xref: /linux/drivers/accel/ivpu/vpu_jsm_api.h (revision 3e0bc2855b573bcffa2a52955a878f537f5ac0cd)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2020-2023 Intel Corporation
4  */
5 
6 /**
7  * @file
8  * @brief JSM shared definitions
9  *
10  * @ingroup Jsm
11  * @brief JSM shared definitions
12  * @{
13  */
14 #ifndef VPU_JSM_API_H
15 #define VPU_JSM_API_H
16 
17 /*
18  * Major version changes that break backward compatibility
19  */
20 #define VPU_JSM_API_VER_MAJOR 3
21 
22 /*
23  * Minor version changes when API backward compatibility is preserved.
24  */
25 #define VPU_JSM_API_VER_MINOR 15
26 
27 /*
28  * API header changed (field names, documentation, formatting) but API itself has not been changed
29  */
30 #define VPU_JSM_API_VER_PATCH 0
31 
32 /*
33  * Index in the API version table
34  */
35 #define VPU_JSM_API_VER_INDEX 4
36 
37 /*
38  * Number of Priority Bands for Hardware Scheduling
39  * Bands: RealTime, Focus, Normal, Idle
40  */
41 #define VPU_HWS_NUM_PRIORITY_BANDS 4
42 
43 /* Max number of impacted contexts that can be dealt with the engine reset command */
44 #define VPU_MAX_ENGINE_RESET_IMPACTED_CONTEXTS 3
45 
46 /** Pack the API structures for now, once alignment issues are fixed this can be removed */
47 #pragma pack(push, 1)
48 
49 /*
50  * Engine indexes.
51  */
52 #define VPU_ENGINE_COMPUTE 0
53 #define VPU_ENGINE_COPY	   1
54 #define VPU_ENGINE_NB	   2
55 
56 /*
57  * VPU status values.
58  */
59 #define VPU_JSM_STATUS_SUCCESS				 0x0U
60 #define VPU_JSM_STATUS_PARSING_ERR			 0x1U
61 #define VPU_JSM_STATUS_PROCESSING_ERR			 0x2U
62 #define VPU_JSM_STATUS_PREEMPTED			 0x3U
63 #define VPU_JSM_STATUS_ABORTED				 0x4U
64 #define VPU_JSM_STATUS_USER_CTX_VIOL_ERR		 0x5U
65 #define VPU_JSM_STATUS_GLOBAL_CTX_VIOL_ERR		 0x6U
66 #define VPU_JSM_STATUS_MVNCI_WRONG_INPUT_FORMAT		 0x7U
67 #define VPU_JSM_STATUS_MVNCI_UNSUPPORTED_NETWORK_ELEMENT 0x8U
68 #define VPU_JSM_STATUS_MVNCI_INVALID_HANDLE		 0x9U
69 #define VPU_JSM_STATUS_MVNCI_OUT_OF_RESOURCES		 0xAU
70 #define VPU_JSM_STATUS_MVNCI_NOT_IMPLEMENTED		 0xBU
71 #define VPU_JSM_STATUS_MVNCI_INTERNAL_ERROR		 0xCU
72 /* Job status returned when the job was preempted mid-inference */
73 #define VPU_JSM_STATUS_PREEMPTED_MID_INFERENCE		 0xDU
74 
75 /*
76  * Host <-> VPU IPC channels.
77  * ASYNC commands use a high priority channel, other messages use low-priority ones.
78  */
79 #define VPU_IPC_CHAN_ASYNC_CMD 0
80 #define VPU_IPC_CHAN_GEN_CMD   10
81 #define VPU_IPC_CHAN_JOB_RET   11
82 
83 /*
84  * Job flags bit masks.
85  */
86 #define VPU_JOB_FLAGS_NULL_SUBMISSION_MASK 0x00000001
87 #define VPU_JOB_FLAGS_PRIVATE_DATA_MASK	   0xFF000000
88 
89 /*
90  * Sizes of the reserved areas in jobs, in bytes.
91  */
92 #define VPU_JOB_RESERVED_BYTES 8
93 
94 /*
95  * Sizes of the reserved areas in job queues, in bytes.
96  */
97 #define VPU_JOB_QUEUE_RESERVED_BYTES 52
98 
99 /*
100  * Max length (including trailing NULL char) of trace entity name (e.g., the
101  * name of a logging destination or a loggable HW component).
102  */
103 #define VPU_TRACE_ENTITY_NAME_MAX_LEN 32
104 
105 /*
106  * Max length (including trailing NULL char) of a dyndbg command.
107  *
108  * NOTE: 96 is used so that the size of 'struct vpu_ipc_msg' in the JSM API is
109  * 128 bytes (multiple of 64 bytes, the cache line size).
110  */
111 #define VPU_DYNDBG_CMD_MAX_LEN 96
112 
113 /*
114  * For HWS command queue scheduling, we can prioritise command queues inside the
115  * same process with a relative in-process priority. Valid values for relative
116  * priority are given below - max and min.
117  */
118 #define VPU_HWS_COMMAND_QUEUE_MAX_IN_PROCESS_PRIORITY 7
119 #define VPU_HWS_COMMAND_QUEUE_MIN_IN_PROCESS_PRIORITY -7
120 
121 /*
122  * For HWS priority scheduling, we can have multiple realtime priority bands.
123  * They are numbered 0 to a MAX.
124  */
125 #define VPU_HWS_MAX_REALTIME_PRIORITY_LEVEL 31U
126 
127 /*
128  * Job format.
129  */
130 struct vpu_job_queue_entry {
131 	u64 batch_buf_addr; /**< Address of VPU commands batch buffer */
132 	u32 job_id;	  /**< Job ID */
133 	u32 flags; /**< Flags bit field, see VPU_JOB_FLAGS_* above */
134 	u64 root_page_table_addr; /**< Address of root page table to use for this job */
135 	u64 root_page_table_update_counter; /**< Page tables update events counter */
136 	u64 primary_preempt_buf_addr;
137 	/**< Address of the primary preemption buffer to use for this job */
138 	u32 primary_preempt_buf_size;
139 	/**< Size of the primary preemption buffer to use for this job */
140 	u32 secondary_preempt_buf_size;
141 	/**< Size of secondary preemption buffer to use for this job */
142 	u64 secondary_preempt_buf_addr;
143 	/**< Address of secondary preemption buffer to use for this job */
144 	u8 reserved_0[VPU_JOB_RESERVED_BYTES];
145 };
146 
147 /*
148  * Job queue control registers.
149  */
150 struct vpu_job_queue_header {
151 	u32 engine_idx;
152 	u32 head;
153 	u32 tail;
154 	u8 reserved_0[VPU_JOB_QUEUE_RESERVED_BYTES];
155 };
156 
157 /*
158  * Job queue format.
159  */
160 struct vpu_job_queue {
161 	struct vpu_job_queue_header header;
162 	struct vpu_job_queue_entry job[];
163 };
164 
165 /**
166  * Logging entity types.
167  *
168  * This enum defines the different types of entities involved in logging.
169  */
170 enum vpu_trace_entity_type {
171 	/** Logging destination (entity where logs can be stored / printed). */
172 	VPU_TRACE_ENTITY_TYPE_DESTINATION = 1,
173 	/** Loggable HW component (HW entity that can be logged). */
174 	VPU_TRACE_ENTITY_TYPE_HW_COMPONENT = 2,
175 };
176 
177 /*
178  * HWS specific log buffer header details.
