xref: /linux/drivers/accel/habanalabs/common/mmu/mmu.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/pci.h>
10 
11 #include "../habanalabs.h"
12 
13 #include <trace/events/habanalabs.h>
14 
15 /**
16  * hl_mmu_get_funcs() - get MMU functions structure
17  * @hdev: habanalabs device structure.
18  * @pgt_residency: page table residency.
19  * @is_dram_addr: true if we need HMMU functions
20  *
21  * @return appropriate MMU functions structure
22  */
23 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
24 									bool is_dram_addr)
25 {
26 	return &hdev->mmu_func[pgt_residency];
27 }
28 
29 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
30 {
31 	struct asic_fixed_properties *prop = &hdev->asic_prop;
32 
33 	return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
34 					prop->dmmu.start_addr,
35 					prop->dmmu.end_addr);
36 }
37 
38 /**
39  * hl_mmu_init() - initialize the MMU module.
40  * @hdev: habanalabs device structure.
41  *
42  * Return: 0 for success, non-zero for failure.
43  */
44 int hl_mmu_init(struct hl_device *hdev)
45 {
46 	int rc = -EOPNOTSUPP;
47 
48 	if (hdev->mmu_disable)
49 		return 0;
50 
51 	mutex_init(&hdev->mmu_lock);
52 
53 	if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
54 		rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
55 		if (rc)
56 			return rc;
57 	}
58 
59 	if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
60 		rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
61 		if (rc)
62 			goto fini_dr_mmu;
63 	}
64 
65 	return 0;
66 
67 fini_dr_mmu:
68 	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
69 		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
70 
71 	return rc;
72 }
73 
74 /**
75  * hl_mmu_fini() - release the MMU module.
76  * @hdev: habanalabs device structure.
77  *
78  * This function does the following:
79  * - Disable MMU in H/W.
80  * - Free the pgt_infos pool.
81  *
82  * All contexts should be freed before calling this function.
83  */
84 void hl_mmu_fini(struct hl_device *hdev)
85 {
86 	if (hdev->mmu_disable)
87 		return;
88 
89 	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
90 		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
91 
92 	if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
93 		hdev->mmu_func[MMU_HR_PGT].fini(hdev);
94 
95 	mutex_destroy(&hdev->mmu_lock);
96 }
97 
98 /**
99  * hl_mmu_ctx_init() - initialize a context for using the MMU module.
100  * @ctx: pointer to the context structure to initialize.
101  *
102  * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
103  * page tables hops related to this context.
104  * Return: 0 on success, non-zero otherwise.
105  */
106 int hl_mmu_ctx_init(struct hl_ctx *ctx)
107 {
108 	struct hl_device *hdev = ctx->hdev;
109 	int rc = -EOPNOTSUPP;
110 
111 	if (hdev->mmu_disable)
112 		return 0;
113 
114 	if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
115 		rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
116 		if (rc)
117 			return rc;
118 	}
119 
120 	if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
121 		rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
122 		if (rc)
123 			goto fini_dr_ctx;
124 	}
125 
126 	return 0;
127 
128 fini_dr_ctx:
129 	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
130 		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
131 
132 	return rc;
133 }
134 
135 /*
136  * hl_mmu_ctx_fini - disable a ctx from using the mmu module
137  *
138  * @ctx: pointer to the context structure
139  *
140  * This function does the following:
141  * - Free any pgts which were not freed yet
142  * - Free the mutex
143  * - Free DRAM default page mapping hops
144  */
145 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
146 {
147 	struct hl_device *hdev = ctx->hdev;
148 
149 	if (hdev->mmu_disable)
150 		return;
151 
152 	if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
153 		hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
154 
155 	if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
156 		hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
157 }
158 
159 /*
160  * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
161  *
162  * @hdev: pointer to device data.
163  * @mmu_prop: MMU properties.
164  * @page_size: page size
165  * @real_page_size: set here the actual page size to use for the operation
166  * @is_dram_addr: true if DRAM address, otherwise false.
167  *
168  * @return 0 on success, otherwise non 0 error code
169  *
170  * note that this is general implementation that can fit most MMU arch. but as this is used as an
171  * MMU function:
172  * 1. it shall not be called directly- only from mmu_func structure instance
173  * 2. each MMU may modify the implementation internally
174  */
175 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
176 				u32 page_size, u32 *real_page_size, bool is_dram_addr)
177 {
178 	/*
179 	 * The H/W handles mapping of specific page sizes. Hence if the page
180 	 * size is bigger, we break it to sub-pages and map them separately.
181 	 */
182 	if ((page_size % mmu_prop->page_size) == 0) {
183 		*real_page_size = mmu_prop->page_size;
184 		return 0;
185 	}
186 
187 	dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
188 						page_size, mmu_prop->page_size >> 10);
189 
190 	return -EFAULT;
191 }
192 
193 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
194 							bool is_dram_addr)
195 {
196 	struct asic_fixed_properties *prop = &hdev->asic_prop;
197 
198 	if (is_dram_addr)
199 		return &prop->dmmu;
200 	else if ((page_size % prop->pmmu_huge.page_size) == 0)
201 		return &prop->pmmu_huge;
202 
203 	return &prop->pmmu;
204 }
205 
206 /*
207  * hl_mmu_unmap_page - unmaps a virtual addr
208  *
209  * @ctx: pointer to the context structure
210  * @virt_addr: virt addr to map from
211  * @page_size: size of the page to unmap
212  * @flush_pte: whether to do a PCI flush
213  *
214  * This function does the following:
215  * - Check that the virt addr is mapped
216  * - Unmap the virt addr and frees pgts if possible
217  * - Returns 0 on success, -EINVAL if the given addr is not mapped
218  *
219  * Because this function changes the page tables in the device and because it
220  * changes the MMU hash, it must be protected by a lock.
