xref: /linux/drivers/accel/ivpu/ivpu_mmu.c (revision 3e0bc2855b573bcffa2a52955a878f537f5ac0cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020-2023 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/highmem.h>
8 
9 #include "ivpu_drv.h"
10 #include "ivpu_hw_reg_io.h"
11 #include "ivpu_mmu.h"
12 #include "ivpu_mmu_context.h"
13 #include "ivpu_pm.h"
14 
15 #define IVPU_MMU_REG_IDR0		      0x00200000u
16 #define IVPU_MMU_REG_IDR1		      0x00200004u
17 #define IVPU_MMU_REG_IDR3		      0x0020000cu
18 #define IVPU_MMU_REG_IDR5		      0x00200014u
19 #define IVPU_MMU_REG_CR0		      0x00200020u
20 #define IVPU_MMU_REG_CR0ACK		      0x00200024u
21 #define IVPU_MMU_REG_CR0ACK_VAL_MASK	      GENMASK(31, 0)
22 #define IVPU_MMU_REG_CR1		      0x00200028u
23 #define IVPU_MMU_REG_CR2		      0x0020002cu
24 #define IVPU_MMU_REG_IRQ_CTRL		      0x00200050u
25 #define IVPU_MMU_REG_IRQ_CTRLACK	      0x00200054u
26 #define IVPU_MMU_REG_IRQ_CTRLACK_VAL_MASK     GENMASK(31, 0)
27 
28 #define IVPU_MMU_REG_GERROR		      0x00200060u
29 #define IVPU_MMU_REG_GERROR_CMDQ_MASK	      BIT_MASK(0)
30 #define IVPU_MMU_REG_GERROR_EVTQ_ABT_MASK     BIT_MASK(2)
31 #define IVPU_MMU_REG_GERROR_PRIQ_ABT_MASK     BIT_MASK(3)
32 #define IVPU_MMU_REG_GERROR_MSI_CMDQ_ABT_MASK BIT_MASK(4)
33 #define IVPU_MMU_REG_GERROR_MSI_EVTQ_ABT_MASK BIT_MASK(5)
34 #define IVPU_MMU_REG_GERROR_MSI_PRIQ_ABT_MASK BIT_MASK(6)
35 #define IVPU_MMU_REG_GERROR_MSI_ABT_MASK      BIT_MASK(7)
36 
37 #define IVPU_MMU_REG_GERRORN		      0x00200064u
38 
39 #define IVPU_MMU_REG_STRTAB_BASE	      0x00200080u
40 #define IVPU_MMU_REG_STRTAB_BASE_CFG	      0x00200088u
41 #define IVPU_MMU_REG_CMDQ_BASE		      0x00200090u
42 #define IVPU_MMU_REG_CMDQ_PROD		      0x00200098u
43 #define IVPU_MMU_REG_CMDQ_CONS		      0x0020009cu
44 #define IVPU_MMU_REG_CMDQ_CONS_VAL_MASK	      GENMASK(23, 0)
45 #define IVPU_MMU_REG_CMDQ_CONS_ERR_MASK	      GENMASK(30, 24)
46 #define IVPU_MMU_REG_EVTQ_BASE		      0x002000a0u
47 #define IVPU_MMU_REG_EVTQ_PROD		      0x002000a8u
48 #define IVPU_MMU_REG_EVTQ_CONS		      0x002000acu
49 #define IVPU_MMU_REG_EVTQ_PROD_SEC	      (0x002000a8u + SZ_64K)
50 #define IVPU_MMU_REG_EVTQ_CONS_SEC	      (0x002000acu + SZ_64K)
51 
52 #define IVPU_MMU_IDR0_REF		0x080f3e0f
53 #define IVPU_MMU_IDR0_REF_SIMICS	0x080f3e1f
54 #define IVPU_MMU_IDR1_REF		0x0e739d18
55 #define IVPU_MMU_IDR3_REF		0x0000003c
56 #define IVPU_MMU_IDR5_REF		0x00040070
57 #define IVPU_MMU_IDR5_REF_SIMICS	0x00000075
58 #define IVPU_MMU_IDR5_REF_FPGA		0x00800075
59 
60 #define IVPU_MMU_CDTAB_ENT_SIZE		64
61 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2	8 /* 256 entries */
62 #define IVPU_MMU_CDTAB_ENT_COUNT	((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
63 
64 #define IVPU_MMU_STREAM_ID0		0
65 #define IVPU_MMU_STREAM_ID3		3
66 
67 #define IVPU_MMU_STRTAB_ENT_SIZE	64
68 #define IVPU_MMU_STRTAB_ENT_COUNT	4
69 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE	2
70 #define IVPU_MMU_STRTAB_CFG		IVPU_MMU_STRTAB_CFG_LOG2SIZE
71 
72 #define IVPU_MMU_Q_COUNT_LOG2		4 /* 16 entries */
73 #define IVPU_MMU_Q_COUNT		((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
74 #define IVPU_MMU_Q_WRAP_BIT		(IVPU_MMU_Q_COUNT << 1)
75 #define IVPU_MMU_Q_WRAP_MASK		(IVPU_MMU_Q_WRAP_BIT - 1)
76 #define IVPU_MMU_Q_IDX_MASK		(IVPU_MMU_Q_COUNT - 1)
77 #define IVPU_MMU_Q_IDX(val)		((val) & IVPU_MMU_Q_IDX_MASK)
78 
79 #define IVPU_MMU_CMDQ_CMD_SIZE		16
80 #define IVPU_MMU_CMDQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
81 
82 #define IVPU_MMU_EVTQ_CMD_SIZE		32
83 #define IVPU_MMU_EVTQ_SIZE		(IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
84 
85 #define IVPU_MMU_CMD_OPCODE		GENMASK(7, 0)
86 
87 #define IVPU_MMU_CMD_SYNC_0_CS		GENMASK(13, 12)
88 #define IVPU_MMU_CMD_SYNC_0_MSH		GENMASK(23, 22)
89 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
90 #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR	GENMASK(27, 24)
