1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 #include "../include/hw_ip/mmu/mmu_general.h" 11 12 #include <linux/uaccess.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pci-p2pdma.h> 16 17 MODULE_IMPORT_NS("DMA_BUF"); 18 19 #define HL_MMU_DEBUG 0 20 21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ 22 #define DRAM_POOL_PAGE_SIZE SZ_8M 23 24 #define MEM_HANDLE_INVALID ULONG_MAX 25 26 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, 27 struct hl_mem_in *args, u64 *handle); 28 29 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size) 30 { 31 struct asic_fixed_properties *prop = &hdev->asic_prop; 32 u64 psize; 33 34 /* 35 * for ASIC that supports setting the allocation page size by user we will address 36 * user's choice only if it is not 0 (as 0 means taking the default page size) 37 */ 38 if (prop->supports_user_set_page_size && args->alloc.page_size) { 39 psize = args->alloc.page_size; 40 41 if (!is_power_of_2(psize)) { 42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize); 43 return -EINVAL; 44 } 45 } else { 46 psize = prop->device_mem_alloc_default_page_size; 47 } 48 49 *page_size = psize; 50 51 return 0; 52 } 53 54 /* 55 * The va ranges in context object contain a list with the available chunks of 56 * device virtual memory. 57 * There is one range for host allocations and one for DRAM allocations. 58 * 59 * On initialization each range contains one chunk of all of its available 60 * virtual range which is a half of the total device virtual range. 61 * 62 * On each mapping of physical pages, a suitable virtual range chunk (with a 63 * minimum size) is selected from the list. If the chunk size equals the 64 * requested size, the chunk is returned. Otherwise, the chunk is split into 65 * two chunks - one to return as result and a remainder to stay in the list. 66 * 67 * On each Unmapping of a virtual address, the relevant virtual chunk is 68 * returned to the list. The chunk is added to the list and if its edges match 69 * the edges of the adjacent chunks (means a contiguous chunk can be created), 70 * the chunks are merged. 71 * 72 * On finish, the list is checked to have only one chunk of all the relevant 73 * virtual range (which is a half of the device total virtual range). 74 * If not (means not all mappings were unmapped), a warning is printed. 75 */ 76 77 /* 78 * alloc_device_memory() - allocate device memory. 79 * @ctx: pointer to the context structure. 80 * @args: host parameters containing the requested size. 81 * @ret_handle: result handle. 82 * 83 * This function does the following: 84 * - Allocate the requested size rounded up to 'dram_page_size' pages. 85 * - Return unique handle for later map/unmap/free. 86 */ 87 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, 88 u32 *ret_handle) 89 { 90 struct hl_device *hdev = ctx->hdev; 91 struct hl_vm *vm = &hdev->vm; 92 struct hl_vm_phys_pg_pack *phys_pg_pack; 93 u64 paddr = 0, total_size, num_pgs, i; 94 u32 num_curr_pgs, page_size; 95 bool contiguous; 96 int handle, rc; 97 98 num_curr_pgs = 0; 99 100 rc = set_alloc_page_size(hdev, args, &page_size); 101 if (rc) 102 return rc; 103 104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size); 105 total_size = num_pgs * page_size; 106 107 if (!total_size) { 108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); 109 return -EINVAL; 110 } 111 112 contiguous = args->flags & HL_MEM_CONTIGUOUS; 113 114 if (contiguous) { 115 if (is_power_of_2(page_size)) 116 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool, 117 total_size, NULL, page_size); 118 else 119 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size); 120 if (!paddr) { 121 dev_err(hdev->dev, 122 "Cannot allocate %llu contiguous pages with total size of %llu\n", 123 num_pgs, total_size); 124 return -ENOMEM; 125 } 126 } 127 128 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 129 if (!phys_pg_pack) { 130 rc = -ENOMEM; 131 goto pages_pack_err; 132 } 133 134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; 135 phys_pg_pack->asid = ctx->asid; 136 phys_pg_pack->npages = num_pgs; 137 phys_pg_pack->page_size = page_size; 138 phys_pg_pack->total_size = total_size; 139 phys_pg_pack->flags = args->flags; 140 phys_pg_pack->contiguous = contiguous; 141 142 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); 143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 144 rc = -ENOMEM; 145 goto pages_arr_err; 146 } 147 148 if (phys_pg_pack->contiguous) { 149 for (i = 0 ; i < num_pgs ; i++) 150 phys_pg_pack->pages[i] = paddr + i * page_size; 151 } else { 152 for (i = 0 ; i < num_pgs ; i++) { 153 if (is_power_of_2(page_size)) 154 phys_pg_pack->pages[i] = 155 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool, 156 page_size, NULL, 157 page_size); 158 else 159 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool, 160 page_size); 161 162 if (!phys_pg_pack->pages[i]) { 163 dev_err(hdev->dev, 164 "Cannot allocate device memory (out of memory)\n"); 165 rc = -ENOMEM; 166 goto page_err; 167 } 168 169 num_curr_pgs++; 170 } 171 } 172 173 spin_lock(&vm->idr_lock); 174 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, 175 GFP_ATOMIC); 176 spin_unlock(&vm->idr_lock); 177 178 if (handle < 0) { 179 dev_err(hdev->dev, "Failed to get handle for page\n"); 180 rc = -EFAULT; 181 goto idr_err; 182 } 183 184 for (i = 0 ; i < num_pgs ; i++) 185 kref_get(&vm->dram_pg_pool_refcount); 186 187 phys_pg_pack->handle = handle; 188 189 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); 190 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); 191 192 *ret_handle = handle; 193 194 return 0; 195 196 idr_err: 197 page_err: 198 if (!phys_pg_pack->contiguous) 199 for (i = 0 ; i < num_curr_pgs ; i++) 200 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], 201 page_size); 202 203 kvfree(phys_pg_pack->pages); 204 pages_arr_err: 205 kfree(phys_pg_pack); 206 pages_pack_err: 207 if (contiguous) 208 gen_pool_free(vm->dram_pg_pool, paddr, total_size); 209 210 return rc; 211 } 212 213 /** 214 * dma_map_host_va() - DMA mapping of the given host virtual address. 215 * @hdev: habanalabs device structure. 216 * @addr: the host virtual address of the memory area. 217 * @size: the size of the memory area. 218 * @p_userptr: pointer to result userptr structure. 219 * 220 * This function does the following: 221 * - Allocate userptr structure. 222 * - Pin the given host memory using the userptr structure. 223 * - Perform DMA mapping to have the DMA addresses of the pages. 224 */ 225 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, 226 struct hl_userptr **p_userptr) 227 { 228 struct hl_userptr *userptr; 229 int rc; 230 231 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); 232 if (!userptr) { 233 rc = -ENOMEM; 234 goto userptr_err; 235 } 236 237 rc = hl_pin_host_memory(hdev, addr, size, userptr); 238 if (rc) 239 goto pin_err; 240 241 userptr->dma_mapped = true; 242 userptr->dir = DMA_BIDIRECTIONAL; 243 userptr->vm_type = VM_TYPE_USERPTR; 244 245 *p_userptr = userptr; 246 247 rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL); 248 if (rc) { 249 dev_err(hdev->dev, "failed to map sgt with DMA region\n"); 250 goto dma_map_err; 251 } 252 253 return 0; 254 255 dma_map_err: 256 hl_unpin_host_memory(hdev, userptr); 257 pin_err: 258 kfree(userptr); 259 userptr_err: 260 261 return rc; 262 } 263 264 /** 265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address. 266 * @hdev: habanalabs device structure. 267 * @userptr: userptr to free. 268 * 269 * This function does the following: 270 * - Unpins the physical pages. 271 * - Frees the userptr structure. 272 */ 273 static void dma_unmap_host_va(struct hl_device *hdev, 274 struct hl_userptr *userptr) 275 { 276 hl_unpin_host_memory(hdev, userptr); 277 kfree(userptr); 278 } 279 280 /** 281 * dram_pg_pool_do_release() - free DRAM pages pool 282 * @ref: pointer to reference object. 283 * 284 * This function does the following: 285 * - Frees the idr structure of physical pages handles. 286 * - Frees the generic pool of DRAM physical pages. 287 */ 288 static void dram_pg_pool_do_release(struct kref *ref) 289 { 290 struct hl_vm *vm = container_of(ref, struct hl_vm, 291 dram_pg_pool_refcount); 292 293 /* 294 * free the idr here as only here we know for sure that there are no 295 * allocated physical pages and hence there are no handles in use 296 */ 297 idr_destroy(&vm->phys_pg_pack_handles); 298 gen_pool_destroy(vm->dram_pg_pool); 299 } 300 301 /** 302 * free_phys_pg_pack() - free physical page pack. 303 * @hdev: habanalabs device structure. 304 * @phys_pg_pack: physical page pack to free. 305 * 306 * This function does the following: 307 * - For DRAM memory only 308 * - iterate over the pack, free each physical block structure by 309 * returning it to the general pool. 310 * - Free the hl_vm_phys_pg_pack structure. 311 */ 312 static void free_phys_pg_pack(struct hl_device *hdev, 313 struct hl_vm_phys_pg_pack *phys_pg_pack) 314 { 315 struct hl_vm *vm = &hdev->vm; 316 u64 i; 317 318 if (phys_pg_pack->created_from_userptr) 319 goto end; 320 321 if (phys_pg_pack->contiguous) { 322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], 323 phys_pg_pack->total_size); 324 325 for (i = 0; i < phys_pg_pack->npages ; i++) 326 kref_put(&vm->dram_pg_pool_refcount, 327 dram_pg_pool_do_release); 328 } else { 329 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 330 gen_pool_free(vm->dram_pg_pool, 331 phys_pg_pack->pages[i], 332 phys_pg_pack->page_size); 333 kref_put(&vm->dram_pg_pool_refcount, 334 dram_pg_pool_do_release); 335 } 336 } 337 338 end: 339 kvfree(phys_pg_pack->pages); 340 kfree(phys_pg_pack); 341 342 return; 343 } 344 345 /** 346 * free_device_memory() - free device memory. 347 * @ctx: pointer to the context structure. 348 * @args: host parameters containing the requested size. 349 * 350 * This function does the following: 351 * - Free the device memory related to the given handle. 352 */ 353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args) 354 { 355 struct hl_device *hdev = ctx->hdev; 356 struct hl_vm *vm = &hdev->vm; 357 struct hl_vm_phys_pg_pack *phys_pg_pack; 358 u32 handle = args->free.handle; 359 360 spin_lock(&vm->idr_lock); 361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 362 if (!phys_pg_pack) { 363 spin_unlock(&vm->idr_lock); 364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle); 365 return -EINVAL; 366 } 367 368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { 369 spin_unlock(&vm->idr_lock); 370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle); 371 return -EINVAL; 372 } 373 374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool 375 * is also the trigger of the idr destroy 376 */ 377 idr_remove(&vm->phys_pg_pack_handles, handle); 378 spin_unlock(&vm->idr_lock); 379 380 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); 381 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); 382 383 free_phys_pg_pack(hdev, phys_pg_pack); 384 385 return 0; 386 } 387 388 /** 389 * clear_va_list_locked() - free virtual addresses list. 390 * @hdev: habanalabs device structure. 