEVICE, 0);
458 	if (ret)
459 		goto free_table;
460 
461 	xfer->sgt = sgt;
462 	xfer->page_list = page_list;
463 	xfer->nr_pages = nr_pages;
464 
465 	return need_pages > nr_pages ? 1 : 0;
466 
467 free_table:
468 	sg_free_table(sgt);
469 free_sgt:
470 	kfree(sgt);
471 put_pages:
472 	for (i = 0; i < nr_pages; ++i)
473 		put_page(page_list[i]);
474 free_page_list:
475 	kfree(page_list);
476 	return ret;
477 }
478 
479 /* returns error code for failure, 0 if everything was encoded, 1 if dma_cont is needed */
480 static int encode_addr_size_pairs(struct dma_xfer *xfer, struct wrapper_list *wrappers,
481 				  struct ioctl_resources *resources, u32 msg_hdr_len, u32 *size,
482 				  struct wire_trans_dma_xfer **out_trans)
483 {
484 	struct wrapper_msg *trans_wrapper;
485 	struct sg_table *sgt = xfer->sgt;
486 	struct wire_addr_size_pair *asp;
487 	struct scatterlist *sg;
488 	struct wrapper_msg *w;
489 	unsigned int dma_len;
490 	u64 dma_chunk_len;
491 	void *boundary;
492 	int nents_dma;
493 	int nents;
494 	int i;
495 
496 	nents = sgt->nents;
497 	nents_dma = nents;
498 	*size = QAIC_MANAGE_EXT_MSG_LENGTH - msg_hdr_len - sizeof(**out_trans);
499 	for_each_sgtable_sg(sgt, sg, i) {
500 		*size -= sizeof(*asp);
501 		/* Save 1K for possible follow-up transactions. */
502 		if (*size < SZ_1K) {
503 			nents_dma = i;
504 			break;
505 		}
506 	}
507 
508 	trans_wrapper = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
509 	if (!trans_wrapper)
510 		return -ENOMEM;
511 	*out_trans = (struct wire_trans_dma_xfer *)&trans_wrapper->trans;
512 
513 	asp = (*out_trans)->data;
514 	boundary = (void *)trans_wrapper + QAIC_WRAPPER_MAX_SIZE;
515 	*size = 0;
516 
517 	dma_len = 0;
518 	w = trans_wrapper;
519 	dma_chunk_len = 0;
520 	for_each_sg(sgt->sgl, sg, nents_dma, i) {
521 		asp->size = cpu_to_le64(dma_len);
522 		dma_chunk_len += dma_len;
523 		if (dma_len) {
524 			asp++;
525 			if ((void *)asp + sizeof(*asp) > boundary) {
526 				w->len = (void *)asp - (void *)&w->msg;
527 				*size += w->len;
528 				w = add_wrapper(wrappers, QAIC_WRAPPER_MAX_SIZE);
529 				if (!w)
530 					return -ENOMEM;
531 				boundary = (void *)w + QAIC_WRAPPER_MAX_SIZE;
532 				asp = (struct wire_addr_size_pair *)&w->msg;
533 			}
534 		}
535 		asp->addr = cpu_to_le64(sg_dma_address(sg));
536 		dma_len = sg_dma_len(sg);
537 	}
538 	/* finalize the last segment */
539 	asp->size = cpu_to_le64(dma_len);
540 	w->len = (void *)asp + sizeof(*asp) - (void *)&w->msg;
541 	*size += w->len;
542 	dma_chunk_len += dma_len;
543 	resources->xferred_dma_size += dma_chunk_len;
544 
545 	return nents_dma < nents ? 1 : 0;
546 }
547 
548 static void cleanup_xfer(struct qaic_device *qdev, struct dma_xfer *xfer)
549 {
550 	int i;
551 
552 	dma_unmap_sgtable(&qdev->pdev->dev, xfer->sgt, DMA_TO_DEVICE, 0);
553 	sg_free_table(xfer->sgt);
554 	kfree(xfer->sgt);
555 	for (i = 0; i < xfer->nr_pages; ++i)
556 		put_page(xfer->page_list[i]);
557 	kfree(xfer->page_list);
558 }
559 
560 static int encode_dma(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
561 		      u32 *user_len, struct ioctl_resources *resources, struct qaic_user *usr)
562 {
563 	struct qaic_manage_trans_dma_xfer *in_trans = trans;
564 	struct wire_trans_dma_xfer *out_trans;
565 	struct wrapper_msg *wrapper;
566 	struct dma_xfer *xfer;
567 	struct wire_msg *msg;
568 	bool need_cont_dma;
569 	u32 msg_hdr_len;
570 	u32 size;
571 	int ret;
572 
573 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
574 	msg = &wrapper->msg;
575 	msg_hdr_len = le32_to_cpu(msg->hdr.len);
576 
577 	/* There should be enough space to hold at least one ASP entry. */
578 	if (size_add(msg_hdr_len, sizeof(*out_trans) + sizeof(struct wire_addr_size_pair)) >
579 	    QAIC_MANAGE_EXT_MSG_LENGTH)
580 		return -ENOMEM;
581 
582 	xfer = kmalloc(sizeof(*xfer), GFP_KERNEL);
583 	if (!xfer)
584 		return -ENOMEM;
585 
586 	ret = find_and_map_user_pages(qdev, in_trans, resources, xfer);
587 	if (ret < 0)
588 		goto free_xfer;
589 
590 	need_cont_dma = (bool)ret;
591 
592 	ret = encode_addr_size_pairs(xfer, wrappers, resources, msg_hdr_len, &size, &out_trans);
593 	if (ret < 0)
594 		goto cleanup_xfer;
595 
596 	need_cont_dma = need_cont_dma || (bool)ret;
597 
598 	msg->hdr.len = cpu_to_le32(msg_hdr_len + size);
599 	msg->hdr.count = incr_le32(msg->hdr.count);
600 
601 	out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
602 	out_trans->hdr.len = cpu_to_le32(size);
603 	out_trans->tag = cpu_to_le32(in_trans->tag);