91 #define IVPU_MMU_CMD_SYNC_0_MSI_DATA	GENMASK(63, 32)
92 
93 #define IVPU_MMU_CMD_CFGI_0_SSEC	BIT(10)
94 #define IVPU_MMU_CMD_CFGI_0_SSV		BIT(11)
95 #define IVPU_MMU_CMD_CFGI_0_SSID	GENMASK(31, 12)
96 #define IVPU_MMU_CMD_CFGI_0_SID		GENMASK(63, 32)
97 #define IVPU_MMU_CMD_CFGI_1_RANGE	GENMASK(4, 0)
98 
99 #define IVPU_MMU_CMD_TLBI_0_ASID	GENMASK(63, 48)
100 #define IVPU_MMU_CMD_TLBI_0_VMID	GENMASK(47, 32)
101 
102 #define CMD_PREFETCH_CFG		0x1
103 #define CMD_CFGI_STE			0x3
104 #define CMD_CFGI_ALL			0x4
105 #define CMD_CFGI_CD			0x5
106 #define CMD_CFGI_CD_ALL			0x6
107 #define CMD_TLBI_NH_ASID		0x11
108 #define CMD_TLBI_EL2_ALL		0x20
109 #define CMD_TLBI_NSNH_ALL		0x30
110 #define CMD_SYNC			0x46
111 
112 #define IVPU_MMU_EVT_F_UUT		0x01
113 #define IVPU_MMU_EVT_C_BAD_STREAMID	0x02
114 #define IVPU_MMU_EVT_F_STE_FETCH	0x03
115 #define IVPU_MMU_EVT_C_BAD_STE		0x04
116 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ	0x05
117 #define IVPU_MMU_EVT_F_STREAM_DISABLED	0x06
118 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN	0x07
119 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID	0x08
120 #define IVPU_MMU_EVT_F_CD_FETCH		0x09
121 #define IVPU_MMU_EVT_C_BAD_CD		0x0a
122 #define IVPU_MMU_EVT_F_WALK_EABT	0x0b
123 #define IVPU_MMU_EVT_F_TRANSLATION	0x10
124 #define IVPU_MMU_EVT_F_ADDR_SIZE	0x11
125 #define IVPU_MMU_EVT_F_ACCESS		0x12
126 #define IVPU_MMU_EVT_F_PERMISSION	0x13
127 #define IVPU_MMU_EVT_F_TLB_CONFLICT	0x20
128 #define IVPU_MMU_EVT_F_CFG_CONFLICT	0x21
129 #define IVPU_MMU_EVT_E_PAGE_REQUEST	0x24
130 #define IVPU_MMU_EVT_F_VMS_FETCH	0x25
131 
132 #define IVPU_MMU_EVT_OP_MASK		GENMASK_ULL(7, 0)
133 #define IVPU_MMU_EVT_SSID_MASK		GENMASK_ULL(31, 12)
134 
135 #define IVPU_MMU_Q_BASE_RWA		BIT(62)
136 #define IVPU_MMU_Q_BASE_ADDR_MASK	GENMASK_ULL(51, 5)
137 #define IVPU_MMU_STRTAB_BASE_RA		BIT(62)
138 #define IVPU_MMU_STRTAB_BASE_ADDR_MASK	GENMASK_ULL(51, 6)
139 
140 #define IVPU_MMU_IRQ_EVTQ_EN		BIT(2)
141 #define IVPU_MMU_IRQ_GERROR_EN		BIT(0)
142 
143 #define IVPU_MMU_CR0_ATSCHK		BIT(4)
144 #define IVPU_MMU_CR0_CMDQEN		BIT(3)
145 #define IVPU_MMU_CR0_EVTQEN		BIT(2)
146 #define IVPU_MMU_CR0_PRIQEN		BIT(1)
147 #define IVPU_MMU_CR0_SMMUEN		BIT(0)
148 
149 #define IVPU_MMU_CR1_TABLE_SH		GENMASK(11, 10)
150 #define IVPU_MMU_CR1_TABLE_OC		GENMASK(9, 8)
151 #define IVPU_MMU_CR1_TABLE_IC		GENMASK(7, 6)
152 #define IVPU_MMU_CR1_QUEUE_SH		GENMASK(5, 4)
153 #define IVPU_MMU_CR1_QUEUE_OC		GENMASK(3, 2)
154 #define IVPU_MMU_CR1_QUEUE_IC		GENMASK(1, 0)
155 #define IVPU_MMU_CACHE_NC		0
156 #define IVPU_MMU_CACHE_WB		1
157 #define IVPU_MMU_CACHE_WT		2
158 #define IVPU_MMU_SH_NSH			0
159 #define IVPU_MMU_SH_OSH			2
160 #define IVPU_MMU_SH_ISH			3
161 
162 #define IVPU_MMU_CMDQ_OP		GENMASK_ULL(7, 0)
163 
164 #define IVPU_MMU_CD_0_TCR_T0SZ		GENMASK_ULL(5, 0)
165 #define IVPU_MMU_CD_0_TCR_TG0		GENMASK_ULL(7, 6)
166 #define IVPU_MMU_CD_0_TCR_IRGN0		GENMASK_ULL(9, 8)
167 #define IVPU_MMU_CD_0_TCR_ORGN0		GENMASK_ULL(11, 10)
168 #define IVPU_MMU_CD_0_TCR_SH0		GENMASK_ULL(13, 12)
169 #define IVPU_MMU_CD_0_TCR_EPD0		BIT_ULL(14)
170 #define IVPU_MMU_CD_0_TCR_EPD1		BIT_ULL(30)
171 #define IVPU_MMU_CD_0_ENDI		BIT(15)
172 #define IVPU_MMU_CD_0_V			BIT(31)
173 #define IVPU_MMU_CD_0_TCR_IPS		GENMASK_ULL(34, 32)
174 #define IVPU_MMU_CD_0_TCR_TBI0		BIT_ULL(38)
175 #define IVPU_MMU_CD_0_AA64		BIT(41)
176 #define IVPU_MMU_CD_0_S			BIT(44)
177 #define IVPU_MMU_CD_0_R			BIT(45)
178 #define IVPU_MMU_CD_0_A			BIT(46)
179 #define IVPU_MMU_CD_0_ASET		BIT(47)
180 #define IVPU_MMU_CD_0_ASID		GENMASK_ULL(63, 48)
181 
182 #define IVPU_MMU_T0SZ_48BIT             16
183 #define IVPU_MMU_T0SZ_38BIT             26
184 
185 #define IVPU_MMU_IPS_48BIT		5
186 #define IVPU_MMU_IPS_44BIT		4
187 #define IVPU_MMU_IPS_42BIT		3
188 #define IVPU_MMU_IPS_40BIT		2
189 #define IVPU_MMU_IPS_36BIT		1
190 #define IVPU_MMU_IPS_32BIT		0
191 
192 #define IVPU_MMU_CD_1_TTB0_MASK		GENMASK_ULL(51, 4)
193 