391 * @va_list: list of virtual addresses to free. 392 * 393 * This function does the following: 394 * - Iterate over the list and free each virtual addresses block. 395 * 396 * This function should be called only when va_list lock is taken. 397 */ 398 static void clear_va_list_locked(struct hl_device *hdev, 399 struct list_head *va_list) 400 { 401 struct hl_vm_va_block *va_block, *tmp; 402 403 list_for_each_entry_safe(va_block, tmp, va_list, node) { 404 list_del(&va_block->node); 405 kfree(va_block); 406 } 407 } 408 409 /** 410 * print_va_list_locked() - print virtual addresses list. 411 * @hdev: habanalabs device structure. 412 * @va_list: list of virtual addresses to print. 413 * 414 * This function does the following: 415 * - Iterate over the list and print each virtual addresses block. 416 * 417 * This function should be called only when va_list lock is taken. 418 */ 419 static void print_va_list_locked(struct hl_device *hdev, 420 struct list_head *va_list) 421 { 422 #if HL_MMU_DEBUG 423 struct hl_vm_va_block *va_block; 424 425 dev_dbg(hdev->dev, "print va list:\n"); 426 427 list_for_each_entry(va_block, va_list, node) 428 dev_dbg(hdev->dev, 429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", 430 va_block->start, va_block->end, va_block->size); 431 #endif 432 } 433 434 /** 435 * merge_va_blocks_locked() - merge a virtual block if possible. 436 * @hdev: pointer to the habanalabs device structure. 437 * @va_list: pointer to the virtual addresses block list. 438 * @va_block: virtual block to merge with adjacent blocks. 439 * 440 * This function does the following: 441 * - Merge the given blocks with the adjacent blocks if their virtual ranges 442 * create a contiguous virtual range. 443 * 444 * This Function should be called only when va_list lock is taken. 445 */ 446 static void merge_va_blocks_locked(struct hl_device *hdev, 447 struct list_head *va_list, struct hl_vm_va_block *va_block) 448 { 449 struct hl_vm_va_block *prev, *next; 450 451 prev = list_prev_entry(va_block, node); 452 if (&prev->node != va_list && prev->end + 1 == va_block->start) { 453 prev->end = va_block->end; 454 prev->size = prev->end - prev->start + 1; 455 list_del(&va_block->node); 456 kfree(va_block); 457 va_block = prev; 458 } 459 460 next = list_next_entry(va_block, node); 461 if (&next->node != va_list && va_block->end + 1 == next->start) { 462 next->start = va_block->start; 463 next->size = next->end - next->start + 1; 464 list_del(&va_block->node); 465 kfree(va_block); 466 } 467 } 468 469 /** 470 * add_va_block_locked() - add a virtual block to the virtual addresses list. 471 * @hdev: pointer to the habanalabs device structure. 472 * @va_list: pointer to the virtual addresses block list. 473 * @start: start virtual address. 474 * @end: end virtual address. 475 * 476 * This function does the following: 477 * - Add the given block to the virtual blocks list and merge with other blocks 478 * if a contiguous virtual block can be created. 479 * 480 * This Function should be called only when va_list lock is taken. 481 */ 482 static int add_va_block_locked(struct hl_device *hdev, 483 struct list_head *va_list, u64 start, u64 end) 484 { 485 struct hl_vm_va_block *va_block, *res = NULL; 486 u64 size = end - start + 1; 487 488 print_va_list_locked(hdev, va_list); 489 490 list_for_each_entry(va_block, va_list, node) { 491 /* TODO: remove upon matureness */ 492 if (hl_mem_area_crosses_range(start, size, va_block->start, 493 va_block->end)) { 494 dev_err(hdev->dev, 495 "block crossing ranges at start 0x%llx, end 0x%llx\n", 496 va_block->start, va_block->end); 497 return -EINVAL; 498 } 499 500 if (va_block->end < start) 501 res = va_block; 502 } 503 504 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); 505 if (!va_block) 506 return -ENOMEM; 507 508 va_block->start = start; 509 va_block->end = end; 510 va_block->size = size; 511 512 if (!res) 513 list_add(&va_block->node, va_list); 514 else 515 list_add(&va_block->node, &res->node); 516 517 merge_va_blocks_locked(hdev, va_list, va_block); 518 519 print_va_list_locked(hdev, va_list); 520 521 return 0; 522 } 523 524 /** 525 * add_va_block() - wrapper for add_va_block_locked. 526 * @hdev: pointer to the habanalabs device structure. 527 * @va_range: pointer to the virtual addresses range object. 528 * @start: start virtual address. 529 * @end: end virtual address. 530 * 531 * This function does the following: 532 * - Takes the list lock and calls add_va_block_locked. 533 */ 534 static inline int add_va_block(struct hl_device *hdev, 535 struct hl_va_range *va_range, u64 start, u64 end) 536 { 537 int rc; 538 539 mutex_lock(&va_range->lock); 540 rc = add_va_block_locked(hdev, &va_range->list, start, end); 541 mutex_unlock(&va_range->lock); 542 543 return rc; 544 } 545 546 /** 547 * is_hint_crossing_range() - check if hint address crossing specified reserved. 548 * @range_type: virtual space range type. 549 * @start_addr: start virtual address. 550 * @size: block size. 551 * @prop: asic properties structure to retrieve reserved ranges from. 552 */ 553 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type, 554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) { 555 bool range_cross; 556 557 if (range_type == HL_VA_RANGE_TYPE_DRAM) 558 range_cross = 559 hl_mem_area_crosses_range(start_addr, size, 560 prop->hints_dram_reserved_va_range.start_addr, 561 prop->hints_dram_reserved_va_range.end_addr); 562 else if (range_type == HL_VA_RANGE_TYPE_HOST) 563 range_cross = 564 hl_mem_area_crosses_range(start_addr, size, 565 prop->hints_host_reserved_va_range.start_addr, 566 prop->hints_host_reserved_va_range.end_addr); 567 else 568 range_cross = 569 hl_mem_area_crosses_range(start_addr, size, 570 prop->hints_host_hpage_reserved_va_range.start_addr, 571 prop->hints_host_hpage_reserved_va_range.end_addr); 572 573 return range_cross; 574 } 575 576 /** 577 * get_va_block() - get a virtual block for the given size and alignment. 578 * 579 * @hdev: pointer to the habanalabs device structure. 580 * @va_range: pointer to the virtual addresses range. 581 * @size: requested block size. 582 * @hint_addr: hint for requested address by the user. 583 * @va_block_align: required alignment of the virtual block start address. 584 * @range_type: va range type (host, dram) 585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT 586 * 587 * This function does the following: 588 * - Iterate on the virtual block list to find a suitable virtual block for the 589 * given size, hint address and alignment. 590 * - Reserve the requested block and update the list. 591 * - Return the start address of the virtual block. 592 */ 593 static u64 get_va_block(struct hl_device *hdev, 594 struct hl_va_range *va_range, 595 u64 size, u64 hint_addr, u32 va_block_align, 596 enum hl_va_range_type range_type, 597 u32 flags) 598 { 599 struct hl_vm_va_block *va_block, *new_va_block = NULL; 600 struct asic_fixed_properties *prop = &hdev->asic_prop; 601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end, 602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0, 603 dram_hint_mask = prop->dram_hints_align_mask; 604 bool add_prev = false; 605 bool is_align_pow_2 = is_power_of_2(va_range->page_size); 606 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr); 607 bool force_hint = flags & HL_MEM_FORCE_HINT; 608 int rc; 609 610 if (is_align_pow_2) 611 align_mask = ~((u64)va_block_align - 1); 612 else 613 /* 614 * with non-power-of-2 range we work only with page granularity 615 * and the start address is page aligned, 616 * so no need for alignment checking. 617 */ 618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) * 619 va_range->page_size; 620 621 tmp_hint_addr = hint_addr & ~dram_hint_mask; 622 623 /* Check if we need to ignore hint address */ 624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) || 625 (!is_align_pow_2 && is_hint_dram_addr && 626 do_div(tmp_hint_addr, va_range->page_size))) { 627 628 if (force_hint) { 629 /* Hint must be respected, so here we just fail */ 630 dev_err(hdev->dev, 631 "Hint address 0x%llx is not page aligned - cannot be respected\n", 632 hint_addr); 633 return 0; 634 } 635 636 dev_dbg(hdev->dev, 637 "Hint address 0x%llx will be ignored because it is not aligned\n", 638 hint_addr); 639 hint_addr = 0; 640 } 641 642 mutex_lock(&va_range->lock); 643 644 print_va_list_locked(hdev, &va_range->list); 645 646 list_for_each_entry(va_block, &va_range->list, node) { 647 /* Calc the first possible aligned addr */ 648 valid_start = va_block->start; 649 650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) { 651 valid_start &= align_mask; 652 valid_start += va_block_align; 653 if (valid_start > va_block->end) 654 continue; 655 } 656 657 valid_size = va_block->end - valid_start + 1; 658 if (valid_size < size) 659 continue; 660 661 /* 662 * In case hint address is 0, and hints_range_reservation 663 * property enabled, then avoid allocating va blocks from the 664 * range reserved for hint addresses 665 */ 666 if (prop->hints_range_reservation && !hint_addr) 667 if (is_hint_crossing_range(range_type, valid_start, 668 size, prop)) 669 continue; 670 671 /* Pick the minimal length block which has the required size */ 672 if (!new_va_block || (valid_size < reserved_valid_size)) { 673 new_va_block = va_block; 674 reserved_valid_start = valid_start; 675 reserved_valid_size = valid_size; 676 } 677 678 if (hint_addr && hint_addr >= valid_start && 679 (hint_addr + size) <= va_block->end) { 680 new_va_block = va_block; 681 reserved_valid_start = hint_addr; 682 reserved_valid_size = valid_size; 683 break; 684 } 685 } 686 687 if (!new_va_block) { 688 dev_err(hdev->dev, "no available va block for size %llu\n", 689 size); 690 goto out; 691 } 692 693 if (force_hint && reserved_valid_start != hint_addr) { 694 /* Hint address must be respected. If we are here - this means 695 * we could not respect it. 696 */ 697 dev_err(hdev->dev, 698 "Hint address 0x%llx could not be respected\n", 699 hint_addr); 700 reserved_valid_start = 0; 701 goto out; 702 } 703 704 /* 705 * Check if there is some leftover range due to reserving the new 706 * va block, then return it to the main virtual addresses list. 707 */ 708 if (reserved_valid_start > new_va_block->start) { 709 prev_start = new_va_block->start; 710 prev_end = reserved_valid_start - 1; 711 712 new_va_block->start = reserved_valid_start; 713 new_va_block->size = reserved_valid_size; 714 715 add_prev = true; 716 } 717 718 if (new_va_block->size > size) { 719 new_va_block->start += size; 720 new_va_block->size = new_va_block->end - new_va_block->start + 1; 721 } else { 722 list_del(&new_va_block->node); 723 kfree(new_va_block); 724 } 725 726 if (add_prev) { 727 rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end); 728 if (rc) { 729 reserved_valid_start = 0; 730 goto out; 731 } 732 } 733 734 print_va_list_locked(hdev, &va_range->list); 735 out: 736 mutex_unlock(&va_range->lock); 737 738 return reserved_valid_start; 739 } 740 741 /* 742 * hl_reserve_va_block() - reserve a virtual block of a given size. 743 * @hdev: pointer to the habanalabs device structure. 