1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2023 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include <linux/habanalabs/cpucp_if.h> 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include <drm/drm_device.h> 33 #include <drm/drm_file.h> 34 35 #include "security.h" 36 37 #define HL_NAME "habanalabs" 38 39 struct hl_device; 40 struct hl_fpriv; 41 42 #define PCI_VENDOR_ID_HABANALABS 0x1da3 43 44 /* Use upper bits of mmap offset to store habana driver specific information. 45 * bits[63:59] - Encode mmap type 46 * bits[45:0] - mmap offset value 47 * 48 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 49 * defines are w.r.t to PAGE_SIZE 50 */ 51 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 52 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 53 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 54 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 55 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 56 57 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 58 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 59 60 #define HL_PENDING_RESET_PER_SEC 10 61 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 62 #define HL_PENDING_RESET_LONG_SEC 60 63 /* 64 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 65 * This is needed to prevent situation of clearing resources while user processes are still alive. 66 */ 67 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 68 69 #define HL_HARD_RESET_MAX_TIMEOUT 120 70 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 71 72 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 73 74 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 75 76 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 77 78 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 79 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 80 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 81 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 82 83 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 84 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 85 86 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 87 88 #define HL_INVALID_QUEUE UINT_MAX 89 90 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 91 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 92 93 #define HL_STATE_DUMP_HIST_LEN 5 94 95 /* Default value for device reset trigger , an invalid value */ 96 #define HL_RESET_TRIGGER_DEFAULT 0xFF 97 98 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 99 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 100 101 /* Memory */ 102 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 103 104 /* MMU */ 105 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 106 107 #define TIMESTAMP_FREE_NODES_NUM 512 108 109 /** 110 * enum hl_mmu_page_table_location - mmu page table location 111 * @MMU_DR_PGT: page-table is located on device DRAM. 112 * @MMU_HR_PGT: page-table is located on host memory. 113 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 114 */ 115 enum hl_mmu_page_table_location { 116 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 117 MMU_HR_PGT, /* host resident MMU PGT */ 118 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 119 }; 120 121 /* 122 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 123 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 124 */ 125 #define HL_RSVD_SOBS 2 126 #define HL_RSVD_MONS 1 127 128 /* 129 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 130 */ 131 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 132 133 #define HL_MAX_SOB_VAL (1 << 15) 134 135 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 136 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 137 138 #define HL_PCI_NUM_BARS 6 139 140 /* Completion queue entry relates to completed job */ 141 #define HL_COMPLETION_MODE_JOB 0 142 /* Completion queue entry relates to completed command submission */ 143 #define HL_COMPLETION_MODE_CS 1 144 145 #define HL_MAX_DCORES 8 146 147 /* DMA alloc/free wrappers */ 148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 149 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 150 151 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 152 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 153 154 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 155 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 156 157 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 158 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 159 160 #define hl_dma_map_sgtable(hdev, sgt, dir) \ 161 hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__) 162 #define hl_dma_unmap_sgtable(hdev, sgt, dir) \ 163 hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__) 164 165 /* 166 * Reset Flags 167 * 168 * - HL_DRV_RESET_HARD 169 * If set do hard reset to all engines. If not set reset just 170 * compute/DMA engines. 