604 	out_trans->count = cpu_to_le32((size - sizeof(*out_trans)) /
605 								sizeof(struct wire_addr_size_pair));
606 
607 	*user_len += in_trans->hdr.len;
608 
609 	if (resources->dma_chunk_id) {
610 		out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
611 	} else if (need_cont_dma) {
612 		while (resources->dma_chunk_id == 0)
613 			resources->dma_chunk_id = atomic_inc_return(&usr->chunk_id);
614 
615 		out_trans->dma_chunk_id = cpu_to_le32(resources->dma_chunk_id);
616 	}
617 	resources->trans_hdr = trans;
618 
619 	list_add(&xfer->list, &resources->dma_xfers);
620 	return 0;
621 
622 cleanup_xfer:
623 	cleanup_xfer(qdev, xfer);
624 free_xfer:
625 	kfree(xfer);
626 	return ret;
627 }
628 
629 static int encode_activate(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
630 			   u32 *user_len, struct ioctl_resources *resources)
631 {
632 	struct qaic_manage_trans_activate_to_dev *in_trans = trans;
633 	struct wire_trans_activate_to_dev *out_trans;
634 	struct wrapper_msg *trans_wrapper;
635 	struct wrapper_msg *wrapper;
636 	struct wire_msg *msg;
637 	dma_addr_t dma_addr;
638 	u32 msg_hdr_len;
639 	void *buf;
640 	u32 nelem;
641 	u32 size;
642 	int ret;
643 
644 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
645 	msg = &wrapper->msg;
646 	msg_hdr_len = le32_to_cpu(msg->hdr.len);
647 
648 	if (size_add(msg_hdr_len, sizeof(*out_trans)) > QAIC_MANAGE_MAX_MSG_LENGTH)
649 		return -ENOSPC;
650 
651 	if (!in_trans->queue_size)
652 		return -EINVAL;
653 
654 	if (in_trans->pad)
655 		return -EINVAL;
656 
657 	nelem = in_trans->queue_size;
658 	size = (get_dbc_req_elem_size() + get_dbc_rsp_elem_size()) * nelem;
659 	if (size / nelem != get_dbc_req_elem_size() + get_dbc_rsp_elem_size())
660 		return -EINVAL;
661 
662 	if (size + QAIC_DBC_Q_GAP + QAIC_DBC_Q_BUF_ALIGN < size)
663 		return -EINVAL;
664 
665 	size = ALIGN((size + QAIC_DBC_Q_GAP), QAIC_DBC_Q_BUF_ALIGN);
666 
667 	buf = dma_alloc_coherent(&qdev->pdev->dev, size, &dma_addr, GFP_KERNEL);
668 	if (!buf)
669 		return -ENOMEM;
670 
671 	trans_wrapper = add_wrapper(wrappers,
672 				    offsetof(struct wrapper_msg, trans) + sizeof(*out_trans));
673 	if (!trans_wrapper) {
674 		ret = -ENOMEM;
675 		goto free_dma;
676 	}
677 	trans_wrapper->len = sizeof(*out_trans);
678 	out_trans = (struct wire_trans_activate_to_dev *)&trans_wrapper->trans;
679 
680 	out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_ACTIVATE_TO_DEV);
681 	out_trans->hdr.len = cpu_to_le32(sizeof(*out_trans));
682 	out_trans->buf_len = cpu_to_le32(size);
683 	out_trans->req_q_addr = cpu_to_le64(dma_addr);
684 	out_trans->req_q_size = cpu_to_le32(nelem);
685 	out_trans->rsp_q_addr = cpu_to_le64(dma_addr + size - nelem * get_dbc_rsp_elem_size());
686 	out_trans->rsp_q_size = cpu_to_le32(nelem);
687 	out_trans->options = cpu_to_le32(in_trans->options);
688 
689 	*user_len += in_trans->hdr.len;
690 	msg->hdr.len = cpu_to_le32(msg_hdr_len + sizeof(*out_trans));
691 	msg->hdr.count = incr_le32(msg->hdr.count);
692 
693 	resources->buf = buf;
694 	resources->dma_addr = dma_addr;
695 	resources->total_size = size;
696 	resources->nelem = nelem;
697 	resources->rsp_q_base = buf + size - nelem * get_dbc_rsp_elem_size();
698 	return 0;
699 
700 free_dma:
701 	dma_free_coherent(&qdev->pdev->dev, size, buf, dma_addr);
702 	return ret;
703 }
704 
705 static int encode_deactivate(struct qaic_device *qdev, void *trans,
706 			     u32 *user_len, struct qaic_user *usr)
707 {
708 	struct qaic_manage_trans_deactivate *in_trans = trans;
709 
710 	if (in_trans->dbc_id >= qdev->num_dbc || in_trans->pad)
711 		return -EINVAL;
712 
713 	*user_len += in_trans->hdr.len;
714 
715 	return disable_dbc(qdev, in_trans->dbc_id, usr);
716 }
717 
718 static int encode_status(struct qaic_device *qdev, void *trans, struct wrapper_list *wrappers,
719 			 u32 *user_len)
720 {
721 	struct qaic_manage_trans_status_to_dev *in_trans = trans;
722 	struct wire_trans_status_to_dev *out_trans;
723 	struct wrapper_msg *trans_wrapper;
724 	struct wrapper_msg *wrapper;
725 	struct wire_msg *msg;
726 	u32 msg_hdr_len;
727 
728 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
729 	msg = &wrapper->msg;
730 	msg_hdr_len = le32_to_cpu(msg->hdr.len);
731 
732 	if (size_add(msg_hdr_len, in_trans->hdr.len) > QAIC_MANAGE_MAX_MSG_LENGTH)
733 		return -ENOSPC;
734 
735 	trans_wrapper = add_wrapper(wrappers, sizeof(*trans_wrapper));
736 	if (!trans_wrapper)
737 		return -ENOMEM;
738 
739 	trans_wrapper->len = sizeof(*out_trans);