744 * @ctx: current context 745 * @type: virtual addresses range type. 746 * @size: requested block size. 747 * @alignment: required alignment in bytes of the virtual block start address, 748 * 0 means no alignment. 749 * 750 * This function does the following: 751 * - Iterate on the virtual block list to find a suitable virtual block for the 752 * given size and alignment. 753 * - Reserve the requested block and update the list. 754 * - Return the start address of the virtual block. 755 */ 756 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 757 enum hl_va_range_type type, u64 size, u32 alignment) 758 { 759 return get_va_block(hdev, ctx->va_range[type], size, 0, 760 max(alignment, ctx->va_range[type]->page_size), 761 type, 0); 762 } 763 764 /** 765 * hl_get_va_range_type() - get va_range type for the given address and size. 766 * @ctx: context to fetch va_range from. 767 * @address: the start address of the area we want to validate. 768 * @size: the size in bytes of the area we want to validate. 769 * @type: returned va_range type. 770 * 771 * Return: true if the area is inside a valid range, false otherwise. 772 */ 773 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size, 774 enum hl_va_range_type *type) 775 { 776 int i; 777 778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) { 779 if (hl_mem_area_inside_range(address, size, 780 ctx->va_range[i]->start_addr, 781 ctx->va_range[i]->end_addr)) { 782 *type = i; 783 return 0; 784 } 785 } 786 787 return -EINVAL; 788 } 789 790 /** 791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block. 792 * @hdev: pointer to the habanalabs device structure 793 * @ctx: pointer to the context structure. 794 * @start_addr: start virtual address. 795 * @size: number of bytes to unreserve. 796 * 797 * This function does the following: 798 * - Takes the list lock and calls add_va_block_locked. 799 */ 800 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 801 u64 start_addr, u64 size) 802 { 803 enum hl_va_range_type type; 804 int rc; 805 806 rc = hl_get_va_range_type(ctx, start_addr, size, &type); 807 if (rc) { 808 dev_err(hdev->dev, 809 "cannot find va_range for va %#llx size %llu", 810 start_addr, size); 811 return rc; 812 } 813 814 rc = add_va_block(hdev, ctx->va_range[type], start_addr, 815 start_addr + size - 1); 816 if (rc) 817 dev_warn(hdev->dev, 818 "add va block failed for vaddr: 0x%llx\n", start_addr); 819 820 return rc; 821 } 822 823 /** 824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host 825 * memory 826 * @ctx: pointer to the context structure. 827 * @userptr: userptr to initialize from. 828 * @pphys_pg_pack: result pointer. 829 * @force_regular_page: tell the function to ignore huge page optimization, 830 * even if possible. Needed for cases where the device VA 831 * is allocated before we know the composition of the 832 * physical pages 833 * 834 * This function does the following: 835 * - Create a physical page pack from the physical pages related to the given 836 * virtual block. 837 */ 838 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, 839 struct hl_userptr *userptr, 840 struct hl_vm_phys_pg_pack **pphys_pg_pack, 841 bool force_regular_page) 842 { 843 u32 npages, page_size = PAGE_SIZE, 844 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; 845 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); 846 struct hl_vm_phys_pg_pack *phys_pg_pack; 847 bool first = true, is_huge_page_opt; 848 u64 page_mask, total_npages; 849 struct scatterlist *sg; 850 dma_addr_t dma_addr; 851 int rc, i, j; 852 853 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); 854 if (!phys_pg_pack) 855 return -ENOMEM; 856 857 phys_pg_pack->vm_type = userptr->vm_type; 858 phys_pg_pack->created_from_userptr = true; 859 phys_pg_pack->asid = ctx->asid; 860 atomic_set(&phys_pg_pack->mapping_cnt, 1); 861 862 is_huge_page_opt = (force_regular_page ? false : true); 863 864 /* Only if all dma_addrs are aligned to 2MB and their 865 * sizes is at least 2MB, we can use huge page mapping. 866 * We limit the 2MB optimization to this condition, 867 * since later on we acquire the related VA range as one 868 * consecutive block. 869 */ 870 total_npages = 0; 871 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 872 npages = hl_get_sg_info(sg, &dma_addr); 873 874 total_npages += npages; 875 876 if ((npages % pgs_in_huge_page) || 877 (dma_addr & (huge_page_size - 1))) 878 is_huge_page_opt = false; 879 } 880 881 if (is_huge_page_opt) { 882 page_size = huge_page_size; 883 do_div(total_npages, pgs_in_huge_page); 884 } 885 886 page_mask = ~(((u64) page_size) - 1); 887 888 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), 889 GFP_KERNEL); 890 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { 891 rc = -ENOMEM; 892 goto page_pack_arr_mem_err; 893 } 894 895 phys_pg_pack->npages = total_npages; 896 phys_pg_pack->page_size = page_size; 897 phys_pg_pack->total_size = total_npages * page_size; 898 899 j = 0; 900 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 901 npages = hl_get_sg_info(sg, &dma_addr); 902 903 /* align down to physical page size and save the offset */ 904 if (first) { 905 first = false; 906 phys_pg_pack->offset = dma_addr & (page_size - 1); 907 dma_addr &= page_mask; 908 } 909 910 while (npages) { 911 phys_pg_pack->pages[j++] = dma_addr; 912 dma_addr += page_size; 913 914 if (is_huge_page_opt) 915 npages -= pgs_in_huge_page; 916 else 917 npages--; 918 } 919 } 920 921 *pphys_pg_pack = phys_pg_pack; 922 923 return 0; 924 925 page_pack_arr_mem_err: 926 kfree(phys_pg_pack); 927 928 return rc; 929 } 930 931 /** 932 * map_phys_pg_pack() - maps the physical page pack.. 933 * @ctx: pointer to the context structure. 934 * @vaddr: start address of the virtual area to map from. 935 * @phys_pg_pack: the pack of physical pages to map to. 936 * 937 * This function does the following: 938 * - Maps each chunk of virtual memory to matching physical chunk. 939 * - Stores number of successful mappings in the given argument. 940 * - Returns 0 on success, error code otherwise. 941 */ 942 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 943 struct hl_vm_phys_pg_pack *phys_pg_pack) 944 { 945 struct hl_device *hdev = ctx->hdev; 946 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; 947 u32 page_size = phys_pg_pack->page_size; 948 int rc = 0; 949 bool is_host_addr; 950 951 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 952 paddr = phys_pg_pack->pages[i]; 953 954 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size, 955 (i + 1) == phys_pg_pack->npages); 956 if (rc) { 957 dev_err(hdev->dev, 958 "map failed (%d) for handle %u, npages: %llu, mapped: %llu\n", 959 rc, phys_pg_pack->handle, phys_pg_pack->npages, 960 mapped_pg_cnt); 961 goto err; 962 } 963 964 mapped_pg_cnt++; 965 next_vaddr += page_size; 966 } 967 968 return 0; 969 970 err: 971 is_host_addr = !hl_is_dram_va(hdev, vaddr); 972 973 next_vaddr = vaddr; 974 for (i = 0 ; i < mapped_pg_cnt ; i++) { 975 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 976 (i + 1) == mapped_pg_cnt)) 977 dev_warn_ratelimited(hdev->dev, 978 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", 979 phys_pg_pack->handle, next_vaddr, 980 phys_pg_pack->pages[i], page_size); 981 982 next_vaddr += page_size; 983 984 /* 985 * unmapping on Palladium can be really long, so avoid a CPU 986 * soft lockup bug by sleeping a little between unmapping pages 987 * 988 * In addition, on host num of pages could be huge, 989 * because page size could be 4KB, so when unmapping host 990 * pages sleep every 32K pages to avoid soft lockup 991 */ 992 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 993 usleep_range(50, 200); 994 } 995 996 return rc; 997 } 998 999 /** 1000 * unmap_phys_pg_pack() - unmaps the physical page pack. 1001 * @ctx: pointer to the context structure. 1002 * @vaddr: start address of the virtual area to unmap. 1003 * @phys_pg_pack: the pack of physical pages to unmap. 1004 */ 1005 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, 1006 struct hl_vm_phys_pg_pack *phys_pg_pack) 1007 { 1008 struct hl_device *hdev = ctx->hdev; 1009 u64 next_vaddr, i; 1010 bool is_host_addr; 1011 u32 page_size; 1012 1013 is_host_addr = !hl_is_dram_va(hdev, vaddr); 1014 page_size = phys_pg_pack->page_size; 1015 next_vaddr = vaddr; 1016 1017 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { 1018 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size, 1019 (i + 1) == phys_pg_pack->npages)) 1020 dev_warn_ratelimited(hdev->dev, 1021 "unmap failed for vaddr: 0x%llx\n", next_vaddr); 1022 1023 /* 1024 * unmapping on Palladium can be really long, so avoid a CPU 1025 * soft lockup bug by sleeping a little between unmapping pages 1026 * 1027 * In addition, on host num of pages could be huge, 1028 * because page size could be 4KB, so when unmapping host 1029 * pages sleep every 32K pages to avoid soft lockup 1030 */ 1031 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0)) 1032 usleep_range(50, 200); 1033 } 1034 } 1035 1036 /** 1037 * map_device_va() - map the given memory. 1038 * @ctx: pointer to the context structure. 1039 * @args: host parameters with handle/host virtual address. 1040 * @device_addr: pointer to result device virtual address. 1041 * 1042 * This function does the following: 1043 * - If given a physical device memory handle, map to a device virtual block 1044 * and return the start address of this block. 1045 * - If given a host virtual address and size, find the related physical pages, 1046 * map a device virtual block to this pages and return the start address of 1047 * this block. 