xref: /linux/drivers/accel/ivpu/ivpu_hw_btrs.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020-2024 Intel Corporation
4  */
5 
6 #include "ivpu_drv.h"
7 #include "ivpu_hw.h"
8 #include "ivpu_hw_btrs.h"
9 #include "ivpu_hw_btrs_lnl_reg.h"
10 #include "ivpu_hw_btrs_mtl_reg.h"
11 #include "ivpu_hw_reg_io.h"
12 #include "ivpu_pm.h"
13 
14 #define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \
15 			   (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR)))
16 
17 #define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \
18 			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \
19 			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \
20 			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \
21 			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \
22 			   (REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR)))
23 
24 #define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \
25 			       FREQ_CHANGE)))
26 
27 #define BTRS_IRQ_DISABLE_MASK ((u32)-1)
28 
29 #define BTRS_LNL_ALL_IRQ_MASK ((u32)-1)
30 
31 #define BTRS_MTL_WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_5_3)
32 #define BTRS_MTL_WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_4_3)
33 #define BTRS_MTL_WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_5_3)
34 #define BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3)
35 #define BTRS_MTL_WP_CONFIG_0_TILE_PLL_OFF   WP_CONFIG(0, 0)
36 
37 #define PLL_CDYN_DEFAULT               0x80
38 #define PLL_EPP_DEFAULT                0x80
39 #define PLL_CONFIG_DEFAULT             0x0
40 #define PLL_SIMULATION_FREQ            10000000
41 #define PLL_REF_CLK_FREQ               50000000
42 #define PLL_TIMEOUT_US		       (1500 * USEC_PER_MSEC)
43 #define IDLE_TIMEOUT_US		       (5 * USEC_PER_MSEC)
44 #define TIMEOUT_US                     (150 * USEC_PER_MSEC)
45 
46 /* Work point configuration values */
47 #define WP_CONFIG(tile, ratio)         (((tile) << 8) | (ratio))
48 #define MTL_CONFIG_1_TILE              0x01
49 #define MTL_CONFIG_2_TILE              0x02
50 #define MTL_PLL_RATIO_5_3              0x01
51 #define MTL_PLL_RATIO_4_3              0x02
52 #define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0
53 #define BTRS_MTL_TILE_SKU_BOTH         0x3630
54 
55 #define BTRS_LNL_TILE_MAX_NUM          6
56 #define BTRS_LNL_TILE_MAX_MASK         0x3f
57 
58 #define WEIGHTS_DEFAULT                0xf711f711u
59 #define WEIGHTS_ATS_DEFAULT            0x0000f711u
60 
61 #define DCT_REQ                        0x2
62 #define DCT_ENABLE                     0x1
63 #define DCT_DISABLE                    0x0
64 
65 int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev)
66 {
67 	REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK);
68 	if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) {
69 		/* Writing 1s does not clear the interrupt status register */
70 		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
71 		return true;
72 	}
73 
74 	return false;
75 }
76 
77 static void freq_ratios_init_mtl(struct ivpu_device *vdev)
78 {
79 	struct ivpu_hw_info *hw = vdev->hw;
80 	u32 fmin_fuse, fmax_fuse;
81 
82 	fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE);
83 	hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
84 	hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse);
85 
86 	fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE);
87 	hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
88 }
89 
90 static void freq_ratios_init_lnl(struct ivpu_device *vdev)
91 {
92 	struct ivpu_hw_info *hw = vdev->hw;
93 	u32 fmin_fuse, fmax_fuse;
94 
95 	fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE);
96 	hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
97 	hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse);
98 
99 	fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE);
100 	hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
101 }
102 
103 void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev)
104 {
105 	struct ivpu_hw_info *hw = vdev->hw;
106 
107 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
108 		freq_ratios_init_mtl(vdev);
109 	else
110 		freq_ratios_init_lnl(vdev);
111 
112 	hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
113 	hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
114 	hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
115 }
116 
117 static bool tile_disable_check(u32 config)
118 {
119 	/* Allowed values: 0 or one bit from range 0-5 (6 tiles) */
120 	if (config == 0)
121 		return true;
122 
123 	if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1))
124 		return false;
125 
126 	if ((config & (config - 1)) == 0)
127 		return true;
128 
129 	return false;
130 }
131 
132 static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config)
133 {
134 	u32 fuse;
135 	u32 config;
136 
137 	fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE);
138 	if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) {
139 		ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse);
140 		return -EIO;
141 	}
142 
143 	config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse);
144 	if (!tile_disable_check(config)) {
145 		ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", config);
146 		return -EIO;
147 	}
148 
149 	if (config)
150 		ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n",
151 			 BTRS_LNL_TILE_MAX_NUM - 1, ffs(config) - 1);
152 	else
153 		ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", BTRS_LNL_TILE_MAX_NUM);
154 
155 	*tile_fuse_config = config;
156 	return 0;
157 }
158 
159 static int info_init_mtl(struct ivpu_device *vdev)
160 {
161 	struct ivpu_hw_info *hw = vdev->hw;
162 
163 	hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH;
164 	hw->sku = BTRS_MTL_TILE_SKU_BOTH;
165 	hw->config = BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO;
166 	hw->sched_mode = ivpu_sched_mode;
167 
168 	return 0;
169 }