740 	out_trans = (struct wire_trans_status_to_dev *)&trans_wrapper->trans;
741 
742 	out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_STATUS_TO_DEV);
743 	out_trans->hdr.len = cpu_to_le32(in_trans->hdr.len);
744 	msg->hdr.len = cpu_to_le32(msg_hdr_len + in_trans->hdr.len);
745 	msg->hdr.count = incr_le32(msg->hdr.count);
746 	*user_len += in_trans->hdr.len;
747 
748 	return 0;
749 }
750 
751 static int encode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
752 			  struct wrapper_list *wrappers, struct ioctl_resources *resources,
753 			  struct qaic_user *usr)
754 {
755 	struct qaic_manage_trans_hdr *trans_hdr;
756 	struct wrapper_msg *wrapper;
757 	struct wire_msg *msg;
758 	u32 user_len = 0;
759 	int ret;
760 	int i;
761 
762 	if (!user_msg->count ||
763 	    user_msg->len < sizeof(*trans_hdr)) {
764 		ret = -EINVAL;
765 		goto out;
766 	}
767 
768 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
769 	msg = &wrapper->msg;
770 
771 	msg->hdr.len = cpu_to_le32(sizeof(msg->hdr));
772 
773 	if (resources->dma_chunk_id) {
774 		ret = encode_dma(qdev, resources->trans_hdr, wrappers, &user_len, resources, usr);
775 		msg->hdr.count = cpu_to_le32(1);
776 		goto out;
777 	}
778 
779 	for (i = 0; i < user_msg->count; ++i) {
780 		if (user_len > user_msg->len - sizeof(*trans_hdr)) {
781 			ret = -EINVAL;
782 			break;
783 		}
784 		trans_hdr = (struct qaic_manage_trans_hdr *)(user_msg->data + user_len);
785 		if (trans_hdr->len < sizeof(trans_hdr) ||
786 		    size_add(user_len, trans_hdr->len) > user_msg->len) {
787 			ret = -EINVAL;
788 			break;
789 		}
790 
791 		switch (trans_hdr->type) {
792 		case QAIC_TRANS_PASSTHROUGH_FROM_USR:
793 			ret = encode_passthrough(qdev, trans_hdr, wrappers, &user_len);
794 			break;
795 		case QAIC_TRANS_DMA_XFER_FROM_USR:
796 			ret = encode_dma(qdev, trans_hdr, wrappers, &user_len, resources, usr);
797 			break;
798 		case QAIC_TRANS_ACTIVATE_FROM_USR:
799 			ret = encode_activate(qdev, trans_hdr, wrappers, &user_len, resources);
800 			break;
801 		case QAIC_TRANS_DEACTIVATE_FROM_USR:
802 			ret = encode_deactivate(qdev, trans_hdr, &user_len, usr);
803 			break;
804 		case QAIC_TRANS_STATUS_FROM_USR:
805 			ret = encode_status(qdev, trans_hdr, wrappers, &user_len);
806 			break;
807 		default:
808 			ret = -EINVAL;
809 			break;
810 		}
811 
812 		if (ret)
813 			break;
814 	}
815 
816 	if (user_len != user_msg->len)
817 		ret = -EINVAL;
818 out:
819 	if (ret) {
820 		free_dma_xfers(qdev, resources);
821 		free_dbc_buf(qdev, resources);
822 		return ret;
823 	}
824 
825 	return 0;
826 }
827 
828 static int decode_passthrough(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
829 			      u32 *msg_len)
830 {
831 	struct qaic_manage_trans_passthrough *out_trans;
832 	struct wire_trans_passthrough *in_trans = trans;
833 	u32 len;
834 
835 	out_trans = (void *)user_msg->data + user_msg->len;
836 
837 	len = le32_to_cpu(in_trans->hdr.len);
838 	if (len % 8 != 0)
839 		return -EINVAL;
840 
841 	if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
842 		return -ENOSPC;
843 
844 	memcpy(out_trans->data, in_trans->data, len - sizeof(in_trans->hdr));
845 	user_msg->len += len;
846 	*msg_len += len;
847 	out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
848 	out_trans->hdr.len = len;
849 
850 	return 0;
851 }
852 
853 static int decode_activate(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
854 			   u32 *msg_len, struct ioctl_resources *resources, struct qaic_user *usr)
855 {
856 	struct qaic_manage_trans_activate_from_dev *out_trans;
857 	struct wire_trans_activate_from_dev *in_trans = trans;
858 	u32 len;
859 
860 	out_trans = (void *)user_msg->data + user_msg->len;
861 
862 	len = le32_to_cpu(in_trans->hdr.len);
863 	if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
864 		return -ENOSPC;
865 
866 	user_msg->len += len;
867 	*msg_len += len;
868 	out_trans->hdr.type = le32_to_cpu(in_trans->hdr.type);
869 	out_trans->hdr.len = len;
870 	out_trans->status = le32_to_cpu(in_trans->status);
871 	out_trans->dbc_id = le32_to_cpu(in_trans->dbc_id);
872 	out_trans->options = le64_to_cpu(in_trans->options);
873 
874 	if (!resources->buf)
875 		/* how did we get an activate response without a request? */
876 		return -EINVAL;
877 
878 	if (out_trans->dbc_id >= qdev->num_dbc)
879 		/*
880 		 * The device assigned an invalid resource, which should never
881 		 * happen. Return an error so the user can try to recover.
