1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <linux/slab.h> 9 10 #include "../habanalabs.h" 11 12 #include <trace/events/habanalabs.h> 13 14 /** 15 * hl_mmu_get_funcs() - get MMU functions structure 16 * @hdev: habanalabs device structure. 17 * @pgt_residency: page table residency. 18 * @is_dram_addr: true if we need HMMU functions 19 * 20 * @return appropriate MMU functions structure 21 */ 22 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, 23 bool is_dram_addr) 24 { 25 return &hdev->mmu_func[pgt_residency]; 26 } 27 28 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) 29 { 30 struct asic_fixed_properties *prop = &hdev->asic_prop; 31 32 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, 33 prop->dmmu.start_addr, 34 prop->dmmu.end_addr); 35 } 36 37 /** 38 * hl_mmu_init() - initialize the MMU module. 39 * @hdev: habanalabs device structure. 40 * 41 * Return: 0 for success, non-zero for failure. 42 */ 43 int hl_mmu_init(struct hl_device *hdev) 44 { 45 int rc = -EOPNOTSUPP; 46 47 if (hdev->mmu_disable) 48 return 0; 49 50 mutex_init(&hdev->mmu_lock); 51 52 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { 53 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); 54 if (rc) 55 return rc; 56 } 57 58 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) { 59 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); 60 if (rc) 61 goto fini_dr_mmu; 62 } 63 64 return 0; 65 66 fini_dr_mmu: 67 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) 68 hdev->mmu_func[MMU_DR_PGT].fini(hdev); 69 70 return rc; 71 } 72 73 /** 74 * hl_mmu_fini() - release the MMU module. 75 * @hdev: habanalabs device structure. 76 * 77 * This function does the following: 78 * - Disable MMU in H/W. 79 * - Free the pgt_infos pool. 80 * 81 * All contexts should be freed before calling this function. 82 */ 83 void hl_mmu_fini(struct hl_device *hdev) 84 { 85 if (hdev->mmu_disable) 86 return; 87 88 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) 89 hdev->mmu_func[MMU_DR_PGT].fini(hdev); 90 91 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) 92 hdev->mmu_func[MMU_HR_PGT].fini(hdev); 93 94 mutex_destroy(&hdev->mmu_lock); 95 } 96 97 /** 98 * hl_mmu_ctx_init() - initialize a context for using the MMU module. 99 * @ctx: pointer to the context structure to initialize. 100 * 101 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all 102 * page tables hops related to this context. 103 * Return: 0 on success, non-zero otherwise. 104 */ 105 int hl_mmu_ctx_init(struct hl_ctx *ctx) 106 { 107 struct hl_device *hdev = ctx->hdev; 108 int rc = -EOPNOTSUPP; 109 110 if (hdev->mmu_disable) 111 return 0; 112 113 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { 114 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); 115 if (rc) 116 return rc; 117 } 118 119 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) { 120 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); 121 if (rc) 122 goto fini_dr_ctx; 123 } 124 125 return 0; 126 127 fini_dr_ctx: 128 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) 129 hdev->mmu_func[MMU_DR_PGT].fini(hdev); 130 131 return rc; 132 } 133 134 /* 135 * hl_mmu_ctx_fini - disable a ctx from using the mmu module 136 * 137 * @ctx: pointer to the context structure 138 * 139 * This function does the following: 140 * - Free any pgts which were not freed yet 141 * - Free the mutex 142 * - Free DRAM default page mapping hops 143 */ 144 void hl_mmu_ctx_fini(struct hl_ctx *ctx) 145 { 146 struct hl_device *hdev = ctx->hdev; 147 148 if (hdev->mmu_disable) 149 return; 150 151 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) 152 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); 153 154 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) 155 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); 156 } 157 158 /* 159 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation 160 * 161 * @hdev: pointer to device data. 162 * @mmu_prop: MMU properties. 163 * @page_size: page size 164 * @real_page_size: set here the actual page size to use for the operation 165 * @is_dram_addr: true if DRAM address, otherwise false. 166 * 167 * @return 0 on success, otherwise non 0 error code 168 * 169 * note that this is general implementation that can fit most MMU arch. but as this is used as an 170 * MMU function: 171 * 1. it shall not be called directly- only from mmu_func structure instance 172 * 2. each MMU may modify the implementation internally 173 */ 174 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 175 u32 page_size, u32 *real_page_size, bool is_dram_addr) 176 { 177 /* 178 * The H/W handles mapping of specific page sizes. Hence if the page 179 * size is bigger, we break it to sub-pages and map them separately. 