194 #define IVPU_MMU_STE_0_S1CDMAX		GENMASK_ULL(63, 59)
195 #define IVPU_MMU_STE_0_S1FMT		GENMASK_ULL(5, 4)
196 #define IVPU_MMU_STE_0_S1FMT_LINEAR	0
197 #define IVPU_MMU_STE_DWORDS		8
198 #define IVPU_MMU_STE_0_CFG_S1_TRANS	5
199 #define IVPU_MMU_STE_0_CFG		GENMASK_ULL(3, 1)
200 #define IVPU_MMU_STE_0_S1CTXPTR_MASK	GENMASK_ULL(51, 6)
201 #define IVPU_MMU_STE_0_V			BIT(0)
202 
203 #define IVPU_MMU_STE_1_STRW_NSEL1	0ul
204 #define IVPU_MMU_STE_1_CONT		GENMASK_ULL(16, 13)
205 #define IVPU_MMU_STE_1_STRW		GENMASK_ULL(31, 30)
206 #define IVPU_MMU_STE_1_PRIVCFG		GENMASK_ULL(49, 48)
207 #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV	2ul
208 #define IVPU_MMU_STE_1_INSTCFG		GENMASK_ULL(51, 50)
209 #define IVPU_MMU_STE_1_INSTCFG_DATA	2ul
210 #define IVPU_MMU_STE_1_MEV		BIT(19)
211 #define IVPU_MMU_STE_1_S1STALLD		BIT(27)
212 #define IVPU_MMU_STE_1_S1C_CACHE_NC	0ul
213 #define IVPU_MMU_STE_1_S1C_CACHE_WBRA	1ul
214 #define IVPU_MMU_STE_1_S1C_CACHE_WT	2ul
215 #define IVPU_MMU_STE_1_S1C_CACHE_WB	3ul
216 #define IVPU_MMU_STE_1_S1CIR		GENMASK_ULL(3, 2)
217 #define IVPU_MMU_STE_1_S1COR		GENMASK_ULL(5, 4)
218 #define IVPU_MMU_STE_1_S1CSH		GENMASK_ULL(7, 6)
219 #define IVPU_MMU_STE_1_S1DSS		GENMASK_ULL(1, 0)
220 #define IVPU_MMU_STE_1_S1DSS_TERMINATE	0x0
221 
222 #define IVPU_MMU_REG_TIMEOUT_US		(10 * USEC_PER_MSEC)
223 #define IVPU_MMU_QUEUE_TIMEOUT_US	(100 * USEC_PER_MSEC)
224 
225 #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(IVPU_MMU_REG_GERROR, CMDQ)) | \
226 				  (REG_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT)) | \
227 				  (REG_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT)) | \
228 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT)) | \
229 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT)) | \
230 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT)) | \
231 				  (REG_FLD(IVPU_MMU_REG_GERROR, MSI_ABT)))
232 
233 #define IVPU_MMU_CERROR_NONE         0x0
234 #define IVPU_MMU_CERROR_ILL          0x1
235 #define IVPU_MMU_CERROR_ABT          0x2
236 #define IVPU_MMU_CERROR_ATC_INV_SYNC 0x3
237 
238 static const char *ivpu_mmu_event_to_str(u32 cmd)
239 {
240 	switch (cmd) {
241 	case IVPU_MMU_EVT_F_UUT:
242 		return "Unsupported Upstream Transaction";
243 	case IVPU_MMU_EVT_C_BAD_STREAMID:
244 		return "Transaction StreamID out of range";
245 	case IVPU_MMU_EVT_F_STE_FETCH:
246 		return "Fetch of STE caused external abort";
247 	case IVPU_MMU_EVT_C_BAD_STE:
248 		return "Used STE invalid";
249 	case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
250 		return "Address Request disallowed for a StreamID";
251 	case IVPU_MMU_EVT_F_STREAM_DISABLED:
252 		return "Transaction marks non-substream disabled";
253 	case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
254 		return "MMU bypass is disallowed for this StreamID";
255 	case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
256 		return "Invalid StreamID";
257 	case IVPU_MMU_EVT_F_CD_FETCH:
258 		return "Fetch of CD caused external abort";
259 	case IVPU_MMU_EVT_C_BAD_CD:
260 		return "Fetched CD invalid";
261 	case IVPU_MMU_EVT_F_WALK_EABT:
262 		return " An external abort occurred fetching a TLB";
263 	case IVPU_MMU_EVT_F_TRANSLATION:
264 		return "Translation fault";
265 	case IVPU_MMU_EVT_F_ADDR_SIZE:
266 		return " Output address caused address size fault";
267 	case IVPU_MMU_EVT_F_ACCESS:
268 		return "Access flag fault";
269 	case IVPU_MMU_EVT_F_PERMISSION:
270 		return "Permission fault occurred on page access";
271 	case IVPU_MMU_EVT_F_TLB_CONFLICT:
272 		return "A TLB conflict";
273 	case IVPU_MMU_EVT_F_CFG_CONFLICT:
274 		return "A configuration cache conflict";
275 	case IVPU_MMU_EVT_E_PAGE_REQUEST:
276 		return "Page request hint from a client device";
277 	case IVPU_MMU_EVT_F_VMS_FETCH:
278 		return "Fetch of VMS caused external abort";
279 	default:
280 		return "Unknown CMDQ command";
281 	}
282 }
283 
284 static const char *ivpu_mmu_cmdq_err_to_str(u32 err)