179  * Total size is 32 bytes.
180  */
181 struct vpu_hws_log_buffer_header {
182 	/* Written by VPU after adding a log entry. Initialised by host to 0. */
183 	u32 first_free_entry_index;
184 	/* Incremented by VPU every time the VPU overwrites the 0th entry;
185 	 * initialised by host to 0.
186 	 */
187 	u32 wraparound_count;
188 	/*
189 	 * This is the number of buffers that can be stored in the log buffer provided by the host.
190 	 * It is written by host before passing buffer to VPU. VPU should consider it read-only.
191 	 */
192 	u64 num_of_entries;
193 	u64 reserved[2];
194 };
195 
196 /*
197  * HWS specific log buffer entry details.
198  * Total size is 32 bytes.
199  */
200 struct vpu_hws_log_buffer_entry {
201 	/* VPU timestamp must be an invariant timer tick (not impacted by DVFS) */
202 	u64 vpu_timestamp;
203 	/*
204 	 * Operation type:
205 	 *     0 - context state change
206 	 *     1 - queue new work
207 	 *     2 - queue unwait sync object
208 	 *     3 - queue no more work
209 	 *     4 - queue wait sync object
210 	 */
211 	u32 operation_type;
212 	u32 reserved;
213 	/* Operation data depends on operation type */
214 	u64 operation_data[2];
215 };
216 
217 /*
218  * Host <-> VPU IPC messages types.
219  */
220 enum vpu_ipc_msg_type {
221 	VPU_JSM_MSG_UNKNOWN = 0xFFFFFFFF,
222 	/* IPC Host -> Device, Async commands */
223 	VPU_JSM_MSG_ASYNC_CMD = 0x1100,
224 	VPU_JSM_MSG_ENGINE_RESET = VPU_JSM_MSG_ASYNC_CMD,
225 	VPU_JSM_MSG_ENGINE_PREEMPT = 0x1101,
226 	VPU_JSM_MSG_REGISTER_DB = 0x1102,
227 	VPU_JSM_MSG_UNREGISTER_DB = 0x1103,
228 	VPU_JSM_MSG_QUERY_ENGINE_HB = 0x1104,
229 	VPU_JSM_MSG_GET_POWER_LEVEL_COUNT = 0x1105,
230 	VPU_JSM_MSG_GET_POWER_LEVEL = 0x1106,
231 	VPU_JSM_MSG_SET_POWER_LEVEL = 0x1107,
232 	/* @deprecated */
233 	VPU_JSM_MSG_METRIC_STREAMER_OPEN = 0x1108,
234 	/* @deprecated */
235 	VPU_JSM_MSG_METRIC_STREAMER_CLOSE = 0x1109,
236 	/** Configure logging (used to modify configuration passed in boot params). */
237 	VPU_JSM_MSG_TRACE_SET_CONFIG = 0x110a,
238 	/** Return current logging configuration. */
239 	VPU_JSM_MSG_TRACE_GET_CONFIG = 0x110b,
240 	/**
241 	 * Get masks of destinations and HW components supported by the firmware
242 	 * (may vary between HW generations and FW compile
243 	 * time configurations)
244 	 */
245 	VPU_JSM_MSG_TRACE_GET_CAPABILITY = 0x110c,
246 	/** Get the name of a destination or HW component. */
247 	VPU_JSM_MSG_TRACE_GET_NAME = 0x110d,
248 	/**
249 	 * Release resource associated with host ssid . All jobs that belong to the host_ssid
250 	 * aborted and removed from internal scheduling queues. All doorbells assigned
251 	 * to the host_ssid are unregistered and any internal FW resources belonging to
252 	 * the host_ssid are released.
253 	 */
254 	VPU_JSM_MSG_SSID_RELEASE = 0x110e,
255 	/**
256 	 * Start collecting metric data.
257 	 * @see vpu_jsm_metric_streamer_start
258 	 */
259 	VPU_JSM_MSG_METRIC_STREAMER_START = 0x110f,
260 	/**
261 	 * Stop collecting metric data. This command will return success if it is called
262 	 * for a metric stream that has already been stopped or was never started.
263 	 * @see vpu_jsm_metric_streamer_stop
264 	 */
265 	VPU_JSM_MSG_METRIC_STREAMER_STOP = 0x1110,
266 	/**
267 	 * Update current and next buffer for metric data collection. This command can
268 	 * also be used to request information about the number of collected samples
269 	 * and the amount of data written to the buffer.
270 	 * @see vpu_jsm_metric_streamer_update
271 	 */
272 	VPU_JSM_MSG_METRIC_STREAMER_UPDATE = 0x1111,
273 	/**
274 	 * Request description of selected metric groups and metric counters within
275 	 * each group. The VPU will write the description of groups and counters to
276 	 * the buffer specified in the command structure.
277 	 * @see vpu_jsm_metric_streamer_start
278 	 */
279 	VPU_JSM_MSG_METRIC_STREAMER_INFO = 0x1112,
280 	/** Control command: Priority band setup */
281 	VPU_JSM_MSG_SET_PRIORITY_BAND_SETUP = 0x1113,
282 	/** Control command: Create command queue */
283 	VPU_JSM_MSG_CREATE_CMD_QUEUE = 0x1114,
284 	/** Control command: Destroy command queue */
285 	VPU_JSM_MSG_DESTROY_CMD_QUEUE = 0x1115,
286 	/** Control command: Set context scheduling properties */
287 	VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES = 0x1116,
288 	/*
289 	 * Register a doorbell to notify VPU of new work. The doorbell may later be
290 	 * deallocated or reassigned to another context.
291 	 */
292 	VPU_JSM_MSG_HWS_REGISTER_DB = 0x1117,
293 	/** Control command: Log buffer setting */
294 	VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG = 0x1118,
295 	/* Control command: Suspend command queue. */
296 	VPU_JSM_MSG_HWS_SUSPEND_CMDQ = 0x1119,
297 	/* Control command: Resume command queue */
298 	VPU_JSM_MSG_HWS_RESUME_CMDQ = 0x111a,
299 	/* Control command: Resume engine after reset */
300 	VPU_JSM_MSG_HWS_ENGINE_RESUME = 0x111b,
301 	/* Control command: Enable survivability/DCT mode */
302 	VPU_JSM_MSG_DCT_ENABLE = 0x111c,
303 	/* Control command: Disable survivability/DCT mode */
304 	VPU_JSM_MSG_DCT_DISABLE = 0x111d,
305 	/**
306 	 * Dump VPU state. To be used for debug purposes only.
307 	 * NOTE: Please introduce new ASYNC commands before this one. *
308 	 */
309 	VPU_JSM_MSG_STATE_DUMP = 0x11FF,
310 	/* IPC Host -> Device, General commands */
311 	VPU_JSM_MSG_GENERAL_CMD = 0x1200,
312 	VPU_JSM_MSG_BLOB_DEINIT = VPU_JSM_MSG_GENERAL_CMD,
313 	/**
314 	 * Control dyndbg behavior by executing a dyndbg command; equivalent to
315 	 * Linux command: `echo '<dyndbg_cmd>' > <debugfs>/dynamic_debug/control`.
