1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 10 #include <linux/slab.h> 11 12 /** 13 * struct hl_eqe_work - This structure is used to schedule work of EQ 14 * entry and cpucp_reset event 15 * 16 * @eq_work: workqueue object to run when EQ entry is received 17 * @hdev: pointer to device structure 18 * @eq_entry: copy of the EQ entry 19 */ 20 struct hl_eqe_work { 21 struct work_struct eq_work; 22 struct hl_device *hdev; 23 struct hl_eq_entry eq_entry; 24 }; 25 26 /** 27 * hl_cq_inc_ptr - increment ci or pi of cq 28 * 29 * @ptr: the current ci or pi value of the completion queue 30 * 31 * Increment ptr by 1. If it reaches the number of completion queue 32 * entries, set it to 0 33 */ 34 inline u32 hl_cq_inc_ptr(u32 ptr) 35 { 36 ptr++; 37 if (unlikely(ptr == HL_CQ_LENGTH)) 38 ptr = 0; 39 return ptr; 40 } 41 42 /** 43 * hl_eq_inc_ptr - increment ci of eq 44 * 45 * @ptr: the current ci value of the event queue 46 * 47 * Increment ptr by 1. If it reaches the number of event queue 48 * entries, set it to 0 49 */ 50 static inline u32 hl_eq_inc_ptr(u32 ptr) 51 { 52 ptr++; 53 if (unlikely(ptr == HL_EQ_LENGTH)) 54 ptr = 0; 55 return ptr; 56 } 57 58 static void irq_handle_eqe(struct work_struct *work) 59 { 60 struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work, 61 eq_work); 62 struct hl_device *hdev = eqe_work->hdev; 63 64 hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry); 65 66 kfree(eqe_work); 67 } 68 69 /** 70 * job_finish - queue job finish work 71 * 72 * @hdev: pointer to device structure 73 * @cs_seq: command submission sequence 74 * @cq: completion queue 75 * @timestamp: interrupt timestamp 76 * 77 */ 78 static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp) 79 { 80 struct hl_hw_queue *queue; 81 struct hl_cs_job *job; 82 83 queue = &hdev->kernel_queues[cq->hw_queue_id]; 84 job = queue->shadow_queue[hl_pi_2_offset(cs_seq)]; 85 job->timestamp = timestamp; 86 queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work); 87 88 atomic_inc(&queue->ci); 89 } 90 91 /** 92 * cs_finish - queue all cs jobs finish work 93 * 94 * @hdev: pointer to device structure 95 * @cs_seq: command submission sequence 96 * @timestamp: interrupt timestamp 97 * 98 */ 99 static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp) 100 { 101 struct asic_fixed_properties *prop = &hdev->asic_prop; 102 struct hl_hw_queue *queue; 103 struct hl_cs *cs; 104 struct hl_cs_job *job; 105 106 cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)]; 107 if (!cs) { 108 dev_warn(hdev->dev, 109 "No pointer to CS in shadow array at index %d\n", 110 cs_seq); 111 return; 112 } 113 114 list_for_each_entry(job, &cs->job_list, cs_node) { 115 queue = &hdev->kernel_queues[job->hw_queue_id]; 116 atomic_inc(&queue->ci); 117 } 118 119 cs->completion_timestamp = timestamp; 120 queue_work(hdev->cs_cmplt_wq, &cs->finish_work); 121 } 122 123 /** 124 * hl_irq_handler_cq - irq handler for completion queue 125 * 126 * @irq: irq number 127 * @arg: pointer to completion queue structure 128 * 129 */ 130 irqreturn_t hl_irq_handler_cq(int irq, void *arg) 131 { 132 struct hl_cq *cq = arg; 133 struct hl_device *hdev = cq->hdev; 134 bool shadow_index_valid, entry_ready; 135 u16 shadow_index; 136 struct hl_cq_entry *cq_entry, *cq_base; 137 ktime_t timestamp = ktime_get(); 138 139 if (hdev->disabled) { 140 dev_dbg(hdev->dev, 141 "Device disabled but received IRQ %d for CQ %d\n", 142 irq, cq->hw_queue_id); 143 return IRQ_HANDLED; 144 } 145 146 cq_base = cq->kernel_address; 147 148 while (1) { 149 cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci]; 150 151 entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK, 152 le32_to_cpu(cq_entry->data)); 153 if (!entry_ready) 154 break; 155 156 /* Make sure we read CQ entry contents after we've 157 * checked the ownership bit. 158 */ 159 dma_rmb(); 160 161 shadow_index_valid = 162 !!