285 {
286 	switch (err) {
287 	case IVPU_MMU_CERROR_NONE:
288 		return "No CMDQ Error";
289 	case IVPU_MMU_CERROR_ILL:
290 		return "Illegal command";
291 	case IVPU_MMU_CERROR_ABT:
292 		return "External abort on CMDQ read";
293 	case IVPU_MMU_CERROR_ATC_INV_SYNC:
294 		return "Sync failed to complete ATS invalidation";
295 	default:
296 		return "Unknown CMDQ Error";
297 	}
298 }
299 
300 static void ivpu_mmu_config_check(struct ivpu_device *vdev)
301 {
302 	u32 val_ref;
303 	u32 val;
304 
305 	if (ivpu_is_simics(vdev))
306 		val_ref = IVPU_MMU_IDR0_REF_SIMICS;
307 	else
308 		val_ref = IVPU_MMU_IDR0_REF;
309 
310 	val = REGV_RD32(IVPU_MMU_REG_IDR0);
311 	if (val != val_ref)
312 		ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
313 
314 	val = REGV_RD32(IVPU_MMU_REG_IDR1);
315 	if (val != IVPU_MMU_IDR1_REF)
316 		ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
317 
318 	val = REGV_RD32(IVPU_MMU_REG_IDR3);
319 	if (val != IVPU_MMU_IDR3_REF)
320 		ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
321 
322 	if (ivpu_is_simics(vdev))
323 		val_ref = IVPU_MMU_IDR5_REF_SIMICS;
324 	else if (ivpu_is_fpga(vdev))
325 		val_ref = IVPU_MMU_IDR5_REF_FPGA;
326 	else
327 		val_ref = IVPU_MMU_IDR5_REF;
328 
329 	val = REGV_RD32(IVPU_MMU_REG_IDR5);
330 	if (val != val_ref)
331 		ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
332 }
333 
334 static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
335 {
336 	struct ivpu_mmu_info *mmu = vdev->mmu;
337 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
338 	size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
339 
340 	cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
341 	if (!cdtab->base)
342 		return -ENOMEM;
343 
344 	ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
345 
346 	return 0;
347 }
348 
349 static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
350 {
351 	struct ivpu_mmu_info *mmu = vdev->mmu;
352 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
353 	size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
354 
355 	strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
356 	if (!strtab->base)
357 		return -ENOMEM;
358 
359 	strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
360 	strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
361 	strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
362 
363 	ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
364 		 &strtab->dma, &strtab->dma_q, size);
365 
366 	return 0;
367 }
368 
369 static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
370 {
371 	struct ivpu_mmu_info *mmu = vdev->mmu;
372 	struct ivpu_mmu_queue *q = &mmu->cmdq;
373 
374 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
375 	if (!q->base)
376 		return -ENOMEM;
377 
378 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
379 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
380 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
381 
382 	ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
383 		 &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
384 
385 	return 0;
386 }
387 
388 static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
389 {
390 	struct ivpu_mmu_info *mmu = vdev->mmu;
391 	struct ivpu_mmu_queue *q = &mmu->evtq;
392 
393 	q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
394 	if (!q->base)
395 		return -ENOMEM;
396 
397 	q->dma_q = IVPU_MMU_Q_BASE_RWA;
398 	q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
399 	q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
400 
401 	ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
402 		 &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
403 
404 	return 0;
405 }
406 
407 static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
408 {
409 	int ret;
410 
411 	ret = ivpu_mmu_cdtab_alloc(vdev);
412 	if (ret) {
413 		ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
414 		return ret;
415 	}
416 
417 	ret = ivpu_mmu_strtab_alloc(vdev);