316 	 */
317 	VPU_JSM_MSG_DYNDBG_CONTROL = 0x1201,
318 	/**
319 	 * Perform the save procedure for the D0i3 entry
320 	 */
321 	VPU_JSM_MSG_PWR_D0I3_ENTER = 0x1202,
322 	/* IPC Device -> Host, Job completion */
323 	VPU_JSM_MSG_JOB_DONE = 0x2100,
324 	/* IPC Device -> Host, Async command completion */
325 	VPU_JSM_MSG_ASYNC_CMD_DONE = 0x2200,
326 	VPU_JSM_MSG_ENGINE_RESET_DONE = VPU_JSM_MSG_ASYNC_CMD_DONE,
327 	VPU_JSM_MSG_ENGINE_PREEMPT_DONE = 0x2201,
328 	VPU_JSM_MSG_REGISTER_DB_DONE = 0x2202,
329 	VPU_JSM_MSG_UNREGISTER_DB_DONE = 0x2203,
330 	VPU_JSM_MSG_QUERY_ENGINE_HB_DONE = 0x2204,
331 	VPU_JSM_MSG_GET_POWER_LEVEL_COUNT_DONE = 0x2205,
332 	VPU_JSM_MSG_GET_POWER_LEVEL_DONE = 0x2206,
333 	VPU_JSM_MSG_SET_POWER_LEVEL_DONE = 0x2207,
334 	/* @deprecated */
335 	VPU_JSM_MSG_METRIC_STREAMER_OPEN_DONE = 0x2208,
336 	/* @deprecated */
337 	VPU_JSM_MSG_METRIC_STREAMER_CLOSE_DONE = 0x2209,
338 	/** Response to VPU_JSM_MSG_TRACE_SET_CONFIG. */
339 	VPU_JSM_MSG_TRACE_SET_CONFIG_RSP = 0x220a,
340 	/** Response to VPU_JSM_MSG_TRACE_GET_CONFIG. */
341 	VPU_JSM_MSG_TRACE_GET_CONFIG_RSP = 0x220b,
342 	/** Response to VPU_JSM_MSG_TRACE_GET_CAPABILITY. */
343 	VPU_JSM_MSG_TRACE_GET_CAPABILITY_RSP = 0x220c,
344 	/** Response to VPU_JSM_MSG_TRACE_GET_NAME. */
345 	VPU_JSM_MSG_TRACE_GET_NAME_RSP = 0x220d,
346 	/** Response to VPU_JSM_MSG_SSID_RELEASE. */
347 	VPU_JSM_MSG_SSID_RELEASE_DONE = 0x220e,
348 	/**
349 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_START.
350 	 * VPU will return an error result if metric collection cannot be started,
351 	 * e.g. when the specified metric mask is invalid.
352 	 * @see vpu_jsm_metric_streamer_done
353 	 */
354 	VPU_JSM_MSG_METRIC_STREAMER_START_DONE = 0x220f,
355 	/**
356 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_STOP.
357 	 * Returns information about collected metric data.
358 	 * @see vpu_jsm_metric_streamer_done
359 	 */
360 	VPU_JSM_MSG_METRIC_STREAMER_STOP_DONE = 0x2210,
361 	/**
362 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_UPDATE.
363 	 * Returns information about collected metric data.
364 	 * @see vpu_jsm_metric_streamer_done
365 	 */
366 	VPU_JSM_MSG_METRIC_STREAMER_UPDATE_DONE = 0x2211,
367 	/**
368 	 * Response to VPU_JSM_MSG_METRIC_STREAMER_INFO.
369 	 * Returns a description of the metric groups and metric counters.
370 	 * @see vpu_jsm_metric_streamer_done
371 	 */
372 	VPU_JSM_MSG_METRIC_STREAMER_INFO_DONE = 0x2212,
373 	/**
374 	 * Asynchronous event sent from the VPU to the host either when the current
375 	 * metric buffer is full or when the VPU has collected a multiple of
376 	 * @notify_sample_count samples as indicated through the start command
377 	 * (VPU_JSM_MSG_METRIC_STREAMER_START). Returns information about collected
378 	 * metric data.
379 	 * @see vpu_jsm_metric_streamer_done
380 	 */
381 	VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION = 0x2213,
382 	/** Response to control command: Priority band setup */
383 	VPU_JSM_MSG_SET_PRIORITY_BAND_SETUP_RSP = 0x2214,
384 	/** Response to control command: Create command queue */
385 	VPU_JSM_MSG_CREATE_CMD_QUEUE_RSP = 0x2215,
386 	/** Response to control command: Destroy command queue */
387 	VPU_JSM_MSG_DESTROY_CMD_QUEUE_RSP = 0x2216,
388 	/** Response to control command: Set context scheduling properties */
389 	VPU_JSM_MSG_SET_CONTEXT_SCHED_PROPERTIES_RSP = 0x2217,
390 	/** Response to control command: Log buffer setting */
391 	VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG_RSP = 0x2218,
392 	/* IPC Device -> Host, HWS notify index entry of log buffer written */
393 	VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION = 0x2219,
394 	/* IPC Device -> Host, HWS completion of a context suspend request */
395 	VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE = 0x221a,
396 	/* Response to control command: Resume command queue */
397 	VPU_JSM_MSG_HWS_RESUME_CMDQ_RSP = 0x221b,
398 	/* Response to control command: Resume engine command response */
399 	VPU_JSM_MSG_HWS_RESUME_ENGINE_DONE = 0x221c,
400 	/* Response to control command: Enable survivability/DCT mode */
401 	VPU_JSM_MSG_DCT_ENABLE_DONE = 0x221d,
402 	/* Response to control command: Disable survivability/DCT mode */
403 	VPU_JSM_MSG_DCT_DISABLE_DONE = 0x221e,
404 	/**
405 	 * Response to state dump control command.
406 	 * NOTE: Please introduce new ASYNC responses before this one. *
407 	 */
408 	VPU_JSM_MSG_STATE_DUMP_RSP = 0x22FF,
409 	/* IPC Device -> Host, General command completion */
410 	VPU_JSM_MSG_GENERAL_CMD_DONE = 0x2300,
411 	VPU_JSM_MSG_BLOB_DEINIT_DONE = VPU_JSM_MSG_GENERAL_CMD_DONE,
412 	/** Response to VPU_JSM_MSG_DYNDBG_CONTROL. */
413 	VPU_JSM_MSG_DYNDBG_CONTROL_RSP = 0x2301,
414 	/**
415 	 * Acknowledgment of completion of the save procedure initiated by
416 	 * VPU_JSM_MSG_PWR_D0I3_ENTER
417 	 */
418 	VPU_JSM_MSG_PWR_D0I3_ENTER_DONE = 0x2302,
419 };
420 
421 enum vpu_ipc_msg_status { VPU_JSM_MSG_FREE, VPU_JSM_MSG_ALLOCATED };
422 
423 /*
424  * Host <-> LRT IPC message payload definitions
425  */
426 struct vpu_ipc_msg_payload_engine_reset {
427 	/* Engine to be reset. */
428 	u32 engine_idx;
429 	/* Reserved */
430 	u32 reserved_0;
431 };
432 
433 struct vpu_ipc_msg_payload_engine_preempt {
434 	/* Engine to be preempted. */
435 	u32 engine_idx;
436 	/* ID of the preemption request. */
437 	u32 preempt_id;
438 };
439 
440 /*
441  * @brief Register doorbell command structure.