180 */ 181 if ((page_size % mmu_prop->page_size) == 0) { 182 *real_page_size = mmu_prop->page_size; 183 return 0; 184 } 185 186 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", 187 page_size, mmu_prop->page_size >> 10); 188 189 return -EFAULT; 190 } 191 192 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, 193 bool is_dram_addr) 194 { 195 struct asic_fixed_properties *prop = &hdev->asic_prop; 196 197 if (is_dram_addr) 198 return &prop->dmmu; 199 else if ((page_size % prop->pmmu_huge.page_size) == 0) 200 return &prop->pmmu_huge; 201 202 return &prop->pmmu; 203 } 204 205 /* 206 * hl_mmu_unmap_page - unmaps a virtual addr 207 * 208 * @ctx: pointer to the context structure 209 * @virt_addr: virt addr to map from 210 * @page_size: size of the page to unmap 211 * @flush_pte: whether to do a PCI flush 212 * 213 * This function does the following: 214 * - Check that the virt addr is mapped 215 * - Unmap the virt addr and frees pgts if possible 216 * - Returns 0 on success, -EINVAL if the given addr is not mapped 217 * 218 * Because this function changes the page tables in the device and because it 219 * changes the MMU hash, it must be protected by a lock. 220 * However, because it maps only a single page, the lock should be implemented 221 * in a higher level in order to protect the entire mapping of the memory area 222 * 223 * For optimization reasons PCI flush may be requested once after unmapping of 224 * large area. 225 */ 226 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) 227 { 228 struct hl_device *hdev = ctx->hdev; 229 struct hl_mmu_properties *mmu_prop; 230 struct hl_mmu_funcs *mmu_funcs; 231 int i, pgt_residency, rc = 0; 232 u32 real_page_size, npages; 233 u64 real_virt_addr; 234 bool is_dram_addr; 235 236 if (hdev->mmu_disable) 237 return 0; 238 239 is_dram_addr = hl_is_dram_va(hdev, virt_addr); 240 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); 241 242 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 243 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 244 245 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, 246 is_dram_addr); 247 if (rc) 248 return rc; 249 250 npages = page_size / real_page_size; 251 real_virt_addr = virt_addr; 252 253 for (i = 0 ; i < npages ; i++) { 254 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); 255 if (rc) 256 break; 257 258 real_virt_addr += real_page_size; 259 } 260 261 if (flush_pte) 262 mmu_funcs->flush(ctx); 263 264 if (trace_habanalabs_mmu_unmap_enabled() && !rc) 265 trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte); 266 267 return rc; 268 } 269 270 /* 271 * hl_mmu_map_page - maps a virtual addr to physical addr 272 * 273 * @ctx: pointer to the context structure 274 * @virt_addr: virt addr to map from 275 * @phys_addr: phys addr to map to 276 * @page_size: physical page size 277 * @flush_pte: whether to do a PCI flush 278 * 279 * This function does the following: 280 * - Check that the virt addr is not mapped 281 * - Allocate pgts as necessary in order to map the virt addr to the phys 282 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. 283 * 284 * Because this function changes the page tables in the device and because it 285 * changes the MMU hash, it must be protected by a lock. 286 * However, because it maps only a single page, the lock should be implemented 287 * in a higher level in order to protect the entire mapping of the memory area 288 * 289 * For optimization reasons PCI flush may be requested once after mapping of 290 * large area. 291 */ 292 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 293 bool flush_pte) 294 { 295 int i, rc, pgt_residency, mapped_cnt = 0; 296 struct hl_device *hdev = ctx->hdev; 297 struct hl_mmu_properties *mmu_prop; 298 u64 real_virt_addr, real_phys_addr; 299 struct hl_mmu_funcs *mmu_funcs; 300 u32 real_page_size, npages; 301 bool is_dram_addr; 302 303 304 if (hdev->mmu_disable) 305 return 0; 306 307 is_dram_addr = hl_is_dram_va(hdev, virt_addr); 308 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); 309 310 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 311 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 312 313 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, 314 is_dram_addr); 315 if (rc) 316 return rc; 317 318 /* 319 * Verify that the phys and virt addresses are aligned with the 320 * MMU page size (in dram this means checking the address and MMU 321 * after scrambling) 322 */ 323 if ((is_dram_addr && 324 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & 325 (mmu_prop->page_size - 1)) || 326 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & 327 (mmu_prop->page_size - 1)))) || 328 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || 329 (virt_addr & (real_page_size - 1))))) 330 dev_crit(hdev->dev, 331 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", 332 phys_addr, virt_addr, real_page_size); 333 334 npages = page_size / real_page_size; 335 real_virt_addr = virt_addr; 336 real_phys_addr = phys_addr; 337 338 for (i = 0 ; i < npages ; i++) { 339 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, 340 is_dram_addr); 341 if (rc) 342 goto err; 343 344 real_virt_addr += real_page_size; 345 real_phys_addr += real_page_size; 346 mapped_cnt++; 347 } 348 349 if (flush_pte) 350 mmu_funcs->flush(ctx); 351 352 trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte); 353 354 return 0; 355 356 err: 357 real_virt_addr = virt_addr; 358 for (i = 0 ; i < mapped_cnt ; i++) { 359 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) 360 dev_warn_ratelimited(hdev->dev, 361 "failed to unmap va: 0x%llx\n", real_virt_addr); 362 363 real_virt_addr += real_page_size; 364 } 365 366 mmu_funcs->flush(ctx); 367 368 return rc; 369 } 