1048 */ 1049 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr) 1050 { 1051 struct hl_vm_phys_pg_pack *phys_pg_pack; 1052 enum hl_va_range_type va_range_type = 0; 1053 struct hl_device *hdev = ctx->hdev; 1054 struct hl_userptr *userptr = NULL; 1055 u32 handle = 0, va_block_align; 1056 struct hl_vm_hash_node *hnode; 1057 struct hl_vm *vm = &hdev->vm; 1058 struct hl_va_range *va_range; 1059 bool is_userptr, do_prefetch; 1060 u64 ret_vaddr, hint_addr; 1061 enum vm_type *vm_type; 1062 int rc; 1063 1064 /* set map flags */ 1065 is_userptr = args->flags & HL_MEM_USERPTR; 1066 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH); 1067 1068 /* Assume failure */ 1069 *device_addr = 0; 1070 1071 if (is_userptr) { 1072 u64 addr = args->map_host.host_virt_addr, 1073 size = args->map_host.mem_size; 1074 u32 page_size = hdev->asic_prop.pmmu.page_size, 1075 huge_page_size = hdev->asic_prop.pmmu_huge.page_size; 1076 1077 rc = dma_map_host_va(hdev, addr, size, &userptr); 1078 if (rc) 1079 return rc; 1080 1081 rc = init_phys_pg_pack_from_userptr(ctx, userptr, 1082 &phys_pg_pack, false); 1083 if (rc) { 1084 dev_err(hdev->dev, 1085 "unable to init page pack for vaddr 0x%llx\n", 1086 addr); 1087 goto init_page_pack_err; 1088 } 1089 1090 vm_type = (enum vm_type *) userptr; 1091 hint_addr = args->map_host.hint_addr; 1092 handle = phys_pg_pack->handle; 1093 1094 /* get required alignment */ 1095 if (phys_pg_pack->page_size == page_size) { 1096 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1097 va_range_type = HL_VA_RANGE_TYPE_HOST; 1098 /* 1099 * huge page alignment may be needed in case of regular 1100 * page mapping, depending on the host VA alignment 1101 */ 1102 if (addr & (huge_page_size - 1)) 1103 va_block_align = page_size; 1104 else 1105 va_block_align = huge_page_size; 1106 } else { 1107 /* 1108 * huge page alignment is needed in case of huge page 1109 * mapping 1110 */ 1111 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1112 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE; 1113 va_block_align = huge_page_size; 1114 } 1115 } else { 1116 handle = lower_32_bits(args->map_device.handle); 1117 1118 spin_lock(&vm->idr_lock); 1119 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); 1120 if (!phys_pg_pack) { 1121 spin_unlock(&vm->idr_lock); 1122 dev_err(hdev->dev, 1123 "no match for handle %u\n", handle); 1124 return -EINVAL; 1125 } 1126 1127 /* increment now to avoid freeing device memory while mapping */ 1128 atomic_inc(&phys_pg_pack->mapping_cnt); 1129 1130 spin_unlock(&vm->idr_lock); 1131 1132 vm_type = (enum vm_type *) phys_pg_pack; 1133 1134 hint_addr = args->map_device.hint_addr; 1135 1136 /* DRAM VA alignment is the same as the MMU page size */ 1137 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1138 va_range_type = HL_VA_RANGE_TYPE_DRAM; 1139 va_block_align = hdev->asic_prop.dmmu.page_size; 1140 } 1141 1142 /* 1143 * relevant for mapping device physical memory only, as host memory is 1144 * implicitly shared 1145 */ 1146 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && 1147 phys_pg_pack->asid != ctx->asid) { 1148 dev_err(hdev->dev, 1149 "Failed to map memory, handle %u is not shared\n", 1150 handle); 1151 rc = -EPERM; 1152 goto shared_err; 1153 } 1154 1155 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); 1156 if (!hnode) { 1157 rc = -ENOMEM; 1158 goto hnode_err; 1159 } 1160 1161 if (hint_addr && phys_pg_pack->offset) { 1162 if (args->flags & HL_MEM_FORCE_HINT) { 1163 /* Fail if hint must be respected but it can't be */ 1164 dev_err(hdev->dev, 1165 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n", 1166 hint_addr, phys_pg_pack->offset); 1167 rc = -EINVAL; 1168 goto va_block_err; 1169 } 1170 dev_dbg(hdev->dev, 1171 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n", 1172 hint_addr, phys_pg_pack->offset); 1173 } 1174 1175 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, 1176 hint_addr, va_block_align, 1177 va_range_type, args->flags); 1178 if (!ret_vaddr) { 1179 dev_err(hdev->dev, "no available va block for handle %u\n", 1180 handle); 1181 rc = -ENOMEM; 1182 goto va_block_err; 1183 } 1184 1185 mutex_lock(&hdev->mmu_lock); 1186 1187 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); 1188 if (rc) { 1189 dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n", 1190 rc, handle); 1191 mutex_unlock(&hdev->mmu_lock); 1192 goto map_err; 1193 } 1194 1195 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV, 1196 ctx->asid, ret_vaddr, phys_pg_pack->total_size); 1197 mutex_unlock(&hdev->mmu_lock); 1198 if (rc) 1199 goto map_err; 1200 1201 /* 1202 * prefetch is done upon user's request. it is performed in WQ as and so can 1203 * be outside the MMU lock. the operation itself is already protected by the mmu lock 1204 */ 1205 if (do_prefetch) { 1206 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr, 1207 phys_pg_pack->total_size); 1208 if (rc) 1209 goto map_err; 1210 } 1211 1212 ret_vaddr += phys_pg_pack->offset; 1213 1214 hnode->ptr = vm_type; 1215 hnode->vaddr = ret_vaddr; 1216 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle; 1217 1218 mutex_lock(&ctx->mem_hash_lock); 1219 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); 1220 mutex_unlock(&ctx->mem_hash_lock); 1221 1222 *device_addr = ret_vaddr; 1223 1224 if (is_userptr) 1225 free_phys_pg_pack(hdev, phys_pg_pack); 1226 1227 return rc; 1228 1229 map_err: 1230 if (add_va_block(hdev, va_range, ret_vaddr, 1231 ret_vaddr + phys_pg_pack->total_size - 1)) 1232 dev_warn(hdev->dev, 1233 "release va block failed for handle 0x%x, vaddr: 0x%llx\n", 1234 handle, ret_vaddr); 1235 1236 va_block_err: 1237 kfree(hnode); 1238 hnode_err: 1239 shared_err: 1240 atomic_dec(&phys_pg_pack->mapping_cnt); 1241 if (is_userptr) 1242 free_phys_pg_pack(hdev, phys_pg_pack); 1243 init_page_pack_err: 1244 if (is_userptr) 1245 dma_unmap_host_va(hdev, userptr); 1246 1247 return rc; 1248 } 1249 1250 /* Should be called while the context's mem_hash_lock is taken */ 1251 static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr) 1252 { 1253 struct hl_vm_hash_node *hnode; 1254 1255 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr) 1256 if (vaddr == hnode->vaddr) 1257 return hnode; 1258 1259 return NULL; 1260 } 1261 1262 /** 1263 * unmap_device_va() - unmap the given device virtual address. 1264 * @ctx: pointer to the context structure. 1265 * @args: host parameters with device virtual address to unmap. 1266 * @ctx_free: true if in context free flow, false otherwise. 1267 * 1268 * This function does the following: 1269 * - unmap the physical pages related to the given virtual address. 1270 * - return the device virtual block to the virtual block list. 1271 */ 1272 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, 1273 bool ctx_free) 1274 { 1275 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 1276 u64 vaddr = args->unmap.device_virt_addr; 1277 struct asic_fixed_properties *prop; 1278 struct hl_device *hdev = ctx->hdev; 1279 struct hl_userptr *userptr = NULL; 1280 struct hl_vm_hash_node *hnode; 1281 struct hl_va_range *va_range; 1282 enum vm_type *vm_type; 1283 bool is_userptr; 1284 int rc = 0; 1285 1286 prop = &hdev->asic_prop; 1287 1288 /* protect from double entrance */ 1289 mutex_lock(&ctx->mem_hash_lock); 1290 hnode = get_vm_hash_node_locked(ctx, vaddr); 1291 if (!hnode) { 1292 mutex_unlock(&ctx->mem_hash_lock); 1293 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr); 1294 return -EINVAL; 1295 } 1296 1297 if (hnode->export_cnt) { 1298 mutex_unlock(&ctx->mem_hash_lock); 1299 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr); 1300 return -EINVAL; 1301 } 1302 1303 hash_del(&hnode->node); 1304 mutex_unlock(&ctx->mem_hash_lock); 1305 1306 vm_type = hnode->ptr; 1307 1308 if (*vm_type == VM_TYPE_USERPTR) { 1309 is_userptr = true; 1310 userptr = hnode->ptr; 1311 1312 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack, 1313 false); 1314 if (rc) { 1315 dev_err(hdev->dev, 1316 "unable to init page pack for vaddr 0x%llx\n", 1317 vaddr); 1318 goto vm_type_err; 1319 } 1320 1321 if (phys_pg_pack->page_size == 1322 hdev->asic_prop.pmmu.page_size) 1323 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 1324 else 1325 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]; 1326 } else if (*vm_type == VM_TYPE_PHYS_PACK) { 1327 is_userptr = false; 1328 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM]; 1329 phys_pg_pack = hnode->ptr; 1330 } else { 1331 dev_warn(hdev->dev, 1332 "unmap failed, unknown vm desc for vaddr 0x%llx\n", 1333 vaddr); 1334 rc = -EFAULT; 1335 goto vm_type_err; 1336 } 1337 1338 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { 1339 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); 1340 rc = -EINVAL; 1341 goto mapping_cnt_err; 1342 } 1343 1344 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size)) 1345 vaddr = prop->dram_base_address + 1346 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address, 1347 phys_pg_pack->page_size) * 1348 phys_pg_pack->page_size; 1349 else 1350 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); 1351 1352 mutex_lock(&hdev->mmu_lock); 1353 1354 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); 1355 1356 /* 1357 * During context free this function is called in a loop to clean all 1358 * the context mappings. Hence the cache invalidation can be called once 1359 * at the loop end rather than for each iteration 1360 */ 1361 if (!ctx_free) 1362 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr, 1363 phys_pg_pack->total_size); 1364 1365 mutex_unlock(&hdev->mmu_lock); 1366 1367 /* 1368 * If the context is closing we don't need to check for the MMU cache 1369 * invalidation return code and update the VA free list as in this flow 1370 * we invalidate the MMU cache outside of this unmap function and the VA 1371 * free list will be freed anyway. 1372 */ 1373 if (!ctx_free) { 1374 int tmp_rc; 1375 1376 tmp_rc = add_va_block(hdev, va_range, vaddr, 1377 vaddr + phys_pg_pack->total_size - 1); 1378 if (tmp_rc) { 1379 dev_warn(hdev->dev, 1380 "add va block failed for vaddr: 0x%llx\n", 1381 vaddr); 1382 if (!rc) 1383 rc = tmp_rc; 1384 } 1385 } 1386 1387 atomic_dec(&phys_pg_pack->mapping_cnt); 1388 kfree(hnode); 1389 1390 if (is_userptr) { 1391 free_phys_pg_pack(hdev, phys_pg_pack); 1392 dma_unmap_host_va(hdev, userptr); 1393 } 1394 1395 return rc; 1396 1397 mapping_cnt_err: 1398 if (is_userptr) 1399 free_phys_pg_pack(hdev, phys_pg_pack); 1400 vm_type_err: 1401 mutex_lock(&ctx->mem_hash_lock); 1402 hash_add(ctx->mem_hash, &hnode->node, vaddr); 1403 mutex_unlock(&ctx->mem_hash_lock); 1404 1405 return rc; 1406 } 1407 1408 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size) 1409 { 1410 u32 block_id; 1411 int rc; 1412 1413 *handle = 0; 1414 if (size) 1415 *size = 0; 1416 1417 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id); 1418 if (rc) 1419 return rc; 1420 1421 *handle = block_id | HL_MMAP_TYPE_BLOCK; 1422 *handle <<= PAGE_SHIFT; 1423 1424 return 0; 1425 } 1426 1427 static void hw_block_vm_close(struct vm_area_struct *vma) 1428 { 1429 struct hl_vm_hw_block_list_node *lnode = 1430 (struct hl_vm_hw_block_list_node *) vma->vm_private_data; 1431 struct hl_ctx *ctx = lnode->ctx; 1432 long new_mmap_size; 1433 1434 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start); 1435 if (new_mmap_size > 0) { 1436 lnode->mapped_size = new_mmap_size; 1437 return; 1438 } 1439 1440 mutex_lock(&ctx->hw_block_list_lock); 1441 list_del(&lnode->node); 1442 mutex_unlock(&ctx->hw_block_list_lock); 1443 hl_ctx_put(ctx); 1444 kfree(lnode); 1445 vma->vm_private_data = NULL; 1446 } 1447 1448 static const struct vm_operations_struct hw_block_vm_ops = { 1449 .close = hw_block_vm_close 1450 }; 1451 1452 /** 1453 * hl_hw_block_mmap() - mmap a hw block to user. 1454 * @hpriv: pointer to the private data of the fd 1455 * @vma: pointer to vm_area_struct of the process 1456 * 1457 * Driver increments context reference for every HW block mapped in order 1458 * to prevent user from closing FD without unmapping first 1459 */ 1460 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) 1461 { 1462 struct hl_vm_hw_block_list_node *lnode; 1463 struct hl_device *hdev = hpriv->hdev; 1464 struct hl_ctx *ctx = hpriv->ctx; 1465 u32 block_id, block_size; 1466 int rc; 1467 1468 /* We use the page offset to hold the block id and thus we need to clear 1469 * it before doing the mmap itself 1470 */ 1471 block_id = vma->vm_pgoff; 1472 vma->vm_pgoff = 0; 1473 1474 /* Driver