xref: /linux/drivers/accel/habanalabs/common/irq.c (revision 6fa4bf3dce0668a96faca0024e382f4489a9cc9b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 
10 #include <linux/slab.h>
11 
12 /**
13  * struct hl_eqe_work - This structure is used to schedule work of EQ
14  *                      entry and cpucp_reset event
15  *
16  * @eq_work:          workqueue object to run when EQ entry is received
17  * @hdev:             pointer to device structure
18  * @eq_entry:         copy of the EQ entry
19  */
20 struct hl_eqe_work {
21 	struct work_struct	eq_work;
22 	struct hl_device	*hdev;
23 	struct hl_eq_entry	eq_entry;
24 };
25 
26 /**
27  * hl_cq_inc_ptr - increment ci or pi of cq
28  *
29  * @ptr: the current ci or pi value of the completion queue
30  *
31  * Increment ptr by 1. If it reaches the number of completion queue
32  * entries, set it to 0
33  */
34 inline u32 hl_cq_inc_ptr(u32 ptr)
35 {
36 	ptr++;
37 	if (unlikely(ptr == HL_CQ_LENGTH))
38 		ptr = 0;
39 	return ptr;
40 }
41 
42 /**
43  * hl_eq_inc_ptr - increment ci of eq
44  *
45  * @ptr: the current ci value of the event queue
46  *
47  * Increment ptr by 1. If it reaches the number of event queue
48  * entries, set it to 0
49  */
50 static inline u32 hl_eq_inc_ptr(u32 ptr)
51 {
52 	ptr++;
53 	if (unlikely(ptr == HL_EQ_LENGTH))
54 		ptr = 0;
55 	return ptr;
56 }
57 
58 static void irq_handle_eqe(struct work_struct *work)
59 {
60 	struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61 							eq_work);
62 	struct hl_device *hdev = eqe_work->hdev;
63 
64 	hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65 
66 	kfree(eqe_work);
67 }
68 
69 /**
70  * job_finish - queue job finish work
71  *
72  * @hdev: pointer to device structure
73  * @cs_seq: command submission sequence
74  * @cq: completion queue
75  * @timestamp: interrupt timestamp
76  *
77  */
78 static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
79 {
80 	struct hl_hw_queue *queue;
81 	struct hl_cs_job *job;
82 
83 	queue = &hdev->kernel_queues[cq->hw_queue_id];
84 	job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
85 	job->timestamp = timestamp;
86 	queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
87 
88 	atomic_inc(&queue->ci);
89 }
90 
91 /**
92  * cs_finish - queue all cs jobs finish work
93  *
94  * @hdev: pointer to device structure
95  * @cs_seq: command submission sequence
96  * @timestamp: interrupt timestamp
97  *
98  */
99 static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
100 {
101 	struct asic_fixed_properties *prop = &hdev->asic_prop;
102 	struct hl_hw_queue *queue;
103 	struct hl_cs *cs;
104 	struct hl_cs_job *job;
105 
106 	cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
107 	if (!cs) {
108 		dev_warn(hdev->dev,
109 			"No pointer to CS in shadow array at index %d\n",
110 			cs_seq);
111 		return;
112 	}
113 
114 	list_for_each_entry(job, &cs->job_list, cs_node) {
115 		queue = &hdev->kernel_queues[job->hw_queue_id];
116 		atomic_inc(&queue->ci);
117 	}
118 
119 	cs->completion_timestamp = timestamp;
120 	queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
121 }
122 
123 /**
124  * hl_irq_handler_cq - irq handler for completion queue
125  *
126  * @irq: irq number
127  * @arg: pointer to completion queue structure
128  *
129  */
130 irqreturn_t hl_irq_handler_cq(int irq, void *arg)
131 {
132 	struct hl_cq *cq = arg;
133 	struct hl_device *hdev = cq->hdev;
134 	bool shadow_index_valid, entry_ready;
135 	u16 shadow_index;
136 	struct hl_cq_entry *cq_entry, *cq_base;
137 	ktime_t timestamp = ktime_get();
138 
139 	if (hdev->disabled) {
140 		dev_dbg(hdev->dev,
141 			"Device disabled but received IRQ %d for CQ %d\n",
142 			irq, cq->hw_queue_id);
143 		return IRQ_HANDLED;
144 	}
145 
146 	cq_base = cq->kernel_address;
147 
148 	while (1) {
149 		cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
150 
151 		entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
152 				le32_to_cpu(cq_entry->data));
153 		if (!entry_ready)
154 			break;
155 
156 		/* Make sure we read CQ entry contents after we've
157 		 * checked the ownership bit.
