xref: /linux/drivers/accel/habanalabs/common/memory.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11 
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci-p2pdma.h>
16 
17 MODULE_IMPORT_NS(DMA_BUF);
18 
19 #define HL_MMU_DEBUG	0
20 
21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22 #define DRAM_POOL_PAGE_SIZE	SZ_8M
23 
24 #define MEM_HANDLE_INVALID	ULONG_MAX
25 
26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27 			struct hl_mem_in *args, u64 *handle);
28 
29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30 {
31 	struct asic_fixed_properties *prop = &hdev->asic_prop;
32 	u64 psize;
33 
34 	/*
35 	 * for ASIC that supports setting the allocation page size by user we will address
36 	 * user's choice only if it is not 0 (as 0 means taking the default page size)
37 	 */
38 	if (prop->supports_user_set_page_size && args->alloc.page_size) {
39 		psize = args->alloc.page_size;
40 
41 		if (!is_power_of_2(psize)) {
42 			dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43 			return -EINVAL;
44 		}
45 	} else {
46 		psize = prop->device_mem_alloc_default_page_size;
47 	}
48 
49 	*page_size = psize;
50 
51 	return 0;
52 }
53 
54 /*
55  * The va ranges in context object contain a list with the available chunks of
56  * device virtual memory.
57  * There is one range for host allocations and one for DRAM allocations.
58  *
59  * On initialization each range contains one chunk of all of its available
60  * virtual range which is a half of the total device virtual range.
61  *
62  * On each mapping of physical pages, a suitable virtual range chunk (with a
63  * minimum size) is selected from the list. If the chunk size equals the
64  * requested size, the chunk is returned. Otherwise, the chunk is split into
65  * two chunks - one to return as result and a remainder to stay in the list.
66  *
67  * On each Unmapping of a virtual address, the relevant virtual chunk is
68  * returned to the list. The chunk is added to the list and if its edges match
69  * the edges of the adjacent chunks (means a contiguous chunk can be created),
70  * the chunks are merged.
71  *
72  * On finish, the list is checked to have only one chunk of all the relevant
73  * virtual range (which is a half of the device total virtual range).
74  * If not (means not all mappings were unmapped), a warning is printed.
75  */
76 
77 /*
78  * alloc_device_memory() - allocate device memory.
79  * @ctx: pointer to the context structure.
80  * @args: host parameters containing the requested size.
81  * @ret_handle: result handle.
82  *
83  * This function does the following:
84  * - Allocate the requested size rounded up to 'dram_page_size' pages.
85  * - Return unique handle for later map/unmap/free.
86  */
87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88 				u32 *ret_handle)
89 {
90 	struct hl_device *hdev = ctx->hdev;
91 	struct hl_vm *vm = &hdev->vm;
92 	struct hl_vm_phys_pg_pack *phys_pg_pack;
93 	u64 paddr = 0, total_size, num_pgs, i;
94 	u32 num_curr_pgs, page_size;
95 	bool contiguous;
96 	int handle, rc;
97 
98 	num_curr_pgs = 0;
99 
100 	rc = set_alloc_page_size(hdev, args, &page_size);
101 	if (rc)
102 		return rc;
103 
104 	num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105 	total_size = num_pgs * page_size;
106 
107 	if (!total_size) {
108 		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109 		return -EINVAL;
110 	}
111 
112 	contiguous = args->flags & HL_MEM_CONTIGUOUS;
113 
114 	if (contiguous) {
115 		if (is_power_of_2(page_size))
116 			paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117 								     total_size, NULL, page_size);
118 		else
119 			paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120 		if (!paddr) {
121 			dev_err(hdev->dev,
122 				"Cannot allocate %llu contiguous pages with total size of %llu\n",
123 				num_pgs, total_size);
124 			return -ENOMEM;
125 		}
126 	}
127 
128 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129 	if (!phys_pg_pack) {
130 		rc = -ENOMEM;
131 		goto pages_pack_err;
132 	}
133 
134 	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135 	phys_pg_pack->asid = ctx->asid;
136 	phys_pg_pack->npages = num_pgs;
137 	phys_pg_pack->page_size = page_size;
138 	phys_pg_pack->total_size = total_size;
139 	phys_pg_pack->flags = args->flags;
140 	phys_pg_pack->contiguous = contiguous;
141 
142 	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144 		rc = -ENOMEM;
145 		goto pages_arr_err;
146 	}
147 
148 	if (phys_pg_pack->contiguous) {
149 		for (i = 0 ; i < num_pgs ; i++)
150 			phys_pg_pack->pages[i] = paddr + i * page_size;
151 	} else {
152 		for (i = 0 ; i < num_pgs ; i++) {
153 			if (is_power_of_2(page_size))
154 				phys_pg_pack->pages[i] =
155 					(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156 									    page_size, NULL,
157 									    page_size);
158 			else
159 				phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160 									page_size);
161 
162 			if (!phys_pg_pack->pages[i]) {
163 				dev_err(hdev->dev,
164 					"Cannot allocate device memory (out of memory)\n");
165 				rc = -ENOMEM;
166 				goto page_err;
167 			}
168 
169 			num_curr_pgs++;
170 		}
171 	}
172 
173 	spin_lock(&vm->idr_lock);
174 	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175 				GFP_ATOMIC);
176 	spin_unlock(&vm->idr_lock);
177 
178 	if (handle < 0) {
179 		dev_err(hdev->dev, "Failed to get handle for page\n");
180 		rc = -EFAULT;
181 		goto idr_err;
182 	}
183 
184 	for (i = 0 ; i < num_pgs ; i++)
185 		kref_get(&vm->dram_pg_pool_refcount);
186 
187 	phys_pg_pack->handle = handle;
188 
189 	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190 	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191 
192 	*ret_handle = handle;
193 
194 	return 0;
195 
196 idr_err:
197 page_err:
198 	if (!phys_pg_pack->contiguous)
199 		for (i = 0 ; i < num_curr_pgs ; i++)
200 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201 					page_size);
202 
203 	kvfree(phys_pg_pack->pages);
204 pages_arr_err:
205 	kfree(phys_pg_pack);
206 pages_pack_err:
207 	if (contiguous)
208 		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209 
210 	return rc;
211 }
212 
213 /**
214  * dma_map_host_va() - DMA mapping of the given host virtual address.
215  * @hdev: habanalabs device structure.
216  * @addr: the host virtual address of the memory area.
217  * @size: the size of the memory area.
218  * @p_userptr: pointer to result userptr structure.
219  *
220  * This function does the following:
221  * - Allocate userptr structure.
222  * - Pin the given host memory using the userptr structure.
223  * - Perform DMA mapping to have the DMA addresses of the pages.
224  */
225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226 				struct hl_userptr **p_userptr)
227 {
228 	struct hl_userptr *userptr;
229 	int rc;
230 
231 	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232 	if (!userptr) {
233 		rc = -ENOMEM;
234 		goto userptr_err;
235 	}
236 
237 	rc = hl_pin_host_memory(hdev, addr, size, userptr);
238 	if (rc) {
239 		dev_err(hdev->dev, "Failed to pin host memory\n");
240 		goto pin_err;
241 	}
242 
243 	userptr->dma_mapped = true;
244 	userptr->dir = DMA_BIDIRECTIONAL;
245 	userptr->vm_type = VM_TYPE_USERPTR;
246 
247 	*p_userptr = userptr;
248 
249 	rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
250 	if (rc) {
251 		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
252 		goto dma_map_err;
253 	}
254 
255 	return 0;
256 
257 dma_map_err:
258 	hl_unpin_host_memory(hdev, userptr);
259 pin_err:
260 	kfree(userptr);
261 userptr_err:
262 
263 	return rc;
264 }
265 
266 /**
267  * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
268  * @hdev: habanalabs device structure.
269  * @userptr: userptr to free.
270  *
271  * This function does the following:
272  * - Unpins the physical pages.
273  * - Frees the userptr structure.
274  */
275 static void dma_unmap_host_va(struct hl_device *hdev,
276 				struct hl_userptr *userptr)
277 {
278 	hl_unpin_host_memory(hdev, userptr);
279 	kfree(userptr);
280 }
281 
282 /**
283  * dram_pg_pool_do_release() - free DRAM pages pool
284  * @ref: pointer to reference object.
285  *
286  * This function does the following:
287  * - Frees the idr structure of physical pages handles.
288  * - Frees the generic pool of DRAM physical pages.
289  */
290 static void dram_pg_pool_do_release(struct kref *ref)
291 {
292 	struct hl_vm *vm = container_of(ref, struct hl_vm,
293 			dram_pg_pool_refcount);
294 
295 	/*
296 	 * free the idr here as only here we know for sure that there are no
297 	 * allocated physical pages and hence there are no handles in use
298 	 */
299 	idr_destroy(&vm->phys_pg_pack_handles);
300 	gen_pool_destroy(vm->dram_pg_pool);
301 }
302 
303 /**
304  * free_phys_pg_pack() - free physical page pack.
305  * @hdev: habanalabs device structure.
306  * @phys_pg_pack: physical page pack to free.
307  *
308  * This function does the following:
309  * - For DRAM memory only
310  *   - iterate over the pack, free each physical block structure by
311  *     returning it to the general pool.
312  * - Free the hl_vm_phys_pg_pack structure.
313  */
314 static void free_phys_pg_pack(struct hl_device *hdev,
315 				struct hl_vm_phys_pg_pack *phys_pg_pack)
316 {
317 	struct hl_vm *vm = &hdev->vm;
318 	u64 i;
319 
320 	if (phys_pg_pack->created_from_userptr)
321 		goto end;
322 
323 	if (phys_pg_pack->contiguous) {
324 		gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
325 			phys_pg_pack->total_size);
326 
327 		for (i = 0; i < phys_pg_pack->npages ; i++)
328 			kref_put(&vm->dram_pg_pool_refcount,
329 				dram_pg_pool_do_release);
330 	} else {
331 		for (i = 0 ; i < phys_pg_pack->npages ; i++) {
332 			gen_pool_free(vm->dram_pg_pool,
333 				phys_pg_pack->pages[i],
334 				phys_pg_pack->page_size);
335 			kref_put(&vm->dram_pg_pool_refcount,
336 				dram_pg_pool_do_release);
337 		}
338 	}
339 
340 end:
341 	kvfree(phys_pg_pack->pages);
342 	kfree(phys_pg_pack);
343 
344 	return;
345 }
346 
347 /**
348  * free_device_memory() - free device memory.
349  * @ctx: pointer to the context structure.
350  * @args: host parameters containing the requested size.
351  *
352  * This function does the following:
353  * - Free the device memory related to the given handle.
354  */
355 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
356 {
357 	struct hl_device *hdev = ctx->hdev;
358 	struct hl_vm *vm = &hdev->vm;
359 	struct hl_vm_phys_pg_pack *phys_pg_pack;
360 	u32 handle = args->free.handle;
361 
362 	spin_lock(&vm->idr_lock);
363 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
364 	if (!phys_pg_pack) {
365 		spin_unlock(&vm->idr_lock);
366 		dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
367 		return -EINVAL;
368 	}
369 
370 	if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
371 		spin_unlock(&vm->idr_lock);
372 		dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
373 		return -EINVAL;
374 	}
375 
376 	/* must remove from idr before the freeing of the physical pages as the refcount of the pool
377 	 * is also the trigger of the idr destroy
378 	 */
379 	idr_remove(&vm->phys_pg_pack_handles, handle);
380 	spin_unlock(&vm->idr_lock);
381 
382 	atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
383 	atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
384 
385 	free_phys_pg_pack(hdev, phys_pg_pack);
386 
387 	return 0;
388 }
389 
390 /**
391  * clear_va_list_locked() - free virtual addresses list.
392  * @hdev: habanalabs device structure.
393  * @va_list: list of virtual addresses to free.
394  *
395  * This function does the following:
396  * - Iterate over the list and free each virtual addresses block.
397  *
398  * This function should be called only when va_list lock is taken.
399  */
400 static void clear_va_list_locked(struct hl_device *hdev,
401 		struct list_head *va_list)
402 {
403 	struct hl_vm_va_block *va_block, *tmp;
404 
405 	list_for_each_entry_safe(va_block, tmp, va_list, node) {
406 		list_del(&va_block->node);
407 		kfree(va_block);
408 	}
409 }
410 
411 /**
412  * print_va_list_locked() - print virtual addresses list.