442  * This structure supports doorbell registration for only OS scheduling.
443  * @see VPU_JSM_MSG_REGISTER_DB
444  */
445 struct vpu_ipc_msg_payload_register_db {
446 	/* Index of the doorbell to register. */
447 	u32 db_idx;
448 	/* Reserved */
449 	u32 reserved_0;
450 	/* Virtual address in Global GTT pointing to the start of job queue. */
451 	u64 jobq_base;
452 	/* Size of the job queue in bytes. */
453 	u32 jobq_size;
454 	/* Host sub-stream ID for the context assigned to the doorbell. */
455 	u32 host_ssid;
456 };
457 
458 /**
459  * @brief Unregister doorbell command structure.
460  * Request structure to unregister a doorbell for both HW and OS scheduling.
461  * @see VPU_JSM_MSG_UNREGISTER_DB
462  */
463 struct vpu_ipc_msg_payload_unregister_db {
464 	/* Index of the doorbell to unregister. */
465 	u32 db_idx;
466 	/* Reserved */
467 	u32 reserved_0;
468 };
469 
470 struct vpu_ipc_msg_payload_query_engine_hb {
471 	/* Engine to return heartbeat value. */
472 	u32 engine_idx;
473 	/* Reserved */
474 	u32 reserved_0;
475 };
476 
477 struct vpu_ipc_msg_payload_power_level {
478 	/**
479 	 * Requested power level. The power level value is in the
480 	 * range [0, power_level_count-1] where power_level_count
481 	 * is the number of available power levels as returned by
482 	 * the get power level count command. A power level of 0
483 	 * corresponds to the maximum possible power level, while
484 	 * power_level_count-1 corresponds to the minimum possible
485 	 * power level. Values outside of this range are not
486 	 * considered to be valid.
487 	 */
488 	u32 power_level;
489 	/* Reserved */
490 	u32 reserved_0;
491 };
492 
493 struct vpu_ipc_msg_payload_ssid_release {
494 	/* Host sub-stream ID for the context to be released. */
495 	u32 host_ssid;
496 	/* Reserved */
497 	u32 reserved_0;
498 };
499 
500 /**
501  * @brief Metric streamer start command structure.
502  * This structure is also used with VPU_JSM_MSG_METRIC_STREAMER_INFO to request metric
503  * groups and metric counters description from the firmware.
504  * @see VPU_JSM_MSG_METRIC_STREAMER_START
505  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
506  */
507 struct vpu_jsm_metric_streamer_start {
508 	/**
509 	 * Bitmask to select the desired metric groups.
510 	 * A metric group can belong only to one metric streamer instance at a time.
511 	 * Since each metric streamer instance has a unique set of metric groups, it
512 	 * can also identify a metric streamer instance if more than one instance was
513 	 * started. If the VPU device does not support multiple metric streamer instances,
514 	 * then VPU_JSM_MSG_METRIC_STREAMER_START will return an error even if the second
515 	 * instance has different groups to the first.
516 	 */
517 	u64 metric_group_mask;
518 	/** Sampling rate in nanoseconds. */
519 	u64 sampling_rate;
520 	/**
521 	 * If > 0 the VPU will send a VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION message
522 	 * after every @notify_sample_count samples is collected or dropped by the VPU.
523 	 * If set to UINT_MAX the VPU will only generate a notification when the metric
524 	 * buffer is full. If set to 0 the VPU will never generate a notification.
525 	 */
526 	u32 notify_sample_count;
527 	u32 reserved_0;
528 	/**
529 	 * Address and size of the buffer where the VPU will write metric data. The
530 	 * VPU writes all counters from enabled metric groups one after another. If
531 	 * there is no space left to write data at the next sample period the VPU
532 	 * will switch to the next buffer (@see next_buffer_addr) and will optionally
533 	 * send a notification to the host driver if @notify_sample_count is non-zero.
534 	 * If @next_buffer_addr is NULL the VPU will stop collecting metric data.
535 	 */
536 	u64 buffer_addr;
537 	u64 buffer_size;
538 	/**
539 	 * Address and size of the next buffer to write metric data to after the initial
540 	 * buffer is full. If the address is NULL the VPU will stop collecting metric
541 	 * data.
542 	 */
543 	u64 next_buffer_addr;
544 	u64 next_buffer_size;
545 };
546 
547 /**
548  * @brief Metric streamer stop command structure.
549  * @see VPU_JSM_MSG_METRIC_STREAMER_STOP
550  */
551 struct vpu_jsm_metric_streamer_stop {
552 	/** Bitmask to select the desired metric groups. */
553 	u64 metric_group_mask;
554 };
555 
556 /**
557  * Provide VPU FW with buffers to write metric data.
558  * @see VPU_JSM_MSG_METRIC_STREAMER_UPDATE
559  */
560 struct vpu_jsm_metric_streamer_update {
561 	/** Metric group mask that identifies metric streamer instance. */
562 	u64 metric_group_mask;
563 	/**
564 	 * Address and size of the buffer where the VPU will write metric data. If
565 	 * the buffer address is 0 or same as the currently used buffer the VPU will
566 	 * continue writing metric data to the current buffer. In this case the
567 	 * buffer size is ignored and the size of the current buffer is unchanged.
568 	 * If the address is non-zero and differs from the current buffer address the
569 	 * VPU will immediately switch data collection to the new buffer.
570 	 */
571 	u64 buffer_addr;
572 	u64 buffer_size;
573 	/**
574 	 * Address and size of the next buffer to write metric data after the initial
575 	 * buffer is full. If the address is NULL the VPU will stop collecting metric
576 	 * data but will continue to record dropped samples.
577 	 *
578 	 * Note that there is a hazard possible if both buffer_addr and the next_buffer_addr
579 	 * are non-zero in same update request. It is the host's responsibility to ensure
580 	 * that both addresses make sense even if the VPU just switched to writing samples
581 	 * from the current to the next buffer.
582 	 */
583 	u64 next_buffer_addr;
584 	u64 next_buffer_size;
585 };
586 
587 struct vpu_ipc_msg_payload_blob_deinit {
588 	/* 64-bit unique ID for the blob to be de-initialized. */
589 	u64 blob_id;
590 };
591 
592 struct vpu_ipc_msg_payload_job_done {
593 	/* Engine to which the job was submitted. */
594 	u32 engine_idx;
595 	/* Index of the doorbell to which the job was submitted */
596 	u32 db_idx;
597 	/* ID of the completed job */
598 	u32 job_id;
599 	/* Status of the completed job */
600 	u32 job_status;
601 	/* Host SSID */
602 	u32 host_ssid;
603 	/* Zero Padding */
604 	u32 reserved_0;
605 	/* Command queue id */
606 	u64 cmdq_id;
607 };
608 
609 struct vpu_jsm_engine_reset_context {
610 	/* Host SSID */
611 	u32 host_ssid;
612 	/* Zero Padding */
613 	u32 reserved_0;
614 	/* Command queue id */
615 	u64 cmdq_id;
616 	/* Flags: 0: cause of hang; 1: collateral damage of reset */
617 	u64 flags;
618 };
619 
620 struct vpu_ipc_msg_payload_engine_reset_done {
621 	/* Engine ordinal */
622 	u32 engine_idx;
623 	/* Number of impacted contexts */
624 	u32 num_impacted_contexts;
625 	/* Array of impacted command queue ids and their flags */
626 	struct vpu_jsm_engine_reset_context
627 		impacted_contexts[VPU_MAX_ENGINE_RESET_IMPACTED_CONTEXTS];
628 };
629 
630 struct vpu_ipc_msg_payload_engine_preempt_done {
631 	/* Engine preempted. */
632 	u32 engine_idx;
633 	/* ID of the preemption request. */
634 	u32 preempt_id;
635 };
636 
637 /**
638  * Response structure for register doorbell command for both OS
639  * and HW scheduling.