221  * However, because it maps only a single page, the lock should be implemented
222  * in a higher level in order to protect the entire mapping of the memory area
223  *
224  * For optimization reasons PCI flush may be requested once after unmapping of
225  * large area.
226  */
227 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
228 {
229 	struct hl_device *hdev = ctx->hdev;
230 	struct hl_mmu_properties *mmu_prop;
231 	struct hl_mmu_funcs *mmu_funcs;
232 	int i, pgt_residency, rc = 0;
233 	u32 real_page_size, npages;
234 	u64 real_virt_addr;
235 	bool is_dram_addr;
236 
237 	if (hdev->mmu_disable)
238 		return 0;
239 
240 	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
241 	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
242 
243 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
244 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
245 
246 	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
247 							is_dram_addr);
248 	if (rc)
249 		return rc;
250 
251 	npages = page_size / real_page_size;
252 	real_virt_addr = virt_addr;
253 
254 	for (i = 0 ; i < npages ; i++) {
255 		rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
256 		if (rc)
257 			break;
258 
259 		real_virt_addr += real_page_size;
260 	}
261 
262 	if (flush_pte)
263 		mmu_funcs->flush(ctx);
264 
265 	if (trace_habanalabs_mmu_unmap_enabled() && !rc)
266 		trace_habanalabs_mmu_unmap(&hdev->pdev->dev, virt_addr, 0, page_size, flush_pte);
267 
268 	return rc;
269 }
270 
271 /*
272  * hl_mmu_map_page - maps a virtual addr to physical addr
273  *
274  * @ctx: pointer to the context structure
275  * @virt_addr: virt addr to map from
276  * @phys_addr: phys addr to map to
277  * @page_size: physical page size
278  * @flush_pte: whether to do a PCI flush
279  *
280  * This function does the following:
281  * - Check that the virt addr is not mapped
282  * - Allocate pgts as necessary in order to map the virt addr to the phys
283  * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
284  *
285  * Because this function changes the page tables in the device and because it
286  * changes the MMU hash, it must be protected by a lock.
287  * However, because it maps only a single page, the lock should be implemented
288  * in a higher level in order to protect the entire mapping of the memory area
289  *
290  * For optimization reasons PCI flush may be requested once after mapping of
291  * large area.
292  */
293 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
294 			bool flush_pte)
295 {
296 	int i, rc, pgt_residency, mapped_cnt = 0;
297 	struct hl_device *hdev = ctx->hdev;
298 	struct hl_mmu_properties *mmu_prop;
299 	u64 real_virt_addr, real_phys_addr;
300 	struct hl_mmu_funcs *mmu_funcs;
301 	u32 real_page_size, npages;
302 	bool is_dram_addr;
303 
304 
305 	if (hdev->mmu_disable)
306 		return 0;
307 
308 	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
309 	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
310 
311 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
312 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
313 
314 	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
315 							is_dram_addr);
316 	if (rc)
317 		return rc;
318 
319 	/*
320 	 * Verify that the phys and virt addresses are aligned with the
321 	 * MMU page size (in dram this means checking the address and MMU
322 	 * after scrambling)
323 	 */
324 	if ((is_dram_addr &&
325 			((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
326 				(mmu_prop->page_size - 1)) ||
327 			(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
328 				(mmu_prop->page_size - 1)))) ||
329 		(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
330 				(virt_addr & (real_page_size - 1)))))
331 		dev_crit(hdev->dev,
332 			"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
333 			phys_addr, virt_addr, real_page_size);
334 
335 	npages = page_size / real_page_size;
336 	real_virt_addr = virt_addr;
337 	real_phys_addr = phys_addr;
338 
339 	for (i = 0 ; i < npages ; i++) {
340 		rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
341 										is_dram_addr);
342 		if (rc)
343 			goto err;
344 
345 		real_virt_addr += real_page_size;
346 		real_phys_addr += real_page_size;
347 		mapped_cnt++;
348 	}
349 
350 	if (flush_pte)
351 		mmu_funcs->flush(ctx);
352 
353 	trace_habanalabs_mmu_map(&hdev->pdev->dev, virt_addr, phys_addr, page_size, flush_pte);
354 
355 	return 0;
356 
357 err:
358 	real_virt_addr = virt_addr;
359 	for (i = 0 ; i < mapped_cnt ; i++) {
360 		if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
361 			dev_warn_ratelimited(hdev->dev,
362 				"failed to unmap va: 0x%llx\n", real_virt_addr);
363 
364 		real_virt_addr += real_page_size;
365 	}
366 
367 	mmu_funcs->flush(ctx);
368 
369 	return rc;
370 }
371 
372 /*
373  * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
374  *                         for mapping contiguous physical memory
375  *