413  * @hdev: habanalabs device structure.
414  * @va_list: list of virtual addresses to print.
415  *
416  * This function does the following:
417  * - Iterate over the list and print each virtual addresses block.
418  *
419  * This function should be called only when va_list lock is taken.
420  */
421 static void print_va_list_locked(struct hl_device *hdev,
422 		struct list_head *va_list)
423 {
424 #if HL_MMU_DEBUG
425 	struct hl_vm_va_block *va_block;
426 
427 	dev_dbg(hdev->dev, "print va list:\n");
428 
429 	list_for_each_entry(va_block, va_list, node)
430 		dev_dbg(hdev->dev,
431 			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
432 			va_block->start, va_block->end, va_block->size);
433 #endif
434 }
435 
436 /**
437  * merge_va_blocks_locked() - merge a virtual block if possible.
438  * @hdev: pointer to the habanalabs device structure.
439  * @va_list: pointer to the virtual addresses block list.
440  * @va_block: virtual block to merge with adjacent blocks.
441  *
442  * This function does the following:
443  * - Merge the given blocks with the adjacent blocks if their virtual ranges
444  *   create a contiguous virtual range.
445  *
446  * This Function should be called only when va_list lock is taken.
447  */
448 static void merge_va_blocks_locked(struct hl_device *hdev,
449 		struct list_head *va_list, struct hl_vm_va_block *va_block)
450 {
451 	struct hl_vm_va_block *prev, *next;
452 
453 	prev = list_prev_entry(va_block, node);
454 	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
455 		prev->end = va_block->end;
456 		prev->size = prev->end - prev->start + 1;
457 		list_del(&va_block->node);
458 		kfree(va_block);
459 		va_block = prev;
460 	}
461 
462 	next = list_next_entry(va_block, node);
463 	if (&next->node != va_list && va_block->end + 1 == next->start) {
464 		next->start = va_block->start;
465 		next->size = next->end - next->start + 1;
466 		list_del(&va_block->node);
467 		kfree(va_block);
468 	}
469 }
470 
471 /**
472  * add_va_block_locked() - add a virtual block to the virtual addresses list.
473  * @hdev: pointer to the habanalabs device structure.
474  * @va_list: pointer to the virtual addresses block list.
475  * @start: start virtual address.
476  * @end: end virtual address.
477  *
478  * This function does the following:
479  * - Add the given block to the virtual blocks list and merge with other blocks
480  *   if a contiguous virtual block can be created.
481  *
482  * This Function should be called only when va_list lock is taken.
483  */
484 static int add_va_block_locked(struct hl_device *hdev,
485 		struct list_head *va_list, u64 start, u64 end)
486 {
487 	struct hl_vm_va_block *va_block, *res = NULL;
488 	u64 size = end - start + 1;
489 
490 	print_va_list_locked(hdev, va_list);
491 
492 	list_for_each_entry(va_block, va_list, node) {
493 		/* TODO: remove upon matureness */
494 		if (hl_mem_area_crosses_range(start, size, va_block->start,
495 				va_block->end)) {
496 			dev_err(hdev->dev,
497 				"block crossing ranges at start 0x%llx, end 0x%llx\n",
498 				va_block->start, va_block->end);
499 			return -EINVAL;
500 		}
501 
502 		if (va_block->end < start)
503 			res = va_block;
504 	}
505 
506 	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
507 	if (!va_block)
508 		return -ENOMEM;
509 
510 	va_block->start = start;
511 	va_block->end = end;
512 	va_block->size = size;
513 
514 	if (!res)
515 		list_add(&va_block->node, va_list);
516 	else
517 		list_add(&va_block->node, &res->node);
518 
519 	merge_va_blocks_locked(hdev, va_list, va_block);
520 
521 	print_va_list_locked(hdev, va_list);
522 
523 	return 0;
524 }
525 
526 /**
527  * add_va_block() - wrapper for add_va_block_locked.
528  * @hdev: pointer to the habanalabs device structure.
529  * @va_range: pointer to the virtual addresses range object.
530  * @start: start virtual address.
531  * @end: end virtual address.
532  *
533  * This function does the following:
534  * - Takes the list lock and calls add_va_block_locked.
535  */
536 static inline int add_va_block(struct hl_device *hdev,
537 		struct hl_va_range *va_range, u64 start, u64 end)
538 {
539 	int rc;
540 
541 	mutex_lock(&va_range->lock);
542 	rc = add_va_block_locked(hdev, &va_range->list, start, end);
543 	mutex_unlock(&va_range->lock);
544 
545 	return rc;
546 }
547 
548 /**
549  * is_hint_crossing_range() - check if hint address crossing specified reserved.
550  * @range_type: virtual space range type.
551  * @start_addr: start virtual address.
552  * @size: block size.
553  * @prop: asic properties structure to retrieve reserved ranges from.
554  */
555 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
556 		u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
557 	bool range_cross;
558 
559 	if (range_type == HL_VA_RANGE_TYPE_DRAM)
560 		range_cross =
561 			hl_mem_area_crosses_range(start_addr, size,
562 			prop->hints_dram_reserved_va_range.start_addr,
563 			prop->hints_dram_reserved_va_range.end_addr);
564 	else if (range_type == HL_VA_RANGE_TYPE_HOST)
565 		range_cross =
566 			hl_mem_area_crosses_range(start_addr,	size,
567 			prop->hints_host_reserved_va_range.start_addr,
568 			prop->hints_host_reserved_va_range.end_addr);
569 	else
570 		range_cross =
571 			hl_mem_area_crosses_range(start_addr, size,
572 			prop->hints_host_hpage_reserved_va_range.start_addr,
573 			prop->hints_host_hpage_reserved_va_range.end_addr);
574 
575 	return range_cross;
576 }
577 
578 /**
579  * get_va_block() - get a virtual block for the given size and alignment.
580  *
581  * @hdev: pointer to the habanalabs device structure.
582  * @va_range: pointer to the virtual addresses range.
583  * @size: requested block size.
584  * @hint_addr: hint for requested address by the user.
585  * @va_block_align: required alignment of the virtual block start address.
586  * @range_type: va range type (host, dram)
587  * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
588  *
589  * This function does the following:
590  * - Iterate on the virtual block list to find a suitable virtual block for the
591  *   given size, hint address and alignment.
592  * - Reserve the requested block and update the list.
593  * - Return the start address of the virtual block.
594  */
595 static u64 get_va_block(struct hl_device *hdev,
596 				struct hl_va_range *va_range,
597 				u64 size, u64 hint_addr, u32 va_block_align,
598 				enum hl_va_range_type range_type,
599 				u32 flags)
600 {
601 	struct hl_vm_va_block *va_block, *new_va_block = NULL;
602 	struct asic_fixed_properties *prop = &hdev->asic_prop;
603 	u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
604 		align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
605 		dram_hint_mask = prop->dram_hints_align_mask;
606 	bool add_prev = false;
607 	bool is_align_pow_2  = is_power_of_2(va_range->page_size);
608 	bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
609 	bool force_hint = flags & HL_MEM_FORCE_HINT;
610 
611 	if (is_align_pow_2)
612 		align_mask = ~((u64)va_block_align - 1);
613 	else
614 		/*
615 		 * with non-power-of-2 range we work only with page granularity
616 		 * and the start address is page aligned,
617 		 * so no need for alignment checking.
618 		 */
619 		size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
620 							va_range->page_size;
621 
622 	tmp_hint_addr = hint_addr & ~dram_hint_mask;
623 
624 	/* Check if we need to ignore hint address */
625 	if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
626 			(!is_align_pow_2 && is_hint_dram_addr &&
627 			do_div(tmp_hint_addr, va_range->page_size))) {
628 
629 		if (force_hint) {
630 			/* Hint must be respected, so here we just fail */
631 			dev_err(hdev->dev,
632 				"Hint address 0x%llx is not page aligned - cannot be respected\n",
633 				hint_addr);
634 			return 0;
635 		}
636 
637 		dev_dbg(hdev->dev,
638 			"Hint address 0x%llx will be ignored because it is not aligned\n",
639 			hint_addr);
640 		hint_addr = 0;
641 	}
642 
643 	mutex_lock(&va_range->lock);
644 
645 	print_va_list_locked(hdev, &va_range->list);
646 
647 	list_for_each_entry(va_block, &va_range->list, node) {
648 		/* Calc the first possible aligned addr */
649 		valid_start = va_block->start;
650 
651 		if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
652 			valid_start &= align_mask;
653 			valid_start += va_block_align;
654 			if (valid_start > va_block->end)
655 				continue;
656 		}
657 
658 		valid_size = va_block->end - valid_start + 1;
659 		if (valid_size < size)
660 			continue;
661 
662 		/*
663 		 * In case hint address is 0, and hints_range_reservation
664 		 * property enabled, then avoid allocating va blocks from the
665 		 * range reserved for hint addresses
666 		 */
667 		if (prop->hints_range_reservation && !hint_addr)
668 			if (is_hint_crossing_range(range_type, valid_start,
669 					size, prop))
670 				continue;
671 
672 		/* Pick the minimal length block which has the required size */
673 		if (!new_va_block || (valid_size < reserved_valid_size)) {
674 			new_va_block = va_block;
675 			reserved_valid_start = valid_start;
676 			reserved_valid_size = valid_size;
677 		}
678 
679 		if (hint_addr && hint_addr >= valid_start &&
680 					(hint_addr + size) <= va_block->end) {
681 			new_va_block = va_block;
682 			reserved_valid_start = hint_addr;
683 			reserved_valid_size = valid_size;
684 			break;
685 		}
686 	}
687 
688 	if (!new_va_block) {
689 		dev_err(hdev->dev, "no available va block for size %llu\n",
690 								size);
691 		goto out;
692 	}
693 
694 	if (force_hint && reserved_valid_start != hint_addr) {
695 		/* Hint address must be respected. If we are here - this means
696 		 * we could not respect it.
697 		 */
698 		dev_err(hdev->dev,
699 			"Hint address 0x%llx could not be respected\n",
700 			hint_addr);
701 		reserved_valid_start = 0;
702 		goto out;
703 	}
704 
705 	/*
706 	 * Check if there is some leftover range due to reserving the new
707 	 * va block, then return it to the main virtual addresses list.
708 	 */
709 	if (reserved_valid_start > new_va_block->start) {
710 		prev_start = new_va_block->start;
711 		prev_end = reserved_valid_start - 1;
712 
713 		new_va_block->start = reserved_valid_start;
714 		new_va_block->size = reserved_valid_size;
715 
716 		add_prev = true;
717 	}
718 
719 	if (new_va_block->size > size) {
720 		new_va_block->start += size;
721 		new_va_block->size = new_va_block->end - new_va_block->start + 1;
722 	} else {
723 		list_del(&new_va_block->node);
724 		kfree(new_va_block);
725 	}
726 
727 	if (add_prev)
728 		add_va_block_locked(hdev, &va_range->list, prev_start,
729 				prev_end);
730 
731 	print_va_list_locked(hdev, &va_range->list);
732 out:
733 	mutex_unlock(&va_range->lock);
734 
735 	return reserved_valid_start;
736 }
737 
738 /*
739  * hl_reserve_va_block() - reserve a virtual block of a given size.
740  * @hdev: pointer to the habanalabs device structure.
741  * @ctx: current context
742  * @type: virtual addresses range type.
743  * @size: requested block size.
744  * @alignment: required alignment in bytes of the virtual block start address,
745  *             0 means no alignment.
746  *
747  * This function does the following:
748  * - Iterate on the virtual block list to find a suitable virtual block for the
749  *   given size and alignment.
750  * - Reserve the requested block and update the list.
751  * - Return the start address of the virtual block.
752  */
753 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
754 		enum hl_va_range_type type, u64 size, u32 alignment)
755 {
756 	return get_va_block(hdev, ctx->va_range[type], size, 0,
757 			max(alignment, ctx->va_range[type]->page_size),
758 			type, 0);
759 }
760 
761 /**
762  * hl_get_va_range_type() - get va_range type for the given address and size.