158 		 */
159 		dma_rmb();
160 
161 		shadow_index_valid =
162 			!!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
163 					le32_to_cpu(cq_entry->data));
164 
165 		shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
166 				le32_to_cpu(cq_entry->data));
167 
168 		/*
169 		 * CQ interrupt handler has 2 modes of operation:
170 		 * 1. Interrupt per CS completion: (Single CQ for all queues)
171 		 *    CQ entry represents a completed CS
172 		 *
173 		 * 2. Interrupt per CS job completion in queue: (CQ per queue)
174 		 *    CQ entry represents a completed job in a certain queue
175 		 */
176 		if (shadow_index_valid && !hdev->disabled) {
177 			if (hdev->asic_prop.completion_mode ==
178 					HL_COMPLETION_MODE_CS)
179 				cs_finish(hdev, shadow_index, timestamp);
180 			else
181 				job_finish(hdev, shadow_index, cq, timestamp);
182 		}
183 
184 		/* Clear CQ entry ready bit */
185 		cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
186 						~CQ_ENTRY_READY_MASK);
187 
188 		cq->ci = hl_cq_inc_ptr(cq->ci);
189 
190 		/* Increment free slots */
191 		atomic_inc(&cq->free_slots_cnt);
192 	}
193 
194 	return IRQ_HANDLED;
195 }
196 
197 /*
198  * hl_ts_free_objects - handler of the free objects workqueue.
199  * This function should put refcount to objects that the registration node
200  * took refcount to them.
201  * @work: workqueue object pointer
202  */
203 static void hl_ts_free_objects(struct work_struct *work)
204 {
205 	struct timestamp_reg_work_obj *job =
206 			container_of(work, struct timestamp_reg_work_obj, free_obj);
207 	struct list_head *dynamic_alloc_free_list_head = job->dynamic_alloc_free_obj_head;
208 	struct timestamp_reg_free_node *free_obj, *temp_free_obj;
209 	struct list_head *free_list_head = job->free_obj_head;
210 
211 	struct hl_device *hdev = job->hdev;
212 
213 	list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
214 		dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
215 					free_obj->buf,
216 					free_obj->cq_cb);
217 
218 		hl_mmap_mem_buf_put(free_obj->buf);
219 		hl_cb_put(free_obj->cq_cb);
220 		atomic_set(&free_obj->in_use, 0);
221 	}
222 
223 	kfree(free_list_head);
224 
225 	if (dynamic_alloc_free_list_head) {
226 		list_for_each_entry_safe(free_obj, temp_free_obj, dynamic_alloc_free_list_head,
227 								free_objects_node) {
228 			dev_dbg(hdev->dev,
229 				"Dynamic_Alloc list: About to put refcount to buf (%p) cq_cb(%p)\n",
230 						free_obj->buf,
231 						free_obj->cq_cb);
232 
233 			hl_mmap_mem_buf_put(free_obj->buf);
234 			hl_cb_put(free_obj->cq_cb);
235 			list_del(&free_obj->free_objects_node);
236 			kfree(free_obj);
237 		}
238 
239 		kfree(dynamic_alloc_free_list_head);
240 	}
241 
242 	kfree(job);
243 }
244 
245 /*
246  * This function called with spin_lock of wait_list_lock taken
247  * This function will set timestamp and delete the registration node from the
248  * wait_list_lock.
249  * and since we're protected with spin_lock here, so we cannot just put the refcount
250  * for the objects here, since the release function may be called and it's also a long
251  * logic (which might sleep also) that cannot be handled in irq context.