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 163 le32_to_cpu(cq_entry->data)); 164 165 shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK, 166 le32_to_cpu(cq_entry->data)); 167 168 /* 169 * CQ interrupt handler has 2 modes of operation: 170 * 1. Interrupt per CS completion: (Single CQ for all queues) 171 * CQ entry represents a completed CS 172 * 173 * 2. Interrupt per CS job completion in queue: (CQ per queue) 174 * CQ entry represents a completed job in a certain queue 175 */ 176 if (shadow_index_valid && !hdev->disabled) { 177 if (hdev->asic_prop.completion_mode == 178 HL_COMPLETION_MODE_CS) 179 cs_finish(hdev, shadow_index, timestamp); 180 else 181 job_finish(hdev, shadow_index, cq, timestamp); 182 } 183 184 /* Clear CQ entry ready bit */ 185 cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) & 186 ~CQ_ENTRY_READY_MASK); 187 188 cq->ci = hl_cq_inc_ptr(cq->ci); 189 190 /* Increment free slots */ 191 atomic_inc(&cq->free_slots_cnt); 192 } 193 194 return IRQ_HANDLED; 195 } 196 197 /* 198 * hl_ts_free_objects - handler of the free objects workqueue. 199 * This function should put refcount to objects that the registration node 200 * took refcount to them. 201 * @work: workqueue object pointer 202 */ 203 static void hl_ts_free_objects(struct work_struct *work) 204 { 205 struct timestamp_reg_work_obj *job = 206 container_of(work, struct timestamp_reg_work_obj, free_obj); 207 struct list_head *dynamic_alloc_free_list_head = job->dynamic_alloc_free_obj_head; 208 struct timestamp_reg_free_node *free_obj, *temp_free_obj; 209 struct list_head *free_list_head = job->free_obj_head; 210 211 struct hl_device *hdev = job->hdev; 212 213 list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) { 214 dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n", 215 free_obj->buf, 216 free_obj->cq_cb); 217 218 hl_mmap_mem_buf_put(free_obj->buf); 219 hl_cb_put(free_obj->cq_cb); 220 atomic_set(&free_obj->in_use, 0); 221 } 222 223 kfree(free_list_head); 224 225 if (dynamic_alloc_free_list_head) { 226 list_for_each_entry_safe(free_obj, temp_free_obj, dynamic_alloc_free_list_head, 227 free_objects_node) { 228 dev_dbg(hdev->dev, 229 "Dynamic_Alloc list: About to put refcount to buf (%p) cq_cb(%p)\n", 230 free_obj->buf, 231 free_obj->cq_cb); 232 233 hl_mmap_mem_buf_put(free_obj->buf); 234 hl_cb_put(free_obj->cq_cb); 235 list_del(&free_obj->free_objects_node); 236 kfree(free_obj); 237 } 238 239 kfree(dynamic_alloc_free_list_head); 240 } 241 242 kfree(job); 243 } 244 245 /* 246 * This function called with spin_lock of wait_list_lock taken 247 * This function will set timestamp and delete the registration node from the 248 * wait_list_lock. 249 * and since we're protected with spin_lock here, so we cannot just put the refcount 250 * for the objects here, since the release function may be called and it's also a long 251 * logic (which might sleep also) that cannot be handled in irq context. 252 * so here we'll be filling a list with nodes of "put" jobs and then will send this 253 * list to a dedicated workqueue to do the actual put. 254 */ 255 static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend, 256 struct list_head **free_list, 257 struct list_head **dynamic_alloc_list, 258 struct hl_user_interrupt *intr) 259 { 260 struct hl_ts_free_jobs *ts_free_jobs_data; 261 struct timestamp_reg_free_node *free_node; 262 u32 free_node_index; 263 u64 timestamp; 264 265 ts_free_jobs_data = &intr->ts_free_jobs_data; 266 free_node_index = ts_free_jobs_data->next_avail_free_node_idx; 267 268 if (!(*free_list)) { 269 /* Alloc/Init the timestamp registration free objects list */ 270 *free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC); 271 if (!(*free_list)) 272 return -ENOMEM; 273 274 INIT_LIST_HEAD(*free_list); 275 } 276 277 free_node = &ts_free_jobs_data->free_nodes_pool[free_node_index]; 278 if (atomic_cmpxchg(&free_node->in_use, 0, 1)) { 279 dev_dbg(hdev->dev, 280 "Timestamp free node pool is full, buff: %p, record: %p, irq: %u\n", 281 pend->ts_reg_info.buf, 282 pend, 283 intr->interrupt_id); 284 285 if (!(*dynamic_alloc_list)) { 286 *dynamic_alloc_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC); 287 if (!