882 		 */
883 		return -ENODEV;
884 
885 	if (out_trans->status)
886 		/*
887 		 * Allocating resources failed on device side. This is not an
888 		 * expected behaviour, user is expected to handle this situation.
889 		 */
890 		return -ECANCELED;
891 
892 	resources->status = out_trans->status;
893 	resources->dbc_id = out_trans->dbc_id;
894 	save_dbc_buf(qdev, resources, usr);
895 
896 	return 0;
897 }
898 
899 static int decode_deactivate(struct qaic_device *qdev, void *trans, u32 *msg_len,
900 			     struct qaic_user *usr)
901 {
902 	struct wire_trans_deactivate_from_dev *in_trans = trans;
903 	u32 dbc_id = le32_to_cpu(in_trans->dbc_id);
904 	u32 status = le32_to_cpu(in_trans->status);
905 
906 	if (dbc_id >= qdev->num_dbc)
907 		/*
908 		 * The device assigned an invalid resource, which should never
909 		 * happen. Inject an error so the user can try to recover.
910 		 */
911 		return -ENODEV;
912 
913 	if (status) {
914 		/*
915 		 * Releasing resources failed on the device side, which puts
916 		 * us in a bind since they may still be in use, so enable the
917 		 * dbc. User is expected to retry deactivation.
918 		 */
919 		enable_dbc(qdev, dbc_id, usr);
920 		return -ECANCELED;
921 	}
922 
923 	release_dbc(qdev, dbc_id);
924 	*msg_len += sizeof(*in_trans);
925 
926 	return 0;
927 }
928 
929 static int decode_status(struct qaic_device *qdev, void *trans, struct manage_msg *user_msg,
930 			 u32 *user_len, struct wire_msg *msg)
931 {
932 	struct qaic_manage_trans_status_from_dev *out_trans;
933 	struct wire_trans_status_from_dev *in_trans = trans;
934 	u32 len;
935 
936 	out_trans = (void *)user_msg->data + user_msg->len;
937 
938 	len = le32_to_cpu(in_trans->hdr.len);
939 	if (user_msg->len + len > QAIC_MANAGE_MAX_MSG_LENGTH)
940 		return -ENOSPC;
941 
942 	out_trans->hdr.type = QAIC_TRANS_STATUS_FROM_DEV;
943 	out_trans->hdr.len = len;
944 	out_trans->major = le16_to_cpu(in_trans->major);
945 	out_trans->minor = le16_to_cpu(in_trans->minor);
946 	out_trans->status_flags = le64_to_cpu(in_trans->status_flags);
947 	out_trans->status = le32_to_cpu(in_trans->status);
948 	*user_len += le32_to_cpu(in_trans->hdr.len);
949 	user_msg->len += len;
950 
951 	if (out_trans->status)
952 		return -ECANCELED;
953 	if (out_trans->status_flags & BIT(0) && !valid_crc(msg))
954 		return -EPIPE;
955 
956 	return 0;
957 }
958 
959 static int decode_message(struct qaic_device *qdev, struct manage_msg *user_msg,
960 			  struct wire_msg *msg, struct ioctl_resources *resources,
961 			  struct qaic_user *usr)
962 {
963 	u32 msg_hdr_len = le32_to_cpu(msg->hdr.len);
964 	struct wire_trans_hdr *trans_hdr;
965 	u32 msg_len = 0;
966 	int ret;
967 	int i;
968 
969 	if (msg_hdr_len < sizeof(*trans_hdr) ||
970 	    msg_hdr_len > QAIC_MANAGE_MAX_MSG_LENGTH)
971 		return -EINVAL;
972 
973 	user_msg->len = 0;
974 	user_msg->count = le32_to_cpu(msg->hdr.count);
975 
976 	for (i = 0; i < user_msg->count; ++i) {
977 		u32 hdr_len;
978 
979 		if (msg_len > msg_hdr_len - sizeof(*trans_hdr))
980 			return -EINVAL;
981 
982 		trans_hdr = (struct wire_trans_hdr *)(msg->data + msg_len);
983 		hdr_len = le32_to_cpu(trans_hdr->len);
984 		if (hdr_len < sizeof(*trans_hdr) ||
985 		    size_add(msg_len, hdr_len) > msg_hdr_len)
986 			return -EINVAL;
987 
988 		switch (le32_to_cpu(trans_hdr->type)) {
989 		case QAIC_TRANS_PASSTHROUGH_FROM_DEV:
990 			ret = decode_passthrough(qdev, trans_hdr, user_msg, &msg_len);
991 			break;
992 		case QAIC_TRANS_ACTIVATE_FROM_DEV:
993 			ret = decode_activate(qdev, trans_hdr, user_msg, &msg_len, resources, usr);
994 			break;
995 		case QAIC_TRANS_DEACTIVATE_FROM_DEV:
996 			ret = decode_deactivate(qdev, trans_hdr, &msg_len, usr);
997 			break;
998 		case QAIC_TRANS_STATUS_FROM_DEV:
999 			ret = decode_status(qdev, trans_hdr, user_msg, &msg_len, msg);
1000 			break;
1001 		default:
1002 			return -EINVAL;
1003 		}
1004 
1005 		if (ret)
1006 			return ret;
1007 	}
1008 
1009 	if (msg_len != (msg_hdr_len - sizeof(msg->hdr)))
1010 		return -EINVAL;
1011 
1012 	return 0;
1013 }
1014 
1015 static void *msg_xfer(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 seq_num,
1016 		      bool ignore_signal)
1017 {
1018 	struct xfer_queue_elem elem;
1019 	struct wire_msg *out_buf;
1020 	struct wrapper_msg *w;