640  * @see VPU_JSM_MSG_REGISTER_DB
641  * @see VPU_JSM_MSG_HWS_REGISTER_DB
642  */
643 struct vpu_ipc_msg_payload_register_db_done {
644 	/* Index of the registered doorbell. */
645 	u32 db_idx;
646 	/* Reserved */
647 	u32 reserved_0;
648 };
649 
650 /**
651  * Response structure for unregister doorbell command for both OS
652  * and HW scheduling.
653  * @see VPU_JSM_MSG_UNREGISTER_DB
654  */
655 struct vpu_ipc_msg_payload_unregister_db_done {
656 	/* Index of the unregistered doorbell. */
657 	u32 db_idx;
658 	/* Reserved */
659 	u32 reserved_0;
660 };
661 
662 struct vpu_ipc_msg_payload_query_engine_hb_done {
663 	/* Engine returning heartbeat value. */
664 	u32 engine_idx;
665 	/* Reserved */
666 	u32 reserved_0;
667 	/* Heartbeat value. */
668 	u64 heartbeat;
669 };
670 
671 struct vpu_ipc_msg_payload_get_power_level_count_done {
672 	/**
673 	 * Number of supported power levels. The maximum possible
674 	 * value of power_level_count is 16 but this may vary across
675 	 * implementations.
676 	 */
677 	u32 power_level_count;
678 	/* Reserved */
679 	u32 reserved_0;
680 	/**
681 	 * Power consumption limit for each supported power level in
682 	 * [0-100%] range relative to power level 0.
683 	 */
684 	u8 power_limit[16];
685 };
686 
687 struct vpu_ipc_msg_payload_blob_deinit_done {
688 	/* 64-bit unique ID for the blob de-initialized. */
689 	u64 blob_id;
690 };
691 
692 /* HWS priority band setup request / response */
693 struct vpu_ipc_msg_payload_hws_priority_band_setup {
694 	/*
695 	 * Grace period in 100ns units when preempting another priority band for
696 	 * this priority band
697 	 */
698 	u32 grace_period[VPU_HWS_NUM_PRIORITY_BANDS];
699 	/*
700 	 * Default quantum in 100ns units for scheduling across processes
701 	 * within a priority band
702 	 */
703 	u32 process_quantum[VPU_HWS_NUM_PRIORITY_BANDS];
704 	/*
705 	 * Default grace period in 100ns units for processes that preempt each
706 	 * other within a priority band
707 	 */
708 	u32 process_grace_period[VPU_HWS_NUM_PRIORITY_BANDS];
709 	/*
710 	 * For normal priority band, specifies the target VPU percentage
711 	 * in situations when it's starved by the focus band.
712 	 */
713 	u32 normal_band_percentage;
714 	/* Reserved */
715 	u32 reserved_0;
716 };
717 
718 /*
719  * @brief HWS create command queue request.
720  * Host will create a command queue via this command.
721  * Note: Cmdq group is a handle of an object which
722  * may contain one or more command queues.
723  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE
724  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE_RSP
725  */
726 struct vpu_ipc_msg_payload_hws_create_cmdq {
727 	/* Process id */
728 	u64 process_id;
729 	/* Host SSID */
730 	u32 host_ssid;
731 	/* Engine for which queue is being created */
732 	u32 engine_idx;
733 	/*
734 	 * Cmdq group may be set to 0 or equal to
735 	 * cmdq_id while each priority band contains
736 	 * only single engine instances.
737 	 */
738 	u64 cmdq_group;
739 	/* Command queue id */
740 	u64 cmdq_id;
741 	/* Command queue base */
742 	u64 cmdq_base;
743 	/* Command queue size */
744 	u32 cmdq_size;
745 	/* Zero padding */
746 	u32 reserved_0;
747 };
748 
749 /*
750  * @brief HWS create command queue response.
751  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE
752  * @see VPU_JSM_MSG_CREATE_CMD_QUEUE_RSP
753  */
754 struct vpu_ipc_msg_payload_hws_create_cmdq_rsp {
755 	/* Process id */
756 	u64 process_id;
757 	/* Host SSID */
758 	u32 host_ssid;
759 	/* Engine for which queue is being created */
760 	u32 engine_idx;
761 	/* Command queue group */
762 	u64 cmdq_group;
763 	/* Command queue id */
764 	u64 cmdq_id;
765 };
766 
767 /* HWS destroy command queue request / response */
768 struct vpu_ipc_msg_payload_hws_destroy_cmdq {
769 	/* Host SSID */
770 	u32 host_ssid;
771 	/* Zero Padding */
772 	u32 reserved;
773 	/* Command queue id */
774 	u64 cmdq_id;
775 };
776 
777 /* HWS set context scheduling properties request / response */
778 struct vpu_ipc_msg_payload_hws_set_context_sched_properties {
779 	/* Host SSID */
780 	u32 host_ssid;
781 	/* Zero Padding */
782 	u32 reserved_0;
783 	/* Command queue id */
784 	u64 cmdq_id;
785 	/* Priority band to assign to work of this context */
786 	u32 priority_band;
787 	/* Inside realtime band assigns a further priority */
788 	u32 realtime_priority_level;
789 	/* Priority relative to other contexts in the same process */
790 	s32 in_process_priority;
791 	/* Zero padding / Reserved */
792 	u32 reserved_1;
793 	/* Context quantum relative to other contexts of same priority in the same process */
794 	u64 context_quantum;
795 	/* Grace period when preempting context of the same priority within the same process */
796 	u64 grace_period_same_priority;
797 	/* Grace period when preempting context of a lower priority within the same process */
798 	u64 grace_period_lower_priority;
799 };
800 
801 /*
802  * @brief Register doorbell command structure.
803  * This structure supports doorbell registration for both HW and OS scheduling.
804  * Note: Queue base and size are added here so that the same structure can be used for
805  * OS scheduling and HW scheduling. For OS scheduling, cmdq_id will be ignored
806  * and cmdq_base and cmdq_size will be used. For HW scheduling, cmdq_base and cmdq_size will be
807  * ignored and cmdq_id is used.
808  * @see VPU_JSM_MSG_HWS_REGISTER_DB
809  */
810 struct vpu_jsm_hws_register_db {
811 	/* Index of the doorbell to register. */
812 	u32 db_id;
813 	/* Host sub-stream ID for the context assigned to the doorbell. */
814 	u32 host_ssid;
815 	/* ID of the command queue associated with the doorbell. */
816 	u64 cmdq_id;
817 	/* Virtual address pointing to the start of command queue. */
818 	u64 cmdq_base;
819 	/* Size of the command queue in bytes. */
820 	u64 cmdq_size;
821 };
822 
823 /*
824  * @brief Structure to set another buffer to be used for scheduling-related logging.