(*dynamic_alloc_list)) 288 return -ENOMEM; 289 290 INIT_LIST_HEAD(*dynamic_alloc_list); 291 } 292 293 free_node = kmalloc(sizeof(struct timestamp_reg_free_node), GFP_ATOMIC); 294 if (!free_node) 295 return -ENOMEM; 296 297 free_node->dynamic_alloc = 1; 298 } 299 300 timestamp = ktime_to_ns(intr->timestamp); 301 302 *pend->ts_reg_info.timestamp_kernel_addr = timestamp; 303 304 dev_dbg(hdev->dev, "Irq handle: Timestamp record (%p) ts cb address (%p), interrupt_id: %u\n", 305 pend, pend->ts_reg_info.timestamp_kernel_addr, intr->interrupt_id); 306 307 list_del(&pend->list_node); 308 309 /* Putting the refcount for ts_buff and cq_cb objects will be handled 310 * in workqueue context, just add job to free_list. 311 */ 312 free_node->buf = pend->ts_reg_info.buf; 313 free_node->cq_cb = pend->ts_reg_info.cq_cb; 314 315 if (free_node->dynamic_alloc) { 316 list_add(&free_node->free_objects_node, *dynamic_alloc_list); 317 } else { 318 ts_free_jobs_data->next_avail_free_node_idx = 319 (++free_node_index) % ts_free_jobs_data->free_nodes_length; 320 list_add(&free_node->free_objects_node, *free_list); 321 } 322 323 /* Mark TS record as free */ 324 pend->ts_reg_info.in_use = false; 325 326 return 0; 327 } 328 329 static void handle_user_interrupt_ts_list(struct hl_device *hdev, struct hl_user_interrupt *intr) 330 { 331 struct list_head *ts_reg_free_list_head = NULL, *dynamic_alloc_list_head = NULL; 332 struct hl_user_pending_interrupt *pend, *temp_pend; 333 struct timestamp_reg_work_obj *job; 334 bool reg_node_handle_fail = false; 335 unsigned long flags; 336 int rc; 337 338 /* For registration nodes: 339 * As part of handling the registration nodes, we should put refcount to 340 * some objects. the problem is that we cannot do that under spinlock 341 * or in irq handler context at all (since release functions are long and 342 * might sleep), so we will need to handle that part in workqueue context. 343 * To avoid handling kmalloc failure which compels us rolling back actions 344 * and move nodes hanged on the free list back to the interrupt ts list 345 * we always alloc the job of the WQ at the beginning. 346 */ 347 job = kmalloc(sizeof(*job), GFP_ATOMIC); 348 if (!job) 349 return; 350 351 spin_lock_irqsave(&intr->ts_list_lock, flags); 352 list_for_each_entry_safe(pend, temp_pend, &intr->ts_list_head, list_node) { 353 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) || 354 !pend->cq_kernel_addr) { 355 if (!reg_node_handle_fail) { 356 rc = handle_registration_node(hdev, pend, 357 &ts_reg_free_list_head, 358 &dynamic_alloc_list_head, intr); 359 if (rc) 360 reg_node_handle_fail = true; 361 } 362 } 363 } 364 spin_unlock_irqrestore(&intr->ts_list_lock, flags); 365 366 if (ts_reg_free_list_head) { 367 INIT_WORK(&job->free_obj, hl_ts_free_objects); 368 job->free_obj_head = ts_reg_free_list_head; 369 job->dynamic_alloc_free_obj_head = dynamic_alloc_list_head; 370 job->hdev = hdev; 371 queue_work(hdev->ts_free_obj_wq, &job->free_obj); 372 } else { 373 kfree(job); 374 } 375 } 376 377 static void handle_user_interrupt_wait_list(struct hl_device *hdev, struct hl_user_interrupt *intr) 378 { 379 struct hl_user_pending_interrupt *pend, *temp_pend; 380 unsigned long flags; 381 382 spin_lock_irqsave(&intr->wait_list_lock, flags); 383 list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, list_node) { 384 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) || 385 !pend->cq_kernel_addr) { 386 /* Handle wait target value node */ 387 pend->fence.timestamp = intr->timestamp; 388 complete_all(&pend->fence.completion); 389 } 390 } 391 spin_unlock_irqrestore(&intr->wait_list_lock, flags); 392 } 393 394 static void handle_tpc_interrupt(struct hl_device *hdev) 395 { 396 u64 event_mask; 397 u32 flags; 398 399 event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT | 400 HL_NOTIFIER_EVENT_USER_ENGINE_ERR | 401 HL_NOTIFIER_EVENT_DEVICE_RESET; 402 403 flags = HL_DRV_RESET_DELAY; 404 405 dev_err_ratelimited(hdev->dev, "Received TPC assert\n"); 406 hl_device_cond_reset(hdev, flags, event_mask); 407 } 408 409 static void handle_unexpected_user_interrupt(struct hl_device *hdev) 410 { 411 dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n"); 412 } 413 414 /** 415 * hl_irq_user_interrupt_handler - irq handler for user interrupts. 