418 	if (ret) {
419 		ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
420 		return ret;
421 	}
422 
423 	ret = ivpu_mmu_cmdq_alloc(vdev);
424 	if (ret) {
425 		ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
426 		return ret;
427 	}
428 
429 	ret = ivpu_mmu_evtq_alloc(vdev);
430 	if (ret)
431 		ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
432 
433 	return ret;
434 }
435 
436 static int ivpu_mmu_reg_write_cr0(struct ivpu_device *vdev, u32 val)
437 {
438 	REGV_WR32(IVPU_MMU_REG_CR0, val);
439 
440 	return REGV_POLL_FLD(IVPU_MMU_REG_CR0ACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
441 }
442 
443 static int ivpu_mmu_reg_write_irq_ctrl(struct ivpu_device *vdev, u32 val)
444 {
445 	REGV_WR32(IVPU_MMU_REG_IRQ_CTRL, val);
446 
447 	return REGV_POLL_FLD(IVPU_MMU_REG_IRQ_CTRLACK, VAL, val, IVPU_MMU_REG_TIMEOUT_US);
448 }
449 
450 static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
451 {
452 	u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
453 	int ret;
454 
455 	ret = ivpu_mmu_reg_write_irq_ctrl(vdev, 0);
456 	if (ret)
457 		return ret;
458 
459 	return ivpu_mmu_reg_write_irq_ctrl(vdev, irq_ctrl);
460 }
461 
462 static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
463 {
464 	struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
465 	int ret;
466 
467 	ret = REGV_POLL_FLD(IVPU_MMU_REG_CMDQ_CONS, VAL, cmdq->prod,
468 			    IVPU_MMU_QUEUE_TIMEOUT_US);
469 	if (ret)
470 		return ret;
471 
472 	cmdq->cons = cmdq->prod;
473 
474 	return 0;
475 }
476 
477 static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
478 {
479 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
480 	u64 *queue_buffer = q->base;
481 	int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
482 
483 	if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) {
484 		ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
485 		return -EBUSY;
486 	}
487 
488 	queue_buffer[idx] = data0;
489 	queue_buffer[idx + 1] = data1;
490 	q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
491 
492 	ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
493 
494 	return 0;
495 }
496 
497 static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
498 {
499 	struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
500 	u64 val;
501 	int ret;
502 
503 	val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC);
504 
505 	ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
506 	if (ret)
507 		return ret;
508 
509 	clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
510 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, q->prod);
511 
512 	ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
513 	if (ret) {
514 		u32 err;
515 
516 		val = REGV_RD32(IVPU_MMU_REG_CMDQ_CONS);
517 		err = REG_GET_FLD(IVPU_MMU_REG_CMDQ_CONS, ERR, val);
518 
519 		ivpu_err(vdev, "Timed out waiting for MMU consumer: %d, error: %s\n", ret,
520 			 ivpu_mmu_cmdq_err_to_str(err));
521 	}
522 
523 	return ret;
524 }
525 
526 static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
527 {
528 	u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
529 	u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
530 
531 	return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
532 }
533 
534 static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
535 {
536 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
537 		  FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
538 
539 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
540 }
541 
542 static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
543 {
544 	u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
545 
546 	return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
547 }
548 
549 static int ivpu_mmu_reset(struct ivpu_device *vdev)
550 {
551 	struct ivpu_mmu_info *mmu = vdev->mmu;
552 	u32 val;
553 	int ret;
554 
555 	memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