763  * @ctx: context to fetch va_range from.
764  * @address: the start address of the area we want to validate.
765  * @size: the size in bytes of the area we want to validate.
766  * @type: returned va_range type.
767  *
768  * Return: true if the area is inside a valid range, false otherwise.
769  */
770 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
771 			enum hl_va_range_type *type)
772 {
773 	int i;
774 
775 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
776 		if (hl_mem_area_inside_range(address, size,
777 				ctx->va_range[i]->start_addr,
778 				ctx->va_range[i]->end_addr)) {
779 			*type = i;
780 			return 0;
781 		}
782 	}
783 
784 	return -EINVAL;
785 }
786 
787 /**
788  * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
789  * @hdev: pointer to the habanalabs device structure
790  * @ctx: pointer to the context structure.
791  * @start_addr: start virtual address.
792  * @size: number of bytes to unreserve.
793  *
794  * This function does the following:
795  * - Takes the list lock and calls add_va_block_locked.
796  */
797 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
798 		u64 start_addr, u64 size)
799 {
800 	enum hl_va_range_type type;
801 	int rc;
802 
803 	rc = hl_get_va_range_type(ctx, start_addr, size, &type);
804 	if (rc) {
805 		dev_err(hdev->dev,
806 			"cannot find va_range for va %#llx size %llu",
807 			start_addr, size);
808 		return rc;
809 	}
810 
811 	rc = add_va_block(hdev, ctx->va_range[type], start_addr,
812 						start_addr + size - 1);
813 	if (rc)
814 		dev_warn(hdev->dev,
815 			"add va block failed for vaddr: 0x%llx\n", start_addr);
816 
817 	return rc;
818 }
819 
820 /**
821  * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
822  *                                    memory
823  * @ctx: pointer to the context structure.
824  * @userptr: userptr to initialize from.
825  * @pphys_pg_pack: result pointer.
826  * @force_regular_page: tell the function to ignore huge page optimization,
827  *                      even if possible. Needed for cases where the device VA
828  *                      is allocated before we know the composition of the
829  *                      physical pages
830  *
831  * This function does the following:
832  * - Pin the physical pages related to the given virtual block.
833  * - Create a physical page pack from the physical pages related to the given
834  *   virtual block.
835  */
836 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
837 				struct hl_userptr *userptr,
838 				struct hl_vm_phys_pg_pack **pphys_pg_pack,
839 				bool force_regular_page)
840 {
841 	u32 npages, page_size = PAGE_SIZE,
842 		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
843 	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
844 	struct hl_vm_phys_pg_pack *phys_pg_pack;
845 	bool first = true, is_huge_page_opt;
846 	u64 page_mask, total_npages;
847 	struct scatterlist *sg;
848 	dma_addr_t dma_addr;
849 	int rc, i, j;
850 
851 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
852 	if (!phys_pg_pack)
853 		return -ENOMEM;
854 
855 	phys_pg_pack->vm_type = userptr->vm_type;
856 	phys_pg_pack->created_from_userptr = true;
857 	phys_pg_pack->asid = ctx->asid;
858 	atomic_set(&phys_pg_pack->mapping_cnt, 1);
859 
860 	is_huge_page_opt = (force_regular_page ? false : true);
861 
862 	/* Only if all dma_addrs are aligned to 2MB and their
863 	 * sizes is at least 2MB, we can use huge page mapping.
864 	 * We limit the 2MB optimization to this condition,
865 	 * since later on we acquire the related VA range as one
866 	 * consecutive block.
867 	 */
868 	total_npages = 0;
869 	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
870 		npages = hl_get_sg_info(sg, &dma_addr);
871 
872 		total_npages += npages;
873 
874 		if ((npages % pgs_in_huge_page) ||
875 					(dma_addr & (huge_page_size - 1)))
876 			is_huge_page_opt = false;
877 	}
878 
879 	if (is_huge_page_opt) {
880 		page_size = huge_page_size;
881 		do_div(total_npages, pgs_in_huge_page);
882 	}
883 
884 	page_mask = ~(((u64) page_size) - 1);
885 
886 	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
887 						GFP_KERNEL);
888 	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
889 		rc = -ENOMEM;
890 		goto page_pack_arr_mem_err;
891 	}
892 
893 	phys_pg_pack->npages = total_npages;
894 	phys_pg_pack->page_size = page_size;
895 	phys_pg_pack->total_size = total_npages * page_size;
896 
897 	j = 0;
898 	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
899 		npages = hl_get_sg_info(sg, &dma_addr);
900 
901 		/* align down to physical page size and save the offset */
902 		if (first) {
903 			first = false;
904 			phys_pg_pack->offset = dma_addr & (page_size - 1);
905 			dma_addr &= page_mask;
906 		}
907 
908 		while (npages) {
909 			phys_pg_pack->pages[j++] = dma_addr;
910 			dma_addr += page_size;
911 
912 			if (is_huge_page_opt)
913 				npages -= pgs_in_huge_page;
914 			else
915 				npages--;
916 		}
917 	}
918 
919 	*pphys_pg_pack = phys_pg_pack;
920 
921 	return 0;
922 
923 page_pack_arr_mem_err:
924 	kfree(phys_pg_pack);
925 
926 	return rc;
927 }
928 
929 /**
930  * map_phys_pg_pack() - maps the physical page pack..
931  * @ctx: pointer to the context structure.
932  * @vaddr: start address of the virtual area to map from.
933  * @phys_pg_pack: the pack of physical pages to map to.
934  *
935  * This function does the following:
936  * - Maps each chunk of virtual memory to matching physical chunk.
937  * - Stores number of successful mappings in the given argument.
938  * - Returns 0 on success, error code otherwise.
939  */
940 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
941 				struct hl_vm_phys_pg_pack *phys_pg_pack)
942 {
943 	struct hl_device *hdev = ctx->hdev;
944 	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
945 	u32 page_size = phys_pg_pack->page_size;
946 	int rc = 0;
947 	bool is_host_addr;
948 
949 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
950 		paddr = phys_pg_pack->pages[i];
951 
952 		rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
953 				(i + 1) == phys_pg_pack->npages);
954 		if (rc) {
955 			dev_err(hdev->dev,
956 				"map failed for handle %u, npages: %llu, mapped: %llu",
957 				phys_pg_pack->handle, phys_pg_pack->npages,
958 				mapped_pg_cnt);
959 			goto err;
960 		}
961 
962 		mapped_pg_cnt++;
963 		next_vaddr += page_size;
964 	}
965 
966 	return 0;
967 
968 err:
969 	is_host_addr = !hl_is_dram_va(hdev, vaddr);
970 
971 	next_vaddr = vaddr;
972 	for (i = 0 ; i < mapped_pg_cnt ; i++) {
973 		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
974 					(i + 1) == mapped_pg_cnt))
975 			dev_warn_ratelimited(hdev->dev,
976 				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
977 					phys_pg_pack->handle, next_vaddr,
978 					phys_pg_pack->pages[i], page_size);
979 
980 		next_vaddr += page_size;
981 
982 		/*
983 		 * unmapping on Palladium can be really long, so avoid a CPU
984 		 * soft lockup bug by sleeping a little between unmapping pages
985 		 *
986 		 * In addition, on host num of pages could be huge,
987 		 * because page size could be 4KB, so when unmapping host
988 		 * pages sleep every 32K pages to avoid soft lockup
989 		 */
990 		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
991 			usleep_range(50, 200);
992 	}
993 
994 	return rc;
995 }
996 
997 /**
998  * unmap_phys_pg_pack() - unmaps the physical page pack.
999  * @ctx: pointer to the context structure.
1000  * @vaddr: start address of the virtual area to unmap.
1001  * @phys_pg_pack: the pack of physical pages to unmap.
1002  */
1003 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1004 				struct hl_vm_phys_pg_pack *phys_pg_pack)
1005 {
1006 	struct hl_device *hdev = ctx->hdev;
1007 	u64 next_vaddr, i;
1008 	bool is_host_addr;
1009 	u32 page_size;
1010 
1011 	is_host_addr = !hl_is_dram_va(hdev, vaddr);
1012 	page_size = phys_pg_pack->page_size;
1013 	next_vaddr = vaddr;
1014 
1015 	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1016 		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1017 				       (i + 1) == phys_pg_pack->npages))
1018 			dev_warn_ratelimited(hdev->dev,
1019 			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1020 
1021 		/*
1022 		 * unmapping on Palladium can be really long, so avoid a CPU
1023 		 * soft lockup bug by sleeping a little between unmapping pages
1024 		 *
1025 		 * In addition, on host num of pages could be huge,
1026 		 * because page size could be 4KB, so when unmapping host
1027 		 * pages sleep every 32K pages to avoid soft lockup
1028 		 */
1029 		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1030 			usleep_range(50, 200);
1031 	}
1032 }
1033 
1034 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1035 					u64 *paddr)
1036 {
1037 	struct hl_device *hdev = ctx->hdev;
1038 	struct hl_vm *vm = &hdev->vm;
1039 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1040 	u32 handle;
1041 
1042 	handle = lower_32_bits(args->map_device.handle);
1043 	spin_lock(&vm->idr_lock);
1044 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1045 	if (!phys_pg_pack) {
1046 		spin_unlock(&vm->idr_lock);
1047 		dev_err(hdev->dev, "no match for handle %u\n", handle);
1048 		return -EINVAL;
1049 	}
1050 
1051 	*paddr = phys_pg_pack->pages[0];
1052 
1053 	spin_unlock(&vm->idr_lock);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * map_device_va() - map the given memory.
1060  * @ctx: pointer to the context structure.
1061  * @args: host parameters with handle/host virtual address.
1062  * @device_addr: pointer to result device virtual address.
1063  *
1064  * This function does the following:
1065  * - If given a physical device memory handle, map to a device virtual block
1066  *   and return the start address of this block.
1067  * - If given a host virtual address and size, find the related physical pages,
1068  *   map a device virtual block to this pages and return the start address of
1069  *   this block.