370 371 /* 372 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page 373 * for mapping contiguous physical memory 374 * 375 * @ctx: pointer to the context structure 376 * @virt_addr: virt addr to map from 377 * @phys_addr: phys addr to map to 378 * @size: size to map 379 * 380 */ 381 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 382 u64 phys_addr, u32 size) 383 { 384 struct hl_device *hdev = ctx->hdev; 385 struct asic_fixed_properties *prop = &hdev->asic_prop; 386 u64 curr_va, curr_pa; 387 u32 page_size; 388 bool flush_pte; 389 int rc = 0, off; 390 391 if (hl_mem_area_inside_range(virt_addr, size, 392 prop->dmmu.start_addr, prop->dmmu.end_addr)) 393 page_size = prop->dmmu.page_size; 394 else if (hl_mem_area_inside_range(virt_addr, size, 395 prop->pmmu.start_addr, prop->pmmu.end_addr)) 396 page_size = prop->pmmu.page_size; 397 else if (hl_mem_area_inside_range(virt_addr, size, 398 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) 399 page_size = prop->pmmu_huge.page_size; 400 else 401 return -EINVAL; 402 403 for (off = 0 ; off < size ; off += page_size) { 404 curr_va = virt_addr + off; 405 curr_pa = phys_addr + off; 406 flush_pte = (off + page_size) >= size; 407 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, 408 flush_pte); 409 if (rc) { 410 dev_err(hdev->dev, 411 "Map failed for va 0x%llx to pa 0x%llx\n", 412 curr_va, curr_pa); 413 /* last mapping failed so don't try to unmap it - reduce off by page_size */ 414 off -= page_size; 415 goto unmap; 416 } 417 } 418 419 return rc; 420 421 unmap: 422 for (; off >= 0 ; off -= page_size) { 423 curr_va = virt_addr + off; 424 flush_pte = (off - (s32) page_size) < 0; 425 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) 426 dev_warn_ratelimited(hdev->dev, 427 "failed to unmap va 0x%llx\n", curr_va); 428 } 429 430 return rc; 431 } 432 433 /* 434 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page 435 * for unmapping contiguous physical memory 436 * 437 * @ctx: pointer to the context structure 438 * @virt_addr: virt addr to unmap 439 * @size: size to unmap 440 * 441 */ 442 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) 443 { 444 struct hl_device *hdev = ctx->hdev; 445 struct asic_fixed_properties *prop = &hdev->asic_prop; 446 u64 curr_va; 447 u32 page_size; 448 bool flush_pte; 449 int rc = 0, off; 450 451 if (hl_mem_area_inside_range(virt_addr, size, 452 prop->dmmu.start_addr, prop->dmmu.end_addr)) 453 page_size = prop->dmmu.page_size; 454 else if (hl_mem_area_inside_range(virt_addr, size, 455 prop->pmmu.start_addr, prop->pmmu.end_addr)) 456 page_size = prop->pmmu.page_size; 457 else if (hl_mem_area_inside_range(virt_addr, size, 458 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) 459 page_size = prop->pmmu_huge.page_size; 460 else 461 return -EINVAL; 462 463 for (off = 0 ; off < size ; off += page_size) { 464 curr_va = virt_addr + off; 465 flush_pte = (off + page_size) >= size; 466 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); 467 if (rc) 468 dev_warn_ratelimited(hdev->dev, 469 "Unmap failed for va 0x%llx\n", curr_va); 470 } 471 472 return rc; 473 } 474 475 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, 476 struct hl_mmu_hop_info *hops, 477 u64 *phys_addr) 478 { 479 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 480 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; 481 struct hl_mmu_properties *mmu_prop; 482 483 /* last hop holds the phys address and flags */ 484 if (hops->unscrambled_paddr) 485 tmp_phys_addr = hops->unscrambled_paddr; 486 else 487 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; 488 489 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) 490 mmu_prop = &prop->pmmu_huge; 491 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) 492 mmu_prop = &prop->pmmu; 493 else /* HL_VA_RANGE_TYPE_DRAM */ 494 mmu_prop = &prop->dmmu; 495 496 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && 497 !is_power_of_2(prop->dram_page_size)) { 498 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, 499 page_id, page_start; 500 u32 page_off; 501 502 /* 503 * Bit arithmetic cannot be used for non power of two page 504 * sizes. In addition, since bit arithmetic is not used, 505 * we cannot ignore dram base. All that shall be considered. 506 */ 507 508 dram_page_size = prop->dram_page_size; 509 dram_base = prop->dram_base_address; 510 abs_phys_addr = tmp_phys_addr - dram_base; 511 abs_virt_addr = virt_addr - dram_base; 512 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); 513 page_start = page_id * dram_page_size; 514 div_u64_rem(abs_virt_addr, dram_page_size, &page_off); 515 516 *phys_addr = page_start + page_off + dram_base; 517 } else { 518 /* 519 * find the correct hop shift field in hl_mmu_properties 520 * structure in order to determine the right masks 521 * for the page offset. 