1021 	long ret = -EAGAIN;
1022 	int xfer_count = 0;
1023 	int retry_count;
1024 
1025 	/* Allow QAIC_BOOT state since we need to check control protocol version */
1026 	if (qdev->dev_state == QAIC_OFFLINE) {
1027 		mutex_unlock(&qdev->cntl_mutex);
1028 		return ERR_PTR(-ENODEV);
1029 	}
1030 
1031 	/* Attempt to avoid a partial commit of a message */
1032 	list_for_each_entry(w, &wrappers->list, list)
1033 		xfer_count++;
1034 
1035 	for (retry_count = 0; retry_count < QAIC_MHI_RETRY_MAX; retry_count++) {
1036 		if (xfer_count <= mhi_get_free_desc_count(qdev->cntl_ch, DMA_TO_DEVICE)) {
1037 			ret = 0;
1038 			break;
1039 		}
1040 		msleep_interruptible(QAIC_MHI_RETRY_WAIT_MS);
1041 		if (signal_pending(current))
1042 			break;
1043 	}
1044 
1045 	if (ret) {
1046 		mutex_unlock(&qdev->cntl_mutex);
1047 		return ERR_PTR(ret);
1048 	}
1049 
1050 	elem.seq_num = seq_num;
1051 	elem.buf = NULL;
1052 	init_completion(&elem.xfer_done);
1053 	if (likely(!qdev->cntl_lost_buf)) {
1054 		/*
1055 		 * The max size of request to device is QAIC_MANAGE_EXT_MSG_LENGTH.
1056 		 * The max size of response from device is QAIC_MANAGE_MAX_MSG_LENGTH.
1057 		 */
1058 		out_buf = kmalloc(QAIC_MANAGE_MAX_MSG_LENGTH, GFP_KERNEL);
1059 		if (!out_buf) {
1060 			mutex_unlock(&qdev->cntl_mutex);
1061 			return ERR_PTR(-ENOMEM);
1062 		}
1063 
1064 		ret = mhi_queue_buf(qdev->cntl_ch, DMA_FROM_DEVICE, out_buf,
1065 				    QAIC_MANAGE_MAX_MSG_LENGTH, MHI_EOT);
1066 		if (ret) {
1067 			mutex_unlock(&qdev->cntl_mutex);
1068 			return ERR_PTR(ret);
1069 		}
1070 	} else {
1071 		/*
1072 		 * we lost a buffer because we queued a recv buf, but then
1073 		 * queuing the corresponding tx buf failed. To try to avoid
1074 		 * a memory leak, lets reclaim it and use it for this
1075 		 * transaction.
1076 		 */
1077 		qdev->cntl_lost_buf = false;
1078 	}
1079 
1080 	list_for_each_entry(w, &wrappers->list, list) {
1081 		kref_get(&w->ref_count);
1082 		retry_count = 0;
1083 		ret = mhi_queue_buf(qdev->cntl_ch, DMA_TO_DEVICE, &w->msg, w->len,
1084 				    list_is_last(&w->list, &wrappers->list) ? MHI_EOT : MHI_CHAIN);
1085 		if (ret) {
1086 			qdev->cntl_lost_buf = true;
1087 			kref_put(&w->ref_count, free_wrapper);
1088 			mutex_unlock(&qdev->cntl_mutex);
1089 			return ERR_PTR(ret);
1090 		}
1091 	}
1092 
1093 	list_add_tail(&elem.list, &qdev->cntl_xfer_list);
1094 	mutex_unlock(&qdev->cntl_mutex);
1095 
1096 	if (ignore_signal)
1097 		ret = wait_for_completion_timeout(&elem.xfer_done, control_resp_timeout_s * HZ);
1098 	else
1099 		ret = wait_for_completion_interruptible_timeout(&elem.xfer_done,
1100 								control_resp_timeout_s * HZ);
1101 	/*
1102 	 * not using _interruptable because we have to cleanup or we'll
1103 	 * likely cause memory corruption
1104 	 */
1105 	mutex_lock(&qdev->cntl_mutex);
1106 	if (!list_empty(&elem.list))
1107 		list_del(&elem.list);
1108 	if (!ret && !elem.buf)
1109 		ret = -ETIMEDOUT;
1110 	else if (ret > 0 && !elem.buf)
1111 		ret = -EIO;
1112 	mutex_unlock(&qdev->cntl_mutex);
1113 
1114 	if (ret < 0) {
1115 		kfree(elem.buf);
1116 		return ERR_PTR(ret);
1117 	} else if (!qdev->valid_crc(elem.buf)) {
1118 		kfree(elem.buf);
1119 		return ERR_PTR(-EPIPE);
1120 	}
1121 
1122 	return elem.buf;
1123 }
1124 
1125 /* Add a transaction to abort the outstanding DMA continuation */
1126 static int abort_dma_cont(struct qaic_device *qdev, struct wrapper_list *wrappers, u32 dma_chunk_id)
1127 {
1128 	struct wire_trans_dma_xfer *out_trans;
1129 	u32 size = sizeof(*out_trans);
1130 	struct wrapper_msg *wrapper;
1131 	struct wrapper_msg *w;
1132 	struct wire_msg *msg;
1133 
1134 	wrapper = list_first_entry(&wrappers->list, struct wrapper_msg, list);
1135 	msg = &wrapper->msg;
1136 
1137 	/* Remove all but the first wrapper which has the msg header */
1138 	list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1139 		if (!list_is_first(&wrapper->list, &wrappers->list))
1140 			kref_put(&wrapper->ref_count, free_wrapper);
1141 
1142 	wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1143 
1144 	if (!wrapper)
1145 		return -ENOMEM;
1146 
1147 	out_trans = (struct wire_trans_dma_xfer *)&wrapper->trans;
1148 	out_trans->hdr.type = cpu_to_le32(QAIC_TRANS_DMA_XFER_TO_DEV);
1149 	out_trans->hdr.len = cpu_to_le32(size);