1070  */
1071 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1072 {
1073 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1074 	enum hl_va_range_type va_range_type = 0;
1075 	struct hl_device *hdev = ctx->hdev;
1076 	struct hl_userptr *userptr = NULL;
1077 	u32 handle = 0, va_block_align;
1078 	struct hl_vm_hash_node *hnode;
1079 	struct hl_vm *vm = &hdev->vm;
1080 	struct hl_va_range *va_range;
1081 	bool is_userptr, do_prefetch;
1082 	u64 ret_vaddr, hint_addr;
1083 	enum vm_type *vm_type;
1084 	int rc;
1085 
1086 	/* set map flags */
1087 	is_userptr = args->flags & HL_MEM_USERPTR;
1088 	do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1089 
1090 	/* Assume failure */
1091 	*device_addr = 0;
1092 
1093 	if (is_userptr) {
1094 		u64 addr = args->map_host.host_virt_addr,
1095 			size = args->map_host.mem_size;
1096 		u32 page_size = hdev->asic_prop.pmmu.page_size,
1097 			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1098 
1099 		rc = dma_map_host_va(hdev, addr, size, &userptr);
1100 		if (rc) {
1101 			dev_err(hdev->dev, "failed to get userptr from va\n");
1102 			return rc;
1103 		}
1104 
1105 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1106 				&phys_pg_pack, false);
1107 		if (rc) {
1108 			dev_err(hdev->dev,
1109 				"unable to init page pack for vaddr 0x%llx\n",
1110 				addr);
1111 			goto init_page_pack_err;
1112 		}
1113 
1114 		vm_type = (enum vm_type *) userptr;
1115 		hint_addr = args->map_host.hint_addr;
1116 		handle = phys_pg_pack->handle;
1117 
1118 		/* get required alignment */
1119 		if (phys_pg_pack->page_size == page_size) {
1120 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1121 			va_range_type = HL_VA_RANGE_TYPE_HOST;
1122 			/*
1123 			 * huge page alignment may be needed in case of regular
1124 			 * page mapping, depending on the host VA alignment
1125 			 */
1126 			if (addr & (huge_page_size - 1))
1127 				va_block_align = page_size;
1128 			else
1129 				va_block_align = huge_page_size;
1130 		} else {
1131 			/*
1132 			 * huge page alignment is needed in case of huge page
1133 			 * mapping
1134 			 */
1135 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1136 			va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1137 			va_block_align = huge_page_size;
1138 		}
1139 	} else {
1140 		handle = lower_32_bits(args->map_device.handle);
1141 
1142 		spin_lock(&vm->idr_lock);
1143 		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1144 		if (!phys_pg_pack) {
1145 			spin_unlock(&vm->idr_lock);
1146 			dev_err(hdev->dev,
1147 				"no match for handle %u\n", handle);
1148 			return -EINVAL;
1149 		}
1150 
1151 		/* increment now to avoid freeing device memory while mapping */
1152 		atomic_inc(&phys_pg_pack->mapping_cnt);
1153 
1154 		spin_unlock(&vm->idr_lock);
1155 
1156 		vm_type = (enum vm_type *) phys_pg_pack;
1157 
1158 		hint_addr = args->map_device.hint_addr;
1159 
1160 		/* DRAM VA alignment is the same as the MMU page size */
1161 		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1162 		va_range_type = HL_VA_RANGE_TYPE_DRAM;
1163 		va_block_align = hdev->asic_prop.dmmu.page_size;
1164 	}
1165 
1166 	/*
1167 	 * relevant for mapping device physical memory only, as host memory is
1168 	 * implicitly shared
1169 	 */
1170 	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1171 			phys_pg_pack->asid != ctx->asid) {
1172 		dev_err(hdev->dev,
1173 			"Failed to map memory, handle %u is not shared\n",
1174 			handle);
1175 		rc = -EPERM;
1176 		goto shared_err;
1177 	}
1178 
1179 	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1180 	if (!hnode) {
1181 		rc = -ENOMEM;
1182 		goto hnode_err;
1183 	}
1184 
1185 	if (hint_addr && phys_pg_pack->offset) {
1186 		if (args->flags & HL_MEM_FORCE_HINT) {
1187 			/* Fail if hint must be respected but it can't be */
1188 			dev_err(hdev->dev,
1189 				"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1190 				hint_addr, phys_pg_pack->offset);
1191 			rc = -EINVAL;
1192 			goto va_block_err;
1193 		}
1194 		dev_dbg(hdev->dev,
1195 			"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1196 			hint_addr, phys_pg_pack->offset);
1197 	}
1198 
1199 	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1200 					hint_addr, va_block_align,
1201 					va_range_type, args->flags);
1202 	if (!ret_vaddr) {
1203 		dev_err(hdev->dev, "no available va block for handle %u\n",
1204 				handle);
1205 		rc = -ENOMEM;
1206 		goto va_block_err;
1207 	}
1208 
1209 	mutex_lock(&hdev->mmu_lock);
1210 
1211 	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1212 	if (rc) {
1213 		dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1214 		mutex_unlock(&hdev->mmu_lock);
1215 		goto map_err;
1216 	}
1217 
1218 	rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1219 				ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1220 	mutex_unlock(&hdev->mmu_lock);
1221 	if (rc)
1222 		goto map_err;
1223 
1224 	/*
1225 	 * prefetch is done upon user's request. it is performed in WQ as and so can
1226 	 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1227 	 */
1228 	if (do_prefetch) {
1229 		rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1230 							phys_pg_pack->total_size);
1231 		if (rc)
1232 			goto map_err;
1233 	}
1234 
1235 	ret_vaddr += phys_pg_pack->offset;
1236 
1237 	hnode->ptr = vm_type;
1238 	hnode->vaddr = ret_vaddr;
1239 	hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1240 
1241 	mutex_lock(&ctx->mem_hash_lock);
1242 	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1243 	mutex_unlock(&ctx->mem_hash_lock);
1244 
1245 	*device_addr = ret_vaddr;
1246 
1247 	if (is_userptr)
1248 		free_phys_pg_pack(hdev, phys_pg_pack);
1249 
1250 	return rc;
1251 
1252 map_err:
1253 	if (add_va_block(hdev, va_range, ret_vaddr,
1254 				ret_vaddr + phys_pg_pack->total_size - 1))
1255 		dev_warn(hdev->dev,
1256 			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1257 				handle, ret_vaddr);
1258 
1259 va_block_err:
1260 	kfree(hnode);
1261 hnode_err:
1262 shared_err:
1263 	atomic_dec(&phys_pg_pack->mapping_cnt);
1264 	if (is_userptr)
1265 		free_phys_pg_pack(hdev, phys_pg_pack);
1266 init_page_pack_err:
1267 	if (is_userptr)
1268 		dma_unmap_host_va(hdev, userptr);
1269 
1270 	return rc;
1271 }
1272 
1273 /**
1274  * unmap_device_va() - unmap the given device virtual address.
1275  * @ctx: pointer to the context structure.
1276  * @args: host parameters with device virtual address to unmap.
1277  * @ctx_free: true if in context free flow, false otherwise.
1278  *
1279  * This function does the following:
1280  * - unmap the physical pages related to the given virtual address.
1281  * - return the device virtual block to the virtual block list.
1282  */
1283 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1284 				bool ctx_free)
1285 {
1286 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1287 	u64 vaddr = args->unmap.device_virt_addr;
1288 	struct hl_vm_hash_node *hnode = NULL;
1289 	struct asic_fixed_properties *prop;
1290 	struct hl_device *hdev = ctx->hdev;
1291 	struct hl_userptr *userptr = NULL;
1292 	struct hl_va_range *va_range;
1293 	enum vm_type *vm_type;
1294 	bool is_userptr;
1295 	int rc = 0;
1296 
1297 	prop = &hdev->asic_prop;
1298 
1299 	/* protect from double entrance */
1300 	mutex_lock(&ctx->mem_hash_lock);
1301 	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1302 		if (vaddr == hnode->vaddr)
1303 			break;
1304 
1305 	if (!hnode) {
1306 		mutex_unlock(&ctx->mem_hash_lock);
1307 		dev_err(hdev->dev,
1308 			"unmap failed, no mem hnode for vaddr 0x%llx\n",
1309 			vaddr);
1310 		return -EINVAL;
1311 	}
1312 
1313 	if (hnode->export_cnt) {
1314 		mutex_unlock(&ctx->mem_hash_lock);
1315 		dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1316 		return -EINVAL;
1317 	}
1318 
1319 	hash_del(&hnode->node);
1320 	mutex_unlock(&ctx->mem_hash_lock);
1321 
1322 	vm_type = hnode->ptr;
1323 
1324 	if (*vm_type == VM_TYPE_USERPTR) {
1325 		is_userptr = true;
1326 		userptr = hnode->ptr;
1327 
1328 		rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1329 							false);
1330 		if (rc) {
1331 			dev_err(hdev->dev,
1332 				"unable to init page pack for vaddr 0x%llx\n",
1333 				vaddr);
1334 			goto vm_type_err;
1335 		}
1336 
1337 		if (phys_pg_pack->page_size ==
1338 					hdev->asic_prop.pmmu.page_size)
1339 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1340 		else
1341 			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1342 	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1343 		is_userptr = false;
1344 		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1345 		phys_pg_pack = hnode->ptr;
1346 	} else {
1347 		dev_warn(hdev->dev,
1348 			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1349 				vaddr);
1350 		rc = -EFAULT;
1351 		goto vm_type_err;
1352 	}
1353 
1354 	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1355 		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1356 		rc = -EINVAL;
1357 		goto mapping_cnt_err;
1358 	}
1359 
1360 	if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1361 		vaddr = prop->dram_base_address +
1362 			DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1363 						phys_pg_pack->page_size) *
1364 							phys_pg_pack->page_size;
1365 	else
1366 		vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1367 
1368 	mutex_lock(&hdev->mmu_lock);
1369 
1370 	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1371 
1372 	/*
1373 	 * During context free this function is called in a loop to clean all
1374 	 * the context mappings. Hence the cache invalidation can be called once
1375 	 * at the loop end rather than for each iteration
1376 	 */
1377 	if (!ctx_free)
1378 		rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1379 							phys_pg_pack->total_size);
1380 
1381 	mutex_unlock(&hdev->mmu_lock);
1382 
1383 	/*
1384 	 * If the context is closing we don't need to check for the MMU cache
1385 	 * invalidation return code and update the VA free list as in this flow
1386 	 * we invalidate the MMU cache outside of this unmap function and the VA
1387 	 * free list will be freed anyway.
1388 	 */
1389 	if (!ctx_free) {
1390 		int tmp_rc;
1391 
1392 		tmp_rc = add_va_block(hdev, va_range, vaddr,
1393 					vaddr + phys_pg_pack->total_size - 1);
1394 		if (tmp_rc) {
1395 			dev_warn(hdev->dev,
1396 					"add va block failed for vaddr: 0x%llx\n",
1397 					vaddr);
1398 			if (!rc)
1399 				rc = tmp_rc;
1400 		}
1401 	}
1402 
1403 	atomic_dec(&phys_pg_pack->mapping_cnt);
1404 	kfree(hnode);
1405 
1406 	if (is_userptr) {
1407 		free_phys_pg_pack(hdev, phys_pg_pack);
1408 		dma_unmap_host_va(hdev, userptr);
1409 	}
1410 
1411 	return rc;
1412 
1413 mapping_cnt_err:
1414 	if (is_userptr)
1415 		free_phys_pg_pack(hdev, phys_pg_pack);
1416 vm_type_err:
1417 	mutex_lock(&ctx->mem_hash_lock);
1418 	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1419 	mutex_unlock(&ctx->mem_hash_lock);
1420 
1421 	return rc;
1422 }
1423 
1424 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1425 {
1426 	u32 block_id;
1427 	int rc;
1428 
1429 	*handle = 0;
1430 	if (size)
1431 		*size = 0;
1432 
1433 	rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1434 	if (rc)
1435 		return rc;
1436 
1437 	*handle = block_id | HL_MMAP_TYPE_BLOCK;
1438 	*handle <<= PAGE_SHIFT;
1439 
1440 	return 0;
1441 }
1442 
1443 static void hw_block_vm_close(struct vm_area_struct *vma)
1444 {
1445 	struct hl_vm_hw_block_list_node *lnode =
1446 		(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1447 	struct hl_ctx *ctx = lnode->ctx;
1448 	long new_mmap_size;
1449 
1450 	new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1451 	if (new_mmap_size > 0) {
1452 		lnode->mapped_size = new_mmap_size;
1453 		return;
1454 	}
1455 
1456 	mutex_lock(&ctx->hw_block_list_lock);
1457 	list_del(&lnode->node);
1458 	mutex_unlock(&ctx->hw_block_list_lock);
1459 	hl_ctx_put(ctx);
1460 	kfree(lnode);
1461 	vma->vm_private_data = NULL;
1462 }
1463 
1464 static const struct vm_operations_struct hw_block_vm_ops = {
1465 	.close = hw_block_vm_close
1466 };
1467 
1468 /**
1469  * hl_hw_block_mmap() - mmap a hw block to user.