522 */ 523 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; 524 offset_mask = (1ull << hop_shift) - 1; 525 addr_mask = ~(offset_mask); 526 *phys_addr = (tmp_phys_addr & addr_mask) | 527 (virt_addr & offset_mask); 528 } 529 } 530 531 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) 532 { 533 struct hl_mmu_hop_info hops; 534 int rc; 535 536 memset(&hops, 0, sizeof(hops)); 537 538 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); 539 if (rc) 540 return rc; 541 542 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); 543 544 return 0; 545 } 546 547 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 548 struct hl_mmu_hop_info *hops) 549 { 550 struct hl_device *hdev = ctx->hdev; 551 struct asic_fixed_properties *prop; 552 struct hl_mmu_properties *mmu_prop; 553 struct hl_mmu_funcs *mmu_funcs; 554 int pgt_residency, rc; 555 bool is_dram_addr; 556 557 if (hdev->mmu_disable) 558 return -EOPNOTSUPP; 559 560 prop = &hdev->asic_prop; 561 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ 562 563 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, 564 prop->dmmu.start_addr, 565 prop->dmmu.end_addr); 566 567 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ 568 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; 569 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; 570 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); 571 572 mutex_lock(&hdev->mmu_lock); 573 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); 574 mutex_unlock(&hdev->mmu_lock); 575 576 if (rc) 577 return rc; 578 579 /* add page offset to physical address */ 580 if (hops->unscrambled_paddr) 581 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); 582 583 return 0; 584 } 585 586 int hl_mmu_if_set_funcs(struct hl_device *hdev) 587 { 588 struct asic_fixed_properties *prop = &hdev->asic_prop; 589 590 if (hdev->mmu_disable) 591 return 0; 592 593 switch (hdev->asic_type) { 594 case ASIC_GOYA: 595 case ASIC_GAUDI: 596 case ASIC_GAUDI_SEC: 597 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); 598 break; 599 case ASIC_GAUDI2: 600 case ASIC_GAUDI2B: 601 case ASIC_GAUDI2C: 602 hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); 603 if (prop->pmmu.host_resident) 604 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]); 605 break; 606 default: 607 dev_err(hdev->dev, "Unrecognized ASIC type %d\n", 608 hdev->asic_type); 609 return -EOPNOTSUPP; 610 } 611 612 return 0; 613 } 614 615 /** 616 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. 617 * @hdev: pointer to device data. 618 * @addr: The address to scramble. 619 * 620 * Return: The scrambled address. 621 */ 622 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) 623 { 624 return addr; 625 } 626 627 /** 628 * hl_mmu_descramble_addr() - The generic mmu address descrambling 629 * routine. 630 * @hdev: pointer to device data. 631 * @addr: The address to descramble. 632 * 633 * Return: The un-scrambled address. 634 */ 635 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) 636 { 637 return addr; 638 } 639 640 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) 641 { 642 int rc; 643 644 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); 645 if (rc) 646 dev_err_ratelimited(hdev->dev, 647 "%s cache invalidation failed, rc=%d\n", 648 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc); 649 650 return rc; 651 } 652 653 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 654 u32 flags, u32 asid, u64 va, u64 size) 655 { 656 int rc; 657 658 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, 659 asid, va, size); 660 if (rc) 661 dev_err_ratelimited(hdev->dev, 662 "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d", 663 flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc); 664 665 return rc; 666 } 667 668 static void hl_mmu_prefetch_work_function(struct work_struct *work) 669 { 670 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work); 671 struct hl_ctx *ctx = pfw->ctx; 672 struct hl_device *hdev = ctx->hdev; 673 674 if (!hl_device_operational(hdev, NULL)) 675 goto put_ctx; 676 677 mutex_lock(&hdev->mmu_lock); 678 679 hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size); 680 681 mutex_unlock(&hdev->mmu_lock); 682 683 put_ctx: 684 /* 685 * context was taken in the common mmu prefetch function- see comment there about 686 * context handling. 687 */ 688 hl_ctx_put(ctx); 689 kfree(pfw); 690 } 691 692 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) 693 { 694 struct hl_prefetch_work *handle_prefetch_work; 695 696 handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL); 697 if (!handle_prefetch_work) 698 return -ENOMEM; 699 700 INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function); 701 handle_prefetch_work->ctx = ctx; 702 handle_prefetch_work->va = va; 703 handle_prefetch_work->size = size; 704 handle_prefetch_work->flags = flags; 705 handle_prefetch_work->asid = asid; 706 707 /* 708 * as actual prefetch is done in a WQ we must get the context (and put it 709 * at the end of the work function) 710 */ 711 hl_ctx_get(ctx); 712 queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work); 713 714 return 0; 715 } 716 717 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) 718 { 719 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; 720 } 721 722 /** 723 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP 724 * @ctx: pointer to the context structure to initialize. 725 * @mmu_prop: MMU properties. 726 * @hop_idx: HOP index. 727 * @hop_addr: HOP address. 728 * @virt_addr: virtual address for the translation. 