only allows mapping of a complete HW block */ 1475 block_size = vma->vm_end - vma->vm_start; 1476 1477 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) { 1478 dev_err(hdev->dev, 1479 "user pointer is invalid - 0x%lx\n", 1480 vma->vm_start); 1481 1482 return -EINVAL; 1483 } 1484 1485 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL); 1486 if (!lnode) 1487 return -ENOMEM; 1488 1489 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size); 1490 if (rc) { 1491 kfree(lnode); 1492 return rc; 1493 } 1494 1495 hl_ctx_get(ctx); 1496 1497 lnode->ctx = ctx; 1498 lnode->vaddr = vma->vm_start; 1499 lnode->block_size = block_size; 1500 lnode->mapped_size = lnode->block_size; 1501 lnode->id = block_id; 1502 1503 vma->vm_private_data = lnode; 1504 vma->vm_ops = &hw_block_vm_ops; 1505 1506 mutex_lock(&ctx->hw_block_list_lock); 1507 list_add_tail(&lnode->node, &ctx->hw_block_mem_list); 1508 mutex_unlock(&ctx->hw_block_list_lock); 1509 1510 vma->vm_pgoff = block_id; 1511 1512 return 0; 1513 } 1514 1515 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size, 1516 struct device *dev, enum dma_data_direction dir) 1517 { 1518 dma_addr_t addr; 1519 int rc; 1520 1521 addr = dma_map_resource(dev, bar_address, chunk_size, dir, 1522 DMA_ATTR_SKIP_CPU_SYNC); 1523 rc = dma_mapping_error(dev, addr); 1524 if (rc) 1525 return rc; 1526 1527 sg_set_page(sg, NULL, chunk_size, 0); 1528 sg_dma_address(sg) = addr; 1529 sg_dma_len(sg) = chunk_size; 1530 1531 return 0; 1532 } 1533 1534 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages, 1535 u64 page_size, u64 exported_size, u64 offset, 1536 struct device *dev, enum dma_data_direction dir) 1537 { 1538 u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page, 1539 left_size_in_dma_seg, device_address, bar_address, start_page; 1540 struct asic_fixed_properties *prop = &hdev->asic_prop; 1541 struct scatterlist *sg; 1542 unsigned int nents, i; 1543 struct sg_table *sgt; 1544 bool next_sg_entry; 1545 int rc; 1546 1547 /* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */ 1548 dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE); 1549 if (dma_max_seg_size < PAGE_SIZE) { 1550 dev_err_ratelimited(hdev->dev, 1551 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n", 1552 dma_max_seg_size); 1553 return ERR_PTR(-EINVAL); 1554 } 1555 1556 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL); 1557 if (!sgt) 1558 return ERR_PTR(-ENOMEM); 1559 1560 /* Use the offset to move to the actual first page that is exported */ 1561 for (start_page = 0 ; start_page < npages ; ++start_page) { 1562 if (offset < page_size) 1563 break; 1564 1565 /* The offset value was validated so there can't be an underflow */ 1566 offset -= page_size; 1567 } 1568 1569 /* Calculate the required number of entries for the SG table */ 1570 curr_page = start_page; 1571 nents = 1; 1572 left_size_to_export = exported_size; 1573 left_size_in_page = page_size - offset; 1574 left_size_in_dma_seg = dma_max_seg_size; 1575 next_sg_entry = false; 1576 1577 while (true) { 1578 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg); 1579 left_size_to_export -= size; 1580 left_size_in_page -= size; 1581 left_size_in_dma_seg -= size; 1582 1583 if (!left_size_to_export) 1584 break; 1585 1586 if (!left_size_in_page) { 1587 /* left_size_to_export is not zero so there must be another page */ 1588 if (pages[curr_page] + page_size != pages[curr_page + 1]) 1589 next_sg_entry = true; 1590 1591 ++curr_page; 1592 left_size_in_page = page_size; 1593 } 1594 1595 if (!left_size_in_dma_seg) { 1596 next_sg_entry = true; 1597 left_size_in_dma_seg = dma_max_seg_size; 1598 } 1599 1600 if (next_sg_entry) { 1601 ++nents; 1602 next_sg_entry = false; 1603 } 1604 } 1605 1606 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO); 1607 if (rc) 1608 goto err_free_sgt; 1609 1610 /* Prepare the SG table entries */ 1611 curr_page = start_page; 1612 device_address = pages[curr_page] + offset; 1613 left_size_to_export = exported_size; 1614 left_size_in_page = page_size - offset; 1615 left_size_in_dma_seg = dma_max_seg_size; 1616 next_sg_entry = false; 1617 1618 for_each_sgtable_dma_sg(sgt, sg, i) { 1619 bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address); 1620 chunk_size = 0; 1621 1622 for ( ; curr_page < npages ; ++curr_page) { 1623 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg); 1624 chunk_size += size; 1625 left_size_to_export -= size; 1626 left_size_in_page -= size; 1627 left_size_in_dma_seg -= size; 1628 1629 if (!left_size_to_export) 1630 break; 1631 1632 if (!left_size_in_page) { 1633 /* left_size_to_export is not zero so there must be another page */ 1634 if (pages[curr_page] + page_size != pages[curr_page + 1]) { 1635 device_address = pages[curr_page + 1]; 1636 next_sg_entry = true; 1637 } 1638 1639 left_size_in_page = page_size; 1640 } 1641 1642 if (!left_size_in_dma_seg) { 1643 /* 1644 * Skip setting a new device address if already moving to a page 1645 * which is not contiguous with the current page. 1646 */ 1647 if (!next_sg_entry) { 1648 device_address += chunk_size; 1649 next_sg_entry = true; 1650 } 1651 1652 left_size_in_dma_seg = dma_max_seg_size; 1653 } 1654 1655 if (next_sg_entry) { 1656 next_sg_entry = false; 1657 break; 1658 } 1659 } 1660 1661 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir); 1662 if (rc) 1663 goto err_unmap; 1664 } 1665 1666 /* There should be nothing left to export exactly after looping over all SG elements */ 1667 if (left_size_to_export) { 1668 dev_err(hdev->dev, 1669 "left size to export %#llx after initializing %u SG elements\n", 1670 left_size_to_export, sgt->nents); 1671 rc = -ENOMEM; 1672 goto err_unmap; 1673 } 1674 1675 /* 1676 * Because we are not going to include a CPU list, we want to have some chance that other 1677 * users will detect this when going over SG table, by setting the orig_nents to 0 and using 1678 * only nents (length of DMA list). 1679 */ 1680 sgt->orig_nents = 0; 1681 1682 dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n", 1683 nents, dev_name(dev)); 1684 for_each_sgtable_dma_sg(sgt, sg, i) 1685 dev_dbg(hdev->dev, 1686 "SG entry %d: address %#llx, length %#x\n", 1687 i, sg_dma_address(sg), sg_dma_len(sg)); 1688 1689 return sgt; 1690 1691 err_unmap: 1692 for_each_sgtable_dma_sg(sgt, sg, i) { 1693 if (!sg_dma_len(sg)) 1694 continue; 1695 1696 dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir, 1697 DMA_ATTR_SKIP_CPU_SYNC); 1698 } 1699 1700 sg_free_table(sgt); 1701 1702 err_free_sgt: 1703 kfree(sgt); 1704 return ERR_PTR(rc); 1705 } 1706 1707 static int hl_dmabuf_attach(struct dma_buf *dmabuf, 1708 struct dma_buf_attachment *attachment) 1709 { 1710 struct hl_dmabuf_priv *hl_dmabuf; 1711 struct hl_device *hdev; 1712 int rc; 1713 1714 hl_dmabuf = dmabuf->priv; 1715 hdev = hl_dmabuf->ctx->hdev; 1716 1717 rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true); 1718 1719 if (rc < 0) 1720 attachment->peer2peer = false; 1721 return 0; 1722 } 1723 1724 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment, 1725 enum dma_data_direction dir) 1726 { 1727 u64 *pages, npages, page_size, exported_size, offset; 1728 struct dma_buf *dma_buf = attachment->dmabuf; 1729 struct hl_vm_phys_pg_pack *phys_pg_pack; 1730 struct hl_dmabuf_priv *hl_dmabuf; 1731 struct hl_device *hdev; 1732 struct sg_table *sgt; 1733 1734 hl_dmabuf = dma_buf->priv; 1735 hdev = hl_dmabuf->ctx->hdev; 1736 1737 if (!attachment->peer2peer) { 1738 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n"); 1739 return ERR_PTR(-EPERM); 1740 } 1741 1742 exported_size = hl_dmabuf->dmabuf->size; 1743 offset = hl_dmabuf->offset; 1744 phys_pg_pack = hl_dmabuf->phys_pg_pack; 1745 1746 if (phys_pg_pack) { 1747 pages = phys_pg_pack->pages; 1748 npages = phys_pg_pack->npages; 1749 page_size = phys_pg_pack->page_size; 1750 } else { 1751 pages = &hl_dmabuf->device_phys_addr; 1752 npages = 1; 1753 page_size = hl_dmabuf->dmabuf->size; 1754 } 1755 1756 sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset, 1757 attachment->dev, dir); 1758 if (IS_ERR(sgt)) 1759 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt)); 1760 1761 return sgt; 1762 } 1763 1764 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment, 1765 struct sg_table *sgt, 1766 enum dma_data_direction dir) 1767 { 1768 struct scatterlist *sg; 1769 int i; 1770 1771 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives 1772 * only in the 'device' domain (after all, it maps a PCI bar address which points to the 1773 * device memory). 1774 * 1775 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform 1776 * a sync of the memory to the CPU's cache, as it never resided inside that cache. 1777 */ 1778 for_each_sgtable_dma_sg(sgt, sg, i) 1779 dma_unmap_resource(attachment->dev, sg_dma_address(sg), 1780 sg_dma_len(sg), dir, 1781 DMA_ATTR_SKIP_CPU_SYNC); 1782 1783 /* Need to restore orig_nents because sg_free_table use that field */ 1784 sgt->orig_nents = sgt->nents; 1785 sg_free_table(sgt); 1786 kfree(sgt); 1787 } 1788 1789 static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr) 1790 { 1791 struct hl_device *hdev = ctx->hdev; 1792 struct hl_vm_hash_node *hnode; 1793 1794 /* get the memory handle */ 1795 mutex_lock(&ctx->mem_hash_lock); 1796 hnode = get_vm_hash_node_locked(ctx, addr); 1797 if (!hnode) { 1798 mutex_unlock(&ctx->mem_hash_lock); 1799 dev_dbg(hdev->dev, "map address %#llx not found\n", addr); 1800 return ERR_PTR(-EINVAL); 1801 } 1802 1803 if (upper_32_bits(hnode->handle)) { 1804 mutex_unlock(&ctx->mem_hash_lock); 1805 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n", 1806 hnode->handle, addr); 1807 return ERR_PTR(-EINVAL); 1808 } 1809 1810 /* 1811 * node found, increase export count so this memory cannot be unmapped 1812 * and the hash node cannot be deleted. 1813 */ 1814 hnode->export_cnt++; 1815 mutex_unlock(&ctx->mem_hash_lock); 1816 1817 return hnode; 1818 } 1819 1820 static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode) 1821 { 1822 mutex_lock(&ctx->mem_hash_lock); 1823 hnode->export_cnt--; 1824 mutex_unlock(&ctx->mem_hash_lock); 1825 } 1826 1827 static void hl_release_dmabuf(struct dma_buf *dmabuf) 1828 { 1829 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv; 1830 struct hl_ctx *ctx; 1831 1832 if (!hl_dmabuf) 1833 return; 1834 1835 ctx = hl_dmabuf->ctx; 1836 1837 if (hl_dmabuf->memhash_hnode) 1838 memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode); 1839 1840 atomic_dec(&ctx->hdev->dmabuf_export_cnt); 1841 hl_ctx_put(ctx); 1842 1843 /* Paired with get_file() in export_dmabuf() */ 1844 fput(ctx->hpriv->file_priv->filp); 1845 1846 kfree(hl_dmabuf); 1847 } 1848 1849 static const struct dma_buf_ops habanalabs_dmabuf_ops = { 1850 .attach = hl_dmabuf_attach, 1851 .map_dma_buf = hl_map_dmabuf, 1852 .unmap_dma_buf = hl_unmap_dmabuf, 1853 .release = hl_release_dmabuf, 1854 }; 1855 1856 static int export_dmabuf(struct hl_ctx *ctx, 1857 struct hl_dmabuf_priv *hl_dmabuf, 1858 u64 total_size, int flags, int *dmabuf_fd) 1859 { 1860 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 1861 struct hl_device *hdev = ctx->hdev; 1862 int rc, fd; 1863 1864 exp_info.ops = &habanalabs_dmabuf_ops; 1865 exp_info.size = total_size; 1866 exp_info.flags = flags; 1867 exp_info.priv = hl_dmabuf; 1868 1869 hl_dmabuf->dmabuf = dma_buf_export(&exp_info); 1870 if (IS_ERR(hl_dmabuf->dmabuf)) { 1871 dev_err(hdev->dev, "failed to export dma-buf\n"); 1872 return PTR_ERR(hl_dmabuf->dmabuf); 1873 } 1874 1875 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags); 1876 if (fd < 0) { 1877 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd); 1878 rc = fd; 1879 goto err_dma_buf_put; 1880 } 1881 1882 hl_dmabuf->ctx = ctx; 1883 hl_ctx_get(hl_dmabuf->ctx); 1884 atomic_inc(&ctx->hdev->dmabuf_export_cnt); 1885 1886 /* Get compute device file to enforce release order, such that all exported dma-buf will be 1887 * released first and only then the compute device. 