556 	clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
557 	mmu->cmdq.prod = 0;
558 	mmu->cmdq.cons = 0;
559 
560 	memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
561 	clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE);
562 	mmu->evtq.prod = 0;
563 	mmu->evtq.cons = 0;
564 
565 	ret = ivpu_mmu_reg_write_cr0(vdev, 0);
566 	if (ret)
567 		return ret;
568 
569 	val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
570 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
571 	      FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
572 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
573 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
574 	      FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
575 	REGV_WR32(IVPU_MMU_REG_CR1, val);
576 
577 	REGV_WR64(IVPU_MMU_REG_STRTAB_BASE, mmu->strtab.dma_q);
578 	REGV_WR32(IVPU_MMU_REG_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
579 
580 	REGV_WR64(IVPU_MMU_REG_CMDQ_BASE, mmu->cmdq.dma_q);
581 	REGV_WR32(IVPU_MMU_REG_CMDQ_PROD, 0);
582 	REGV_WR32(IVPU_MMU_REG_CMDQ_CONS, 0);
583 
584 	val = IVPU_MMU_CR0_CMDQEN;
585 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
586 	if (ret)
587 		return ret;
588 
589 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
590 	if (ret)
591 		return ret;
592 
593 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
594 	if (ret)
595 		return ret;
596 
597 	ret = ivpu_mmu_cmdq_sync(vdev);
598 	if (ret)
599 		return ret;
600 
601 	REGV_WR64(IVPU_MMU_REG_EVTQ_BASE, mmu->evtq.dma_q);
602 	REGV_WR32(IVPU_MMU_REG_EVTQ_PROD_SEC, 0);
603 	REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, 0);
604 
605 	val |= IVPU_MMU_CR0_EVTQEN;
606 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
607 	if (ret)
608 		return ret;
609 
610 	val |= IVPU_MMU_CR0_ATSCHK;
611 	ret = ivpu_mmu_reg_write_cr0(vdev, val);
612 	if (ret)
613 		return ret;
614 
615 	ret = ivpu_mmu_irqs_setup(vdev);
616 	if (ret)
617 		return ret;
618 
619 	val |= IVPU_MMU_CR0_SMMUEN;
620 	return ivpu_mmu_reg_write_cr0(vdev, val);
621 }
622 
623 static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
624 {
625 	struct ivpu_mmu_info *mmu = vdev->mmu;
626 	struct ivpu_mmu_strtab *strtab = &mmu->strtab;
627 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
628 	u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
629 	u64 str[2];
630 
631 	str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
632 		 FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
633 		 FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
634 		 IVPU_MMU_STE_0_V |
635 		 (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
636 
637 	str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
638 		 FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
639 		 FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
640 		 FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
641 		 FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
642 		 FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
643 		 FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
644 		 FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
645 		 IVPU_MMU_STE_1_MEV |
646 		 IVPU_MMU_STE_1_S1STALLD;
647 
648 	WRITE_ONCE(entry[1], str[1]);
649 	WRITE_ONCE(entry[0], str[0]);
650 
651 	clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
652 
653 	ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
654 }
655 
656 static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
657 {
658 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
659 	ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
660 
661 	return 0;
662 }
663 
664 int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
665 {
666 	struct ivpu_mmu_info *mmu = vdev->mmu;
667 	int ret = 0;
668 
669 	mutex_lock(&mmu->lock);
670 	if (!mmu->on)
671 		goto unlock;
672 
673 	ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
674 	if (ret)
675 		goto unlock;
676 