729 * 730 * @return the matching PTE value on success, otherwise U64_MAX. 731 */ 732 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 733 u8 hop_idx, u64 hop_addr, u64 virt_addr) 734 { 735 u64 mask, shift; 736 737 if (hop_idx >= mmu_prop->num_hops) { 738 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); 739 return U64_MAX; 740 } 741 742 shift = mmu_prop->hop_shifts[hop_idx]; 743 mask = mmu_prop->hop_masks[hop_idx]; 744 745 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); 746 } 747 748 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool, 749 struct gen_pool_chunk *chunk, 750 void *data) 751 { 752 struct hl_device *hdev = data; 753 754 hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1, 755 (void *)chunk->start_addr, chunk->phys_addr); 756 } 757 758 void hl_mmu_hr_flush(struct hl_ctx *ctx) 759 { 760 /* a flush operation requires memory barrier */ 761 mb(); 762 } 763 764 /** 765 * hl_mmu_hr_pool_destroy() - destroy genpool 766 * @hdev: habanalabs device structure. 767 * @hr_priv: MMU HR private data. 768 * @hop_table_size: HOP table size. 769 * 770 * This function does the following: 771 * - free entries allocated for shadow HOP0 772 * - free pool chunks 773 * - free pool 774 */ 775 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, 776 u32 hop_table_size) 777 { 778 struct asic_fixed_properties *prop = &hdev->asic_prop; 779 struct gen_pool **pool = &hr_priv->mmu_pgt_pool; 780 struct pgt_info *hop0_pgt; 781 int asid; 782 783 if (ZERO_OR_NULL_PTR(*pool)) 784 return; 785 786 /* Free the Fixed allocation of HOPs0 */ 787 if (hr_priv->mmu_asid_hop0) { 788 for (asid = 0 ; asid < prop->max_asid ; asid++) { 789 hop0_pgt = &hr_priv->mmu_asid_hop0[asid]; 790 if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr)) 791 continue; 792 793 gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size); 794 } 795 } 796 797 gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev); 798 gen_pool_destroy(*pool); 799 800 /* Make sure that if we arrive here again without init was called we 801 * won't cause kernel panic. This can happen for example if we fail 802 * during hard reset code at certain points 803 */ 804 *pool = NULL; 805 } 806 807 /** 808 * hl_mmu_hr_init() - initialize the MMU module. 809 * @hdev: habanalabs device structure. 810 * @hr_priv: MMU HR private data. 811 * @hop_table_size: HOP table size. 812 * @pgt_size: memory size allocated for the page table 813 * 814 * @return 0 on success otherwise non-zero error code 815 * 816 * This function does the following: 817 * - Create a pool of pages for pgt_infos. 818 * - Create a shadow table for pgt 819 */ 820 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 821 u64 pgt_size) 822 { 823 struct asic_fixed_properties *prop = &hdev->asic_prop; 824 size_t pool_chunk_size = SZ_4M; 825 struct pgt_info *hop0_pgt; 826 dma_addr_t dma_addr; 827 u64 virt_addr; 828 int i, rc; 829 830 /* 831 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is 832 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment. 833 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply 834 * allocations with higher-order alignment restrictions 835 */ 836 hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1); 837 if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) { 838 dev_err(hdev->dev, "Failed to create hr page pool\n"); 839 return -ENOMEM; 840 } 841 842 hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL); 843 if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { 844 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n"); 845 rc = -ENOMEM; 846 goto destroy_mmu_pgt_pool; 847 } 848 849 for (i = 0 ; i < pgt_size ; i += pool_chunk_size) { 850 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size, 851 &dma_addr, 852 GFP_KERNEL | __GFP_ZERO); 853 if (ZERO_OR_NULL_PTR(virt_addr)) { 854 dev_err(hdev->dev, 855 "Failed to allocate memory for host-resident page pool\n"); 856 rc = -ENOMEM; 857 goto destroy_mmu_pgt_pool; 858 } 859 860 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr, 861 pool_chunk_size, -1); 862 if (rc) { 863 dev_err(hdev->dev, "Failed to fill host-resident page pool\n"); 864 goto destroy_mmu_pgt_pool; 865 } 866 } 867 868 for (i = 0 ; i < prop->max_asid ; i++) { 869 hop0_pgt = &hr_priv->mmu_asid_hop0[i]; 870 hop0_pgt->virt_addr = (uintptr_t) 871 gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, 872 hop_table_size, 873 (dma_addr_t *) &hop0_pgt->phys_addr, 874 hop_table_size); 875 if (!hop0_pgt->virt_addr) { 876 dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n"); 877 rc = -ENOMEM; 878 goto destroy_mmu_pgt_pool; 879 } 880 } 881 882 /* MMU H/W init will be done in device hw_init() */ 883 884 return 0; 885 886 destroy_mmu_pgt_pool: 887 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); 888 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) 889 kvfree(hr_priv->mmu_asid_hop0); 890 891 return rc; 892 } 893 894 /** 895 * hl_mmu_hr_fini() - release the MMU module. 896 * @hdev: habanalabs device structure. 897 * @hr_priv: MMU host resident private info. 898 * @hop_table_size: HOP table size 899 * 900 * This function does the following: 901 * - Disable MMU in H/W. 902 * - Free the pgt_infos pool. 903 * 904 * All contexts should be freed before calling this function. 