252  * so here we'll be filling a list with nodes of "put" jobs and then will send this
253  * list to a dedicated workqueue to do the actual put.
254  */
255 static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
256 						struct list_head **free_list,
257 						struct list_head **dynamic_alloc_list,
258 						struct hl_user_interrupt *intr)
259 {
260 	struct hl_ts_free_jobs *ts_free_jobs_data;
261 	struct timestamp_reg_free_node *free_node;
262 	u32 free_node_index;
263 	u64 timestamp;
264 
265 	ts_free_jobs_data = &intr->ts_free_jobs_data;
266 	free_node_index = ts_free_jobs_data->next_avail_free_node_idx;
267 
268 	if (!(*free_list)) {
269 		/* Alloc/Init the timestamp registration free objects list */
270 		*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
271 		if (!(*free_list))
272 			return -ENOMEM;
273 
274 		INIT_LIST_HEAD(*free_list);
275 	}
276 
277 	free_node = &ts_free_jobs_data->free_nodes_pool[free_node_index];
278 	if (atomic_cmpxchg(&free_node->in_use, 0, 1)) {
279 		dev_dbg(hdev->dev,
280 			"Timestamp free node pool is full, buff: %p, record: %p, irq: %u\n",
281 				pend->ts_reg_info.buf,
282 				pend,
283 				intr->interrupt_id);
284 
285 		if (!(*dynamic_alloc_list)) {
286 			*dynamic_alloc_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
287 			if (!(*dynamic_alloc_list))
288 				return -ENOMEM;
289 
290 			INIT_LIST_HEAD(*dynamic_alloc_list);
291 		}
292 
293 		free_node = kmalloc(sizeof(struct timestamp_reg_free_node), GFP_ATOMIC);
294 		if (!free_node)
295 			return -ENOMEM;
296 
297 		free_node->dynamic_alloc = 1;
298 	}
299 
300 	timestamp = ktime_to_ns(intr->timestamp);
301 
302 	*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
303 
304 	dev_dbg(hdev->dev, "Irq handle: Timestamp record (%p) ts cb address (%p), interrupt_id: %u\n",
305 			pend, pend->ts_reg_info.timestamp_kernel_addr, intr->interrupt_id);
306 
307 	list_del(&pend->list_node);
308 
309 	/* Putting the refcount for ts_buff and cq_cb objects will be handled
310 	 * in workqueue context, just add job to free_list.
311 	 */
312 	free_node->buf = pend->ts_reg_info.buf;
313 	free_node->cq_cb = pend->ts_reg_info.cq_cb;
314 
315 	if (free_node->dynamic_alloc) {
316 		list_add(&free_node->free_objects_node, *dynamic_alloc_list);
317 	} else {
318 		ts_free_jobs_data->next_avail_free_node_idx =
319 				(++free_node_index) % ts_free_jobs_data->free_nodes_length;
320 		list_add(&free_node->free_objects_node, *free_list);
321 	}
322 
323 	/* Mark TS record as free */
324 	pend->ts_reg_info.in_use = false;
325 
326 	return 0;
327 }
328 
329 static void handle_user_interrupt_ts_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
330 {
331 	struct list_head *ts_reg_free_list_head = NULL, *dynamic_alloc_list_head = NULL;
332 	struct hl_user_pending_interrupt *pend, *temp_pend;
333 	struct timestamp_reg_work_obj *job;
334 	bool reg_node_handle_fail = false;
335 	unsigned long flags;
336 	int rc;
337 
338 	/* For registration nodes:
339 	 * As part of handling the registration nodes, we should put refcount to
340 	 * some objects. the problem is that we cannot do that under spinlock
341 	 * or in irq handler context at all (since release functions are long and
342 	 * might sleep), so we will need to handle that part in workqueue context.
343 	 * To avoid handling kmalloc failure which compels us rolling back actions
344 	 * and move nodes hanged on the free list back to the interrupt ts list
345 	 * we always alloc the job of the WQ at the beginning.