1888 * Paired with fput() in hl_release_dmabuf(). 1889 */ 1890 get_file(ctx->hpriv->file_priv->filp); 1891 1892 *dmabuf_fd = fd; 1893 1894 return 0; 1895 1896 err_dma_buf_put: 1897 hl_dmabuf->dmabuf->priv = NULL; 1898 dma_buf_put(hl_dmabuf->dmabuf); 1899 return rc; 1900 } 1901 1902 static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset) 1903 { 1904 if (!PAGE_ALIGNED(addr)) { 1905 dev_dbg(hdev->dev, 1906 "exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n", 1907 addr, PAGE_SIZE); 1908 return -EINVAL; 1909 } 1910 1911 if (!size || !PAGE_ALIGNED(size)) { 1912 dev_dbg(hdev->dev, 1913 "exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n", 1914 size, PAGE_SIZE); 1915 return -EINVAL; 1916 } 1917 1918 if (!PAGE_ALIGNED(offset)) { 1919 dev_dbg(hdev->dev, 1920 "exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n", 1921 offset, PAGE_SIZE); 1922 return -EINVAL; 1923 } 1924 1925 return 0; 1926 } 1927 1928 static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size) 1929 { 1930 struct asic_fixed_properties *prop = &hdev->asic_prop; 1931 u64 bar_address; 1932 int rc; 1933 1934 rc = validate_export_params_common(hdev, device_addr, size, 0); 1935 if (rc) 1936 return rc; 1937 1938 if (device_addr < prop->dram_user_base_address || 1939 (device_addr + size) > prop->dram_end_address || 1940 (device_addr + size) < device_addr) { 1941 dev_dbg(hdev->dev, 1942 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n", 1943 device_addr, size); 1944 return -EINVAL; 1945 } 1946 1947 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address); 1948 1949 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1950 (bar_address + size) < bar_address) { 1951 dev_dbg(hdev->dev, 1952 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n", 1953 device_addr, size); 1954 return -EINVAL; 1955 } 1956 1957 return 0; 1958 } 1959 1960 static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset, 1961 struct hl_vm_phys_pg_pack *phys_pg_pack) 1962 { 1963 struct asic_fixed_properties *prop = &hdev->asic_prop; 1964 u64 bar_address; 1965 int i, rc; 1966 1967 rc = validate_export_params_common(hdev, device_addr, size, offset); 1968 if (rc) 1969 return rc; 1970 1971 if ((offset + size) > phys_pg_pack->total_size) { 1972 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n", 1973 offset, size, phys_pg_pack->total_size); 1974 return -EINVAL; 1975 } 1976 1977 for (i = 0 ; i < phys_pg_pack->npages ; i++) { 1978 bar_address = hdev->dram_pci_bar_start + 1979 (phys_pg_pack->pages[i] - prop->dram_base_address); 1980 1981 if ((bar_address + phys_pg_pack->page_size) > 1982 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) || 1983 (bar_address + phys_pg_pack->page_size) < bar_address) { 1984 dev_dbg(hdev->dev, 1985 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n", 1986 phys_pg_pack->pages[i], phys_pg_pack->page_size); 1987 return -EINVAL; 1988 } 1989 } 1990 1991 return 0; 1992 } 1993 1994 static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev, 1995 struct hl_vm_hash_node *hnode) 1996 { 1997 struct hl_vm_phys_pg_pack *phys_pg_pack; 1998 struct hl_vm *vm = &hdev->vm; 1999 2000 spin_lock(&vm->idr_lock); 2001 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle); 2002 if (!phys_pg_pack) { 2003 spin_unlock(&vm->idr_lock); 2004 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle); 2005 return ERR_PTR(-EINVAL); 2006 } 2007 2008 spin_unlock(&vm->idr_lock); 2009 2010 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) { 2011 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle); 2012 return ERR_PTR(-EINVAL); 2013 } 2014 2015 return phys_pg_pack; 2016 } 2017 2018 /** 2019 * export_dmabuf_from_addr() - export a dma-buf object for the given memory 2020 * address and size. 2021 * @ctx: pointer to the context structure. 2022 * @addr: device address. 2023 * @size: size of device memory to export. 2024 * @offset: the offset into the buffer from which to start exporting 2025 * @flags: DMA-BUF file/FD flags. 2026 * @dmabuf_fd: pointer to result FD that represents the dma-buf object. 2027 * 2028 * Create and export a dma-buf object for an existing memory allocation inside 2029 * the device memory, and return a FD which is associated with the dma-buf 2030 * object. 2031 * 2032 * Return: 0 on success, non-zero for failure. 2033 */ 2034 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset, 2035 int flags, int *dmabuf_fd) 2036 { 2037 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 2038 struct hl_vm_hash_node *hnode = NULL; 2039 struct asic_fixed_properties *prop; 2040 struct hl_dmabuf_priv *hl_dmabuf; 2041 struct hl_device *hdev; 2042 int rc; 2043 2044 hdev = ctx->hdev; 2045 prop = &hdev->asic_prop; 2046 2047 /* offset must be 0 in devices without virtual memory support */ 2048 if (!prop->dram_supports_virtual_memory && offset) { 2049 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n"); 2050 return -EINVAL; 2051 } 2052 2053 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL); 2054 if (!hl_dmabuf) 2055 return -ENOMEM; 2056 2057 if (prop->dram_supports_virtual_memory) { 2058 hnode = memhash_node_export_get(ctx, addr); 2059 if (IS_ERR(hnode)) { 2060 rc = PTR_ERR(hnode); 2061 goto err_free_dmabuf_wrapper; 2062 } 2063 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode); 2064 if (IS_ERR(phys_pg_pack)) { 2065 rc = PTR_ERR(phys_pg_pack); 2066 goto dec_memhash_export_cnt; 2067 } 2068 rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack); 2069 if (rc) 2070 goto dec_memhash_export_cnt; 2071 2072 hl_dmabuf->phys_pg_pack = phys_pg_pack; 2073 hl_dmabuf->memhash_hnode = hnode; 2074 hl_dmabuf->offset = offset; 2075 } else { 2076 rc = validate_export_params_no_mmu(hdev, addr, size); 2077 if (rc) 2078 goto err_free_dmabuf_wrapper; 2079 2080 hl_dmabuf->device_phys_addr = addr; 2081 } 2082 2083 rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd); 2084 if (rc) 2085 goto dec_memhash_export_cnt; 2086 2087 return 0; 2088 2089 dec_memhash_export_cnt: 2090 if (prop->dram_supports_virtual_memory) 2091 memhash_node_export_put(ctx, hnode); 2092 err_free_dmabuf_wrapper: 2093 kfree(hl_dmabuf); 2094 return rc; 2095 } 2096 2097 static void ts_buff_release(struct hl_mmap_mem_buf *buf) 2098 { 2099 struct hl_ts_buff *ts_buff = buf->private; 2100 2101 vfree(ts_buff->kernel_buff_address); 2102 vfree(ts_buff->user_buff_address); 2103 kfree(ts_buff); 2104 } 2105 2106 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) 2107 { 2108 struct hl_ts_buff *ts_buff = buf->private; 2109 2110 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE); 2111 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0); 2112 } 2113 2114 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) 2115 { 2116 struct hl_ts_buff *ts_buff = NULL; 2117 u32 num_elements; 2118 size_t size; 2119 void *p; 2120 2121 num_elements = *(u32 *)args; 2122 2123 ts_buff = kzalloc(sizeof(*ts_buff), gfp); 2124 if (!ts_buff) 2125 return -ENOMEM; 2126 2127 /* Allocate the user buffer */ 2128 size = num_elements * sizeof(u64); 2129 p = vmalloc_user(size); 2130 if (!p) 2131 goto free_mem; 2132 2133 ts_buff->user_buff_address = p; 2134 buf->mappable_size = size; 2135 2136 /* Allocate the internal kernel buffer */ 2137 size = num_elements * sizeof(struct hl_user_pending_interrupt); 2138 p = vzalloc(size); 2139 if (!p) 2140 goto free_user_buff; 2141 2142 ts_buff->kernel_buff_address = p; 2143 ts_buff->kernel_buff_size = size; 2144 2145 buf->private = ts_buff; 2146 2147 return 0; 2148 2149 free_user_buff: 2150 vfree(ts_buff->user_buff_address); 2151 free_mem: 2152 kfree(ts_buff); 2153 return -ENOMEM; 2154 } 2155 2156 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = { 2157 .topic = "TS", 2158 .mem_id = HL_MMAP_TYPE_TS_BUFF, 2159 .mmap = hl_ts_mmap, 2160 .alloc = hl_ts_alloc_buf, 2161 .release = ts_buff_release, 2162 }; 2163 2164 /** 2165 * allocate_timestamps_buffers() - allocate timestamps buffers 2166 * This function will allocate ts buffer that will later on be mapped to the user 2167 * in order to be able to read the timestamp. 2168 * in addition it'll allocate an extra buffer for registration management. 2169 * since we cannot fail during registration for out-of-memory situation, so 2170 * we'll prepare a pool which will be used as user interrupt nodes and instead 2171 * of dynamically allocating nodes while registration we'll pick the node from 2172 * this pool. in addition it'll add node to the mapping hash which will be used 2173 * to map user ts buffer to the internal kernel ts buffer. 2174 * @hpriv: pointer to the private data of the fd 2175 * @args: ioctl input 2176 * @handle: user timestamp buffer handle as an output 2177 */ 2178 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle) 2179 { 2180 struct hl_mem_mgr *mmg = &hpriv->mem_mgr; 2181 struct hl_mmap_mem_buf *buf; 2182 2183 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) { 2184 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n", 2185 args->num_of_elements, TS_MAX_ELEMENTS_NUM); 2186 return -EINVAL; 2187 } 2188 2189 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements); 2190 if (!buf) 2191 return -ENOMEM; 2192 2193 *handle = buf->handle; 2194 2195 return 0; 2196 } 2197 2198 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) 2199 { 2200 struct hl_fpriv *hpriv = file_priv->driver_priv; 2201 enum hl_device_status status; 2202 union hl_mem_args *args = data; 2203 struct hl_device *hdev = hpriv->hdev; 2204 struct hl_ctx *ctx = hpriv->ctx; 2205 u64 block_handle, device_addr = 0; 2206 u32 handle = 0, block_size; 2207 int rc, dmabuf_fd = -EBADF; 2208 2209 if (!hl_device_operational(hdev, &status)) { 2210 dev_dbg_ratelimited(hdev->dev, 2211 "Device is %s. Can't execute MEMORY IOCTL\n", 2212 hdev->status[status]); 2213 return -EBUSY; 2214 } 2215 2216 switch (args->in.op) { 2217 case HL_MEM_OP_ALLOC: 2218 if (args->in.alloc.mem_size == 0) { 2219 dev_err(hdev->dev, 2220 "alloc size must be larger than 0\n"); 2221 rc = -EINVAL; 2222 goto out; 2223 } 2224 2225 /* If DRAM does not support virtual memory the driver won't 2226 * handle the allocation/freeing of that memory. However, for 2227 * system administration/monitoring purposes, the driver will 2228 * keep track of the amount of DRAM memory that is allocated 2229 * and freed by the user. Because this code totally relies on 2230 * the user's input, the driver can't ensure the validity 2231 * of this accounting. 