1470  * @hpriv: pointer to the private data of the fd
1471  * @vma: pointer to vm_area_struct of the process
1472  *
1473  * Driver increments context reference for every HW block mapped in order
1474  * to prevent user from closing FD without unmapping first
1475  */
1476 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1477 {
1478 	struct hl_vm_hw_block_list_node *lnode;
1479 	struct hl_device *hdev = hpriv->hdev;
1480 	struct hl_ctx *ctx = hpriv->ctx;
1481 	u32 block_id, block_size;
1482 	int rc;
1483 
1484 	/* We use the page offset to hold the block id and thus we need to clear
1485 	 * it before doing the mmap itself
1486 	 */
1487 	block_id = vma->vm_pgoff;
1488 	vma->vm_pgoff = 0;
1489 
1490 	/* Driver only allows mapping of a complete HW block */
1491 	block_size = vma->vm_end - vma->vm_start;
1492 
1493 	if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1494 		dev_err(hdev->dev,
1495 			"user pointer is invalid - 0x%lx\n",
1496 			vma->vm_start);
1497 
1498 		return -EINVAL;
1499 	}
1500 
1501 	lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1502 	if (!lnode)
1503 		return -ENOMEM;
1504 
1505 	rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1506 	if (rc) {
1507 		kfree(lnode);
1508 		return rc;
1509 	}
1510 
1511 	hl_ctx_get(ctx);
1512 
1513 	lnode->ctx = ctx;
1514 	lnode->vaddr = vma->vm_start;
1515 	lnode->block_size = block_size;
1516 	lnode->mapped_size = lnode->block_size;
1517 	lnode->id = block_id;
1518 
1519 	vma->vm_private_data = lnode;
1520 	vma->vm_ops = &hw_block_vm_ops;
1521 
1522 	mutex_lock(&ctx->hw_block_list_lock);
1523 	list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1524 	mutex_unlock(&ctx->hw_block_list_lock);
1525 
1526 	vma->vm_pgoff = block_id;
1527 
1528 	return 0;
1529 }
1530 
1531 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1532 			struct device *dev, enum dma_data_direction dir)
1533 {
1534 	dma_addr_t addr;
1535 	int rc;
1536 
1537 	addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1538 				DMA_ATTR_SKIP_CPU_SYNC);
1539 	rc = dma_mapping_error(dev, addr);
1540 	if (rc)
1541 		return rc;
1542 
1543 	sg_set_page(sg, NULL, chunk_size, 0);
1544 	sg_dma_address(sg) = addr;
1545 	sg_dma_len(sg) = chunk_size;
1546 
1547 	return 0;
1548 }
1549 
1550 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1551 						u64 page_size, u64 exported_size,
1552 						struct device *dev, enum dma_data_direction dir)
1553 {
1554 	u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages;
1555 	struct asic_fixed_properties *prop;
1556 	int rc, i, j, nents, cur_page;
1557 	struct scatterlist *sg;
1558 	struct sg_table *sgt;
1559 
1560 	prop = &hdev->asic_prop;
1561 
1562 	dma_max_seg_size = dma_get_max_seg_size(dev);
1563 
1564 	/* We would like to align the max segment size to PAGE_SIZE, so the
1565 	 * SGL will contain aligned addresses that can be easily mapped to
1566 	 * an MMU
1567 	 */
1568 	dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1569 	if (dma_max_seg_size < PAGE_SIZE) {
1570 		dev_err_ratelimited(hdev->dev,
1571 				"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1572 				dma_max_seg_size);
1573 		return ERR_PTR(-EINVAL);
1574 	}
1575 
1576 	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1577 	if (!sgt)
1578 		return ERR_PTR(-ENOMEM);
1579 
1580 	/* remove export size restrictions in case not explicitly defined */
1581 	cur_size_to_export = exported_size ? exported_size : (npages * page_size);
1582 
1583 	/* If the size of each page is larger than the dma max segment size,
1584 	 * then we can't combine pages and the number of entries in the SGL
1585 	 * will just be the
1586 	 * <number of pages> * <chunks of max segment size in each page>
1587 	 */
1588 	if (page_size > dma_max_seg_size) {
1589 		/* we should limit number of pages according to the exported size */
1590 		cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size);
1591 		nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size);
1592 	} else {
1593 		cur_npages = npages;
1594 
1595 		/* Get number of non-contiguous chunks */
1596 		for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) {
1597 			if (pages[i - 1] + page_size != pages[i] ||
1598 					chunk_size + page_size > dma_max_seg_size) {
1599 				nents++;
1600 				chunk_size = page_size;
1601 				continue;
1602 			}
1603 
1604 			chunk_size += page_size;
1605 		}
1606 	}
1607 
1608 	rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1609 	if (rc)
1610 		goto error_free;
1611 
1612 	cur_page = 0;
1613 
1614 	if (page_size > dma_max_seg_size) {
1615 		u64 size_left, cur_device_address = 0;
1616 
1617 		size_left = page_size;
1618 
1619 		/* Need to split each page into the number of chunks of
1620 		 * dma_max_seg_size
1621 		 */
1622 		for_each_sgtable_dma_sg(sgt, sg, i) {
1623 			if (size_left == page_size)
1624 				cur_device_address =
1625 					pages[cur_page] - prop->dram_base_address;
1626 			else
1627 				cur_device_address += dma_max_seg_size;
1628 
1629 			/* make sure not to export over exported size */
1630 			chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export);
1631 
1632 			bar_address = hdev->dram_pci_bar_start + cur_device_address;
1633 
1634 			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1635 			if (rc)
1636 				goto error_unmap;
1637 
1638 			cur_size_to_export -= chunk_size;
1639 
1640 			if (size_left > dma_max_seg_size) {
1641 				size_left -= dma_max_seg_size;
1642 			} else {
1643 				cur_page++;
1644 				size_left = page_size;
1645 			}
1646 		}
1647 	} else {
1648 		/* Merge pages and put them into the scatterlist */
1649 		for_each_sgtable_dma_sg(sgt, sg, i) {
1650 			chunk_size = page_size;
1651 			for (j = cur_page + 1 ; j < cur_npages ; j++) {
1652 				if (pages[j - 1] + page_size != pages[j] ||
1653 						chunk_size + page_size > dma_max_seg_size)
1654 					break;
1655 
1656 				chunk_size += page_size;
1657 			}
1658 
1659 			bar_address = hdev->dram_pci_bar_start +
1660 					(pages[cur_page] - prop->dram_base_address);
1661 
1662 			/* make sure not to export over exported size */
1663 			chunk_size = min(chunk_size, cur_size_to_export);
1664 			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1665 			if (rc)
1666 				goto error_unmap;
1667 
1668 			cur_size_to_export -= chunk_size;
1669 			cur_page = j;
1670 		}
1671 	}
1672 
1673 	/* Because we are not going to include a CPU list we want to have some
1674 	 * chance that other users will detect this by setting the orig_nents
1675 	 * to 0 and using only nents (length of DMA list) when going over the
1676 	 * sgl
1677 	 */
1678 	sgt->orig_nents = 0;
1679 
1680 	return sgt;
1681 
1682 error_unmap:
1683 	for_each_sgtable_dma_sg(sgt, sg, i) {
1684 		if (!sg_dma_len(sg))
1685 			continue;
1686 
1687 		dma_unmap_resource(dev, sg_dma_address(sg),
1688 					sg_dma_len(sg), dir,
1689 					DMA_ATTR_SKIP_CPU_SYNC);
1690 	}
1691 
1692 	sg_free_table(sgt);
1693 
1694 error_free:
1695 	kfree(sgt);
1696 	return ERR_PTR(rc);
1697 }
1698 
1699 static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1700 				struct dma_buf_attachment *attachment)
1701 {
1702 	struct hl_dmabuf_priv *hl_dmabuf;
1703 	struct hl_device *hdev;
1704 	int rc;
1705 
1706 	hl_dmabuf = dmabuf->priv;
1707 	hdev = hl_dmabuf->ctx->hdev;
1708 
1709 	rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1710 
1711 	if (rc < 0)
1712 		attachment->peer2peer = false;
1713 	return 0;
1714 }
1715 
1716 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1717 					enum dma_data_direction dir)
1718 {
1719 	struct dma_buf *dma_buf = attachment->dmabuf;
1720 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1721 	struct hl_dmabuf_priv *hl_dmabuf;
1722 	struct hl_device *hdev;
1723 	struct sg_table *sgt;
1724 
1725 	hl_dmabuf = dma_buf->priv;
1726 	hdev = hl_dmabuf->ctx->hdev;
1727 	phys_pg_pack = hl_dmabuf->phys_pg_pack;
1728 
1729 	if (!attachment->peer2peer) {
1730 		dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1731 		return ERR_PTR(-EPERM);
1732 	}
1733 
1734 	if (phys_pg_pack)
1735 		sgt = alloc_sgt_from_device_pages(hdev,
1736 						phys_pg_pack->pages,
1737 						phys_pg_pack->npages,
1738 						phys_pg_pack->page_size,
1739 						phys_pg_pack->exported_size,
1740 						attachment->dev,
1741 						dir);
1742 	else
1743 		sgt = alloc_sgt_from_device_pages(hdev,
1744 						&hl_dmabuf->device_address,
1745 						1,
1746 						hl_dmabuf->dmabuf->size,
1747 						0,
1748 						attachment->dev,
1749 						dir);
1750 
1751 	if (IS_ERR(sgt))
1752 		dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1753 
1754 	return sgt;
1755 }
1756 
1757 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1758 				  struct sg_table *sgt,
1759 				  enum dma_data_direction dir)
1760 {
1761 	struct scatterlist *sg;
1762 	int i;
1763 
1764 	/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1765 	 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1766 	 * device memory).
1767 	 *
1768 	 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1769 	 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1770 	 */
1771 	for_each_sgtable_dma_sg(sgt, sg, i)
1772 		dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1773 					sg_dma_len(sg), dir,
1774 					DMA_ATTR_SKIP_CPU_SYNC);
1775 
1776 	/* Need to restore orig_nents because sg_free_table use that field */
1777 	sgt->orig_nents = sgt->nents;
1778 	sg_free_table(sgt);
1779 	kfree(sgt);
1780 }
1781 
1782 static void hl_release_dmabuf(struct dma_buf *dmabuf)
1783 {
1784 	struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1785 	struct hl_ctx *ctx;
1786 
1787 	if (!hl_dmabuf)
1788 		return;
1789 
1790 	ctx = hl_dmabuf->ctx;
1791 
1792 	if (hl_dmabuf->memhash_hnode) {
1793 		mutex_lock(&ctx->mem_hash_lock);
1794 		hl_dmabuf->memhash_hnode->export_cnt--;
1795 		mutex_unlock(&ctx->mem_hash_lock);
1796 	}
1797 
1798 	hl_ctx_put(ctx);
1799 	kfree(hl_dmabuf);
1800 }
1801 
1802 static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1803 	.attach = hl_dmabuf_attach,
1804 	.map_dma_buf = hl_map_dmabuf,
1805 	.unmap_dma_buf = hl_unmap_dmabuf,
1806 	.release = hl_release_dmabuf,
1807 };
1808 
1809 static int export_dmabuf(struct hl_ctx *ctx,
1810 				struct hl_dmabuf_priv *hl_dmabuf,
1811 				u64 total_size, int flags, int *dmabuf_fd)
1812 {
1813 	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1814 	struct hl_device *hdev = ctx->hdev;
1815 	int rc, fd;
1816 
1817 	exp_info.ops = &habanalabs_dmabuf_ops;
1818 	exp_info.size = total_size;
1819 	exp_info.flags = flags;
1820 	exp_info.priv = hl_dmabuf;
1821 
1822 	hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1823 	if (IS_ERR(hl_dmabuf->dmabuf)) {
1824 		dev_err(hdev->dev, "failed to export dma-buf\n");
1825 		return PTR_ERR(hl_dmabuf->dmabuf);
1826 	}
1827 
1828 	fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1829 	if (fd < 0) {
1830 		dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1831 		rc = fd;
1832 		goto err_dma_buf_put;
1833 	}
1834 
1835 	hl_dmabuf->ctx = ctx;
1836 	hl_ctx_get(hl_dmabuf->ctx);
1837 
1838 	*dmabuf_fd = fd;
1839 
1840 	return 0;
1841 
1842 err_dma_buf_put:
1843 	hl_dmabuf->dmabuf->priv = NULL;
1844 	dma_buf_put(hl_dmabuf->dmabuf);
1845 	return rc;
1846 }
1847 
1848 static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size)
1849 {
1850 	if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1851 		dev_dbg(hdev->dev,
1852 			"exported device memory address 0x%llx should be aligned to 0x%lx\n",
1853 			device_addr, PAGE_SIZE);
1854 		return -EINVAL;
1855 	}
1856 
1857 	if (size < PAGE_SIZE) {
1858 		dev_dbg(hdev->dev,
1859 			"exported device memory size %llu should be equal to or greater than %lu\n",
1860 			size, PAGE_SIZE);
1861 		return -EINVAL;
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1868 {
1869 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1870 	u64 bar_address;
1871 	int rc;
1872 
1873 	rc = validate_export_params_common(hdev, device_addr, size);
1874 	if (rc)
1875 		return rc;
1876 
1877 	if (device_addr < prop->dram_user_base_address ||
1878 				(device_addr + size) > prop->dram_end_address ||
1879 				(device_addr + size) < device_addr) {
1880 		dev_dbg(hdev->dev,
1881 			"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1882 			device_addr, size);
1883 		return -EINVAL;
1884 	}
1885 
1886 	bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1887 
1888 	if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1889 			(bar_address + size) < bar_address) {
1890 		dev_dbg(hdev->dev,
1891 			"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1892 			device_addr, size);
1893 		return -EINVAL;
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1900 					struct hl_vm_phys_pg_pack *phys_pg_pack)
1901 {
1902 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1903 	u64 bar_address;
1904 	int i, rc;
1905 
1906 	rc = validate_export_params_common(hdev, device_addr, size);
1907 	if (rc)
1908 		return rc;
1909 
1910 	if ((offset + size) > phys_pg_pack->total_size) {
1911 		dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1912 				offset, size, phys_pg_pack->total_size);
1913 		return -EINVAL;
1914 	}
1915 
1916 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1917 
1918 		bar_address = hdev->dram_pci_bar_start +
1919 					(phys_pg_pack->pages[i] - prop->dram_base_address);
1920 
1921 		if ((bar_address + phys_pg_pack->page_size) >
1922 				(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1923 				(bar_address + phys_pg_pack->page_size) < bar_address) {
1924 			dev_dbg(hdev->dev,
1925 				"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1926 					phys_pg_pack->pages[i],
1927 					phys_pg_pack->page_size);
1928 
1929 			return -EINVAL;
1930 		}
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1937 {
1938 	struct hl_device *hdev = ctx->hdev;
1939 	struct hl_vm_hash_node *hnode;
1940 
1941 	/* get the memory handle */
1942 	mutex_lock(&ctx->mem_hash_lock);
1943 	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)addr)
1944 		if (addr == hnode->vaddr)
1945 			break;
1946 
1947 	if (!hnode) {
1948 		mutex_unlock(&ctx->mem_hash_lock);
1949 		dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1950 		return ERR_PTR(-EINVAL);
1951 	}
1952 
1953 	if (upper_32_bits(hnode->handle)) {
1954 		mutex_unlock(&ctx->mem_hash_lock);
1955 		dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1956 				hnode->handle, addr);
1957 		return ERR_PTR(-EINVAL);
1958 	}
1959 
1960 	/*
1961 	 * node found, increase export count so this memory cannot be unmapped
1962 	 * and the hash node cannot be deleted.