905 */ 906 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) 907 { 908 /* MMU H/W fini was already done in device hw_fini() */ 909 910 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); 911 912 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { 913 kvfree(hr_priv->mmu_asid_hop0); 914 915 /* Make sure that if we arrive here again without init was 916 * called we won't cause kernel panic. This can happen for 917 * example if we fail during hard reset code at certain points 918 */ 919 hr_priv->mmu_asid_hop0 = NULL; 920 } 921 } 922 923 /** 924 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash 925 * @pgt_info: page table info structure. 926 * @hr_priv: MMU HR private data. 927 * @hop_table_size: HOP table size. 928 */ 929 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 930 u32 hop_table_size) 931 { 932 gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size); 933 hash_del(&pgt_info->node); 934 kfree(pgt_info); 935 } 936 937 /** 938 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr 939 * @ctx: pointer to the context structure 940 * @pgt: pgt_info for the HOP hosting the PTE 941 * @phys_pte_addr: phys address of the PTE 942 * @hop_table_size: HOP table size 943 * 944 * @return PTE virtual address 945 * 946 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr 947 * by adding the PTE offset. 948 */ 949 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, 950 u64 phys_pte_addr, u32 hop_table_size) 951 { 952 u64 page_mask = (hop_table_size - 1); 953 u64 pte_offset = phys_pte_addr & page_mask; 954 955 return pgt->virt_addr + pte_offset; 956 } 957 958 /** 959 * hl_mmu_hr_write_pte() - write HR PTE 960 * @ctx: pointer to the context structure 961 * @pgt_info: HOP's page table info structure 962 * @phys_pte_addr: phys PTE address 963 * @val: raw PTE data 964 * @hop_table_size: HOP table size 965 */ 966 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 967 u64 val, u32 hop_table_size) 968 { 969 /* 970 * The value to write is the phys address of the next hop + 971 * flags at the 12 LSBs. 972 */ 973 u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size); 974 975 *((u64 *) (uintptr_t) virt_addr) = val; 976 } 977 978 /** 979 * hl_mmu_hr_clear_pte() - clear HR PTE 980 * @ctx: pointer to the context structure 981 * @pgt_info: HOP's page table info structure 982 * @phys_pte_addr: phys PTE address 983 * @hop_table_size: HOP table size 984 */ 985 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 986 u32 hop_table_size) 987 { 988 /* no need to transform the value to physical address */ 989 hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size); 990 } 991 992 /** 993 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs) 994 * @ctx: pointer to the context structure 995 * @pgt_info: HOP's page table info structure 996 * @hr_priv: HR MMU private info 997 * @hop_table_size: HOP table size 998 * 999 * @return number of PTEs still in the HOP 1000 */ 1001 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, 1002 struct hl_mmu_hr_priv *hr_priv, 1003 u32 hop_table_size) 1004 { 1005 int num_of_ptes_left; 1006 1007 pgt_info->num_of_ptes--; 1008 1009 /* 1010 * Need to save the number of ptes left because free_hop might free 1011 * the pgt_info 1012 */ 1013 num_of_ptes_left = pgt_info->num_of_ptes; 1014 if (!num_of_ptes_left) 1015 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size); 1016 1017 return num_of_ptes_left; 1018 } 1019 1020 /** 1021 * hl_mmu_hr_get_pte() - increase PGT PTE count 1022 * @ctx: pointer to the context structure 1023 * @hr_func: host resident functions 1024 * @phys_hop_addr: HOP phys address 1025 */ 1026 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr) 1027 { 1028 hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++; 1029 } 1030 1031 /** 1032 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP 1033 * @ctx: pointer to the context structure. 1034 * @hr_func: host resident functions. 1035 * @curr_pte: current PTE value. 1036 * 1037 * @return pgt_info structure on success, otherwise NULL. 1038 */ 1039 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 1040 struct hl_hr_mmu_funcs *hr_func, 1041 u64 curr_pte) 1042 { 1043 u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); 1044 1045 if (next_hop_phys_addr == ULLONG_MAX) 1046 return NULL; 1047 1048 return hr_func->get_pgt_info(ctx, next_hop_phys_addr); 1049 } 1050 1051 /** 1052 * hl_mmu_hr_alloc_hop() - allocate HOP 1053 * @ctx: pointer to the context structure. 1054 * @hr_priv: host resident private info structure. 1055 * @hr_func: host resident functions. 1056 * @mmu_prop: MMU properties. 1057 * 1058 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. 