171 * 172 * - HL_DRV_RESET_FROM_RESET_THR 173 * Set if the caller is the hard-reset thread 174 * 175 * - HL_DRV_RESET_HEARTBEAT 176 * Set if reset is due to heartbeat 177 * 178 * - HL_DRV_RESET_TDR 179 * Set if reset is due to TDR 180 * 181 * - HL_DRV_RESET_DEV_RELEASE 182 * Set if reset is due to device release 183 * 184 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 185 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 186 * only when running with secured f/w 187 * 188 * - HL_DRV_RESET_FW_FATAL_ERR 189 * Set if reset is due to a fatal error from FW 190 * 191 * - HL_DRV_RESET_DELAY 192 * Set if a delay should be added before the reset 193 * 194 * - HL_DRV_RESET_FROM_WD_THR 195 * Set if the caller is the device release watchdog thread 196 */ 197 198 #define HL_DRV_RESET_HARD (1 << 0) 199 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 200 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 201 #define HL_DRV_RESET_TDR (1 << 3) 202 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 204 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 205 #define HL_DRV_RESET_DELAY (1 << 7) 206 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 207 208 /* 209 * Security 210 */ 211 212 #define HL_PB_SHARED 1 213 #define HL_PB_NA 0 214 #define HL_PB_SINGLE_INSTANCE 1 215 #define HL_BLOCK_SIZE 0x1000 216 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 217 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 218 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 219 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 220 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 221 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 222 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 223 224 enum hl_protection_levels { 225 SECURED_LVL, 226 PRIVILEGED_LVL, 227 NON_SECURED_LVL 228 }; 229 230 /** 231 * struct iterate_module_ctx - HW module iterator 232 * @fn: function to apply to each HW module instance 233 * @data: optional internal data to the function iterator 234 * @rc: return code for optional use of iterator/iterator-caller 235 */ 236 struct iterate_module_ctx { 237 /* 238 * callback for the HW module iterator 239 * @hdev: pointer to the habanalabs device structure 240 * @block: block (ASIC specific definition can be dcore/hdcore) 241 * @inst: HW module instance within the block 242 * @offset: current HW module instance offset from the 1-st HW module instance 243 * in the 1-st block 244 * @ctx: the iterator context. 245 */ 246 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 247 struct iterate_module_ctx *ctx); 248 void *data; 249 int rc; 250 }; 251 252 struct hl_block_glbl_sec { 253 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 254 }; 255 256 #define HL_MAX_SOBS_PER_MONITOR 8 257 258 /** 259 * struct hl_gen_wait_properties - properties for generating a wait CB 260 * @data: command buffer 261 * @q_idx: queue id is used to extract fence register address 262 * @size: offset in command buffer 263 * @sob_base: SOB base to use in this wait CB 264 * @sob_val: SOB value to wait for 265 * @mon_id: monitor to use in this wait CB 266 * @sob_mask: each bit represents a SOB offset from sob_base to be used 267 */ 268 struct hl_gen_wait_properties { 269 void *data; 270 u32 q_idx; 271 u32 size; 272 u16 sob_base; 273 u16 sob_val; 274 u16 mon_id; 275 u8 sob_mask; 276 }; 277 278 /** 279 * struct pgt_info - MMU hop page info. 280 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 281 * actual pgts for host resident MMU). 282 * @phys_addr: physical address of the pgt. 283 * @virt_addr: host virtual address of the pgt (see above device/host resident). 284 * @shadow_addr: shadow hop in the host for device resident MMU. 285 * @ctx: pointer to the owner ctx. 286 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 287 * allocated HOPs (all HOPs but HOP0) 288 * 289 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 290 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 291 * 292 * When a new level (hop) is needed during mapping this structure will be used to describe 293 * the newly allocated hop as well as to track number of PTEs in it. 294 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 295 * freed with its pgt_info structure. 296 */ 297 struct pgt_info { 298 struct hlist_node node; 299 u64 phys_addr; 300 u64 virt_addr; 301 u64 shadow_addr; 302 struct hl_ctx *ctx; 303 int num_of_ptes; 304 }; 305 306 /** 307 * enum hl_pci_match_mode - pci match mode per region 308 * @PCI_ADDRESS_MATCH_MODE: address match mode 309 * @PCI_BAR_MATCH_MODE: bar match mode 310 */ 311 enum hl_pci_match_mode { 312 PCI_ADDRESS_MATCH_MODE, 313 PCI_BAR_MATCH_MODE 314 }; 315 316 /** 317 * enum hl_fw_component - F/W components to read version through registers. 318 * @FW_COMP_BOOT_FIT: boot fit. 319 * @FW_COMP_PREBOOT: preboot. 320 * @FW_COMP_LINUX: linux. 321 */ 322 enum hl_fw_component { 323 FW_COMP_BOOT_FIT, 324 FW_COMP_PREBOOT, 325 FW_COMP_LINUX, 326 }; 327 328 /** 329 * enum hl_fw_types - F/W types present in the system 330 * @FW_TYPE_NONE: no FW component indication 331 * @FW_TYPE_LINUX: Linux image for device CPU 332 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 333 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 334 * (preboot, ppboot etc...) 335 * @FW_TYPE_ALL_TYPES: Mask for all types 336 */ 337 enum hl_fw_types { 338 FW_TYPE_NONE = 0x0, 339 FW_TYPE_LINUX = 0x1, 340 FW_TYPE_BOOT_CPU = 0x2, 341 FW_TYPE_PREBOOT_CPU = 0x4, 342 FW_TYPE_ALL_TYPES = 343 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 344 }; 345 346 /** 347 * enum hl_queue_type - Supported QUEUE types. 