376  * @ctx: pointer to the context structure
377  * @virt_addr: virt addr to map from
378  * @phys_addr: phys addr to map to
379  * @size: size to map
380  *
381  */
382 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
383 					u64 phys_addr, u32 size)
384 {
385 	struct hl_device *hdev = ctx->hdev;
386 	struct asic_fixed_properties *prop = &hdev->asic_prop;
387 	u64 curr_va, curr_pa;
388 	u32 page_size;
389 	bool flush_pte;
390 	int rc = 0, off;
391 
392 	if (hl_mem_area_inside_range(virt_addr, size,
393 			prop->dmmu.start_addr, prop->dmmu.end_addr))
394 		page_size = prop->dmmu.page_size;
395 	else if (hl_mem_area_inside_range(virt_addr, size,
396 			prop->pmmu.start_addr, prop->pmmu.end_addr))
397 		page_size = prop->pmmu.page_size;
398 	else if (hl_mem_area_inside_range(virt_addr, size,
399 			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
400 		page_size = prop->pmmu_huge.page_size;
401 	else
402 		return -EINVAL;
403 
404 	for (off = 0 ; off < size ; off += page_size) {
405 		curr_va = virt_addr + off;
406 		curr_pa = phys_addr + off;
407 		flush_pte = (off + page_size) >= size;
408 		rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
409 								flush_pte);
410 		if (rc) {
411 			dev_err(hdev->dev,
412 				"Map failed for va 0x%llx to pa 0x%llx\n",
413 				curr_va, curr_pa);
414 			/* last mapping failed so don't try to unmap it - reduce off by page_size */
415 			off -= page_size;
416 			goto unmap;
417 		}
418 	}
419 
420 	return rc;
421 
422 unmap:
423 	for (; off >= 0 ; off -= page_size) {
424 		curr_va = virt_addr + off;
425 		flush_pte = (off - (s32) page_size) < 0;
426 		if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
427 			dev_warn_ratelimited(hdev->dev,
428 				"failed to unmap va 0x%llx\n", curr_va);
429 	}
430 
431 	return rc;
432 }
433 
434 /*
435  * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
436  *                           for unmapping contiguous physical memory
437  *
438  * @ctx: pointer to the context structure
439  * @virt_addr: virt addr to unmap
440  * @size: size to unmap
441  *
442  */
443 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
444 {
445 	struct hl_device *hdev = ctx->hdev;
446 	struct asic_fixed_properties *prop = &hdev->asic_prop;
447 	u64 curr_va;
448 	u32 page_size;
449 	bool flush_pte;
450 	int rc = 0, off;
451 
452 	if (hl_mem_area_inside_range(virt_addr, size,
453 			prop->dmmu.start_addr, prop->dmmu.end_addr))
454 		page_size = prop->dmmu.page_size;
455 	else if (hl_mem_area_inside_range(virt_addr, size,
456 			prop->pmmu.start_addr, prop->pmmu.end_addr))
457 		page_size = prop->pmmu.page_size;
458 	else if (hl_mem_area_inside_range(virt_addr, size,
459 			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
460 		page_size = prop->pmmu_huge.page_size;
461 	else
462 		return -EINVAL;
463 
464 	for (off = 0 ; off < size ; off += page_size) {
465 		curr_va = virt_addr + off;
466 		flush_pte = (off + page_size) >= size;
467 		rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
468 		if (rc)
469 			dev_warn_ratelimited(hdev->dev,
470 				"Unmap failed for va 0x%llx\n", curr_va);
471 	}
472 
473 	return rc;
474 }
475 
476 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
477 						struct hl_mmu_hop_info *hops,
478 						u64 *phys_addr)
479 {
480 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
481 	u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
482 	struct hl_mmu_properties *mmu_prop;
483 
484 	/* last hop holds the phys address and flags */
485 	if (hops->unscrambled_paddr)
486 		tmp_phys_addr = hops->unscrambled_paddr;
487 	else
488 		tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
489 
490 	if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
491 		mmu_prop = &prop->pmmu_huge;
492 	else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
493 		mmu_prop = &prop->pmmu;
494 	else /* HL_VA_RANGE_TYPE_DRAM */
495 		mmu_prop = &prop->dmmu;
496 
497 	if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
498 			!is_power_of_2(prop->dram_page_size)) {
499 		u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
500 			page_id, page_start;
501 		u32 page_off;
502 
503 		/*
504 		 * Bit arithmetic cannot be used for non power of two page
505 		 * sizes. In addition, since bit arithmetic is not used,
506 		 * we cannot ignore dram base. All that shall be considered.
507 		 */
508 
509 		dram_page_size = prop->dram_page_size;
510 		dram_base = prop->dram_base_address;
511 		abs_phys_addr = tmp_phys_addr - dram_base;
512 		abs_virt_addr = virt_addr - dram_base;
513 		page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
514 		page_start = page_id * dram_page_size;
515 		div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
516 
517 		*phys_addr = page_start + page_off + dram_base;
518 	} else {
519 		/*
520 		 * find the correct hop shift field in hl_mmu_properties
521 		 * structure in order to determine the right masks
522 		 * for the page offset.