1059 */ 1060 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 1061 struct hl_hr_mmu_funcs *hr_func, 1062 struct hl_mmu_properties *mmu_prop) 1063 { 1064 struct hl_device *hdev = ctx->hdev; 1065 struct pgt_info *pgt_info; 1066 dma_addr_t phys_addr; 1067 void *virt_addr; 1068 int i, retry = 1; 1069 1070 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); 1071 if (!pgt_info) 1072 return NULL; 1073 1074 for (i = 0; i <= retry; i++) { 1075 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, 1076 mmu_prop->hop_table_size, 1077 &phys_addr, 1078 mmu_prop->hop_table_size); 1079 if (virt_addr) 1080 break; 1081 1082 /* No memory in pool - get some and try again */ 1083 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr, 1084 GFP_KERNEL | __GFP_ZERO); 1085 if (ZERO_OR_NULL_PTR(virt_addr)) 1086 break; 1087 1088 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr, 1089 phys_addr, SZ_2M, -1)) { 1090 hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr); 1091 virt_addr = NULL; 1092 break; 1093 } 1094 } 1095 1096 if (ZERO_OR_NULL_PTR(virt_addr)) { 1097 dev_err(hdev->dev, "failed to allocate page\n"); 1098 goto pool_alloc_err; 1099 } 1100 1101 pgt_info->phys_addr = phys_addr; 1102 pgt_info->shadow_addr = (unsigned long) NULL; 1103 pgt_info->virt_addr = (unsigned long)virt_addr; 1104 pgt_info->ctx = ctx; 1105 pgt_info->num_of_ptes = 0; 1106 hr_func->add_pgt_info(ctx, pgt_info, phys_addr); 1107 1108 return pgt_info; 1109 1110 pool_alloc_err: 1111 kfree(pgt_info); 1112 1113 return NULL; 1114 } 1115 1116 /** 1117 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist 1118 * @ctx: pointer to the context structure. 1119 * @hr_priv: host resident private info structure. 1120 * @hr_func: host resident functions. 1121 * @mmu_prop: MMU properties. 1122 * @curr_pte: current PTE value. 1123 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false). 1124 * 1125 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. 1126 */ 1127 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 1128 struct hl_mmu_hr_priv *hr_priv, 1129 struct hl_hr_mmu_funcs *hr_func, 1130 struct hl_mmu_properties *mmu_prop, 1131 u64 curr_pte, bool *is_new_hop) 1132 { 1133 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); 1134 1135 if (hop_addr != ULLONG_MAX) 1136 return hr_func->get_pgt_info(ctx, hop_addr); 1137 1138 *is_new_hop = true; 1139 return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop); 1140 } 1141 1142 /** 1143 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping) 1144 * @ctx: pointer to the context structure. 1145 * @virt_addr: the virt address for which to get info. 1146 * @hops: HOPs info structure. 1147 * @hr_func: host resident functions. 1148 * 1149 * @return 0 on success, otherwise non 0 error code.. 1150 */ 1151 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 1152 struct hl_hr_mmu_funcs *hr_func) 1153 { 1154 /* using 6 HOPs as this is the maximum number of HOPs */ 1155 struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; 1156 struct hl_device *hdev = ctx->hdev; 1157 struct hl_mmu_properties *mmu_prop; 1158 int rc, i, used_hops; 1159 bool is_huge; 1160 1161 rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge); 1162 if (rc) 1163 return rc; 1164 1165 used_hops = mmu_prop->num_hops; 1166 1167 /* huge pages use one less hop */ 1168 if (is_huge) 1169 used_hops--; 1170 1171 hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); 1172 1173 for (i = 0 ; i < used_hops ; i++) { 1174 if (i == 0) 1175 hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx); 1176 else 1177 hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func, 1178 hops->hop_info[i - 1].hop_pte_val); 1179 1180 if (!hops_pgt_info[i]) 1181 return -EFAULT; 1182 1183 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr; 1184 hops->hop_info[i].hop_pte_addr = 1185 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, 1186 hops->hop_info[i].hop_addr, 1187 hops->scrambled_vaddr); 1188 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t) 1189 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], 1190 hops->hop_info[i].hop_pte_addr, 1191 mmu_prop->hop_table_size); 1192 1193 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) 1194 return -EFAULT; 1195 1196 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) 1197 break; 1198 } 1199 1200 /* if passed over all hops then no last hop was found */ 1201 if (i == mmu_prop->num_hops) 1202 return -EFAULT; 1203 1204 if (hops->scrambled_vaddr != virt_addr) 1205 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr 1206 (hdev, hops->hop_info[i].hop_pte_val); 1207 else 1208 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; 1209 1210 hops->used_hops = i + 1; 1211 1212 return 0; 1213 } 1214 1215 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) 1216 { 1217 struct pgt_info *pgt_info = NULL; 1218 1219 hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, 1220 (unsigned long) hop_addr) 1221 if (hop_addr == pgt_info->shadow_addr) 1222 break; 1223 1224 return pgt_info; 1225 } 1226 1227 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr) 1228 { 1229 struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); 1230 1231 hl_mmu_dr_free_pgt_node(ctx, pgt_info); 1232 } 1233 1234 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info) 1235 { 1236 struct hl_device *hdev = ctx->hdev; 1237 1238 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, 1239 hdev->asic_prop.dmmu.hop_table_size); 1240 hash_del(&pgt_info->node); 1241 kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); 1242 kfree(pgt_info); 1243 } 1244 1245 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx) 1246 { 1247 return ctx->hdev->asic_prop.mmu_pgt_addr + 1248 (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); 1249 } 1250 1251 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx) 1252 { 1253 return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + 1254 (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); 1255 } 1256 1257 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) 1258 { 1259 u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1; 1260 u64 shadow_hop_addr = shadow_addr & (~page_mask); 1261 u64 pte_offset = shadow_addr & page_mask; 1262 u64 phys_hop_addr; 1263 1264 if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx)) 1265 phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr; 1266 else 1267 phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); 1268 1269 return phys_hop_addr + pte_offset; 1270 } 1271 1272 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) 1273 { 1274 u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val); 1275 1276 ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), 1277 phys_val); 1278 1279 *(u64 *) (uintptr_t) shadow_pte_addr = val; 1280 } 1281 1282 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) 1283 { 1284 ctx->hdev->asic_funcs->write_pte(ctx->hdev, 1285 hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val); 1286 *(u64 *) (uintptr_t) shadow_pte_addr = val; 1287 } 1288 1289 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr) 1290 { 1291 hl_mmu_dr_write_final_pte(ctx, pte_addr, 0); 1292 } 1293 1294 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr) 1295 { 1296 hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++; 1297 } 1298 1299 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr) 1300 { 1301 struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); 1302 int num_of_ptes_left; 1303 1304 pgt_info->num_of_ptes--; 1305 1306 /* 1307 * Need to save the number of ptes left because hl_mmu_free_hop might free 1308 * the pgt_info 1309 */ 1310 num_of_ptes_left = pgt_info->num_of_ptes; 1311 if (!num_of_ptes_left) 1312 hl_mmu_dr_free_pgt_node(ctx, pgt_info); 1313 1314 return num_of_ptes_left; 1315 } 1316 1317 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx) 1318 { 1319 struct hl_device *hdev = ctx->hdev; 1320 struct asic_fixed_properties *prop = &hdev->asic_prop; 1321 struct pgt_info *pgt_info; 1322 u64 phys_addr, shadow_addr; 1323 1324 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); 1325 if (!pgt_info) 1326 return ULLONG_MAX; 1327 1328 phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, 1329 prop->dmmu.hop_table_size); 1330 if (!phys_addr) { 1331 dev_err(hdev->dev, "failed to allocate page\n"); 1332 goto pool_add_err; 1333 } 1334 1335 shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size, 1336 GFP_KERNEL); 1337 if (!shadow_addr) 1338 goto shadow_err; 1339 1340 pgt_info->phys_addr = phys_addr; 1341 pgt_info->shadow_addr = shadow_addr; 1342 pgt_info->ctx = ctx; 1343 pgt_info->num_of_ptes = 0; 1344 hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); 1345 1346 return shadow_addr; 1347 1348 shadow_err: 1349 gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, 1350 phys_addr, prop->dmmu.hop_table_size); 1351 pool_add_err: 1352 kfree(pgt_info); 1353 1354 return ULLONG_MAX; 1355 } 1356 1357 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) 1358 { 1359 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); 1360 1361 if (hop_addr == ULLONG_MAX) { 1362 hop_addr = hl_mmu_dr_alloc_hop(ctx); 1363 *is_new_hop = (hop_addr != ULLONG_MAX); 1364 } 1365 1366 return hop_addr; 1367 } 1368 1369 void hl_mmu_dr_flush(struct hl_ctx *ctx) 1370 { 1371 /* flush all writes from all cores to reach PCI */ 1372 mb(); 1373 ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx)); 1374 } 1375 1376 int hl_mmu_dr_init(struct hl_device *hdev) 1377 { 1378 struct asic_fixed_properties *prop = &hdev->asic_prop; 1379 int rc; 1380 1381 hdev->mmu_priv.dr.mmu_pgt_pool = 1382 gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1); 1383 1384 if (!hdev->mmu_priv.dr.mmu_pgt_pool) { 1385 dev_err(hdev->dev, "Failed to create page gen pool\n"); 1386 return -ENOMEM; 1387 } 1388 1389 rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + 1390 prop->dmmu.hop0_tables_total_size, 1391 prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size, 1392 -1); 1393 if (rc) { 1394 dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); 1395 goto err_pool_add; 1396 } 1397 1398 hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid, 1399 prop->dmmu.hop_table_size, GFP_KERNEL); 1400 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { 1401 rc = -ENOMEM; 1402 goto err_pool_add; 1403 } 1404 1405 /* MMU H/W init will be done in device hw_init() */ 1406 1407 return 0; 1408 1409 err_pool_add: 1410 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); 1411 1412 return rc; 1413 } 1414 1415 void hl_mmu_dr_fini(struct hl_device *hdev) 1416 { 1417 /* MMU H/W fini was already done in device hw_fini() */ 1418 1419 if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) 1420 return; 1421 1422 kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); 1423 gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); 1424 1425 /* Make sure that if we arrive here again without init was 1426 * called we won't cause kernel panic. This can happen for 1427 * example if we fail during hard reset code at certain points 1428 */ 1429 hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; 1430 } 1431