346 	 */
347 	job = kmalloc(sizeof(*job), GFP_ATOMIC);
348 	if (!job)
349 		return;
350 
351 	spin_lock_irqsave(&intr->ts_list_lock, flags);
352 	list_for_each_entry_safe(pend, temp_pend, &intr->ts_list_head, list_node) {
353 		if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
354 				!pend->cq_kernel_addr) {
355 			if (!reg_node_handle_fail) {
356 				rc = handle_registration_node(hdev, pend,
357 						&ts_reg_free_list_head,
358 						&dynamic_alloc_list_head, intr);
359 				if (rc)
360 					reg_node_handle_fail = true;
361 			}
362 		}
363 	}
364 	spin_unlock_irqrestore(&intr->ts_list_lock, flags);
365 
366 	if (ts_reg_free_list_head) {
367 		INIT_WORK(&job->free_obj, hl_ts_free_objects);
368 		job->free_obj_head = ts_reg_free_list_head;
369 		job->dynamic_alloc_free_obj_head = dynamic_alloc_list_head;
370 		job->hdev = hdev;
371 		queue_work(hdev->ts_free_obj_wq, &job->free_obj);
372 	} else {
373 		kfree(job);
374 	}
375 }
376 
377 static void handle_user_interrupt_wait_list(struct hl_device *hdev, struct hl_user_interrupt *intr)
378 {
379 	struct hl_user_pending_interrupt *pend, *temp_pend;
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&intr->wait_list_lock, flags);
383 	list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, list_node) {
384 		if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
385 				!pend->cq_kernel_addr) {
386 			/* Handle wait target value node */
387 			pend->fence.timestamp = intr->timestamp;
388 			complete_all(&pend->fence.completion);
389 		}
390 	}
391 	spin_unlock_irqrestore(&intr->wait_list_lock, flags);
392 }
393 
394 static void handle_tpc_interrupt(struct hl_device *hdev)
395 {
396 	u64 event_mask;
397 	u32 flags;
398 
399 	event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT |
400 		HL_NOTIFIER_EVENT_USER_ENGINE_ERR |
401 		HL_NOTIFIER_EVENT_DEVICE_RESET;
402 
403 	flags = HL_DRV_RESET_DELAY;
404 
405 	dev_err_ratelimited(hdev->dev, "Received TPC assert\n");
406 	hl_device_cond_reset(hdev, flags, event_mask);
407 }
408 
409 static void handle_unexpected_user_interrupt(struct hl_device *hdev)
410 {
411 	dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n");
412 }
413 
414 /**
415  * hl_irq_user_interrupt_handler - irq handler for user interrupts.
416  *
417  * @irq: irq number
418  * @arg: pointer to user interrupt structure
419  */
420 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg)
421 {
422 	struct hl_user_interrupt *user_int = arg;
423 	struct hl_device *hdev = user_int->hdev;
424 
425 	user_int->timestamp = ktime_get();
426 	switch (user_int->type) {
427 	case HL_USR_INTERRUPT_CQ:
428 		/* First handle user waiters threads */
429 		handle_user_interrupt_wait_list(hdev, &hdev->common_user_cq_interrupt);
430 		handle_user_interrupt_wait_list(hdev, user_int);
431 
432 		/* Second handle user timestamp registrations */
433 		handle_user_interrupt_ts_list(hdev,  &hdev->common_user_cq_interrupt);
434 		handle_user_interrupt_ts_list(hdev, user_int);
435 		break;
436 	case HL_USR_INTERRUPT_DECODER:
437 		handle_user_interrupt_wait_list(hdev, &hdev->common_decoder_interrupt);
438 
439 		/* Handle decoder interrupt registered on this specific irq */
440 		handle_user_interrupt_wait_list(hdev, user_int);
441 		break;
442 	default:
443 		break;
444 	}
445 
446 	return IRQ_HANDLED;
447 }
448 
449 /**
450  * hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts.