523 		 */
524 		hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
525 		offset_mask = (1ull << hop_shift) - 1;
526 		addr_mask = ~(offset_mask);
527 		*phys_addr = (tmp_phys_addr & addr_mask) |
528 				(virt_addr & offset_mask);
529 	}
530 }
531 
532 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
533 {
534 	struct hl_mmu_hop_info hops;
535 	int rc;
536 
537 	memset(&hops, 0, sizeof(hops));
538 
539 	rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
540 	if (rc)
541 		return rc;
542 
543 	hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops,  phys_addr);
544 
545 	return 0;
546 }
547 
548 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
549 			struct hl_mmu_hop_info *hops)
550 {
551 	struct hl_device *hdev = ctx->hdev;
552 	struct asic_fixed_properties *prop;
553 	struct hl_mmu_properties *mmu_prop;
554 	struct hl_mmu_funcs *mmu_funcs;
555 	int pgt_residency, rc;
556 	bool is_dram_addr;
557 
558 	if (hdev->mmu_disable)
559 		return -EOPNOTSUPP;
560 
561 	prop = &hdev->asic_prop;
562 	hops->scrambled_vaddr = virt_addr;      /* assume no scrambling */
563 
564 	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
565 								prop->dmmu.start_addr,
566 								prop->dmmu.end_addr);
567 
568 	/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
569 	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
570 	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
571 	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
572 
573 	mutex_lock(&hdev->mmu_lock);
574 	rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
575 	mutex_unlock(&hdev->mmu_lock);
576 
577 	if (rc)
578 		return rc;
579 
580 	/* add page offset to physical address */
581 	if (hops->unscrambled_paddr)
582 		hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
583 
584 	return 0;
585 }
586 
587 int hl_mmu_if_set_funcs(struct hl_device *hdev)
588 {
589 	struct asic_fixed_properties *prop = &hdev->asic_prop;
590 
591 	if (hdev->mmu_disable)
592 		return 0;
593 
594 	switch (hdev->asic_type) {
595 	case ASIC_GOYA:
596 	case ASIC_GAUDI:
597 	case ASIC_GAUDI_SEC:
598 		hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
599 		break;
600 	case ASIC_GAUDI2:
601 	case ASIC_GAUDI2B:
602 	case ASIC_GAUDI2C:
603 	case ASIC_GAUDI2D:
604 		hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
605 		if (prop->pmmu.host_resident)
606 			hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
607 		break;
608 	default:
609 		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
610 			hdev->asic_type);
611 		return -EOPNOTSUPP;
612 	}
613 
614 	return 0;
615 }
616 
617 /**
618  * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
619  * @hdev: pointer to device data.
620  * @addr: The address to scramble.
621  *
622  * Return: The scrambled address.
623  */
624 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
625 {
626 	return addr;
627 }
628 
629 /**
630  * hl_mmu_descramble_addr() - The generic mmu address descrambling
631  * routine.
632  * @hdev: pointer to device data.
633  * @addr: The address to descramble.
634  *
635  * Return: The un-scrambled address.
636  */
637 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
638 {
639 	return addr;
640 }
641 
642 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
643 {
644 	int rc;
645 
646 	rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
647 	if (rc)
648 		dev_err_ratelimited(hdev->dev,
649 				"%s: %s cache invalidation failed, rc=%d\n",
650 				dev_name(&hdev->pdev->dev),
651 				flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
652 
653 	return rc;
654 }
655 
656 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
657 					u32 flags, u32 asid, u64 va, u64 size)
658 {
659 	int rc;
660 
661 	rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
662 								asid, va, size);
663 	if (rc)
664 		dev_err_ratelimited(hdev->dev,
665 			"%s: %s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
666 			dev_name(&hdev->pdev->dev), flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU",
667 			va, size, rc);
668 
669 	return rc;
670 }
671 
672 static void hl_mmu_prefetch_work_function(struct work_struct *work)
673 {
674 	struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
675 	struct hl_ctx *ctx = pfw->ctx;
676 	struct hl_device *hdev = ctx->hdev;
677 
678 	if (!hl_device_operational(hdev, NULL))
679 		goto put_ctx;
680 
681 	mutex_lock(&hdev->mmu_lock);
682 
683 	hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
684 
685 	mutex_unlock(&hdev->mmu_lock);
686 
687 put_ctx:
688 	/*
689 	 * context was taken in the common mmu prefetch function- see comment there about
690 	 * context handling.
691 	 */
692 	hl_ctx_put(ctx);
693 	kfree(pfw);
694 }
695 
696 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
697 {
698 	struct hl_prefetch_work *handle_prefetch_work;
699 
700 	handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
701 	if (!handle_prefetch_work)
702 		return -ENOMEM;
703 
704 	INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
705 	handle_prefetch_work->ctx = ctx;
706 	handle_prefetch_work->va = va;
707 	handle_prefetch_work->size = size;
708 	handle_prefetch_work->flags = flags;
709 	handle_prefetch_work->asid = asid;
710 
711 	/*
712 	 * as actual prefetch is done in a WQ we must get the context (and put it
713 	 * at the end of the work function)
714 	 */
715 	hl_ctx_get(ctx);
716 	queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
717 
718 	return 0;
719 }
720 
721 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
722 {
723 	return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
724 }
725 
726 /**
727  * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
728  * @ctx: pointer to the context structure to initialize.