1150 	out_trans->tag = cpu_to_le32(0);
1151 	out_trans->count = cpu_to_le32(0);
1152 	out_trans->dma_chunk_id = cpu_to_le32(dma_chunk_id);
1153 
1154 	msg->hdr.len = cpu_to_le32(size + sizeof(*msg));
1155 	msg->hdr.count = cpu_to_le32(1);
1156 	wrapper->len = size;
1157 
1158 	return 0;
1159 }
1160 
1161 static struct wrapper_list *alloc_wrapper_list(void)
1162 {
1163 	struct wrapper_list *wrappers;
1164 
1165 	wrappers = kmalloc(sizeof(*wrappers), GFP_KERNEL);
1166 	if (!wrappers)
1167 		return NULL;
1168 	INIT_LIST_HEAD(&wrappers->list);
1169 	spin_lock_init(&wrappers->lock);
1170 
1171 	return wrappers;
1172 }
1173 
1174 static int qaic_manage_msg_xfer(struct qaic_device *qdev, struct qaic_user *usr,
1175 				struct manage_msg *user_msg, struct ioctl_resources *resources,
1176 				struct wire_msg **rsp)
1177 {
1178 	struct wrapper_list *wrappers;
1179 	struct wrapper_msg *wrapper;
1180 	struct wrapper_msg *w;
1181 	bool all_done = false;
1182 	struct wire_msg *msg;
1183 	int ret;
1184 
1185 	wrappers = alloc_wrapper_list();
1186 	if (!wrappers)
1187 		return -ENOMEM;
1188 
1189 	wrapper = add_wrapper(wrappers, sizeof(*wrapper));
1190 	if (!wrapper) {
1191 		kfree(wrappers);
1192 		return -ENOMEM;
1193 	}
1194 
1195 	msg = &wrapper->msg;
1196 	wrapper->len = sizeof(*msg);
1197 
1198 	ret = encode_message(qdev, user_msg, wrappers, resources, usr);
1199 	if (ret && resources->dma_chunk_id)
1200 		ret = abort_dma_cont(qdev, wrappers, resources->dma_chunk_id);
1201 	if (ret)
1202 		goto encode_failed;
1203 
1204 	ret = mutex_lock_interruptible(&qdev->cntl_mutex);
1205 	if (ret)
1206 		goto lock_failed;
1207 
1208 	msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1209 	msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1210 
1211 	if (usr) {
1212 		msg->hdr.handle = cpu_to_le32(usr->handle);
1213 		msg->hdr.partition_id = cpu_to_le32(usr->qddev->partition_id);
1214 	} else {
1215 		msg->hdr.handle = 0;
1216 		msg->hdr.partition_id = cpu_to_le32(QAIC_NO_PARTITION);
1217 	}
1218 
1219 	msg->hdr.padding = cpu_to_le32(0);
1220 	msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1221 
1222 	/* msg_xfer releases the mutex */
1223 	*rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, false);
1224 	if (IS_ERR(*rsp))
1225 		ret = PTR_ERR(*rsp);
1226 
1227 lock_failed:
1228 	free_dma_xfers(qdev, resources);
1229 encode_failed:
1230 	spin_lock(&wrappers->lock);
1231 	list_for_each_entry_safe(wrapper, w, &wrappers->list, list)
1232 		kref_put(&wrapper->ref_count, free_wrapper);
1233 	all_done = list_empty(&wrappers->list);
1234 	spin_unlock(&wrappers->lock);
1235 	if (all_done)
1236 		kfree(wrappers);
1237 
1238 	return ret;
1239 }
1240 
1241 static int qaic_manage(struct qaic_device *qdev, struct qaic_user *usr, struct manage_msg *user_msg)
1242 {
1243 	struct wire_trans_dma_xfer_cont *dma_cont = NULL;
1244 	struct ioctl_resources resources;
1245 	struct wire_msg *rsp = NULL;
1246 	int ret;
1247 
1248 	memset(&resources, 0, sizeof(struct ioctl_resources));
1249 
1250 	INIT_LIST_HEAD(&resources.dma_xfers);
1251 
1252 	if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH ||
1253 	    user_msg->count > QAIC_MANAGE_MAX_MSG_LENGTH / sizeof(struct qaic_manage_trans_hdr))
1254 		return -EINVAL;
1255 
1256 dma_xfer_continue:
1257 	ret = qaic_manage_msg_xfer(qdev, usr, user_msg, &resources, &rsp);
1258 	if (ret)
1259 		return ret;
1260 	/* dma_cont should be the only transaction if present */
1261 	if (le32_to_cpu(rsp->hdr.count) == 1) {
1262 		dma_cont = (struct wire_trans_dma_xfer_cont *)rsp->data;
1263 		if (le32_to_cpu(dma_cont->hdr.type) != QAIC_TRANS_DMA_XFER_CONT)
1264 			dma_cont = NULL;
1265 	}
1266 	if (dma_cont) {
1267 		if (le32_to_cpu(dma_cont->dma_chunk_id) == resources.dma_chunk_id &&
1268 		    le64_to_cpu(dma_cont->xferred_size) == resources.xferred_dma_size) {
1269 			kfree(rsp);
1270 			goto dma_xfer_continue;
1271 		}
1272 
1273 		ret = -EINVAL;
1274 		goto dma_cont_failed;
1275 	}
1276 
1277 	ret = decode_message(qdev, user_msg, rsp, &resources, usr);
1278 
1279 dma_cont_failed:
1280 	free_dbc_buf(qdev, &resources);
1281 	kfree(rsp);
1282 	return ret;
1283 }
1284 
1285 int qaic_manage_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1286 {
1287 	struct qaic_manage_msg *user_msg = data;