416 * 417 * @irq: irq number 418 * @arg: pointer to user interrupt structure 419 */ 420 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg) 421 { 422 struct hl_user_interrupt *user_int = arg; 423 struct hl_device *hdev = user_int->hdev; 424 425 user_int->timestamp = ktime_get(); 426 switch (user_int->type) { 427 case HL_USR_INTERRUPT_CQ: 428 /* First handle user waiters threads */ 429 handle_user_interrupt_wait_list(hdev, &hdev->common_user_cq_interrupt); 430 handle_user_interrupt_wait_list(hdev, user_int); 431 432 /* Second handle user timestamp registrations */ 433 handle_user_interrupt_ts_list(hdev, &hdev->common_user_cq_interrupt); 434 handle_user_interrupt_ts_list(hdev, user_int); 435 break; 436 case HL_USR_INTERRUPT_DECODER: 437 handle_user_interrupt_wait_list(hdev, &hdev->common_decoder_interrupt); 438 439 /* Handle decoder interrupt registered on this specific irq */ 440 handle_user_interrupt_wait_list(hdev, user_int); 441 break; 442 default: 443 break; 444 } 445 446 return IRQ_HANDLED; 447 } 448 449 /** 450 * hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts. 451 * This function is invoked by threaded irq mechanism 452 * 453 * @irq: irq number 454 * @arg: pointer to user interrupt structure 455 * 456 */ 457 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg) 458 { 459 struct hl_user_interrupt *user_int = arg; 460 struct hl_device *hdev = user_int->hdev; 461 462 user_int->timestamp = ktime_get(); 463 switch (user_int->type) { 464 case HL_USR_INTERRUPT_TPC: 465 handle_tpc_interrupt(hdev); 466 break; 467 case HL_USR_INTERRUPT_UNEXPECTED: 468 handle_unexpected_user_interrupt(hdev); 469 break; 470 default: 471 break; 472 } 473 474 return IRQ_HANDLED; 475 } 476 477 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg) 478 { 479 u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; 480 struct hl_device *hdev = arg; 481 482 dev_err(hdev->dev, "EQ error interrupt received\n"); 483 484 hl_device_cond_reset(hdev, HL_DRV_RESET_HARD, event_mask); 485 486 return IRQ_HANDLED; 487 } 488 489 /** 490 * hl_irq_handler_eq - irq handler for event queue 491 * 492 * @irq: irq number 493 * @arg: pointer to event queue structure 494 * 495 */ 496 irqreturn_t hl_irq_handler_eq(int irq, void *arg) 497 { 498 struct hl_eq *eq = arg; 499 struct hl_device *hdev = eq->hdev; 500 struct hl_eq_entry *eq_entry; 501 struct hl_eq_entry *eq_base; 502 struct hl_eqe_work *handle_eqe_work; 503 bool entry_ready; 504 u32 cur_eqe, ctl; 505 u16 cur_eqe_index, event_type; 506 507 eq_base = eq->kernel_address; 508 509 while (1) { 510 cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl); 511 entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe); 512 513 if (!entry_ready) 514 break; 515 516 cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe); 517 if ((hdev->event_queue.check_eqe_index) && 518 (((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) { 519 dev_err(hdev->dev, 520 "EQE %#x in queue is ready but index does not match %d!=%d", 521 cur_eqe, 522 ((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK), 523 cur_eqe_index); 524 break; 525 } 526 527 eq->prev_eqe_index++; 528 529 eq_entry = &eq_base[eq->ci]; 530 531 /* 532 * Make sure we read EQ entry contents after we've 533 * checked the ownership bit. 534 */ 535 dma_rmb(); 536 537 if (hdev->disabled && !hdev->reset_info.in_compute_reset) { 538 ctl = le32_to_cpu(eq_entry->hdr.ctl); 539 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT); 540 dev_warn(hdev->dev, 541 "Device disabled but received an EQ event (%u)\n", event_type); 542 goto skip_irq; 543 } 544 545 handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC); 546 if (handle_eqe_work) { 547 INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe); 548 handle_eqe_work->hdev = hdev; 549 550 memcpy(&handle_eqe_work->eq_entry, eq_entry, 551 sizeof(*eq_entry)); 552 553 queue_work(hdev->eq_wq, &handle_eqe_work->eq_work); 554 } 555 skip_irq: 556 /* Clear EQ entry ready bit */ 557 eq_entry->hdr.ctl = 558 cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) & 559 ~EQ_CTL_READY_MASK); 560 561 eq->ci = hl_eq_inc_ptr(eq->ci); 562 563 hdev->asic_funcs->update_eq_ci(hdev, eq->ci); 564 } 565 566 return IRQ_HANDLED; 567 } 568 569 /** 570 * hl_irq_handler_dec_abnrm - Decoder error interrupt handler 571 * @irq: IRQ number 572 * @arg: pointer to decoder structure. 573 */ 574 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg) 575 { 576 struct hl_dec *dec = arg; 577 578 schedule_work(&dec->abnrm_intr_work); 579 580 return IRQ_HANDLED; 581 } 582 583 /** 584 * hl_cq_init - main initialization function for an cq object 585 * 586 * @hdev: pointer to device structure 587 * @q: pointer to cq structure 588 * @hw_queue_id: The H/W queue ID this completion queue belongs to 589 * HL_INVALID_QUEUE if cq is not attached to any specific queue 590 * 591 * Allocate dma-able memory for the completion queue and initialize fields 592 * Returns 0 on success 593 */ 594 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id) 595 { 596 void *p; 597 598 p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address, 599 GFP_KERNEL | __GFP_ZERO); 600 if (!p) 601 return -ENOMEM; 602 603 q->hdev = hdev; 604 q->kernel_address = p; 605 q->hw_queue_id = hw_queue_id; 606 q->ci = 0; 607 q->pi = 0; 608 609 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); 610 611 return 0; 612 } 613 614 /** 615 * hl_cq_fini - destroy completion queue 616 * 617 * @hdev: pointer to device structure 618 * @q: pointer to cq structure 619 * 620 * Free the completion queue memory 621 */ 622 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q) 623 { 624 hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address); 625 } 626 627 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q) 628 { 629 q->ci = 0; 630 q->pi = 0; 631 632 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH); 633 634 /* 635 * It's not enough to just reset the PI/CI because the H/W may have 636 * written valid completion entries before it was halted and therefore 637 * we need to clean the actual queues so we won't process old entries 638 * when the device is operational again 639 */ 640 641 memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES); 642 } 643 644 /** 645 * hl_eq_init - main initialization function for an event queue object 646 * 647 * @hdev: pointer to device structure 648 * @q: pointer to eq structure 649 * 650 * Allocate dma-able memory for the event queue and initialize fields 651 * Returns 0 on success 652 */ 653 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q) 654 { 655 u32 size = hdev->asic_prop.fw_event_queue_size ? : HL_EQ_SIZE_IN_BYTES; 656 void *p; 657 658 p = hl_cpu_accessible_dma_pool_alloc(hdev, size, &q->bus_address); 659 if (!p) 660 return -ENOMEM; 661 662 q->hdev = hdev; 663 q->kernel_address = p; 664 q->size = size; 665 q->ci = 0; 666 q->prev_eqe_index = 0; 667 668 return 0; 669 } 670 671 /** 672 * hl_eq_fini - destroy event queue 673 * 674 * @hdev: pointer to device structure 675 * @q: pointer to eq structure 676 * 677 * Free the event queue memory 678 */ 679 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q) 680 { 681 flush_workqueue(hdev->eq_wq); 682 683 hl_cpu_accessible_dma_pool_free(hdev, q->size, q->kernel_address); 684 } 685 686 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q) 687 { 688 q->ci = 0; 689 q->prev_eqe_index = 0; 690 691 /* 692 * It's not enough to just reset the PI/CI because the H/W may have 693 * written valid completion entries before it was halted and therefore 694 * we need to clean the actual queues so we won't process old entries 695 * when the device is operational again 696 */ 697 698 memset(q->kernel_address, 0, q->size); 699 } 700