729  * @mmu_prop: MMU properties.
730  * @hop_idx: HOP index.
731  * @hop_addr: HOP address.
732  * @virt_addr: virtual address for the translation.
733  *
734  * @return the matching PTE value on success, otherwise U64_MAX.
735  */
736 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
737 					u8 hop_idx, u64 hop_addr, u64 virt_addr)
738 {
739 	u64 mask, shift;
740 
741 	if (hop_idx >= mmu_prop->num_hops) {
742 		dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
743 		return U64_MAX;
744 	}
745 
746 	shift = mmu_prop->hop_shifts[hop_idx];
747 	mask = mmu_prop->hop_masks[hop_idx];
748 
749 	return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
750 }
751 
752 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
753 					struct gen_pool_chunk *chunk,
754 					void *data)
755 {
756 	struct hl_device *hdev = data;
757 
758 	hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
759 					(void *)chunk->start_addr, chunk->phys_addr);
760 }
761 
762 void hl_mmu_hr_flush(struct hl_ctx *ctx)
763 {
764 	/* a flush operation requires memory barrier */
765 	mb();
766 }
767 
768 /**
769  * hl_mmu_hr_pool_destroy() - destroy genpool
770  * @hdev: habanalabs device structure.
771  * @hr_priv: MMU HR private data.
772  * @hop_table_size: HOP table size.
773  *
774  * This function does the following:
775  * - free entries allocated for shadow HOP0
776  * - free pool chunks
777  * - free pool
778  */
779 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
780 					u32 hop_table_size)
781 {
782 	struct asic_fixed_properties *prop = &hdev->asic_prop;
783 	struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
784 	struct pgt_info *hop0_pgt;
785 	int asid;
786 
787 	if (ZERO_OR_NULL_PTR(*pool))
788 		return;
789 
790 	/* Free the Fixed allocation of HOPs0 */
791 	if (hr_priv->mmu_asid_hop0) {
792 		for (asid = 0 ; asid < prop->max_asid ; asid++) {
793 			hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
794 			if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
795 				continue;
796 
797 			gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
798 		}
799 	}
800 
801 	gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
802 	gen_pool_destroy(*pool);
803 
804 	/* Make sure that if we arrive here again without init was called we
805 	 * won't cause kernel panic. This can happen for example if we fail
806 	 * during hard reset code at certain points
807 	 */
808 	*pool = NULL;
809 }
810 
811 /**
812  * hl_mmu_hr_init() - initialize the MMU module.
813  * @hdev: habanalabs device structure.
814  * @hr_priv: MMU HR private data.
815  * @hop_table_size: HOP table size.
816  * @pgt_size: memory size allocated for the page table
817  *
818  * @return 0 on success otherwise non-zero error code
819  *
820  * This function does the following:
821  * - Create a pool of pages for pgt_infos.
822  * - Create a shadow table for pgt
823  */
824 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
825 			u64 pgt_size)
826 {
827 	struct asic_fixed_properties *prop = &hdev->asic_prop;
828 	size_t pool_chunk_size = SZ_4M;
829 	struct pgt_info *hop0_pgt;
830 	dma_addr_t dma_addr;
831 	u64 virt_addr;
832 	int i, rc;
833 
834 	/*
835 	 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
836 	 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
837 	 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
838 	 * allocations with higher-order alignment restrictions
839 	 */
840 	hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
841 	if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
842 		dev_err(hdev->dev, "Failed to create hr page pool\n");
843 		return -ENOMEM;
844 	}
845 
846 	hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
847 	if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
848 		dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
849 		rc = -ENOMEM;
850 		goto destroy_mmu_pgt_pool;
851 	}
852 
853 	for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
854 		virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
855 									&dma_addr,
856 									GFP_KERNEL | __GFP_ZERO);
857 		if (ZERO_OR_NULL_PTR(virt_addr)) {
858 			dev_err(hdev->dev,
859 				"Failed to allocate memory for host-resident page pool\n");
860 			rc = -ENOMEM;
861 			goto destroy_mmu_pgt_pool;
862 		}
863 
864 		rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
865 						pool_chunk_size, -1);
866 		if (rc) {
867 			dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
868 			goto destroy_mmu_pgt_pool;
869 		}
870 	}
871 
872 	for (i = 0 ; i < prop->max_asid ; i++) {
873 		hop0_pgt = &hr_priv->mmu_asid_hop0[i];
874 		hop0_pgt->virt_addr = (uintptr_t)
875 					gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
876 								hop_table_size,
877 								(dma_addr_t *) &hop0_pgt->phys_addr,
878 								hop_table_size);
879 		if (!hop0_pgt->virt_addr) {
880 			dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
881 			rc = -ENOMEM;
882 			goto destroy_mmu_pgt_pool;
883 		}
884 	}
885 
886 	/* MMU H/W init will be done in device hw_init() */
887 
888 	return 0;
889 
890 destroy_mmu_pgt_pool:
891 	hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
892 	if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
893 		kvfree(hr_priv->mmu_asid_hop0);
894 
895 	return rc;
896 }
897 
898 /**
899  * hl_mmu_hr_fini() - release the MMU module.