1963 	 */
1964 	hnode->export_cnt++;
1965 	mutex_unlock(&ctx->mem_hash_lock);
1966 
1967 	return hnode;
1968 }
1969 
1970 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1971 {
1972 	mutex_lock(&ctx->mem_hash_lock);
1973 	hnode->export_cnt--;
1974 	mutex_unlock(&ctx->mem_hash_lock);
1975 }
1976 
1977 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1978 							struct hl_vm_hash_node *hnode)
1979 {
1980 	struct hl_vm_phys_pg_pack *phys_pg_pack;
1981 	struct hl_vm *vm = &hdev->vm;
1982 
1983 	spin_lock(&vm->idr_lock);
1984 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1985 	if (!phys_pg_pack) {
1986 		spin_unlock(&vm->idr_lock);
1987 		dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
1988 		return ERR_PTR(-EINVAL);
1989 	}
1990 
1991 	spin_unlock(&vm->idr_lock);
1992 
1993 	if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
1994 		dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
1995 		return ERR_PTR(-EINVAL);
1996 	}
1997 
1998 	return phys_pg_pack;
1999 }
2000 
2001 /**
2002  * export_dmabuf_from_addr() - export a dma-buf object for the given memory
2003  *                             address and size.
2004  * @ctx: pointer to the context structure.
2005  * @addr: device address.
2006  * @size: size of device memory to export.
2007  * @offset: the offset into the buffer from which to start exporting
2008  * @flags: DMA-BUF file/FD flags.
2009  * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2010  *
2011  * Create and export a dma-buf object for an existing memory allocation inside
2012  * the device memory, and return a FD which is associated with the dma-buf
2013  * object.
2014  *
2015  * Return: 0 on success, non-zero for failure.
2016  */
2017 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2018 					int flags, int *dmabuf_fd)
2019 {
2020 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2021 	struct hl_vm_hash_node *hnode = NULL;
2022 	struct asic_fixed_properties *prop;
2023 	struct hl_dmabuf_priv *hl_dmabuf;
2024 	struct hl_device *hdev;
2025 	u64 export_addr;
2026 	int rc;
2027 
2028 	hdev = ctx->hdev;
2029 	prop = &hdev->asic_prop;
2030 
2031 	/* offset must be 0 in devices without virtual memory support */
2032 	if (!prop->dram_supports_virtual_memory && offset) {
2033 		dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	export_addr = addr + offset;
2038 
2039 	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2040 	if (!hl_dmabuf)
2041 		return -ENOMEM;
2042 
2043 	if (prop->dram_supports_virtual_memory) {
2044 		hnode = memhash_node_export_get(ctx, addr);
2045 		if (IS_ERR(hnode)) {
2046 			rc = PTR_ERR(hnode);
2047 			goto err_free_dmabuf_wrapper;
2048 		}
2049 		phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2050 		if (IS_ERR(phys_pg_pack)) {
2051 			rc = PTR_ERR(phys_pg_pack);
2052 			goto dec_memhash_export_cnt;
2053 		}
2054 		rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack);
2055 		if (rc)
2056 			goto dec_memhash_export_cnt;
2057 
2058 		phys_pg_pack->exported_size = size;
2059 		hl_dmabuf->phys_pg_pack = phys_pg_pack;
2060 		hl_dmabuf->memhash_hnode = hnode;
2061 	} else {
2062 		rc = validate_export_params_no_mmu(hdev, export_addr, size);
2063 		if (rc)
2064 			goto err_free_dmabuf_wrapper;
2065 	}
2066 
2067 	hl_dmabuf->device_address = export_addr;
2068 
2069 	rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2070 	if (rc)
2071 		goto dec_memhash_export_cnt;
2072 
2073 	return 0;
2074 
2075 dec_memhash_export_cnt:
2076 	if (prop->dram_supports_virtual_memory)
2077 		memhash_node_export_put(ctx, hnode);
2078 err_free_dmabuf_wrapper:
2079 	kfree(hl_dmabuf);
2080 	return rc;
2081 }
2082 
2083 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
2084 {
2085 	struct hl_device *hdev = hpriv->hdev;
2086 	u64 block_handle, device_addr = 0;
2087 	struct hl_ctx *ctx = hpriv->ctx;
2088 	u32 handle = 0, block_size;
2089 	int rc;
2090 
2091 	switch (args->in.op) {
2092 	case HL_MEM_OP_ALLOC:
2093 		if (args->in.alloc.mem_size == 0) {
2094 			dev_err(hdev->dev, "alloc size must be larger than 0\n");
2095 			rc = -EINVAL;
2096 			goto out;
2097 		}
2098 
2099 		/* Force contiguous as there are no real MMU
2100 		 * translations to overcome physical memory gaps
2101 		 */
2102 		args->in.flags |= HL_MEM_CONTIGUOUS;
2103 		rc = alloc_device_memory(ctx, &args->in, &handle);
2104 
2105 		memset(args, 0, sizeof(*args));
2106 		args->out.handle = (__u64) handle;
2107 		break;
2108 
2109 	case HL_MEM_OP_FREE:
2110 		rc = free_device_memory(ctx, &args->in);
2111 		break;
2112 
2113 	case HL_MEM_OP_MAP:
2114 		if (args->in.flags & HL_MEM_USERPTR) {
2115 			dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
2116 			rc = -EPERM;
2117 		} else {
2118 			rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
2119 			memset(args, 0, sizeof(*args));
2120 			args->out.device_virt_addr = device_addr;
2121 		}
2122 
2123 		break;
2124 
2125 	case HL_MEM_OP_UNMAP:
2126 		rc = 0;
2127 		break;
2128 
2129 	case HL_MEM_OP_MAP_BLOCK:
2130 		rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
2131 		args->out.block_handle = block_handle;
2132 		args->out.block_size = block_size;
2133 		break;
2134 
2135 	case HL_MEM_OP_EXPORT_DMABUF_FD:
2136 		dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
2137 		rc = -EPERM;
2138 		break;
2139 
2140 	case HL_MEM_OP_TS_ALLOC:
2141 		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2142 		break;
2143 	default:
2144 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2145 		rc = -EINVAL;
2146 		break;
2147 	}
2148 
2149 out:
2150 	return rc;
2151 }
2152 
2153 static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2154 {
2155 	struct hl_ts_buff *ts_buff = buf->private;
2156 
2157 	vfree(ts_buff->kernel_buff_address);
2158 	vfree(ts_buff->user_buff_address);
2159 	kfree(ts_buff);
2160 }
2161 
2162 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2163 {
2164 	struct hl_ts_buff *ts_buff = buf->private;
2165 
2166 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2167 	return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2168 }
2169 
2170 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2171 {
2172 	struct hl_ts_buff *ts_buff = NULL;
2173 	u32 num_elements;
2174 	size_t size;
2175 	void *p;
2176 
2177 	num_elements = *(u32 *)args;
2178 
2179 	ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2180 	if (!ts_buff)
2181 		return -ENOMEM;
2182 
2183 	/* Allocate the user buffer */
2184 	size = num_elements * sizeof(u64);
2185 	p = vmalloc_user(size);
2186 	if (!p)
2187 		goto free_mem;
2188 
2189 	ts_buff->user_buff_address = p;
2190 	buf->mappable_size = size;
2191 
2192 	/* Allocate the internal kernel buffer */
2193 	size = num_elements * sizeof(struct hl_user_pending_interrupt);
2194 	p = vzalloc(size);
2195 	if (!p)
2196 		goto free_user_buff;
2197 
2198 	ts_buff->kernel_buff_address = p;
2199 	ts_buff->kernel_buff_size = size;
2200 
2201 	buf->private = ts_buff;
2202 
2203 	return 0;
2204 
2205 free_user_buff:
2206 	vfree(ts_buff->user_buff_address);
2207 free_mem:
2208 	kfree(ts_buff);
2209 	return -ENOMEM;
2210 }
2211 
2212 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2213 	.topic = "TS",
2214 	.mem_id = HL_MMAP_TYPE_TS_BUFF,
2215 	.mmap = hl_ts_mmap,
2216 	.alloc = hl_ts_alloc_buf,
2217 	.release = ts_buff_release,
2218 };
2219 
2220 /**
2221  * allocate_timestamps_buffers() - allocate timestamps buffers
2222  * This function will allocate ts buffer that will later on be mapped to the user
2223  * in order to be able to read the timestamp.
2224  * in additon it'll allocate an extra buffer for registration management.
2225  * since we cannot fail during registration for out-of-memory situation, so
2226  * we'll prepare a pool which will be used as user interrupt nodes and instead
2227  * of dynamically allocating nodes while registration we'll pick the node from
2228  * this pool. in addtion it'll add node to the mapping hash which will be used
2229  * to map user ts buffer to the internal kernel ts buffer.
2230  * @hpriv: pointer to the private data of the fd
2231  * @args: ioctl input
2232  * @handle: user timestamp buffer handle as an output
2233  */
2234 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2235 {
2236 	struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2237 	struct hl_mmap_mem_buf *buf;
2238 
2239 	if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2240 		dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2241 				args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2242 		return -EINVAL;
2243 	}
2244 
2245 	buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2246 	if (!buf)
2247 		return -ENOMEM;
2248 
2249 	*handle = buf->handle;
2250 
2251 	return 0;
2252 }
2253 
2254 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2255 {
2256 	enum hl_device_status status;
2257 	union hl_mem_args *args = data;
2258 	struct hl_device *hdev = hpriv->hdev;
2259 	struct hl_ctx *ctx = hpriv->ctx;
2260 	u64 block_handle, device_addr = 0;
2261 	u32 handle = 0, block_size;
2262 	int rc, dmabuf_fd = -EBADF;
2263 
2264 	if (!hl_device_operational(hdev, &status)) {
2265 		dev_dbg_ratelimited(hdev->dev,
2266 			"Device is %s. Can't execute MEMORY IOCTL\n",
2267 			hdev->status[status]);
2268 		return -EBUSY;
2269 	}
2270 
2271 	if (!hdev->mmu_enable)
2272 		return mem_ioctl_no_mmu(hpriv, args);
2273 
2274 	switch (args->in.op) {
2275 	case HL_MEM_OP_ALLOC:
2276 		if (args->in.alloc.mem_size == 0) {
2277 			dev_err(hdev->dev,
2278 				"alloc size must be larger than 0\n");
2279 			rc = -EINVAL;
2280 			goto out;
2281 		}
2282 
2283 		/* If DRAM does not support virtual memory the driver won't
2284 		 * handle the allocation/freeing of that memory. However, for
2285 		 * system administration/monitoring purposes, the driver will
2286 		 * keep track of the amount of DRAM memory that is allocated
2287 		 * and freed by the user. Because this code totally relies on
2288 		 * the user's input, the driver can't ensure the validity
2289 		 * of this accounting.