170 
171 static int info_init_lnl(struct ivpu_device *vdev)
172 {
173 	struct ivpu_hw_info *hw = vdev->hw;
174 	u32 tile_fuse_config;
175 	int ret;
176 
177 	ret = read_tile_config_fuse(vdev, &tile_fuse_config);
178 	if (ret)
179 		return ret;
180 
181 	hw->sched_mode = ivpu_sched_mode;
182 	hw->tile_fuse = tile_fuse_config;
183 	hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT;
184 
185 	return 0;
186 }
187 
188 int ivpu_hw_btrs_info_init(struct ivpu_device *vdev)
189 {
190 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
191 		return info_init_mtl(vdev);
192 	else
193 		return info_init_lnl(vdev);
194 }
195 
196 static int wp_request_sync(struct ivpu_device *vdev)
197 {
198 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
199 		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
200 	else
201 		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
202 }
203 
204 static int wait_for_status_ready(struct ivpu_device *vdev, bool enable)
205 {
206 	u32 exp_val = enable ? 0x1 : 0x0;
207 
208 	if (IVPU_WA(punit_disabled))
209 		return 0;
210 
211 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
212 		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
213 	else
214 		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
215 }
216 
217 struct wp_request {
218 	u16 min;
219 	u16 max;
220 	u16 target;
221 	u16 cfg;
222 	u16 epp;
223 	u16 cdyn;
224 };
225 
226 static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp)
227 {
228 	u32 val;
229 
230 	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0);
231 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
232 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
233 	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val);
234 
235 	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1);
236 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
237 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val);
238 	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val);
239 
240 	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2);
241 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
242 	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val);
243 
244 	val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD);
245 	val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val);
246 	REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val);
247 }
248 
249 static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp)
250 {
251 	u32 val;
252 
253 	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0);
254 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
255 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
256 	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val);
257 
258 	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1);
259 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
260 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val);
261 	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val);
262 
263 	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2);
264 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
265 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val);
266 	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val);
267 
268 	val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD);
269 	val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val);
270 	REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val);
271 }
272 
273 static void wp_request(struct ivpu_device *vdev, struct wp_request *wp)
274 {
275 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
276 		wp_request_mtl(vdev, wp);
277 	else
278 		wp_request_lnl(vdev, wp);
279 }
280 
281 static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp)
282 {
283 	int ret;
284 
285 	ret = wp_request_sync(vdev);
286 	if (ret) {
287 		ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret);
288 		return ret;
289 	}
290 
291 	wp_request(vdev, wp);
292 
293 	ret = wp_request_sync(vdev);
294 	if (ret)
295 		ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret);
296 
297 	return ret;
298 }
299 
300 static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable)
301 {
302 	struct ivpu_hw_info *hw = vdev->hw;
303 
304 	wp->min = hw->pll.min_ratio;
305 	wp->max = hw->pll.max_ratio;
306 
307 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
308 		wp->target = enable ? hw->pll.pn_ratio : 0;
309 		wp->cfg = enable ? hw->config : 0;
310 		wp->cdyn = 0;
311 		wp->epp = 0;
312 	} else {
313 		wp->target = hw->pll.pn_ratio;
314 		wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0;
315 		wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0;
316 		wp->epp = enable ? PLL_EPP_DEFAULT : 0;
317 	}
318 
319 	/* Simics cannot start without at least one tile */
320 	if (enable && ivpu_is_simics(vdev))
321 		wp->cfg = 1;
322 }
323 
324 static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable)
325 {
326 	u32 exp_val = enable ? 0x1 : 0x0;
327 
328 	if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL)
329 		return 0;
330 
331 	if (IVPU_WA(punit_disabled))
332 		return 0;
333 
334 	return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
335 }
336 
337 int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable)
338 {
339 	struct wp_request wp;
340 	int ret;
341 
342 	if (IVPU_WA(punit_disabled)) {
343 		ivpu_dbg(vdev, PM, "Skipping workpoint request\n");
344 		return 0;
345 	}
346 
347 	prepare_wp_request(vdev, &wp, enable);
348 
349 	ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n",
350 		 PLL_RATIO_TO_FREQ(wp.target), wp.cfg, wp.epp, wp.cdyn);
351 
352 	ret = wp_request_send(vdev, &wp);
353 	if (ret) {
354 		ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret);
355 		return ret;
356 	}
357 
358 	ret = wait_for_pll_lock(vdev, enable);
359 	if (ret) {
360 		ivpu_err(vdev, "Timed out waiting for PLL lock\n");
361 		return ret;
362 	}
363 
364 	ret = wait_for_status_ready(vdev, enable);