900  * @hdev: habanalabs device structure.
901  * @hr_priv: MMU host resident private info.
902  * @hop_table_size: HOP table size
903  *
904  * This function does the following:
905  * - Disable MMU in H/W.
906  * - Free the pgt_infos pool.
907  *
908  * All contexts should be freed before calling this function.
909  */
910 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
911 {
912 	/* MMU H/W fini was already done in device hw_fini() */
913 
914 	hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
915 
916 	if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
917 		kvfree(hr_priv->mmu_asid_hop0);
918 
919 		/* Make sure that if we arrive here again without init was
920 		 * called we won't cause kernel panic. This can happen for
921 		 * example if we fail during hard reset code at certain points
922 		 */
923 		hr_priv->mmu_asid_hop0 = NULL;
924 	}
925 }
926 
927 /**
928  * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
929  * @pgt_info: page table info structure.
930  * @hr_priv: MMU HR private data.
931  * @hop_table_size: HOP table size.
932  */
933 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
934 					u32 hop_table_size)
935 {
936 	gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
937 	hash_del(&pgt_info->node);
938 	kfree(pgt_info);
939 }
940 
941 /**
942  * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
943  * @ctx: pointer to the context structure
944  * @pgt: pgt_info for the HOP hosting the PTE
945  * @phys_pte_addr: phys address of the PTE
946  * @hop_table_size: HOP table size
947  *
948  * @return PTE virtual address
949  *
950  * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
951  * by adding the PTE offset.
952  */
953 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
954 							u64 phys_pte_addr, u32 hop_table_size)
955 {
956 	u64 page_mask = (hop_table_size - 1);
957 	u64 pte_offset = phys_pte_addr & page_mask;
958 
959 	return pgt->virt_addr + pte_offset;
960 }
961 
962 /**
963  * hl_mmu_hr_write_pte() - write HR PTE
964  * @ctx: pointer to the context structure
965  * @pgt_info: HOP's page table info structure
966  * @phys_pte_addr: phys PTE address
967  * @val: raw PTE data
968  * @hop_table_size: HOP table size
969  */
970 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
971 								u64 val, u32 hop_table_size)
972 {
973 	/*
974 	 * The value to write is the phys address of the next hop +
975 	 * flags at the 12 LSBs.
976 	 */
977 	u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
978 
979 	*((u64 *) (uintptr_t) virt_addr) = val;
980 }
981 
982 /**
983  * hl_mmu_hr_clear_pte() - clear HR PTE
984  * @ctx: pointer to the context structure
985  * @pgt_info: HOP's page table info structure
986  * @phys_pte_addr: phys PTE address
987  * @hop_table_size: HOP table size
988  */
989 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
990 						u32 hop_table_size)
991 {
992 	/* no need to transform the value to physical address */
993 	hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
994 }
995 
996 /**
997  * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
998  * @ctx: pointer to the context structure
999  * @pgt_info: HOP's page table info structure
1000  * @hr_priv: HR MMU private info
1001  * @hop_table_size: HOP table size
1002  *
1003  * @return number of PTEs still in the HOP
1004  */
1005 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
1006 						struct hl_mmu_hr_priv *hr_priv,
1007 						u32 hop_table_size)
1008 {
1009 	int num_of_ptes_left;
1010 
1011 	pgt_info->num_of_ptes--;
1012 
1013 	/*
1014 	 * Need to save the number of ptes left because free_hop might free
1015 	 * the pgt_info
1016 	 */
1017 	num_of_ptes_left = pgt_info->num_of_ptes;
1018 	if (!num_of_ptes_left)
1019 		hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1020 
1021 	return num_of_ptes_left;
1022 }
1023 
1024 /**
1025  * hl_mmu_hr_get_pte() - increase PGT PTE count
1026  * @ctx: pointer to the context structure
1027  * @hr_func: host resident functions
1028  * @phys_hop_addr: HOP phys address
1029  */
1030 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1031 {
1032 	hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1033 }
1034 
1035 /**
1036  * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1037  * @ctx: pointer to the context structure.
1038  * @hr_func: host resident functions.
1039  * @curr_pte: current PTE value.
1040  *
1041  * @return pgt_info structure on success, otherwise NULL.
1042  */
1043 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1044 							struct hl_hr_mmu_funcs *hr_func,
1045 							u64 curr_pte)
1046 {
1047 	u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1048 
1049 	if (next_hop_phys_addr == ULLONG_MAX)
1050 		return NULL;
1051 
1052 	return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1053 }
1054 
1055 /**
1056  * hl_mmu_hr_alloc_hop() - allocate HOP
1057  * @ctx: pointer to the context structure.
1058  * @hr_priv: host resident private info structure.
1059  * @hr_func: host resident functions.
1060  * @mmu_prop: MMU properties.