2290 		 */
2291 		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2292 			atomic64_add(args->in.alloc.mem_size,
2293 					&ctx->dram_phys_mem);
2294 			atomic64_add(args->in.alloc.mem_size,
2295 					&hdev->dram_used_mem);
2296 
2297 			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2298 			rc = 0;
2299 
2300 			memset(args, 0, sizeof(*args));
2301 			args->out.handle = 0;
2302 			goto out;
2303 		}
2304 
2305 		rc = alloc_device_memory(ctx, &args->in, &handle);
2306 
2307 		memset(args, 0, sizeof(*args));
2308 		args->out.handle = (__u64) handle;
2309 		break;
2310 
2311 	case HL_MEM_OP_FREE:
2312 		/* If DRAM does not support virtual memory the driver won't
2313 		 * handle the allocation/freeing of that memory. However, for
2314 		 * system administration/monitoring purposes, the driver will
2315 		 * keep track of the amount of DRAM memory that is allocated
2316 		 * and freed by the user. Because this code totally relies on
2317 		 * the user's input, the driver can't ensure the validity
2318 		 * of this accounting.
2319 		 */
2320 		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2321 			atomic64_sub(args->in.alloc.mem_size,
2322 					&ctx->dram_phys_mem);
2323 			atomic64_sub(args->in.alloc.mem_size,
2324 					&hdev->dram_used_mem);
2325 
2326 			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2327 			rc = 0;
2328 
2329 			goto out;
2330 		}
2331 
2332 		rc = free_device_memory(ctx, &args->in);
2333 		break;
2334 
2335 	case HL_MEM_OP_MAP:
2336 		rc = map_device_va(ctx, &args->in, &device_addr);
2337 
2338 		memset(args, 0, sizeof(*args));
2339 		args->out.device_virt_addr = device_addr;
2340 		break;
2341 
2342 	case HL_MEM_OP_UNMAP:
2343 		rc = unmap_device_va(ctx, &args->in, false);
2344 		break;
2345 
2346 	case HL_MEM_OP_MAP_BLOCK:
2347 		rc = map_block(hdev, args->in.map_block.block_addr,
2348 				&block_handle, &block_size);
2349 		args->out.block_handle = block_handle;
2350 		args->out.block_size = block_size;
2351 		break;
2352 
2353 	case HL_MEM_OP_EXPORT_DMABUF_FD:
2354 		rc = export_dmabuf_from_addr(ctx,
2355 				args->in.export_dmabuf_fd.addr,
2356 				args->in.export_dmabuf_fd.mem_size,
2357 				args->in.export_dmabuf_fd.offset,
2358 				args->in.flags,
2359 				&dmabuf_fd);
2360 		memset(args, 0, sizeof(*args));
2361 		args->out.fd = dmabuf_fd;
2362 		break;
2363 
2364 	case HL_MEM_OP_TS_ALLOC:
2365 		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2366 		break;
2367 	default:
2368 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2369 		rc = -EINVAL;
2370 		break;
2371 	}
2372 
2373 out:
2374 	return rc;
2375 }
2376 
2377 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2378 				u32 npages, u64 start, u32 offset,
2379 				struct hl_userptr *userptr)
2380 {
2381 	int rc;
2382 
2383 	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2384 		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2385 		return -EFAULT;
2386 	}
2387 
2388 	userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2389 	if (!userptr->pages)
2390 		return -ENOMEM;
2391 
2392 	rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2393 				 userptr->pages);
2394 
2395 	if (rc != npages) {
2396 		dev_err(hdev->dev,
2397 			"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2398 			rc, addr, size, npages);
2399 		if (rc < 0)
2400 			goto destroy_pages;
2401 		npages = rc;
2402 		rc = -EFAULT;
2403 		goto put_pages;
2404 	}
2405 	userptr->npages = npages;
2406 
2407 	rc = sg_alloc_table_from_pages(userptr->sgt,
2408 				       userptr->pages,
2409 				       npages, offset, size, GFP_KERNEL);
2410 	if (rc < 0) {
2411 		dev_err(hdev->dev, "failed to create SG table from pages\n");
2412 		goto put_pages;
2413 	}
2414 
2415 	return 0;
2416 
2417 put_pages:
2418 	unpin_user_pages(userptr->pages, npages);
2419 destroy_pages:
2420 	kvfree(userptr->pages);
2421 	return rc;
2422 }
2423 
2424 /**
2425  * hl_pin_host_memory() - pins a chunk of host memory.
2426  * @hdev: pointer to the habanalabs device structure.
2427  * @addr: the host virtual address of the memory area.
2428  * @size: the size of the memory area.
2429  * @userptr: pointer to hl_userptr structure.
2430  *
2431  * This function does the following:
2432  * - Pins the physical pages.
2433  * - Create an SG list from those pages.
2434  */
2435 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2436 					struct hl_userptr *userptr)
2437 {
2438 	u64 start, end;
2439 	u32 npages, offset;
2440 	int rc;
2441 
2442 	if (!size) {
2443 		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2444 		return -EINVAL;
2445 	}
2446 
2447 	/*
2448 	 * If the combination of the address and size requested for this memory
2449 	 * region causes an integer overflow, return error.
2450 	 */
2451 	if (((addr + size) < addr) ||
2452 			PAGE_ALIGN(addr + size) < (addr + size)) {
2453 		dev_err(hdev->dev,
2454 			"user pointer 0x%llx + %llu causes integer overflow\n",
2455 			addr, size);
2456 		return -EINVAL;
2457 	}
2458 
2459 	userptr->pid = current->pid;
2460 	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2461 	if (!userptr->sgt)
2462 		return -ENOMEM;
2463 
2464 	start = addr & PAGE_MASK;
2465 	offset = addr & ~PAGE_MASK;
2466 	end = PAGE_ALIGN(addr + size);
2467 	npages = (end - start) >> PAGE_SHIFT;
2468 
2469 	userptr->size = size;
2470 	userptr->addr = addr;
2471 	userptr->dma_mapped = false;
2472 	INIT_LIST_HEAD(&userptr->job_node);
2473 
2474 	rc = get_user_memory(hdev, addr, size, npages, start, offset,
2475 				userptr);
2476 	if (rc) {
2477 		dev_err(hdev->dev,
2478 			"failed to get user memory for address 0x%llx\n",
2479 			addr);
2480 		goto free_sgt;
2481 	}
2482 
2483 	hl_debugfs_add_userptr(hdev, userptr);
2484 
2485 	return 0;
2486 
2487 free_sgt:
2488 	kfree(userptr->sgt);
2489 	return rc;
2490 }
2491 
2492 /*
2493  * hl_unpin_host_memory - unpins a chunk of host memory.
2494  * @hdev: pointer to the habanalabs device structure
2495  * @userptr: pointer to hl_userptr structure
2496  *
2497  * This function does the following:
2498  * - Unpins the physical pages related to the host memory
2499  * - Free the SG list
2500  */
2501 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2502 {
2503 	hl_debugfs_remove_userptr(hdev, userptr);
2504 
2505 	if (userptr->dma_mapped)
2506 		hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2507 
2508 	unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2509 	kvfree(userptr->pages);
2510 
2511 	list_del(&userptr->job_node);
2512 
2513 	sg_free_table(userptr->sgt);
2514 	kfree(userptr->sgt);
2515 }
2516 
2517 /**
2518  * hl_userptr_delete_list() - clear userptr list.
2519  * @hdev: pointer to the habanalabs device structure.
2520  * @userptr_list: pointer to the list to clear.
2521  *
2522  * This function does the following:
2523  * - Iterates over the list and unpins the host memory and frees the userptr
2524  *   structure.
2525  */
2526 void hl_userptr_delete_list(struct hl_device *hdev,
2527 				struct list_head *userptr_list)
2528 {
2529 	struct hl_userptr *userptr, *tmp;
2530 
2531 	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2532 		hl_unpin_host_memory(hdev, userptr);
2533 		kfree(userptr);
2534 	}
2535 
2536 	INIT_LIST_HEAD(userptr_list);
2537 }
2538 
2539 /**
2540  * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2541  * @hdev: pointer to the habanalabs device structure.
2542  * @addr: user address to check.
2543  * @size: user block size to check.
2544  * @userptr_list: pointer to the list to clear.
2545  * @userptr: pointer to userptr to check.
2546  *
2547  * This function does the following:
2548  * - Iterates over the list and checks if the given userptr is in it, means is
2549  *   pinned. If so, returns true, otherwise returns false.
2550  */
2551 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2552 				u32 size, struct list_head *userptr_list,
2553 				struct hl_userptr **userptr)
2554 {
2555 	list_for_each_entry((*userptr), userptr_list, job_node) {
2556 		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2557 			return true;
2558 	}
2559 
2560 	return false;
2561 }
2562 
2563 /**
2564  * va_range_init() - initialize virtual addresses range.
2565  * @hdev: pointer to the habanalabs device structure.
2566  * @va_ranges: pointer to va_ranges array.
2567  * @range_type: virtual address range type.
2568  * @start: range start address, inclusive.
2569  * @end: range end address, inclusive.
2570  * @page_size: page size for this va_range.
2571  *
2572  * This function does the following:
2573  * - Initializes the virtual addresses list of the given range with the given
2574  *   addresses.
2575  */
2576 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2577 				enum hl_va_range_type range_type, u64 start,
2578 				u64 end, u32 page_size)
2579 {
2580 	struct hl_va_range *va_range = va_ranges[range_type];
2581 	int rc;
2582 
2583 	INIT_LIST_HEAD(&va_range->list);
2584 
2585 	/*
2586 	 * PAGE_SIZE alignment
2587 	 * it is the caller's responsibility to align the addresses if the
2588 	 * page size is not a power of 2
2589 	 */
2590 
2591 	if (is_power_of_2(page_size)) {
2592 		start = round_up(start, page_size);
2593 
2594 		/*
2595 		 * The end of the range is inclusive, hence we need to align it
2596 		 * to the end of the last full page in the range. For example if
2597 		 * end = 0x3ff5 with page size 0x1000, we need to align it to
2598 		 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2599 		 */
2600 		end = round_down(end + 1, page_size) - 1;
2601 	}
2602 
2603 	if (start >= end) {
2604 		dev_err(hdev->dev, "too small vm range for va list\n");
2605 		return -EFAULT;
2606 	}
2607 
2608 	rc = add_va_block(hdev, va_range, start, end);
2609 
2610 	if (rc) {
2611 		dev_err(hdev->dev, "Failed to init host va list\n");
2612 		return rc;
2613 	}
2614 
2615 	va_range->start_addr = start;
2616 	va_range->end_addr = end;
2617 	va_range->page_size = page_size;
2618 
2619 	return 0;
2620 }
2621 
2622 /**
2623  * va_range_fini() - clear a virtual addresses range.
2624  * @hdev: pointer to the habanalabs structure.
2625  * @va_range: pointer to virtual addresses range.
2626  *
2627  * This function does the following:
2628  * - Frees the virtual addresses block list and its lock.
2629  */
2630 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2631 {
2632 	mutex_lock(&va_range->lock);
2633 	clear_va_list_locked(hdev, &va_range->list);
2634 	mutex_unlock(&va_range->lock);
2635 
2636 	mutex_destroy(&va_range->lock);
2637 	kfree(va_range);
2638 }
2639 
2640 /**
2641  * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2642  * @ctx: pointer to the habanalabs context structure.