2232 */ 2233 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2234 atomic64_add(args->in.alloc.mem_size, 2235 &ctx->dram_phys_mem); 2236 atomic64_add(args->in.alloc.mem_size, 2237 &hdev->dram_used_mem); 2238 2239 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2240 rc = 0; 2241 2242 memset(args, 0, sizeof(*args)); 2243 args->out.handle = 0; 2244 goto out; 2245 } 2246 2247 rc = alloc_device_memory(ctx, &args->in, &handle); 2248 2249 memset(args, 0, sizeof(*args)); 2250 args->out.handle = (__u64) handle; 2251 break; 2252 2253 case HL_MEM_OP_FREE: 2254 /* If DRAM does not support virtual memory the driver won't 2255 * handle the allocation/freeing of that memory. However, for 2256 * system administration/monitoring purposes, the driver will 2257 * keep track of the amount of DRAM memory that is allocated 2258 * and freed by the user. Because this code totally relies on 2259 * the user's input, the driver can't ensure the validity 2260 * of this accounting. 2261 */ 2262 if (!hdev->asic_prop.dram_supports_virtual_memory) { 2263 atomic64_sub(args->in.alloc.mem_size, 2264 &ctx->dram_phys_mem); 2265 atomic64_sub(args->in.alloc.mem_size, 2266 &hdev->dram_used_mem); 2267 2268 dev_dbg(hdev->dev, "DRAM alloc is not supported\n"); 2269 rc = 0; 2270 2271 goto out; 2272 } 2273 2274 rc = free_device_memory(ctx, &args->in); 2275 break; 2276 2277 case HL_MEM_OP_MAP: 2278 rc = map_device_va(ctx, &args->in, &device_addr); 2279 2280 memset(args, 0, sizeof(*args)); 2281 args->out.device_virt_addr = device_addr; 2282 break; 2283 2284 case HL_MEM_OP_UNMAP: 2285 rc = unmap_device_va(ctx, &args->in, false); 2286 break; 2287 2288 case HL_MEM_OP_MAP_BLOCK: 2289 rc = map_block(hdev, args->in.map_block.block_addr, 2290 &block_handle, &block_size); 2291 args->out.block_handle = block_handle; 2292 args->out.block_size = block_size; 2293 break; 2294 2295 case HL_MEM_OP_EXPORT_DMABUF_FD: 2296 rc = export_dmabuf_from_addr(ctx, 2297 args->in.export_dmabuf_fd.addr, 2298 args->in.export_dmabuf_fd.mem_size, 2299 args->in.export_dmabuf_fd.offset, 2300 args->in.flags, 2301 &dmabuf_fd); 2302 memset(args, 0, sizeof(*args)); 2303 args->out.fd = dmabuf_fd; 2304 break; 2305 2306 case HL_MEM_OP_TS_ALLOC: 2307 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle); 2308 break; 2309 default: 2310 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); 2311 rc = -EINVAL; 2312 break; 2313 } 2314 2315 out: 2316 return rc; 2317 } 2318 2319 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, 2320 u32 npages, u64 start, u32 offset, 2321 struct hl_userptr *userptr) 2322 { 2323 int rc; 2324 2325 if (!access_ok((void __user *) (uintptr_t) addr, size)) { 2326 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); 2327 return -EFAULT; 2328 } 2329 2330 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 2331 if (!userptr->pages) 2332 return -ENOMEM; 2333 2334 rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM, 2335 userptr->pages); 2336 2337 if (rc != npages) { 2338 dev_err(hdev->dev, 2339 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n", 2340 rc, addr, size, npages); 2341 if (rc < 0) 2342 goto destroy_pages; 2343 npages = rc; 2344 rc = -EFAULT; 2345 goto put_pages; 2346 } 2347 userptr->npages = npages; 2348 2349 rc = sg_alloc_table_from_pages(userptr->sgt, 2350 userptr->pages, 2351 npages, offset, size, GFP_KERNEL); 2352 if (rc < 0) { 2353 dev_err(hdev->dev, "failed to create SG table from pages\n"); 2354 goto put_pages; 2355 } 2356 2357 return 0; 2358 2359 put_pages: 2360 unpin_user_pages(userptr->pages, npages); 2361 destroy_pages: 2362 kvfree(userptr->pages); 2363 return rc; 2364 } 2365 2366 /** 2367 * hl_pin_host_memory() - pins a chunk of host memory. 2368 * @hdev: pointer to the habanalabs device structure. 2369 * @addr: the host virtual address of the memory area. 2370 * @size: the size of the memory area. 2371 * @userptr: pointer to hl_userptr structure. 2372 * 2373 * This function does the following: 2374 * - Pins the physical pages. 2375 * - Create an SG list from those pages. 2376 */ 2377 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 2378 struct hl_userptr *userptr) 2379 { 2380 u64 start, end; 2381 u32 npages, offset; 2382 int rc; 2383 2384 if (!size) { 2385 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); 2386 return -EINVAL; 2387 } 2388 2389 /* 2390 * If the combination of the address and size requested for this memory 2391 * region causes an integer overflow, return error. 2392 */ 2393 if (((addr + size) < addr) || 2394 PAGE_ALIGN(addr + size) < (addr + size)) { 2395 dev_err(hdev->dev, 2396 "user pointer 0x%llx + %llu causes integer overflow\n", 2397 addr, size); 2398 return -EINVAL; 2399 } 2400 2401 userptr->pid = current->pid; 2402 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL); 2403 if (!userptr->sgt) 2404 return -ENOMEM; 2405 2406 start = addr & PAGE_MASK; 2407 offset = addr & ~PAGE_MASK; 2408 end = PAGE_ALIGN(addr + size); 2409 npages = (end - start) >> PAGE_SHIFT; 2410 2411 userptr->size = size; 2412 userptr->addr = addr; 2413 userptr->dma_mapped = false; 2414 INIT_LIST_HEAD(&userptr->job_node); 2415 2416 rc = get_user_memory(hdev, addr, size, npages, start, offset, 2417 userptr); 2418 if (rc) { 2419 dev_err(hdev->dev, 2420 "failed to get user memory for address 0x%llx\n", 2421 addr); 2422 goto free_sgt; 2423 } 2424 2425 hl_debugfs_add_userptr(hdev, userptr); 2426 2427 return 0; 2428 2429 free_sgt: 2430 kfree(userptr->sgt); 2431 return rc; 2432 } 2433 2434 /* 2435 * hl_unpin_host_memory - unpins a chunk of host memory. 2436 * @hdev: pointer to the habanalabs device structure 2437 * @userptr: pointer to hl_userptr structure 2438 * 2439 * This function does the following: 2440 * - Unpins the physical pages related to the host memory 2441 * - Free the SG list 2442 */ 2443 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) 2444 { 2445 hl_debugfs_remove_userptr(hdev, userptr); 2446 2447 if (userptr->dma_mapped) 2448 hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir); 2449 2450 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true); 2451 kvfree(userptr->pages); 2452 2453 list_del(&userptr->job_node); 2454 2455 sg_free_table(userptr->sgt); 2456 kfree(userptr->sgt); 2457 } 2458 2459 /** 2460 * hl_userptr_delete_list() - clear userptr list. 2461 * @hdev: pointer to the habanalabs device structure. 2462 * @userptr_list: pointer to the list to clear. 2463 * 2464 * This function does the following: 2465 * - Iterates over the list and unpins the host memory and frees the userptr 2466 * structure. 2467 */ 2468 void hl_userptr_delete_list(struct hl_device *hdev, 2469 struct list_head *userptr_list) 2470 { 2471 struct hl_userptr *userptr, *tmp; 2472 2473 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { 2474 hl_unpin_host_memory(hdev, userptr); 2475 kfree(userptr); 2476 } 2477 2478 INIT_LIST_HEAD(userptr_list); 2479 } 2480 2481 /** 2482 * hl_userptr_is_pinned() - returns whether the given userptr is pinned. 2483 * @hdev: pointer to the habanalabs device structure. 2484 * @addr: user address to check. 2485 * @size: user block size to check. 2486 * @userptr_list: pointer to the list to clear. 2487 * @userptr: pointer to userptr to check. 2488 * 2489 * This function does the following: 2490 * - Iterates over the list and checks if the given userptr is in it, means is 2491 * pinned. If so, returns true, otherwise returns false. 2492 */ 2493 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, 2494 u32 size, struct list_head *userptr_list, 2495 struct hl_userptr **userptr) 2496 { 2497 list_for_each_entry((*userptr), userptr_list, job_node) { 2498 if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) 2499 return true; 2500 } 2501 2502 return false; 2503 } 2504 2505 /** 2506 * va_range_init() - initialize virtual addresses range. 2507 * @hdev: pointer to the habanalabs device structure. 2508 * @va_ranges: pointer to va_ranges array. 2509 * @range_type: virtual address range type. 2510 * @start: range start address, inclusive. 2511 * @end: range end address, inclusive. 2512 * @page_size: page size for this va_range. 2513 * 2514 * This function does the following: 2515 * - Initializes the virtual addresses list of the given range with the given 2516 * addresses. 2517 */ 2518 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges, 2519 enum hl_va_range_type range_type, u64 start, 2520 u64 end, u32 page_size) 2521 { 2522 struct hl_va_range *va_range = va_ranges[range_type]; 2523 int rc; 2524 2525 INIT_LIST_HEAD(&va_range->list); 2526 2527 /* 2528 * PAGE_SIZE alignment 2529 * it is the caller's responsibility to align the addresses if the 2530 * page size is not a power of 2 2531 */ 2532 2533 if (is_power_of_2(page_size)) { 2534 start = round_up(start, page_size); 2535 2536 /* 2537 * The end of the range is inclusive, hence we need to align it 2538 * to the end of the last full page in the range. For example if 2539 * end = 0x3ff5 with page size 0x1000, we need to align it to 2540 * 0x2fff. The remaining 0xff5 bytes do not form a full page. 2541 */ 2542 end = round_down(end + 1, page_size) - 1; 2543 } 2544 2545 if (start >= end) { 2546 dev_err(hdev->dev, "too small vm range for va list\n"); 2547 return -EFAULT; 2548 } 2549 2550 rc = add_va_block(hdev, va_range, start, end); 2551 2552 if (rc) { 2553 dev_err(hdev->dev, "Failed to init host va list\n"); 2554 return rc; 2555 } 2556 2557 va_range->start_addr = start; 2558 va_range->end_addr = end; 2559 va_range->page_size = page_size; 2560 2561 return 0; 2562 } 2563 2564 /** 2565 * va_range_fini() - clear a virtual addresses range. 2566 * @hdev: pointer to the habanalabs structure. 2567 * @va_range: pointer to virtual addresses range. 2568 * 2569 * This function does the following: 2570 * - Frees the virtual addresses block list and its lock. 2571 */ 2572 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range) 2573 { 2574 mutex_lock(&va_range->lock); 2575 clear_va_list_locked(hdev, &va_range->list); 2576 mutex_unlock(&va_range->lock); 2577 2578 mutex_destroy(&va_range->lock); 2579 kfree(va_range); 2580 } 2581 2582 /** 2583 * vm_ctx_init_with_ranges() - initialize virtual memory for context. 2584 * @ctx: pointer to the habanalabs context structure. 2585 * @host_range_start: host virtual addresses range start. 2586 * @host_range_end: host virtual addresses range end. 2587 * @host_page_size: host page size. 2588 * @host_huge_range_start: host virtual addresses range start for memory 2589 * allocated with huge pages. 2590 * @host_huge_range_end: host virtual addresses range end for memory allocated 2591 * with huge pages. 2592 * @host_huge_page_size: host huge page size. 2593 * @dram_range_start: dram virtual addresses range start. 2594 * @dram_range_end: dram virtual addresses range end. 2595 * @dram_page_size: dram page size. 2596 * 2597 * This function initializes the following: 2598 * - MMU for context. 