451  * This function is invoked by threaded irq mechanism
452  *
453  * @irq: irq number
454  * @arg: pointer to user interrupt structure
455  *
456  */
457 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg)
458 {
459 	struct hl_user_interrupt *user_int = arg;
460 	struct hl_device *hdev = user_int->hdev;
461 
462 	user_int->timestamp = ktime_get();
463 	switch (user_int->type) {
464 	case HL_USR_INTERRUPT_TPC:
465 		handle_tpc_interrupt(hdev);
466 		break;
467 	case HL_USR_INTERRUPT_UNEXPECTED:
468 		handle_unexpected_user_interrupt(hdev);
469 		break;
470 	default:
471 		break;
472 	}
473 
474 	return IRQ_HANDLED;
475 }
476 
477 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg)
478 {
479 	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
480 	struct hl_device *hdev = arg;
481 
482 	dev_err(hdev->dev, "EQ error interrupt received\n");
483 
484 	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD, event_mask);
485 
486 	return IRQ_HANDLED;
487 }
488 
489 /**
490  * hl_irq_handler_eq - irq handler for event queue
491  *
492  * @irq: irq number
493  * @arg: pointer to event queue structure
494  *
495  */
496 irqreturn_t hl_irq_handler_eq(int irq, void *arg)
497 {
498 	struct hl_eq *eq = arg;
499 	struct hl_device *hdev = eq->hdev;
500 	struct hl_eq_entry *eq_entry;
501 	struct hl_eq_entry *eq_base;
502 	struct hl_eqe_work *handle_eqe_work;
503 	bool entry_ready;
504 	u32 cur_eqe, ctl;
505 	u16 cur_eqe_index, event_type;
506 
507 	eq_base = eq->kernel_address;
508 
509 	while (1) {
510 		cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
511 		entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
512 
513 		if (!entry_ready)
514 			break;
515 
516 		cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
517 		if ((hdev->event_queue.check_eqe_index) &&
518 				(((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) {
519 			dev_err(hdev->dev,
520 				"EQE %#x in queue is ready but index does not match %d!=%d",
521 				cur_eqe,
522 				((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
523 				cur_eqe_index);
524 			break;
525 		}
526 
527 		eq->prev_eqe_index++;
528 
529 		eq_entry = &eq_base[eq->ci];
530 
531 		/*
532 		 * Make sure we read EQ entry contents after we've
533 		 * checked the ownership bit.
534 		 */
535 		dma_rmb();
536 
537 		if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
538 			ctl = le32_to_cpu(eq_entry->hdr.ctl);
539 			event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
540 			dev_warn(hdev->dev,
541 				"Device disabled but received an EQ event (%u)\n", event_type);
542 			goto skip_irq;
543 		}
544 
545 		handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
546 		if (handle_eqe_work) {
547 			INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
548 			handle_eqe_work->hdev = hdev;
549 
550 			memcpy(&handle_eqe_work->eq_entry, eq_entry,
551 					sizeof(*eq_entry));
552 
553 			queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
554 		}
555 skip_irq:
556 		/* Clear EQ entry ready bit */
557 		eq_entry->hdr.ctl =
558 			cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
559 							~EQ_CTL_READY_MASK);
560 
561 		eq->ci = hl_eq_inc_ptr(eq->ci);
562 
563 		hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
564 	}
565 
566 	return IRQ_HANDLED;
567 }
568 
569 /**
570  * hl_irq_handler_dec_abnrm - Decoder error interrupt handler
571  * @irq: IRQ number
572  * @arg: pointer to decoder structure.