2643  * @host_range_start: host virtual addresses range start.
2644  * @host_range_end: host virtual addresses range end.
2645  * @host_page_size: host page size.
2646  * @host_huge_range_start: host virtual addresses range start for memory
2647  *                         allocated with huge pages.
2648  * @host_huge_range_end: host virtual addresses range end for memory allocated
2649  *                        with huge pages.
2650  * @host_huge_page_size: host huge page size.
2651  * @dram_range_start: dram virtual addresses range start.
2652  * @dram_range_end: dram virtual addresses range end.
2653  * @dram_page_size: dram page size.
2654  *
2655  * This function initializes the following:
2656  * - MMU for context.
2657  * - Virtual address to area descriptor hashtable.
2658  * - Virtual block list of available virtual memory.
2659  */
2660 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2661 					u64 host_range_start,
2662 					u64 host_range_end,
2663 					u32 host_page_size,
2664 					u64 host_huge_range_start,
2665 					u64 host_huge_range_end,
2666 					u32 host_huge_page_size,
2667 					u64 dram_range_start,
2668 					u64 dram_range_end,
2669 					u32 dram_page_size)
2670 {
2671 	struct hl_device *hdev = ctx->hdev;
2672 	int i, rc;
2673 
2674 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2675 		ctx->va_range[i] =
2676 			kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2677 		if (!ctx->va_range[i]) {
2678 			rc = -ENOMEM;
2679 			goto free_va_range;
2680 		}
2681 	}
2682 
2683 	rc = hl_mmu_ctx_init(ctx);
2684 	if (rc) {
2685 		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2686 		goto free_va_range;
2687 	}
2688 
2689 	mutex_init(&ctx->mem_hash_lock);
2690 	hash_init(ctx->mem_hash);
2691 
2692 	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2693 
2694 	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2695 			host_range_start, host_range_end, host_page_size);
2696 	if (rc) {
2697 		dev_err(hdev->dev, "failed to init host vm range\n");
2698 		goto mmu_ctx_fini;
2699 	}
2700 
2701 	if (hdev->pmmu_huge_range) {
2702 		mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2703 
2704 		rc = va_range_init(hdev,
2705 			ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2706 			host_huge_range_start, host_huge_range_end,
2707 			host_huge_page_size);
2708 		if (rc) {
2709 			dev_err(hdev->dev,
2710 				"failed to init host huge vm range\n");
2711 			goto clear_host_va_range;
2712 		}
2713 	} else {
2714 		kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2715 		ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2716 				ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2717 	}
2718 
2719 	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2720 
2721 	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2722 			dram_range_start, dram_range_end, dram_page_size);
2723 	if (rc) {
2724 		dev_err(hdev->dev, "failed to init dram vm range\n");
2725 		goto clear_host_huge_va_range;
2726 	}
2727 
2728 	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2729 
2730 	return 0;
2731 
2732 clear_host_huge_va_range:
2733 	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2734 
2735 	if (hdev->pmmu_huge_range) {
2736 		mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2737 		clear_va_list_locked(hdev,
2738 			&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2739 		mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2740 	}
2741 clear_host_va_range:
2742 	if (hdev->pmmu_huge_range)
2743 		mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2744 	mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2745 	clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2746 	mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2747 mmu_ctx_fini:
2748 	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2749 	mutex_destroy(&ctx->mem_hash_lock);
2750 	hl_mmu_ctx_fini(ctx);
2751 free_va_range:
2752 	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2753 		kfree(ctx->va_range[i]);
2754 
2755 	return rc;
2756 }
2757 
2758 int hl_vm_ctx_init(struct hl_ctx *ctx)
2759 {
2760 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2761 	u64 host_range_start, host_range_end, host_huge_range_start,
2762 		host_huge_range_end, dram_range_start, dram_range_end;
2763 	u32 host_page_size, host_huge_page_size, dram_page_size;
2764 
2765 	atomic64_set(&ctx->dram_phys_mem, 0);
2766 
2767 	/*
2768 	 * - If MMU is enabled, init the ranges as usual.
2769 	 * - If MMU is disabled, in case of host mapping, the returned address
2770 	 *   is the given one.
2771 	 *   In case of DRAM mapping, the returned address is the physical
2772 	 *   address of the memory related to the given handle.
2773 	 */
2774 	if (!ctx->hdev->mmu_enable)
2775 		return 0;
2776 
2777 	dram_range_start = prop->dmmu.start_addr;
2778 	dram_range_end = prop->dmmu.end_addr - 1;
2779 	dram_page_size = prop->dram_page_size ?
2780 				prop->dram_page_size : prop->dmmu.page_size;
2781 	host_range_start = prop->pmmu.start_addr;
2782 	host_range_end = prop->pmmu.end_addr - 1;
2783 	host_page_size = prop->pmmu.page_size;
2784 	host_huge_range_start = prop->pmmu_huge.start_addr;
2785 	host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2786 	host_huge_page_size = prop->pmmu_huge.page_size;
2787 
2788 	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2789 			host_page_size, host_huge_range_start,
2790 			host_huge_range_end, host_huge_page_size,
2791 			dram_range_start, dram_range_end, dram_page_size);
2792 }
2793 
2794 /**
2795  * hl_vm_ctx_fini() - virtual memory teardown of context.
2796  * @ctx: pointer to the habanalabs context structure.
2797  *
2798  * This function perform teardown the following:
2799  * - Virtual block list of available virtual memory.
2800  * - Virtual address to area descriptor hashtable.
2801  * - MMU for context.
2802  *
2803  * In addition this function does the following:
2804  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2805  *   hashtable should be empty as no valid mappings should exist at this
2806  *   point.
2807  * - Frees any existing physical page list from the idr which relates to the
2808  *   current context asid.
2809  * - This function checks the virtual block list for correctness. At this point
2810  *   the list should contain one element which describes the whole virtual
2811  *   memory range of the context. Otherwise, a warning is printed.
2812  */
2813 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2814 {
2815 	struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2816 	struct hl_device *hdev = ctx->hdev;
2817 	struct hl_vm_hash_node *hnode;
2818 	struct hl_vm *vm = &hdev->vm;
2819 	struct hlist_node *tmp_node;
2820 	struct list_head free_list;
2821 	struct hl_mem_in args;
2822 	int i;
2823 
2824 	if (!hdev->mmu_enable)
2825 		return;
2826 
2827 	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2828 
2829 	/*
2830 	 * Clearly something went wrong on hard reset so no point in printing
2831 	 * another side effect error
2832 	 */
2833 	if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2834 		dev_dbg(hdev->dev,
2835 			"user released device without removing its memory mappings\n");
2836 
2837 	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2838 		dev_dbg(hdev->dev,
2839 			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2840 			hnode->vaddr, ctx->asid);
2841 		args.unmap.device_virt_addr = hnode->vaddr;
2842 		unmap_device_va(ctx, &args, true);
2843 	}
2844 
2845 	mutex_lock(&hdev->mmu_lock);
2846 
2847 	/* invalidate the cache once after the unmapping loop */
2848 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2849 	hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2850 
2851 	mutex_unlock(&hdev->mmu_lock);
2852 
2853 	INIT_LIST_HEAD(&free_list);
2854 
2855 	spin_lock(&vm->idr_lock);
2856 	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2857 		if (phys_pg_list->asid == ctx->asid) {
2858 			dev_dbg(hdev->dev,
2859 				"page list 0x%px of asid %d is still alive\n",
2860 				phys_pg_list, ctx->asid);
2861 
2862 			atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2863 			idr_remove(&vm->phys_pg_pack_handles, i);
2864 			list_add(&phys_pg_list->node, &free_list);
2865 		}
2866 	spin_unlock(&vm->idr_lock);
2867 
2868 	list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2869 		free_phys_pg_pack(hdev, phys_pg_list);
2870 
2871 	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2872 	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2873 
2874 	if (hdev->pmmu_huge_range)
2875 		va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2876 
2877 	mutex_destroy(&ctx->mem_hash_lock);
2878 	hl_mmu_ctx_fini(ctx);
2879 
2880 	/* In this case we need to clear the global accounting of DRAM usage
2881 	 * because the user notifies us on allocations. If the user is no more,
2882 	 * all DRAM is available
2883 	 */
2884 	if (ctx->asid != HL_KERNEL_ASID_ID &&
2885 			!hdev->asic_prop.dram_supports_virtual_memory)
2886 		atomic64_set(&hdev->dram_used_mem, 0);
2887 }
2888 
2889 /**
2890  * hl_vm_init() - initialize virtual memory module.
2891  * @hdev: pointer to the habanalabs device structure.
2892  *
2893  * This function initializes the following:
2894  * - MMU module.
2895  * - DRAM physical pages pool of 2MB.
2896  * - Idr for device memory allocation handles.
2897  */
2898 int hl_vm_init(struct hl_device *hdev)
2899 {
2900 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2901 	struct hl_vm *vm = &hdev->vm;
2902 	int rc;
2903 
2904 	if (is_power_of_2(prop->dram_page_size))
2905 		vm->dram_pg_pool =
2906 			gen_pool_create(__ffs(prop->dram_page_size), -1);
2907 	else
2908 		vm->dram_pg_pool =
2909 			gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2910 
2911 	if (!vm->dram_pg_pool) {
2912 		dev_err(hdev->dev, "Failed to create dram page pool\n");
2913 		return -ENOMEM;
2914 	}
2915 
2916 	kref_init(&vm->dram_pg_pool_refcount);
2917 
2918 	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2919 			prop->dram_end_address - prop->dram_user_base_address,
2920 			-1);
2921 
2922 	if (rc) {
2923 		dev_err(hdev->dev,
2924 			"Failed to add memory to dram page pool %d\n", rc);
2925 		goto pool_add_err;
2926 	}
2927 
2928 	spin_lock_init(&vm->idr_lock);
2929 	idr_init(&vm->phys_pg_pack_handles);
2930 
2931 	atomic64_set(&hdev->dram_used_mem, 0);
2932 
2933 	vm->init_done = true;
2934 
2935 	return 0;
2936 
2937 pool_add_err:
2938 	gen_pool_destroy(vm->dram_pg_pool);
2939 
2940 	return rc;
2941 }
2942 
2943 /**
2944  * hl_vm_fini() - virtual memory module teardown.
2945  * @hdev: pointer to the habanalabs device structure.
2946  *
2947  * This function perform teardown to the following:
2948  * - Idr for device memory allocation handles.
2949  * - DRAM physical pages pool of 2MB.
2950  * - MMU module.
2951  */
2952 void hl_vm_fini(struct hl_device *hdev)
2953 {
2954 	struct hl_vm *vm = &hdev->vm;
2955 
2956 	if (!vm->init_done)
2957 		return;
2958 
2959 	/*
2960 	 * At this point all the contexts should be freed and hence no DRAM
2961 	 * memory should be in use. Hence the DRAM pool should be freed here.
2962 	 */
2963 	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2964 		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2965 				__func__);
2966 
2967 	vm->init_done = false;
2968 }
2969 
2970 /**
2971  * hl_hw_block_mem_init() - HW block memory initialization.
2972  * @ctx: pointer to the habanalabs context structure.
2973  *
2974  * This function initializes the HW block virtual mapped addresses list and
2975  * it's lock.
2976  */
2977 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2978 {
2979 	mutex_init(&ctx->hw_block_list_lock);
2980 	INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2981 }
2982 
2983 /**
2984  * hl_hw_block_mem_fini() - HW block memory teardown.
2985  * @ctx: pointer to the habanalabs context structure.
2986  *
2987  * This function clears the HW block virtual mapped addresses list and destroys
2988  * it's lock.
2989  */
2990 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2991 {
2992 	struct hl_vm_hw_block_list_node *lnode, *tmp;
2993 
2994 	if (!list_empty(&ctx->hw_block_mem_list))
2995 		dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2996 
2997 	list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2998 		list_del(&lnode->node);
2999 		kfree(lnode);
3000 	}
3001 
3002 	mutex_destroy(&ctx->hw_block_list_lock);
3003 }
3004