348 * @QUEUE_TYPE_NA: queue is not available. 349 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 350 * host. 351 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 352 * memories and/or operates the compute engines. 353 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 354 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 355 * notifications are sent by H/W. 356 */ 357 enum hl_queue_type { 358 QUEUE_TYPE_NA, 359 QUEUE_TYPE_EXT, 360 QUEUE_TYPE_INT, 361 QUEUE_TYPE_CPU, 362 QUEUE_TYPE_HW 363 }; 364 365 enum hl_cs_type { 366 CS_TYPE_DEFAULT, 367 CS_TYPE_SIGNAL, 368 CS_TYPE_WAIT, 369 CS_TYPE_COLLECTIVE_WAIT, 370 CS_RESERVE_SIGNALS, 371 CS_UNRESERVE_SIGNALS, 372 CS_TYPE_ENGINE_CORE, 373 CS_TYPE_ENGINES, 374 CS_TYPE_FLUSH_PCI_HBW_WRITES, 375 }; 376 377 /* 378 * struct hl_inbound_pci_region - inbound region descriptor 379 * @mode: pci match mode for this region 380 * @addr: region target address 381 * @size: region size in bytes 382 * @offset_in_bar: offset within bar (address match mode) 383 * @bar: bar id 384 */ 385 struct hl_inbound_pci_region { 386 enum hl_pci_match_mode mode; 387 u64 addr; 388 u64 size; 389 u64 offset_in_bar; 390 u8 bar; 391 }; 392 393 /* 394 * struct hl_outbound_pci_region - outbound region descriptor 395 * @addr: region target address 396 * @size: region size in bytes 397 */ 398 struct hl_outbound_pci_region { 399 u64 addr; 400 u64 size; 401 }; 402 403 /* 404 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 405 * allocated by Kernel or by User 406 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 407 * @CB_ALLOC_USER: support only CBs that allocated by User 408 */ 409 enum queue_cb_alloc_flags { 410 CB_ALLOC_KERNEL = 0x1, 411 CB_ALLOC_USER = 0x2 412 }; 413 414 /* 415 * struct hl_hw_sob - H/W SOB info. 416 * @hdev: habanalabs device structure. 417 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 418 * @sob_id: id of this SOB. 419 * @sob_addr: the sob offset from the base address. 420 * @q_idx: the H/W queue that uses this SOB. 421 * @need_reset: reset indication set when switching to the other sob. 422 */ 423 struct hl_hw_sob { 424 struct hl_device *hdev; 425 struct kref kref; 426 u32 sob_id; 427 u32 sob_addr; 428 u32 q_idx; 429 bool need_reset; 430 }; 431 432 enum hl_collective_mode { 433 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 434 HL_COLLECTIVE_MASTER = 0x1, 435 HL_COLLECTIVE_SLAVE = 0x2 436 }; 437 438 /** 439 * struct hw_queue_properties - queue information. 440 * @type: queue type. 441 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 442 * that allocated by the Kernel driver and therefore, 443 * a CB handle can be provided for jobs on this queue. 444 * Otherwise, a CB address must be provided. 445 * @collective_mode: collective mode of current queue 446 * @driver_only: true if only the driver is allowed to send a job to this queue, 447 * false otherwise. 448 * @binned: True if the queue is binned out and should not be used 449 * @supports_sync_stream: True if queue supports sync stream 450 */ 451 struct hw_queue_properties { 452 enum hl_queue_type type; 453 enum queue_cb_alloc_flags cb_alloc_flags; 454 enum hl_collective_mode collective_mode; 455 u8 driver_only; 456 u8 binned; 457 u8 supports_sync_stream; 458 }; 459 460 /** 461 * enum vm_type - virtual memory mapping request information. 462 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 463 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 464 */ 465 enum vm_type { 466 VM_TYPE_USERPTR = 0x1, 467 VM_TYPE_PHYS_PACK = 0x2 468 }; 469 470 /** 471 * enum mmu_op_flags - mmu operation relevant information. 472 * @MMU_OP_USERPTR: operation on user memory (host resident). 473 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 474 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 475 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 476 */ 477 enum mmu_op_flags { 478 MMU_OP_USERPTR = 0x1, 479 MMU_OP_PHYS_PACK = 0x2, 480 MMU_OP_CLEAR_MEMCACHE = 0x4, 481 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 482 }; 483 484 485 /** 486 * enum hl_device_hw_state - H/W device state. use this to understand whether 487 * to do reset before hw_init or not 488 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 489 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 490 * hw_init 491 */ 492 enum hl_device_hw_state { 493 HL_DEVICE_HW_STATE_CLEAN = 0, 494 HL_DEVICE_HW_STATE_DIRTY 495 }; 496 497 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 498 499 /** 500 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 501 * @start_addr: virtual start address of the memory region. 502 * @end_addr: virtual end address of the memory region. 503 * @hop_shifts: array holds HOPs shifts. 