365 	if (ret) {
366 		ivpu_err(vdev, "Timed out waiting for NPU ready status\n");
367 		return ret;
368 	}
369 
370 	return 0;
371 }
372 
373 static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable)
374 {
375 	int ret;
376 	u32 val;
377 
378 	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
379 	if (ret) {
380 		ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
381 		return ret;
382 	}
383 
384 	val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL);
385 	if (enable)
386 		val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
387 	else
388 		val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
389 	REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val);
390 
391 	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
392 	if (ret)
393 		ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
394 
395 	return ret;
396 }
397 
398 static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable)
399 {
400 	int ret;
401 	u32 val;
402 
403 	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
404 	if (ret) {
405 		ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
406 		return ret;
407 	}
408 
409 	val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL);
410 	if (enable)
411 		val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
412 	else
413 		val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
414 	REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val);
415 
416 	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
417 	if (ret) {
418 		ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
419 		return ret;
420 	}
421 
422 	return 0;
423 }
424 
425 static int d0i3_drive(struct ivpu_device *vdev, bool enable)
426 {
427 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
428 		return d0i3_drive_mtl(vdev, enable);
429 	else
430 		return d0i3_drive_lnl(vdev, enable);
431 }
432 
433 int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev)
434 {
435 	int ret;
436 
437 	if (IVPU_WA(punit_disabled))
438 		return 0;
439 
440 	ret = d0i3_drive(vdev, true);
441 	if (ret)
442 		ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);
443 
444 	udelay(5); /* VPU requires 5 us to complete the transition */
445 
446 	return ret;
447 }
448 
449 int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev)
450 {
451 	int ret;
452 
453 	if (IVPU_WA(punit_disabled))
454 		return 0;
455 
456 	ret = d0i3_drive(vdev, false);
457 	if (ret)
458 		ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);
459 
460 	return ret;
461 }
462 
463 int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev)
464 {
465 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
466 		return 0;
467 
468 	if (ivpu_is_simics(vdev))
469 		return 0;
470 
471 	return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US);
472 }
473 
474 void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev)
475 {
476 	REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT);
477 	REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT);
478 }
479 
480 static int ip_reset_mtl(struct ivpu_device *vdev)
481 {
482 	int ret;
483 	u32 val;
484 
485 	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
486 	if (ret) {
487 		ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
488 		return ret;
489 	}
490 
491 	val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET);
492 	val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val);
493 	REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val);
494 
495 	ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
496 	if (ret)
497 		ivpu_err(vdev, "Timed out waiting for RESET completion\n");
498 
499 	return ret;
500 }
501 
502 static int ip_reset_lnl(struct ivpu_device *vdev)
503 {
504 	int ret;
505 	u32 val;
506 
507 	ivpu_hw_btrs_clock_relinquish_disable_lnl(vdev);
508 
509 	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
510 	if (ret) {
511 		ivpu_err(vdev, "Wait for *_TRIGGER timed out\n");
512 		return ret;
513 	}
514 
515 	val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET);
516 	val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val);
517 	REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val);
518 
519 	ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
520 	if (ret)
521 		ivpu_err(vdev, "Timed out waiting for RESET completion\n");
522 
523 	return ret;
524 }
525 
526 int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev)
527 {
528 	if (IVPU_WA(punit_disabled))
529 		return 0;
530 
531 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
532 		return ip_reset_mtl(vdev);
533 	else
534 		return ip_reset_lnl(vdev);
535 }
536 
537 void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev)
538 {
539 	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
540 
541 	if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT)
542 		val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
543 	else
544 		val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
545 
546 	REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
547 }
548 
549 void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev)
550 {
551 	ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n",
552 		 REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable");
553 }
554 
555 void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev)
556 {
557 	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
558 
559 	val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val);
560 	REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
561 }
562 
563 bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev)
564 {
565 	u32 val;
566 
567 	if (IVPU_WA(punit_disabled))
568 		return true;
569 
570 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
571 		val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS);
572 
573 		return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) &&
574 		       REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val);