677 	ret = ivpu_mmu_cmdq_sync(vdev);
678 unlock:
679 	mutex_unlock(&mmu->lock);
680 	return ret;
681 }
682 
683 static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
684 {
685 	struct ivpu_mmu_info *mmu = vdev->mmu;
686 	struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
687 	u64 *entry;
688 	u64 cd[4];
689 	int ret = 0;
690 
691 	if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
692 		return -EINVAL;
693 
694 	entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
695 
696 	if (cd_dma != 0) {
697 		cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, IVPU_MMU_T0SZ_48BIT) |
698 			FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
699 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
700 			FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
701 			FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
702 			FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, IVPU_MMU_IPS_48BIT) |
703 			FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
704 			IVPU_MMU_CD_0_TCR_EPD1 |
705 			IVPU_MMU_CD_0_AA64 |
706 			IVPU_MMU_CD_0_R |
707 			IVPU_MMU_CD_0_ASET |
708 			IVPU_MMU_CD_0_V;
709 		cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
710 		cd[2] = 0;
711 		cd[3] = 0x0000000000007444;
712 
713 		/* For global context generate memory fault on VPU */
714 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
715 			cd[0] |= IVPU_MMU_CD_0_A;
716 	} else {
717 		memset(cd, 0, sizeof(cd));
718 	}
719 
720 	WRITE_ONCE(entry[1], cd[1]);
721 	WRITE_ONCE(entry[2], cd[2]);
722 	WRITE_ONCE(entry[3], cd[3]);
723 	WRITE_ONCE(entry[0], cd[0]);
724 
725 	clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
726 
727 	ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
728 		 cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
729 
730 	mutex_lock(&mmu->lock);
731 	if (!mmu->on)
732 		goto unlock;
733 
734 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
735 	if (ret)
736 		goto unlock;
737 
738 	ret = ivpu_mmu_cmdq_sync(vdev);
739 unlock:
740 	mutex_unlock(&mmu->lock);
741 	return ret;
742 }
743 
744 static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
745 {
746 	int ret;
747 
748 	ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
749 	if (ret)
750 		ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
751 
752 	return ret;
753 }
754 
755 static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
756 {
757 	int ret;
758 
759 	if (ssid == 0) {
760 		ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
761 		return -EINVAL;
762 	}
763 
764 	ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
765 	if (ret)
766 		ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
767 
768 	return ret;
769 }
770 
771 int ivpu_mmu_init(struct ivpu_device *vdev)
772 {
773 	struct ivpu_mmu_info *mmu = vdev->mmu;
774 	int ret;
775 
776 	ivpu_dbg(vdev, MMU, "Init..\n");
777 
778 	ivpu_mmu_config_check(vdev);
779 
780 	ret = drmm_mutex_init(&vdev->drm, &mmu->lock);
781 	if (ret)
782 		return ret;
783 
784 	ret = ivpu_mmu_structs_alloc(vdev);
785 	if (ret)
786 		return ret;
787 
788 	ret = ivpu_mmu_strtab_init(vdev);
789 	if (ret) {
790 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
791 		return ret;
792 	}
793 
794 	ret = ivpu_mmu_cd_add_gbl(vdev);
795 	if (ret) {
796 		ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
797 		return ret;
798 	}
799 
800 	ret = ivpu_mmu_enable(vdev);
801 	if (ret) {
802 		ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
803 		return ret;
804 	}
805 
806 	ivpu_dbg(vdev, MMU, "Init done\n");
807 
808 	return 0;
809 }
810 
811 int ivpu_mmu_enable(struct ivpu_device *vdev)
812 {
813 	struct ivpu_mmu_info *mmu = vdev->mmu;
814 	int ret;
815 
816 	mutex_lock(&mmu->lock);
817 
818 	mmu->on = true;
819 
820 	ret = ivpu_mmu_reset(vdev);
821 	if (ret) {
822 		ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
823 		goto err;
824 	}
825 
826 	ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