825  * The size of the logging buffer and the number of entries is defined as part of the
826  * buffer itself as described next.
827  * The log buffer received from the host is made up of;
828  *   - header:     32 bytes in size, as shown in 'struct vpu_hws_log_buffer_header'.
829  *                 The header contains the number of log entries in the buffer.
830  *   - log entry:  0 to n-1, each log entry is 32 bytes in size, as shown in
831  *                 'struct vpu_hws_log_buffer_entry'.
832  *                 The entry contains the VPU timestamp, operation type and data.
833  * The host should provide the notify index value of log buffer to VPU. This is a
834  * value defined within the log buffer and when written to will generate the
835  * scheduling log notification.
836  * The host should set engine_idx and vpu_log_buffer_va to 0 to disable logging
837  * for a particular engine.
838  * VPU will handle one log buffer for each of supported engines.
839  * VPU should allow the logging to consume one host_ssid.
840  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG
841  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG_RSP
842  * @see VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
843  */
844 struct vpu_ipc_msg_payload_hws_set_scheduling_log {
845 	/* Engine ordinal */
846 	u32 engine_idx;
847 	/* Host SSID */
848 	u32 host_ssid;
849 	/*
850 	 * VPU log buffer virtual address.
851 	 * Set to 0 to disable logging for this engine.
852 	 */
853 	u64 vpu_log_buffer_va;
854 	/*
855 	 * Notify index of log buffer. VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
856 	 * is generated when an event log is written to this index.
857 	 */
858 	u64 notify_index;
859 };
860 
861 /*
862  * @brief The scheduling log notification is generated by VPU when it writes
863  * an event into the log buffer at the notify_index. VPU notifies host with
864  * VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION. This is an asynchronous
865  * message from VPU to host.
866  * @see VPU_JSM_MSG_HWS_SCHEDULING_LOG_NOTIFICATION
867  * @see VPU_JSM_MSG_HWS_SET_SCHEDULING_LOG
868  */
869 struct vpu_ipc_msg_payload_hws_scheduling_log_notification {
870 	/* Engine ordinal */
871 	u32 engine_idx;
872 	/* Zero Padding */
873 	u32 reserved_0;
874 };
875 
876 /*
877  * @brief HWS suspend command queue request and done structure.
878  * Host will request the suspend of contexts and VPU will;
879  *   - Suspend all work on this context
880  *   - Preempt any running work
881  *   - Asynchronously perform the above and return success immediately once
882  *     all items above are started successfully
883  *   - Notify the host of completion of these operations via
884  *     VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE
885  *   - Reject any other context operations on a context with an in-flight
886  *     suspend request running
887  * Same structure used when VPU notifies host of completion of a context suspend
888  * request. The ids and suspend fence value reported in this command will match
889  * the one in the request from the host to suspend the context. Once suspend is
890  * complete, VPU will not access any data relating to this command queue until
891  * it is resumed.
892  * @see VPU_JSM_MSG_HWS_SUSPEND_CMDQ
893  * @see VPU_JSM_MSG_HWS_SUSPEND_CMDQ_DONE
894  */
895 struct vpu_ipc_msg_payload_hws_suspend_cmdq {
896 	/* Host SSID */
897 	u32 host_ssid;
898 	/* Zero Padding */
899 	u32 reserved_0;
900 	/* Command queue id */
901 	u64 cmdq_id;
902 	/*
903 	 * Suspend fence value - reported by the VPU suspend context
904 	 * completed once suspend is complete.
905 	 */
906 	u64 suspend_fence_value;
907 };
908 
909 /*
910  * @brief HWS Resume command queue request / response structure.
911  * Host will request the resume of a context;
912  *  - VPU will resume all work on this context
913  *  - Scheduler will allow this context to be scheduled
914  * @see VPU_JSM_MSG_HWS_RESUME_CMDQ
915  * @see VPU_JSM_MSG_HWS_RESUME_CMDQ_RSP
916  */
917 struct vpu_ipc_msg_payload_hws_resume_cmdq {
918 	/* Host SSID */
919 	u32 host_ssid;
920 	/* Zero Padding */
921 	u32 reserved_0;
922 	/* Command queue id */
923 	u64 cmdq_id;
924 };
925 
926 /*
927  * @brief HWS Resume engine request / response structure.
928  * After a HWS engine reset, all scheduling is stopped on VPU until a engine resume.
929  * Host shall send this command to resume scheduling of any valid queue.
930  * @see VPU_JSM_MSG_HWS_RESUME_ENGINE
931  * @see VPU_JSM_MSG_HWS_RESUME_ENGINE_DONE
932  */
933 struct vpu_ipc_msg_payload_hws_resume_engine {
934 	/* Engine to be resumed */
935 	u32 engine_idx;
936 	/* Reserved */
937 	u32 reserved_0;
938 };
939 
940 /**
941  * Payload for VPU_JSM_MSG_TRACE_SET_CONFIG[_RSP] and
942  * VPU_JSM_MSG_TRACE_GET_CONFIG_RSP messages.
943  *
944  * The payload is interpreted differently depending on the type of message:
945  *
946  * - For VPU_JSM_MSG_TRACE_SET_CONFIG, the payload specifies the desired
947  *   logging configuration to be set.
948  *
949  * - For VPU_JSM_MSG_TRACE_SET_CONFIG_RSP, the payload reports the logging
950  *   configuration that was set after a VPU_JSM_MSG_TRACE_SET_CONFIG request.
951  *   The host can compare this payload with the one it sent in the
952  *   VPU_JSM_MSG_TRACE_SET_CONFIG request to check whether or not the
953  *   configuration was set as desired.
954  *
955  * - VPU_JSM_MSG_TRACE_GET_CONFIG_RSP, the payload reports the current logging
956  *   configuration.
957  */
958 struct vpu_ipc_msg_payload_trace_config {
959 	/**
960 	 * Logging level (currently set or to be set); see 'mvLog_t' enum for
961 	 * acceptable values. The specified logging level applies to all
962 	 * destinations and HW components
963 	 */
964 	u32 trace_level;
965 	/**
966 	 * Bitmask of logging destinations (currently enabled or to be enabled);
967 	 * bitwise OR of values defined in logging_destination enum.
968 	 */
969 	u32 trace_destination_mask;
970 	/**
971 	 * Bitmask of loggable HW components (currently enabled or to be enabled);
972 	 * bitwise OR of values defined in loggable_hw_component enum.
973 	 */
974 	u64 trace_hw_component_mask;
975 	u64 reserved_0; /**< Reserved for future extensions. */
976 };
977 
978 /**
979  * Payload for VPU_JSM_MSG_TRACE_GET_CAPABILITY_RSP messages.
980  */
981 struct vpu_ipc_msg_payload_trace_capability_rsp {
982 	u32 trace_destination_mask; /**< Bitmask of supported logging destinations. */
983 	u32 reserved_0;
984 	u64 trace_hw_component_mask; /**< Bitmask of supported loggable HW components. */
985 	u64 reserved_1; /**< Reserved for future extensions. */
986 };
987 
988 /**
989  * Payload for VPU_JSM_MSG_TRACE_GET_NAME requests.