575 	} else {
576 		val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
577 
578 		return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) &&
579 		       REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val);
580 	}
581 }
582 
583 int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev)
584 {
585 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
586 		return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
587 	else
588 		return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
589 }
590 
591 /* Handler for IRQs from Buttress core (irqB) */
592 bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq)
593 {
594 	u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
595 	bool schedule_recovery = false;
596 
597 	if (!status)
598 		return false;
599 
600 	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status))
601 		ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x",
602 			 REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL));
603 
604 	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) {
605 		ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
606 		REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1);
607 		schedule_recovery = true;
608 	}
609 
610 	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) {
611 		u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
612 
613 		ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
614 			 ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log),
615 			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log),
616 			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log));
617 		REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1);
618 		schedule_recovery = true;
619 	}
620 
621 	/* This must be done after interrupts are cleared at the source. */
622 	if (IVPU_WA(interrupt_clear_with_0))
623 		/*
624 		 * Writing 1 triggers an interrupt, so we can't perform read update write.
625 		 * Clear local interrupt status by writing 0 to all bits.
626 		 */
627 		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
628 	else
629 		REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status);
630 
631 	if (schedule_recovery)
632 		ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
633 
634 	return true;
635 }
636 
637 /* Handler for IRQs from Buttress core (irqB) */
638 bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq)
639 {
640 	u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
641 	bool schedule_recovery = false;
642 
643 	if (!status)
644 		return false;
645 
646 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status)) {
647 		ivpu_dbg(vdev, IRQ, "Survivability IRQ\n");
648 		if (!kfifo_put(&vdev->hw->irq.fifo, IVPU_HW_IRQ_SRC_DCT))
649 			ivpu_err_ratelimited(vdev, "IRQ FIFO full\n");
650 	}
651 
652 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status))
653 		ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ));
654 
655 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) {
656 		ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
657 			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
658 			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
659 		REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1);
660 		schedule_recovery = true;
661 	}
662 
663 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) {
664 		ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
665 		REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1);
666 		schedule_recovery = true;
667 	}
668 
669 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) {
670 		ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
671 		REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1);
672 		schedule_recovery = true;
673 	}
674 
675 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) {
676 		ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x",
677 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
678 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
679 		REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1);
680 		schedule_recovery = true;
681 	}
682 
683 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) {
684 		ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x",
685 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
686 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
687 		REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1);
688 		schedule_recovery = true;
689 	}
690 
691 	/* This must be done after interrupts are cleared at the source. */
692 	REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status);
693 
694 	if (schedule_recovery)
695 		ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
696 
697 	return true;
698 }
699 
700 int ivpu_hw_btrs_dct_get_request(struct ivpu_device *vdev, bool *enable)
701 {
702 	u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW);
703 	u32 cmd = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, CMD, val);
704 	u32 param1 = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, PARAM1, val);
705 
706 	if (cmd != DCT_REQ) {
707 		ivpu_err_ratelimited(vdev, "Unsupported PCODE command: 0x%x\n", cmd);
708 		return -EBADR;
709 	}
710 
711 	switch (param1) {
712 	case DCT_ENABLE:
713 		*enable = true;
714 		return 0;
715 	case DCT_DISABLE:
716 		*enable = false;
717 		return 0;
718 	default:
719 		ivpu_err_ratelimited(vdev, "Invalid PARAM1 value: %u\n", param1);
720 		return -EINVAL;
721 	}
722 }
723 
724 void ivpu_hw_btrs_dct_set_status(struct ivpu_device *vdev, bool enable, u32 active_percent)
725 {
726 	u32 val = 0;
727 	u32 cmd = enable ? DCT_ENABLE : DCT_DISABLE;
728 
729 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, CMD, DCT_REQ, val);
730 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM1, cmd, val);
731 	val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM2, active_percent, val);
732 