827 	if (ret)
828 		goto err;
829 
830 	ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
831 	if (ret)
832 		goto err;
833 
834 	ret = ivpu_mmu_cmdq_sync(vdev);
835 	if (ret)
836 		goto err;
837 
838 	mutex_unlock(&mmu->lock);
839 
840 	return 0;
841 err:
842 	mmu->on = false;
843 	mutex_unlock(&mmu->lock);
844 	return ret;
845 }
846 
847 void ivpu_mmu_disable(struct ivpu_device *vdev)
848 {
849 	struct ivpu_mmu_info *mmu = vdev->mmu;
850 
851 	mutex_lock(&mmu->lock);
852 	mmu->on = false;
853 	mutex_unlock(&mmu->lock);
854 }
855 
856 static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
857 {
858 	u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
859 	u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
860 	u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
861 	u64 in_addr = ((u64)event[5]) << 32 | event[4];
862 	u32 sid = event[1];
863 
864 	ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
865 		 op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr);
866 }
867 
868 static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
869 {
870 	struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
871 	u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
872 	u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
873 
874 	evtq->prod = REGV_RD32(IVPU_MMU_REG_EVTQ_PROD_SEC);
875 	if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT))
876 		return NULL;
877 
878 	clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE);
879 
880 	evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
881 	REGV_WR32(IVPU_MMU_REG_EVTQ_CONS_SEC, evtq->cons);
882 
883 	return evt;
884 }
885 
886 void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
887 {
888 	bool schedule_recovery = false;
889 	u32 *event;
890 	u32 ssid;
891 
892 	ivpu_dbg(vdev, IRQ, "MMU event queue\n");
893 
894 	while ((event = ivpu_mmu_get_event(vdev)) != NULL) {
895 		ivpu_mmu_dump_event(vdev, event);
896 
897 		ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
898 		if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID)
899 			schedule_recovery = true;
900 		else
901 			ivpu_mmu_user_context_mark_invalid(vdev, ssid);
902 	}
903 
904 	if (schedule_recovery)
905 		ivpu_pm_schedule_recovery(vdev);
906 }
907 
908 void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
909 {
910 	u32 gerror_val, gerrorn_val, active;
911 
912 	ivpu_dbg(vdev, IRQ, "MMU error\n");
913 
914 	gerror_val = REGV_RD32(IVPU_MMU_REG_GERROR);
915 	gerrorn_val = REGV_RD32(IVPU_MMU_REG_GERRORN);
916 
917 	active = gerror_val ^ gerrorn_val;
918 	if (!(active & IVPU_MMU_GERROR_ERR_MASK))
919 		return;
920 
921 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_ABT, active))
922 		ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
923 
924 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_PRIQ_ABT, active))
925 		ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
926 
927 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_EVTQ_ABT, active))
928 		ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
929 
930 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, MSI_CMDQ_ABT, active))
931 		ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
932 
933 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, PRIQ_ABT, active))
934 		ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
935 
936 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, EVTQ_ABT, active))
937 		ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
938 
939 	if (REG_TEST_FLD(IVPU_MMU_REG_GERROR, CMDQ, active))
940 		ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
941 
942 	REGV_WR32(IVPU_MMU_REG_GERRORN, gerror_val);
943 }
944 
945 int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
946 {
947 	return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
948 }
949 
950 void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
951 {
952 	ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
953 }
954