573  */
574 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
575 {
576 	struct hl_dec *dec = arg;
577 
578 	schedule_work(&dec->abnrm_intr_work);
579 
580 	return IRQ_HANDLED;
581 }
582 
583 /**
584  * hl_cq_init - main initialization function for an cq object
585  *
586  * @hdev: pointer to device structure
587  * @q: pointer to cq structure
588  * @hw_queue_id: The H/W queue ID this completion queue belongs to
589  *               HL_INVALID_QUEUE if cq is not attached to any specific queue
590  *
591  * Allocate dma-able memory for the completion queue and initialize fields
592  * Returns 0 on success
593  */
594 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
595 {
596 	void *p;
597 
598 	p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
599 					GFP_KERNEL | __GFP_ZERO);
600 	if (!p)
601 		return -ENOMEM;
602 
603 	q->hdev = hdev;
604 	q->kernel_address = p;
605 	q->hw_queue_id = hw_queue_id;
606 	q->ci = 0;
607 	q->pi = 0;
608 
609 	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
610 
611 	return 0;
612 }
613 
614 /**
615  * hl_cq_fini - destroy completion queue
616  *
617  * @hdev: pointer to device structure
618  * @q: pointer to cq structure
619  *
620  * Free the completion queue memory
621  */
622 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
623 {
624 	hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
625 }
626 
627 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
628 {
629 	q->ci = 0;
630 	q->pi = 0;
631 
632 	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
633 
634 	/*
635 	 * It's not enough to just reset the PI/CI because the H/W may have
636 	 * written valid completion entries before it was halted and therefore
637 	 * we need to clean the actual queues so we won't process old entries
638 	 * when the device is operational again
639 	 */
640 
641 	memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
642 }
643 
644 /**
645  * hl_eq_init - main initialization function for an event queue object
646  *
647  * @hdev: pointer to device structure
648  * @q: pointer to eq structure
649  *
650  * Allocate dma-able memory for the event queue and initialize fields
651  * Returns 0 on success
652  */
653 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
654 {
655 	u32 size = hdev->asic_prop.fw_event_queue_size ? : HL_EQ_SIZE_IN_BYTES;
656 	void *p;
657 
658 	p = hl_cpu_accessible_dma_pool_alloc(hdev, size, &q->bus_address);
659 	if (!p)
660 		return -ENOMEM;
661 
662 	q->hdev = hdev;
663 	q->kernel_address = p;
664 	q->size = size;
665 	q->ci = 0;
666 	q->prev_eqe_index = 0;
667 
668 	return 0;
669 }
670 
671 /**
672  * hl_eq_fini - destroy event queue
673  *
674  * @hdev: pointer to device structure
675  * @q: pointer to eq structure
676  *
677  * Free the event queue memory
678  */
679 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
680 {
681 	flush_workqueue(hdev->eq_wq);
682 
683 	hl_cpu_accessible_dma_pool_free(hdev, q->size, q->kernel_address);
684 }
685 
686 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
687 {
688 	q->ci = 0;
689 	q->prev_eqe_index = 0;
690 
691 	/*
692 	 * It's not enough to just reset the PI/CI because the H/W may have
693 	 * written valid completion entries before it was halted and therefore
694 	 * we need to clean the actual queues so we won't process old entries
695 	 * when the device is operational again
696 	 */
697 
698 	memset(q->kernel_address, 0, q->size);
699 }
700 
701 void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q)
702 {
703 	u32 eq_length, eqe_size, ctl, ready, mode, type, index;
704 	struct hl_eq_header *hdr;
705 	u8 *ptr;
706 	int i;
707 
708 	eq_length = HL_EQ_LENGTH;
709 	eqe_size = q->size / HL_EQ_LENGTH;
710 
711 	dev_info(hdev->dev, "Contents of EQ entries headers:\n");
712 
713 	for (i = 0, ptr = q->kernel_address ; i < eq_length ; ++i, ptr += eqe_size) {
714 		hdr = (struct hl_eq_header *) ptr;
715 		ctl = le32_to_cpu(hdr->ctl);
716 		ready = FIELD_GET(EQ_CTL_READY_MASK, ctl);
717 		mode = FIELD_GET(EQ_CTL_EVENT_MODE_MASK, ctl);
718 		type = FIELD_GET(EQ_CTL_EVENT_TYPE_MASK, ctl);
719 		index = FIELD_GET(EQ_CTL_INDEX_MASK, ctl);
720 
721 		dev_info(hdev->dev, "%02u: %#010x [ready: %u, mode %u, type %04u, index %05u]\n",
722 				i, ctl, ready, mode, type, index);
723 	}
724 }
725