1288 	struct qaic_device *qdev;
1289 	struct manage_msg *msg;
1290 	struct qaic_user *usr;
1291 	u8 __user *user_data;
1292 	int qdev_rcu_id;
1293 	int usr_rcu_id;
1294 	int ret;
1295 
1296 	if (user_msg->len > QAIC_MANAGE_MAX_MSG_LENGTH)
1297 		return -EINVAL;
1298 
1299 	usr = file_priv->driver_priv;
1300 
1301 	usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1302 	if (!usr->qddev) {
1303 		srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1304 		return -ENODEV;
1305 	}
1306 
1307 	qdev = usr->qddev->qdev;
1308 
1309 	qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1310 	if (qdev->dev_state != QAIC_ONLINE) {
1311 		srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1312 		srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1313 		return -ENODEV;
1314 	}
1315 
1316 	msg = kzalloc(QAIC_MANAGE_MAX_MSG_LENGTH + sizeof(*msg), GFP_KERNEL);
1317 	if (!msg) {
1318 		ret = -ENOMEM;
1319 		goto out;
1320 	}
1321 
1322 	msg->len = user_msg->len;
1323 	msg->count = user_msg->count;
1324 
1325 	user_data = u64_to_user_ptr(user_msg->data);
1326 
1327 	if (copy_from_user(msg->data, user_data, user_msg->len)) {
1328 		ret = -EFAULT;
1329 		goto free_msg;
1330 	}
1331 
1332 	ret = qaic_manage(qdev, usr, msg);
1333 
1334 	/*
1335 	 * If the qaic_manage() is successful then we copy the message onto
1336 	 * userspace memory but we have an exception for -ECANCELED.
1337 	 * For -ECANCELED, it means that device has NACKed the message with a
1338 	 * status error code which userspace would like to know.
1339 	 */
1340 	if (ret == -ECANCELED || !ret) {
1341 		if (copy_to_user(user_data, msg->data, msg->len)) {
1342 			ret = -EFAULT;
1343 		} else {
1344 			user_msg->len = msg->len;
1345 			user_msg->count = msg->count;
1346 		}
1347 	}
1348 
1349 free_msg:
1350 	kfree(msg);
1351 out:
1352 	srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1353 	srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1354 	return ret;
1355 }
1356 
1357 int get_cntl_version(struct qaic_device *qdev, struct qaic_user *usr, u16 *major, u16 *minor)
1358 {
1359 	struct qaic_manage_trans_status_from_dev *status_result;
1360 	struct qaic_manage_trans_status_to_dev *status_query;
1361 	struct manage_msg *user_msg;
1362 	int ret;
1363 
1364 	user_msg = kmalloc(sizeof(*user_msg) + sizeof(*status_result), GFP_KERNEL);
1365 	if (!user_msg) {
1366 		ret = -ENOMEM;
1367 		goto out;
1368 	}
1369 	user_msg->len = sizeof(*status_query);
1370 	user_msg->count = 1;
1371 
1372 	status_query = (struct qaic_manage_trans_status_to_dev *)user_msg->data;
1373 	status_query->hdr.type = QAIC_TRANS_STATUS_FROM_USR;
1374 	status_query->hdr.len = sizeof(status_query->hdr);
1375 
1376 	ret = qaic_manage(qdev, usr, user_msg);
1377 	if (ret)
1378 		goto kfree_user_msg;
1379 	status_result = (struct qaic_manage_trans_status_from_dev *)user_msg->data;
1380 	*major = status_result->major;
1381 	*minor = status_result->minor;
1382 
1383 	if (status_result->status_flags & BIT(0)) { /* device is using CRC */
1384 		/* By default qdev->gen_crc is programmed to generate CRC */
1385 		qdev->valid_crc = valid_crc;
1386 	} else {
1387 		/* By default qdev->valid_crc is programmed to bypass CRC */
1388 		qdev->gen_crc = gen_crc_stub;
1389 	}
1390 
1391 kfree_user_msg:
1392 	kfree(user_msg);
1393 out:
1394 	return ret;
1395 }
1396 
1397 static void resp_worker(struct work_struct *work)
1398 {
1399 	struct resp_work *resp = container_of(work, struct resp_work, work);
1400 	struct qaic_device *qdev = resp->qdev;
1401 	struct wire_msg *msg = resp->buf;
1402 	struct xfer_queue_elem *elem;
1403 	struct xfer_queue_elem *i;
1404 	bool found = false;
1405 
1406 	mutex_lock(&qdev->cntl_mutex);
1407 	list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1408 		if (elem->seq_num == le32_to_cpu(msg->hdr.sequence_number)) {
1409 			found = true;
1410 			list_del_init(&elem->list);
1411 			elem->buf = msg;
1412 			complete_all(&elem->xfer_done);
1413 			break;
1414 		}
1415 	}
1416 	mutex_unlock(&qdev->cntl_mutex);
1417 
1418 	if (!found)
1419 		/* request must have timed out, drop packet */
1420 		kfree(msg);
1421 
1422 	kfree(resp);
1423 }
1424 
1425 static void free_wrapper_from_list(struct wrapper_list *wrappers, struct wrapper_msg *wrapper)
1426 {
1427 	bool all_done = false;
1428 