2599 * - Virtual address to area descriptor hashtable. 2600 * - Virtual block list of available virtual memory. 2601 */ 2602 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, 2603 u64 host_range_start, 2604 u64 host_range_end, 2605 u32 host_page_size, 2606 u64 host_huge_range_start, 2607 u64 host_huge_range_end, 2608 u32 host_huge_page_size, 2609 u64 dram_range_start, 2610 u64 dram_range_end, 2611 u32 dram_page_size) 2612 { 2613 struct hl_device *hdev = ctx->hdev; 2614 int i, rc; 2615 2616 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) { 2617 ctx->va_range[i] = 2618 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL); 2619 if (!ctx->va_range[i]) { 2620 rc = -ENOMEM; 2621 goto free_va_range; 2622 } 2623 } 2624 2625 rc = hl_mmu_ctx_init(ctx); 2626 if (rc) { 2627 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); 2628 goto free_va_range; 2629 } 2630 2631 mutex_init(&ctx->mem_hash_lock); 2632 hash_init(ctx->mem_hash); 2633 2634 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2635 2636 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST, 2637 host_range_start, host_range_end, host_page_size); 2638 if (rc) { 2639 dev_err(hdev->dev, "failed to init host vm range\n"); 2640 goto mmu_ctx_fini; 2641 } 2642 2643 if (hdev->pmmu_huge_range) { 2644 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2645 2646 rc = va_range_init(hdev, 2647 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE, 2648 host_huge_range_start, host_huge_range_end, 2649 host_huge_page_size); 2650 if (rc) { 2651 dev_err(hdev->dev, 2652 "failed to init host huge vm range\n"); 2653 goto clear_host_va_range; 2654 } 2655 } else { 2656 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2657 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] = 2658 ctx->va_range[HL_VA_RANGE_TYPE_HOST]; 2659 } 2660 2661 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2662 2663 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM, 2664 dram_range_start, dram_range_end, dram_page_size); 2665 if (rc) { 2666 dev_err(hdev->dev, "failed to init dram vm range\n"); 2667 goto clear_host_huge_va_range; 2668 } 2669 2670 hl_debugfs_add_ctx_mem_hash(hdev, ctx); 2671 2672 return 0; 2673 2674 clear_host_huge_va_range: 2675 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock); 2676 2677 if (hdev->pmmu_huge_range) { 2678 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2679 clear_va_list_locked(hdev, 2680 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list); 2681 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2682 } 2683 clear_host_va_range: 2684 if (hdev->pmmu_huge_range) 2685 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock); 2686 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2687 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list); 2688 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2689 mmu_ctx_fini: 2690 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock); 2691 mutex_destroy(&ctx->mem_hash_lock); 2692 hl_mmu_ctx_fini(ctx); 2693 free_va_range: 2694 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) 2695 kfree(ctx->va_range[i]); 2696 2697 return rc; 2698 } 2699 2700 int hl_vm_ctx_init(struct hl_ctx *ctx) 2701 { 2702 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; 2703 u64 host_range_start, host_range_end, host_huge_range_start, 2704 host_huge_range_end, dram_range_start, dram_range_end; 2705 u32 host_page_size, host_huge_page_size, dram_page_size; 2706 2707 atomic64_set(&ctx->dram_phys_mem, 0); 2708 2709 /* 2710 * In case of DRAM mapping, the returned address is the physical 2711 * address of the memory related to the given handle. 2712 */ 2713 if (ctx->hdev->mmu_disable) 2714 return 0; 2715 2716 dram_range_start = prop->dmmu.start_addr; 2717 dram_range_end = prop->dmmu.end_addr - 1; 2718 dram_page_size = prop->dram_page_size ? 2719 prop->dram_page_size : prop->dmmu.page_size; 2720 host_range_start = prop->pmmu.start_addr; 2721 host_range_end = prop->pmmu.end_addr - 1; 2722 host_page_size = prop->pmmu.page_size; 2723 host_huge_range_start = prop->pmmu_huge.start_addr; 2724 host_huge_range_end = prop->pmmu_huge.end_addr - 1; 2725 host_huge_page_size = prop->pmmu_huge.page_size; 2726 2727 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, 2728 host_page_size, host_huge_range_start, 2729 host_huge_range_end, host_huge_page_size, 2730 dram_range_start, dram_range_end, dram_page_size); 2731 } 2732 2733 /** 2734 * hl_vm_ctx_fini() - virtual memory teardown of context. 2735 * @ctx: pointer to the habanalabs context structure. 2736 * 2737 * This function perform teardown the following: 2738 * - Virtual block list of available virtual memory. 2739 * - Virtual address to area descriptor hashtable. 2740 * - MMU for context. 2741 * 2742 * In addition this function does the following: 2743 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The 2744 * hashtable should be empty as no valid mappings should exist at this 2745 * point. 2746 * - Frees any existing physical page list from the idr which relates to the 2747 * current context asid. 2748 * - This function checks the virtual block list for correctness. At this point 2749 * the list should contain one element which describes the whole virtual 2750 * memory range of the context. Otherwise, a warning is printed. 2751 */ 2752 void hl_vm_ctx_fini(struct hl_ctx *ctx) 2753 { 2754 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node; 2755 struct hl_device *hdev = ctx->hdev; 2756 struct hl_vm_hash_node *hnode; 2757 struct hl_vm *vm = &hdev->vm; 2758 struct hlist_node *tmp_node; 2759 struct list_head free_list; 2760 struct hl_mem_in args; 2761 int i; 2762 2763 if (hdev->mmu_disable) 2764 return; 2765 2766 hl_debugfs_remove_ctx_mem_hash(hdev, ctx); 2767 2768 /* 2769 * Clearly something went wrong on hard reset so no point in printing 2770 * another side effect error 2771 */ 2772 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash)) 2773 dev_dbg(hdev->dev, 2774 "user released device without removing its memory mappings\n"); 2775 2776 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { 2777 dev_dbg(hdev->dev, 2778 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", 2779 hnode->vaddr, ctx->asid); 2780 args.unmap.device_virt_addr = hnode->vaddr; 2781 unmap_device_va(ctx, &args, true); 2782 } 2783 2784 mutex_lock(&hdev->mmu_lock); 2785 2786 /* invalidate the cache once after the unmapping loop */ 2787 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); 2788 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK); 2789 2790 mutex_unlock(&hdev->mmu_lock); 2791 2792 INIT_LIST_HEAD(&free_list); 2793 2794 spin_lock(&vm->idr_lock); 2795 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) 2796 if (phys_pg_list->asid == ctx->asid) { 2797 dev_dbg(hdev->dev, 2798 "page list 0x%px of asid %d is still alive\n", 2799 phys_pg_list, ctx->asid); 2800 2801 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem); 2802 idr_remove(&vm->phys_pg_pack_handles, i); 2803 list_add(&phys_pg_list->node, &free_list); 2804 } 2805 spin_unlock(&vm->idr_lock); 2806 2807 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node) 2808 free_phys_pg_pack(hdev, phys_pg_list); 2809 2810 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]); 2811 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]); 2812 2813 if (hdev->pmmu_huge_range) 2814 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]); 2815 2816 mutex_destroy(&ctx->mem_hash_lock); 2817 hl_mmu_ctx_fini(ctx); 2818 2819 /* In this case we need to clear the global accounting of DRAM usage 2820 * because the user notifies us on allocations. If the user is no more, 2821 * all DRAM is available 2822 */ 2823 if (ctx->asid != HL_KERNEL_ASID_ID && 2824 !hdev->asic_prop.dram_supports_virtual_memory) 2825 atomic64_set(&hdev->dram_used_mem, 0); 2826 } 2827 2828 /** 2829 * hl_vm_init() - initialize virtual memory module. 2830 * @hdev: pointer to the habanalabs device structure. 2831 * 2832 * This function initializes the following: 2833 * - MMU module. 2834 * - DRAM physical pages pool of 2MB. 2835 * - Idr for device memory allocation handles. 2836 */ 2837 int hl_vm_init(struct hl_device *hdev) 2838 { 2839 struct asic_fixed_properties *prop = &hdev->asic_prop; 2840 struct hl_vm *vm = &hdev->vm; 2841 int rc; 2842 2843 if (is_power_of_2(prop->dram_page_size)) 2844 vm->dram_pg_pool = 2845 gen_pool_create(__ffs(prop->dram_page_size), -1); 2846 else 2847 vm->dram_pg_pool = 2848 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1); 2849 2850 if (!vm->dram_pg_pool) { 2851 dev_err(hdev->dev, "Failed to create dram page pool\n"); 2852 return -ENOMEM; 2853 } 2854 2855 kref_init(&vm->dram_pg_pool_refcount); 2856 2857 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, 2858 prop->dram_end_address - prop->dram_user_base_address, 2859 -1); 2860 2861 if (rc) { 2862 dev_err(hdev->dev, 2863 "Failed to add memory to dram page pool %d\n", rc); 2864 goto pool_add_err; 2865 } 2866 2867 spin_lock_init(&vm->idr_lock); 2868 idr_init(&vm->phys_pg_pack_handles); 2869 2870 atomic64_set(&hdev->dram_used_mem, 0); 2871 2872 vm->init_done = true; 2873 2874 return 0; 2875 2876 pool_add_err: 2877 gen_pool_destroy(vm->dram_pg_pool); 2878 2879 return rc; 2880 } 2881 2882 /** 2883 * hl_vm_fini() - virtual memory module teardown. 2884 * @hdev: pointer to the habanalabs device structure. 2885 * 2886 * This function perform teardown to the following: 2887 * - Idr for device memory allocation handles. 2888 * - DRAM physical pages pool of 2MB. 2889 * - MMU module. 2890 */ 2891 void hl_vm_fini(struct hl_device *hdev) 2892 { 2893 struct hl_vm *vm = &hdev->vm; 2894 2895 if (!vm->init_done) 2896 return; 2897 2898 /* 2899 * At this point all the contexts should be freed and hence no DRAM 2900 * memory should be in use. Hence the DRAM pool should be freed here. 2901 */ 2902 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) 2903 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", 2904 __func__); 2905 2906 vm->init_done = false; 2907 } 2908 2909 /** 2910 * hl_hw_block_mem_init() - HW block memory initialization. 2911 * @ctx: pointer to the habanalabs context structure. 2912 * 2913 * This function initializes the HW block virtual mapped addresses list and 2914 * it's lock. 2915 */ 2916 void hl_hw_block_mem_init(struct hl_ctx *ctx) 2917 { 2918 mutex_init(&ctx->hw_block_list_lock); 2919 INIT_LIST_HEAD(&ctx->hw_block_mem_list); 2920 } 2921 2922 /** 2923 * hl_hw_block_mem_fini() - HW block memory teardown. 2924 * @ctx: pointer to the habanalabs context structure. 2925 * 2926 * This function clears the HW block virtual mapped addresses list and destroys 2927 * it's lock. 2928 */ 2929 void hl_hw_block_mem_fini(struct hl_ctx *ctx) 2930 { 2931 struct hl_vm_hw_block_list_node *lnode, *tmp; 2932 2933 if (!list_empty(&ctx->hw_block_mem_list)) 2934 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n"); 2935 2936 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) { 2937 list_del(&lnode->node); 2938 kfree(lnode); 2939 } 2940 2941 mutex_destroy(&ctx->hw_block_list_lock); 2942 } 2943