1061  *
1062  * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1063  */
1064 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1065 							struct hl_hr_mmu_funcs *hr_func,
1066 							struct hl_mmu_properties *mmu_prop)
1067 {
1068 	struct hl_device *hdev = ctx->hdev;
1069 	struct pgt_info *pgt_info;
1070 	dma_addr_t phys_addr;
1071 	void *virt_addr;
1072 	int i, retry = 1;
1073 
1074 	pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1075 	if (!pgt_info)
1076 		return NULL;
1077 
1078 	for (i = 0; i <= retry; i++) {
1079 		virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1080 							mmu_prop->hop_table_size,
1081 							&phys_addr,
1082 							mmu_prop->hop_table_size);
1083 		if (virt_addr)
1084 			break;
1085 
1086 		/* No memory in pool - get some and try again */
1087 		virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1088 							GFP_KERNEL | __GFP_ZERO);
1089 		if (ZERO_OR_NULL_PTR(virt_addr))
1090 			break;
1091 
1092 		if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1093 								phys_addr, SZ_2M, -1)) {
1094 			hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1095 			virt_addr = NULL;
1096 			break;
1097 		}
1098 	}
1099 
1100 	if (ZERO_OR_NULL_PTR(virt_addr)) {
1101 		dev_err(hdev->dev, "failed to allocate page\n");
1102 		goto pool_alloc_err;
1103 	}
1104 
1105 	pgt_info->phys_addr = phys_addr;
1106 	pgt_info->shadow_addr = (unsigned long) NULL;
1107 	pgt_info->virt_addr = (unsigned long)virt_addr;
1108 	pgt_info->ctx = ctx;
1109 	pgt_info->num_of_ptes = 0;
1110 	hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1111 
1112 	return pgt_info;
1113 
1114 pool_alloc_err:
1115 	kfree(pgt_info);
1116 
1117 	return NULL;
1118 }
1119 
1120 /**
1121  * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1122  * @ctx: pointer to the context structure.
1123  * @hr_priv: host resident private info structure.
1124  * @hr_func: host resident functions.
1125  * @mmu_prop: MMU properties.
1126  * @curr_pte: current PTE value.
1127  * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1128  *
1129  * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1130  */
1131 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1132 							struct hl_mmu_hr_priv *hr_priv,
1133 							struct hl_hr_mmu_funcs *hr_func,
1134 							struct hl_mmu_properties *mmu_prop,
1135 							u64 curr_pte, bool *is_new_hop)
1136 {
1137 	u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1138 
1139 	if (hop_addr != ULLONG_MAX)
1140 		return hr_func->get_pgt_info(ctx, hop_addr);
1141 
1142 	*is_new_hop = true;
1143 	return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1144 }
1145 
1146 /**
1147  * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1148  * @ctx: pointer to the context structure.
1149  * @virt_addr: the virt address for which to get info.
1150  * @hops: HOPs info structure.
1151  * @hr_func: host resident functions.
1152  *
1153  * @return 0 on success, otherwise non 0 error code..
1154  */
1155 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1156 								struct hl_hr_mmu_funcs *hr_func)
1157 {
1158 	/* using 6 HOPs as this is the maximum number of HOPs */
1159 	struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1160 	struct hl_device *hdev = ctx->hdev;
1161 	struct hl_mmu_properties *mmu_prop;
1162 	int rc, i, used_hops;
1163 	bool is_huge;
1164 
1165 	rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1166 	if (rc)
1167 		return rc;
1168 
1169 	used_hops = mmu_prop->num_hops;
1170 
1171 	/* huge pages use one less hop */
1172 	if (is_huge)
1173 		used_hops--;
1174 
1175 	hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1176 
1177 	for (i = 0 ; i < used_hops ; i++) {
1178 		if (i == 0)
1179 			hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1180 		else
1181 			hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1182 								hops->hop_info[i - 1].hop_pte_val);
1183 
1184 		if (!hops_pgt_info[i])
1185 			return -EFAULT;
1186 
1187 		hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1188 		hops->hop_info[i].hop_pte_addr =
1189 				hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1190 								hops->hop_info[i].hop_addr,
1191 								hops->scrambled_vaddr);
1192 		hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1193 						hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1194 								hops->hop_info[i].hop_pte_addr,
1195 								mmu_prop->hop_table_size);
1196 
1197 		if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1198 			return -EFAULT;
1199 
1200 		if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1201 			break;
1202 	}
1203 
1204 	/* if passed over all hops then no last hop was found */
1205 	if (i == mmu_prop->num_hops)
1206 		return -EFAULT;
1207 
1208 	if (hops->scrambled_vaddr != virt_addr)
1209 		hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1210 				(hdev, hops->hop_info[i].hop_pte_val);
1211 	else
1212 		hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1213 
1214 	hops->used_hops = i + 1;
1215 
1216 	return 0;
1217 }
1218 
1219 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
1220 {
1221 	struct pgt_info *pgt_info = NULL;
1222 
1223 	hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
1224 			(unsigned long) hop_addr)
1225 		if (hop_addr == pgt_info->shadow_addr)
1226 			break;
1227 
1228 	return pgt_info;
1229 }
1230 
1231 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr)
1232 {
1233 	struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1234 
1235 	hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1236 }
1237 
1238 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info)
1239 {
1240 	struct hl_device *hdev = ctx->hdev;
1241 
1242 	gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
1243 			hdev->asic_prop.dmmu.hop_table_size);
1244 	hash_del(&pgt_info->node);