733 	REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, val);
734 }
735 
736 static u32 pll_ratio_to_freq_mtl(u32 ratio, u32 config)
737 {
738 	u32 pll_clock = PLL_REF_CLK_FREQ * ratio;
739 	u32 cpu_clock;
740 
741 	if ((config & 0xff) == MTL_PLL_RATIO_4_3)
742 		cpu_clock = pll_clock * 2 / 4;
743 	else
744 		cpu_clock = pll_clock * 2 / 5;
745 
746 	return cpu_clock;
747 }
748 
749 u32 ivpu_hw_btrs_ratio_to_freq(struct ivpu_device *vdev, u32 ratio)
750 {
751 	struct ivpu_hw_info *hw = vdev->hw;
752 
753 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
754 		return pll_ratio_to_freq_mtl(ratio, hw->config);
755 	else
756 		return PLL_RATIO_TO_FREQ(ratio);
757 }
758 
759 static u32 pll_freq_get_mtl(struct ivpu_device *vdev)
760 {
761 	u32 pll_curr_ratio;
762 
763 	pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL);
764 	pll_curr_ratio &= VPU_HW_BTRS_MTL_CURRENT_PLL_RATIO_MASK;
765 
766 	if (!ivpu_is_silicon(vdev))
767 		return PLL_SIMULATION_FREQ;
768 
769 	return pll_ratio_to_freq_mtl(pll_curr_ratio, vdev->hw->config);
770 }
771 
772 static u32 pll_freq_get_lnl(struct ivpu_device *vdev)
773 {
774 	u32 pll_curr_ratio;
775 
776 	pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ);
777 	pll_curr_ratio &= VPU_HW_BTRS_LNL_PLL_FREQ_RATIO_MASK;
778 
779 	return PLL_RATIO_TO_FREQ(pll_curr_ratio);
780 }
781 
782 u32 ivpu_hw_btrs_pll_freq_get(struct ivpu_device *vdev)
783 {
784 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
785 		return pll_freq_get_mtl(vdev);
786 	else
787 		return pll_freq_get_lnl(vdev);
788 }
789 
790 u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev)
791 {
792 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
793 		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET);
794 	else
795 		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET);
796 }
797 
798 u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev)
799 {
800 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
801 		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE);
802 	else
803 		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE);
804 }
805 
806 u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev)
807 {
808 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
809 		return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE);
810 	else
811 		return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE);
812 }
813 
814 void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev)
815 {
816 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
817 		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
818 	else
819 		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
820 }
821 
822 void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev)
823 {
824 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
825 		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
826 	else
827 		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
828 }
829 
830 void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev)
831 {
832 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
833 		REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK));
834 		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
835 	} else {
836 		REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK));
837 		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
838 	}
839 }
840 
841 void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev)
842 {
843 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
844 		REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
845 		REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
846 	} else {
847 		REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
848 		REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
849 	}
850 }
851 
852 static void diagnose_failure_mtl(struct ivpu_device *vdev)
853 {
854 	u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
855 
856 	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg))
857 		ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
858 
859 	if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) {
860 		u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
861 
862 		ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
863 			 log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log),
864 			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log),
865 			 REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log));
866 	}
867 }
868 
869 static void diagnose_failure_lnl(struct ivpu_device *vdev)
870 {
871 	u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
872 
873 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) {
874 		ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
875 			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
876 			 REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
877 	}
878 
879 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg))
880 		ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
881 
882 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg))
883 		ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
884 
885 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg))
886 		ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n",
887 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
888 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
889 
890 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg))
891 		ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n",
892 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
893 			 REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
894 
895 	if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg))
896 		ivpu_err(vdev, "Survivability IRQ\n");
897 }
898 
899 void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev)
900 {
901 	if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
902 		return diagnose_failure_mtl(vdev);
903 	else
904 		return diagnose_failure_lnl(vdev);
905 }
906