990  */
991 struct vpu_ipc_msg_payload_trace_get_name {
992 	/**
993 	 * The type of the entity to query name for; see logging_entity_type for
994 	 * possible values.
995 	 */
996 	u32 entity_type;
997 	u32 reserved_0;
998 	/**
999 	 * The ID of the entity to query name for; possible values depends on the
1000 	 * entity type.
1001 	 */
1002 	u64 entity_id;
1003 };
1004 
1005 /**
1006  * Payload for VPU_JSM_MSG_TRACE_GET_NAME_RSP responses.
1007  */
1008 struct vpu_ipc_msg_payload_trace_get_name_rsp {
1009 	/**
1010 	 * The type of the entity whose name was queried; see logging_entity_type
1011 	 * for possible values.
1012 	 */
1013 	u32 entity_type;
1014 	u32 reserved_0;
1015 	/**
1016 	 * The ID of the entity whose name was queried; possible values depends on
1017 	 * the entity type.
1018 	 */
1019 	u64 entity_id;
1020 	/** Reserved for future extensions. */
1021 	u64 reserved_1;
1022 	/** The name of the entity. */
1023 	char entity_name[VPU_TRACE_ENTITY_NAME_MAX_LEN];
1024 };
1025 
1026 /**
1027  * Data sent from the VPU to the host in all metric streamer response messages
1028  * and in asynchronous notification.
1029  * @see VPU_JSM_MSG_METRIC_STREAMER_START_DONE
1030  * @see VPU_JSM_MSG_METRIC_STREAMER_STOP_DONE
1031  * @see VPU_JSM_MSG_METRIC_STREAMER_UPDATE_DONE
1032  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO_DONE
1033  * @see VPU_JSM_MSG_METRIC_STREAMER_NOTIFICATION
1034  */
1035 struct vpu_jsm_metric_streamer_done {
1036 	/** Metric group mask that identifies metric streamer instance. */
1037 	u64 metric_group_mask;
1038 	/**
1039 	 * Size in bytes of single sample - total size of all enabled counters.
1040 	 * Some VPU implementations may align sample_size to more than 8 bytes.
1041 	 */
1042 	u32 sample_size;
1043 	u32 reserved_0;
1044 	/**
1045 	 * Number of samples collected since the metric streamer was started.
1046 	 * This will be 0 if the metric streamer was not started.
1047 	 */
1048 	u32 samples_collected;
1049 	/**
1050 	 * Number of samples dropped since the metric streamer was started. This
1051 	 * is incremented every time the metric streamer is not able to write
1052 	 * collected samples because the current buffer is full and there is no
1053 	 * next buffer to switch to.
1054 	 */
1055 	u32 samples_dropped;
1056 	/** Address of the buffer that contains the latest metric data. */
1057 	u64 buffer_addr;
1058 	/**
1059 	 * Number of bytes written into the metric data buffer. In response to the
1060 	 * VPU_JSM_MSG_METRIC_STREAMER_INFO request this field contains the size of
1061 	 * all group and counter descriptors. The size is updated even if the buffer
1062 	 * in the request was NULL or too small to hold descriptors of all counters
1063 	 */
1064 	u64 bytes_written;
1065 };
1066 
1067 /**
1068  * Metric group description placed in the metric buffer after successful completion
1069  * of the VPU_JSM_MSG_METRIC_STREAMER_INFO command. This is followed by one or more
1070  * @vpu_jsm_metric_counter_descriptor records.
1071  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
1072  */
1073 struct vpu_jsm_metric_group_descriptor {
1074 	/**
1075 	 * Offset to the next metric group (8-byte aligned). If this offset is 0 this
1076 	 * is the last descriptor. The value of metric_info_size must be greater than
1077 	 * or equal to sizeof(struct vpu_jsm_metric_group_descriptor) + name_string_size
1078 	 * + description_string_size and must be 8-byte aligned.
1079 	 */
1080 	u32 next_metric_group_info_offset;
1081 	/**
1082 	 * Offset to the first metric counter description record (8-byte aligned).
1083 	 * @see vpu_jsm_metric_counter_descriptor
1084 	 */
1085 	u32 next_metric_counter_info_offset;
1086 	/** Index of the group. This corresponds to bit index in metric_group_mask. */
1087 	u32 group_id;
1088 	/** Number of counters in the metric group. */
1089 	u32 num_counters;
1090 	/** Data size for all counters, must be a multiple of 8 bytes.*/
1091 	u32 metric_group_data_size;
1092 	/**
1093 	 * Metric group domain number. Cannot use multiple, simultaneous metric groups
1094 	 * from the same domain.
1095 	 */
1096 	u32 domain;
1097 	/**
1098 	 * Counter name string size. The string must include a null termination character.
1099 	 * The FW may use a fixed size name or send a different name for each counter.
1100 	 * If the VPU uses fixed size strings, all characters from the end of the name
1101 	 * to the of the fixed size character array must be zeroed.
1102 	 */
1103 	u32 name_string_size;
1104 	/** Counter description string size, @see name_string_size */
1105 	u32 description_string_size;
1106 	u64 reserved_0;
1107 	/**
1108 	 * Right after this structure, the VPU writes name and description of
1109 	 * the metric group.
1110 	 */
1111 };
1112 
1113 /**
1114  * Metric counter description, placed in the buffer after vpu_jsm_metric_group_descriptor.
1115  * @see VPU_JSM_MSG_METRIC_STREAMER_INFO
1116  */
1117 struct vpu_jsm_metric_counter_descriptor {
1118 	/**
1119 	 * Offset to the next counter in a group (8-byte aligned). If this offset is
1120 	 * 0 this is the last counter in the group.
1121 	 */
1122 	u32 next_metric_counter_info_offset;
1123 	/**
1124 	 * Offset to the counter data from the start of samples in this metric group.
1125 	 * Note that metric_data_offset % metric_data_size must be 0.
1126 	 */
1127 	u32 metric_data_offset;
1128 	/** Size of the metric counter data in bytes. */
1129 	u32 metric_data_size;
1130 	/** Metric type, see Level Zero API for definitions. */
1131 	u32 tier;
1132 	/** Metric type, see set_metric_type_t for definitions. */
1133 	u32 metric_type;
1134 	/** Metric type, see set_value_type_t for definitions. */
1135 	u32 metric_value_type;
1136 	/**
1137 	 * Counter name string size. The string must include a null termination character.
1138 	 * The FW may use a fixed size name or send a different name for each counter.
1139 	 * If the VPU uses fixed size strings, all characters from the end of the name
1140 	 * to the of the fixed size character array must be zeroed.
1141 	 */
1142 	u32 name_string_size;
1143 	/** Counter description string size, @see name_string_size */
1144 	u32 description_string_size;
1145 	/** Counter component name string size, @see name_string_size */
1146 	u32 component_string_size;
1147 	/** Counter string size, @see name_string_size */
1148 	u32 units_string_size;
1149 	u64 reserved_0;
1150 	/**
1151 	 * Right after this structure, the VPU writes name, description
1152 	 * component and unit strings.
1153 	 */
1154 };
1155 
1156 /**
1157  * Payload for VPU_JSM_MSG_DYNDBG_CONTROL requests.