1245 	kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
1246 	kfree(pgt_info);
1247 }
1248 
1249 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx)
1250 {
1251 	return ctx->hdev->asic_prop.mmu_pgt_addr +
1252 			(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1253 }
1254 
1255 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx)
1256 {
1257 	return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
1258 			(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
1259 }
1260 
1261 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
1262 {
1263 	u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1;
1264 	u64 shadow_hop_addr = shadow_addr & (~page_mask);
1265 	u64 pte_offset = shadow_addr & page_mask;
1266 	u64 phys_hop_addr;
1267 
1268 	if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx))
1269 		phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
1270 	else
1271 		phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
1272 
1273 	return phys_hop_addr + pte_offset;
1274 }
1275 
1276 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1277 {
1278 	u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val);
1279 
1280 	ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr),
1281 					phys_val);
1282 
1283 	*(u64 *) (uintptr_t) shadow_pte_addr = val;
1284 }
1285 
1286 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
1287 {
1288 	ctx->hdev->asic_funcs->write_pte(ctx->hdev,
1289 				hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val);
1290 	*(u64 *) (uintptr_t) shadow_pte_addr = val;
1291 }
1292 
1293 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr)
1294 {
1295 	hl_mmu_dr_write_final_pte(ctx, pte_addr, 0);
1296 }
1297 
1298 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr)
1299 {
1300 	hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++;
1301 }
1302 
1303 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr)
1304 {
1305 	struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
1306 	int num_of_ptes_left;
1307 
1308 	pgt_info->num_of_ptes--;
1309 
1310 	/*
1311 	 * Need to save the number of ptes left because hl_mmu_free_hop might free
1312 	 * the pgt_info
1313 	 */
1314 	num_of_ptes_left = pgt_info->num_of_ptes;
1315 	if (!num_of_ptes_left)
1316 		hl_mmu_dr_free_pgt_node(ctx, pgt_info);
1317 
1318 	return num_of_ptes_left;
1319 }
1320 
1321 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx)
1322 {
1323 	struct hl_device *hdev = ctx->hdev;
1324 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1325 	struct pgt_info *pgt_info;
1326 	u64 phys_addr, shadow_addr;
1327 
1328 	pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1329 	if (!pgt_info)
1330 		return ULLONG_MAX;
1331 
1332 	phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
1333 					prop->dmmu.hop_table_size);
1334 	if (!phys_addr) {
1335 		dev_err(hdev->dev, "failed to allocate page\n");
1336 		goto pool_add_err;
1337 	}
1338 
1339 	shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size,
1340 						GFP_KERNEL);
1341 	if (!shadow_addr)
1342 		goto shadow_err;
1343 
1344 	pgt_info->phys_addr = phys_addr;
1345 	pgt_info->shadow_addr = shadow_addr;
1346 	pgt_info->ctx = ctx;
1347 	pgt_info->num_of_ptes = 0;
1348 	hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
1349 
1350 	return shadow_addr;
1351 
1352 shadow_err:
1353 	gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool,
1354 			phys_addr, prop->dmmu.hop_table_size);
1355 pool_add_err:
1356 	kfree(pgt_info);
1357 
1358 	return ULLONG_MAX;
1359 }
1360 
1361 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop)
1362 {
1363 	u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1364 
1365 	if (hop_addr == ULLONG_MAX) {
1366 		hop_addr = hl_mmu_dr_alloc_hop(ctx);
1367 		*is_new_hop = (hop_addr != ULLONG_MAX);
1368 	}
1369 
1370 	return hop_addr;
1371 }
1372 
1373 void hl_mmu_dr_flush(struct hl_ctx *ctx)
1374 {
1375 	/* flush all writes from all cores to reach PCI */
1376 	mb();
1377 	ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx));
1378 }
1379 
1380 int hl_mmu_dr_init(struct hl_device *hdev)
1381 {
1382 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1383 	int rc;
1384 
1385 	hdev->mmu_priv.dr.mmu_pgt_pool =
1386 			gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1);
1387 
1388 	if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
1389 		dev_err(hdev->dev, "Failed to create page gen pool\n");
1390 		return -ENOMEM;
1391 	}
1392 
1393 	rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
1394 			prop->dmmu.hop0_tables_total_size,
1395 			prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size,
1396 			-1);
1397 	if (rc) {
1398 		dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
1399 		goto err_pool_add;
1400 	}
1401 
1402 	hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid,
1403 						prop->dmmu.hop_table_size, GFP_KERNEL);
1404 	if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
1405 		rc = -ENOMEM;
1406 		goto err_pool_add;
1407 	}
1408 
1409 	/* MMU H/W init will be done in device hw_init() */
1410 
1411 	return 0;
1412 
1413 err_pool_add:
1414 	gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1415 
1416 	return rc;
1417 }
1418 
1419 void hl_mmu_dr_fini(struct hl_device *hdev)
1420 {
1421 	/* MMU H/W fini was already done in device hw_fini() */
1422 
1423 	if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0))
1424 		return;
1425 
1426 	kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
1427 	gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
1428 
1429 	/* Make sure that if we arrive here again without init was
1430 	 * called we won't cause kernel panic. This can happen for
1431 	 * example if we fail during hard reset code at certain points
1432 	 */
1433 	hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
1434 }
1435