1429 	spin_lock(&wrappers->lock);
1430 	kref_put(&wrapper->ref_count, free_wrapper);
1431 	all_done = list_empty(&wrappers->list);
1432 	spin_unlock(&wrappers->lock);
1433 
1434 	if (all_done)
1435 		kfree(wrappers);
1436 }
1437 
1438 void qaic_mhi_ul_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1439 {
1440 	struct wire_msg *msg = mhi_result->buf_addr;
1441 	struct wrapper_msg *wrapper = container_of(msg, struct wrapper_msg, msg);
1442 
1443 	free_wrapper_from_list(wrapper->head, wrapper);
1444 }
1445 
1446 void qaic_mhi_dl_xfer_cb(struct mhi_device *mhi_dev, struct mhi_result *mhi_result)
1447 {
1448 	struct qaic_device *qdev = dev_get_drvdata(&mhi_dev->dev);
1449 	struct wire_msg *msg = mhi_result->buf_addr;
1450 	struct resp_work *resp;
1451 
1452 	if (mhi_result->transaction_status || msg->hdr.magic_number != MANAGE_MAGIC_NUMBER) {
1453 		kfree(msg);
1454 		return;
1455 	}
1456 
1457 	resp = kmalloc(sizeof(*resp), GFP_ATOMIC);
1458 	if (!resp) {
1459 		kfree(msg);
1460 		return;
1461 	}
1462 
1463 	INIT_WORK(&resp->work, resp_worker);
1464 	resp->qdev = qdev;
1465 	resp->buf = msg;
1466 	queue_work(qdev->cntl_wq, &resp->work);
1467 }
1468 
1469 int qaic_control_open(struct qaic_device *qdev)
1470 {
1471 	if (!qdev->cntl_ch)
1472 		return -ENODEV;
1473 
1474 	qdev->cntl_lost_buf = false;
1475 	/*
1476 	 * By default qaic should assume that device has CRC enabled.
1477 	 * Qaic comes to know if device has CRC enabled or disabled during the
1478 	 * device status transaction, which is the first transaction performed
1479 	 * on control channel.
1480 	 *
1481 	 * So CRC validation of first device status transaction response is
1482 	 * ignored (by calling valid_crc_stub) and is done later during decoding
1483 	 * if device has CRC enabled.
1484 	 * Now that qaic knows whether device has CRC enabled or not it acts
1485 	 * accordingly.
1486 	 */
1487 	qdev->gen_crc = gen_crc;
1488 	qdev->valid_crc = valid_crc_stub;
1489 
1490 	return mhi_prepare_for_transfer(qdev->cntl_ch);
1491 }
1492 
1493 void qaic_control_close(struct qaic_device *qdev)
1494 {
1495 	mhi_unprepare_from_transfer(qdev->cntl_ch);
1496 }
1497 
1498 void qaic_release_usr(struct qaic_device *qdev, struct qaic_user *usr)
1499 {
1500 	struct wire_trans_terminate_to_dev *trans;
1501 	struct wrapper_list *wrappers;
1502 	struct wrapper_msg *wrapper;
1503 	struct wire_msg *msg;
1504 	struct wire_msg *rsp;
1505 
1506 	wrappers = alloc_wrapper_list();
1507 	if (!wrappers)
1508 		return;
1509 
1510 	wrapper = add_wrapper(wrappers, sizeof(*wrapper) + sizeof(*msg) + sizeof(*trans));
1511 	if (!wrapper)
1512 		return;
1513 
1514 	msg = &wrapper->msg;
1515 
1516 	trans = (struct wire_trans_terminate_to_dev *)msg->data;
1517 
1518 	trans->hdr.type = cpu_to_le32(QAIC_TRANS_TERMINATE_TO_DEV);
1519 	trans->hdr.len = cpu_to_le32(sizeof(*trans));
1520 	trans->handle = cpu_to_le32(usr->handle);
1521 
1522 	mutex_lock(&qdev->cntl_mutex);
1523 	wrapper->len = sizeof(msg->hdr) + sizeof(*trans);
1524 	msg->hdr.magic_number = MANAGE_MAGIC_NUMBER;
1525 	msg->hdr.sequence_number = cpu_to_le32(qdev->next_seq_num++);
1526 	msg->hdr.len = cpu_to_le32(wrapper->len);
1527 	msg->hdr.count = cpu_to_le32(1);
1528 	msg->hdr.handle = cpu_to_le32(usr->handle);
1529 	msg->hdr.padding = cpu_to_le32(0);
1530 	msg->hdr.crc32 = cpu_to_le32(qdev->gen_crc(wrappers));
1531 
1532 	/*
1533 	 * msg_xfer releases the mutex
1534 	 * We don't care about the return of msg_xfer since we will not do
1535 	 * anything different based on what happens.
1536 	 * We ignore pending signals since one will be set if the user is
1537 	 * killed, and we need give the device a chance to cleanup, otherwise
1538 	 * DMA may still be in progress when we return.
1539 	 */
1540 	rsp = msg_xfer(qdev, wrappers, qdev->next_seq_num - 1, true);
1541 	if (!IS_ERR(rsp))
1542 		kfree(rsp);
1543 	free_wrapper_from_list(wrappers, wrapper);
1544 }
1545 
1546 void wake_all_cntl(struct qaic_device *qdev)
1547 {
1548 	struct xfer_queue_elem *elem;
1549 	struct xfer_queue_elem *i;
1550 
1551 	mutex_lock(&qdev->cntl_mutex);
1552 	list_for_each_entry_safe(elem, i, &qdev->cntl_xfer_list, list) {
1553 		list_del_init(&elem->list);
1554 		complete_all(&elem->xfer_done);
1555 	}
1556 	mutex_unlock(&qdev->cntl_mutex);
1557 }
1558