1158  *
1159  * VPU_JSM_MSG_DYNDBG_CONTROL are used to control the VPU FW Dynamic Debug
1160  * feature, which allows developers to selectively enable / disable MVLOG_DEBUG
1161  * messages. This is equivalent to the Dynamic Debug functionality provided by
1162  * Linux
1163  * (https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html)
1164  * The host can control Dynamic Debug behavior by sending dyndbg commands, which
1165  * have the same syntax as Linux
1166  * dyndbg commands.
1167  *
1168  * NOTE: in order for MVLOG_DEBUG messages to be actually printed, the host
1169  * still has to set the logging level to MVLOG_DEBUG, using the
1170  * VPU_JSM_MSG_TRACE_SET_CONFIG command.
1171  *
1172  * The host can see the current dynamic debug configuration by executing a
1173  * special 'show' command. The dyndbg configuration will be printed to the
1174  * configured logging destination using MVLOG_INFO logging level.
1175  */
1176 struct vpu_ipc_msg_payload_dyndbg_control {
1177 	/**
1178 	 * Dyndbg command (same format as Linux dyndbg); must be a NULL-terminated
1179 	 * string.
1180 	 */
1181 	char dyndbg_cmd[VPU_DYNDBG_CMD_MAX_LEN];
1182 };
1183 
1184 /**
1185  * Payload for VPU_JSM_MSG_PWR_D0I3_ENTER
1186  *
1187  * This is a bi-directional payload.
1188  */
1189 struct vpu_ipc_msg_payload_pwr_d0i3_enter {
1190 	/**
1191 	 * 0: VPU_JSM_MSG_PWR_D0I3_ENTER_DONE is not sent to the host driver
1192 	 *    The driver will poll for D0i2 Idle state transitions.
1193 	 * 1: VPU_JSM_MSG_PWR_D0I3_ENTER_DONE is sent after VPU state save is complete
1194 	 */
1195 	u32 send_response;
1196 	u32 reserved_0;
1197 };
1198 
1199 /**
1200  * Payload for VPU_JSM_MSG_DCT_ENABLE message.
1201  *
1202  * Default values for DCT active/inactive times are 5.3ms and 30ms respectively,
1203  * corresponding to a 85% duty cycle. This payload allows the host to tune these
1204  * values according to application requirements.
1205  */
1206 struct vpu_ipc_msg_payload_pwr_dct_control {
1207 	/** Duty cycle active time in microseconds */
1208 	u32 dct_active_us;
1209 	/** Duty cycle inactive time in microseconds */
1210 	u32 dct_inactive_us;
1211 };
1212 
1213 /*
1214  * Payloads union, used to define complete message format.
1215  */
1216 union vpu_ipc_msg_payload {
1217 	struct vpu_ipc_msg_payload_engine_reset engine_reset;
1218 	struct vpu_ipc_msg_payload_engine_preempt engine_preempt;
1219 	struct vpu_ipc_msg_payload_register_db register_db;
1220 	struct vpu_ipc_msg_payload_unregister_db unregister_db;
1221 	struct vpu_ipc_msg_payload_query_engine_hb query_engine_hb;
1222 	struct vpu_ipc_msg_payload_power_level power_level;
1223 	struct vpu_jsm_metric_streamer_start metric_streamer_start;
1224 	struct vpu_jsm_metric_streamer_stop metric_streamer_stop;
1225 	struct vpu_jsm_metric_streamer_update metric_streamer_update;
1226 	struct vpu_ipc_msg_payload_blob_deinit blob_deinit;
1227 	struct vpu_ipc_msg_payload_ssid_release ssid_release;
1228 	struct vpu_jsm_hws_register_db hws_register_db;
1229 	struct vpu_ipc_msg_payload_job_done job_done;
1230 	struct vpu_ipc_msg_payload_engine_reset_done engine_reset_done;
1231 	struct vpu_ipc_msg_payload_engine_preempt_done engine_preempt_done;
1232 	struct vpu_ipc_msg_payload_register_db_done register_db_done;
1233 	struct vpu_ipc_msg_payload_unregister_db_done unregister_db_done;
1234 	struct vpu_ipc_msg_payload_query_engine_hb_done query_engine_hb_done;
1235 	struct vpu_ipc_msg_payload_get_power_level_count_done get_power_level_count_done;
1236 	struct vpu_jsm_metric_streamer_done metric_streamer_done;
1237 	struct vpu_ipc_msg_payload_blob_deinit_done blob_deinit_done;
1238 	struct vpu_ipc_msg_payload_trace_config trace_config;
1239 	struct vpu_ipc_msg_payload_trace_capability_rsp trace_capability;
1240 	struct vpu_ipc_msg_payload_trace_get_name trace_get_name;
1241 	struct vpu_ipc_msg_payload_trace_get_name_rsp trace_get_name_rsp;
1242 	struct vpu_ipc_msg_payload_dyndbg_control dyndbg_control;
1243 	struct vpu_ipc_msg_payload_hws_priority_band_setup hws_priority_band_setup;
1244 	struct vpu_ipc_msg_payload_hws_create_cmdq hws_create_cmdq;
1245 	struct vpu_ipc_msg_payload_hws_create_cmdq_rsp hws_create_cmdq_rsp;
1246 	struct vpu_ipc_msg_payload_hws_destroy_cmdq hws_destroy_cmdq;
1247 	struct vpu_ipc_msg_payload_hws_set_context_sched_properties
1248 		hws_set_context_sched_properties;
1249 	struct vpu_ipc_msg_payload_hws_set_scheduling_log hws_set_scheduling_log;
1250 	struct vpu_ipc_msg_payload_hws_scheduling_log_notification hws_scheduling_log_notification;
1251 	struct vpu_ipc_msg_payload_hws_suspend_cmdq hws_suspend_cmdq;
1252 	struct vpu_ipc_msg_payload_hws_resume_cmdq hws_resume_cmdq;
1253 	struct vpu_ipc_msg_payload_hws_resume_engine hws_resume_engine;
1254 	struct vpu_ipc_msg_payload_pwr_d0i3_enter pwr_d0i3_enter;
1255 	struct vpu_ipc_msg_payload_pwr_dct_control pwr_dct_control;
1256 };
1257 
1258 /*
1259  * Host <-> LRT IPC message base structure.
1260  *
1261  * NOTE: All instances of this object must be aligned on a 64B boundary
1262  * to allow proper handling of VPU cache operations.
1263  */
1264 struct vpu_jsm_msg {
1265 	/* Reserved */
1266 	u64 reserved_0;
1267 	/* Message type, see vpu_ipc_msg_type enum. */
1268 	u32 type;
1269 	/* Buffer status, see vpu_ipc_msg_status enum. */
1270 	u32 status;
1271 	/*
1272 	 * Request ID, provided by the host in a request message and passed
1273 	 * back by VPU in the response message.
1274 	 */
1275 	u32 request_id;
1276 	/* Request return code set by the VPU, see VPU_JSM_STATUS_* defines. */
1277 	u32 result;
1278 	u64 reserved_1;
1279 	/* Message payload depending on message type, see vpu_ipc_msg_payload union. */
1280 	union vpu_ipc_msg_payload payload;
1281 };
1282 
1283 #pragma pack(pop)
1284 
1285 #endif
1286 
1287 ///@}
1288