504 * @hop_masks: array holds HOPs masks. 505 * @last_mask: mask to get the bit indicating this is the last hop. 506 * @pgt_size: size for page tables. 507 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 508 * supporting multiple page size). 509 * @page_size: default page size used to allocate memory. 510 * @num_hops: The amount of hops supported by the translation table. 511 * @hop_table_size: HOP table size. 512 * @hop0_tables_total_size: total size for all HOP0 tables. 513 * @host_resident: Should the MMU page table reside in host memory or in the 514 * device DRAM. 515 */ 516 struct hl_mmu_properties { 517 u64 start_addr; 518 u64 end_addr; 519 u64 hop_shifts[MMU_HOP_MAX]; 520 u64 hop_masks[MMU_HOP_MAX]; 521 u64 last_mask; 522 u64 pgt_size; 523 u64 supported_pages_mask; 524 u32 page_size; 525 u32 num_hops; 526 u32 hop_table_size; 527 u32 hop0_tables_total_size; 528 u8 host_resident; 529 }; 530 531 /** 532 * struct hl_hints_range - hint addresses reserved va range. 533 * @start_addr: start address of the va range. 534 * @end_addr: end address of the va range. 535 */ 536 struct hl_hints_range { 537 u64 start_addr; 538 u64 end_addr; 539 }; 540 541 /** 542 * struct asic_fixed_properties - ASIC specific immutable properties. 543 * @hw_queues_props: H/W queues properties. 544 * @special_blocks: points to an array containing special blocks info. 545 * @skip_special_blocks_cfg: special blocks skip configs. 546 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 547 * available sensors. 548 * @uboot_ver: F/W U-boot version. 549 * @preboot_ver: F/W Preboot version. 550 * @dmmu: DRAM MMU address translation properties. 551 * @pmmu: PCI (host) MMU address translation properties. 552 * @pmmu_huge: PCI (host) MMU address translation properties for memory 553 * allocated with huge pages. 554 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 555 * @hints_host_reserved_va_range: host hint addresses reserved range. 556 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range. 557 * @sram_base_address: SRAM physical start address. 558 * @sram_end_address: SRAM physical end address. 559 * @sram_user_base_address - SRAM physical start address for user access. 560 * @dram_base_address: DRAM physical start address. 561 * @dram_end_address: DRAM physical end address. 562 * @dram_user_base_address: DRAM physical start address for user access. 563 * @dram_size: DRAM total size. 564 * @dram_pci_bar_size: size of PCI bar towards DRAM. 565 * @max_power_default: max power of the device after reset. 566 * @dc_power_default: power consumed by the device in mode idle. 567 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 568 * fault. 569 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 570 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 571 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 572 * @mmu_dram_default_page_addr: DRAM default page physical address. 573 * @tpc_enabled_mask: which TPCs are enabled. 574 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 575 * @dram_enabled_mask: which DRAMs are enabled. 576 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 577 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 578 * for hints validity check. 579 * @cfg_base_address: config space base address. 580 * @mmu_cache_mng_addr: address of the MMU cache. 581 * @mmu_cache_mng_size: size of the MMU cache. 582 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 583 * to enable the device to access them. 584 * @host_base_address: host physical start address for host DMA from device 585 * @host_end_address: host physical end address for host DMA from device 586 * @max_freq_value: current max clk frequency. 587 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 588 * in order to raise events toward FW. 589 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 590 * we display to the user 591 * @mmu_pgt_size: MMU page tables total size. 592 * @mmu_pte_size: PTE size in MMU page tables. 593 * @mmu_hop_table_size: MMU hop table size. 594 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables. 595 * @dram_page_size: The DRAM physical page size. 596 * @cfg_size: configuration space size on SRAM. 597 * @sram_size: total size of SRAM. 598 * @max_asid: maximum number of open contexts (ASIDs). 599 * @num_of_events: number of possible internal H/W IRQs. 600 * @psoc_pci_pll_nr: PCI PLL NR value. 601 * @psoc_pci_pll_nf: PCI PLL NF value. 602 * @psoc_pci_pll_od: PCI PLL OD value. 603 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 604 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 605 * @high_pll: high PLL frequency used by the device. 606 * @cb_pool_cb_cnt: number of CBs in the CB pool. 607 * @cb_pool_cb_size: size of each CB in the CB pool. 608 * @decoder_enabled_mask: which decoders are enabled. 609 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. 610 * @rotator_enabled_mask: which rotators are enabled. 611 * @edma_enabled_mask: which EDMAs are enabled. 612 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 613 * binned (at most one binned DMA). 614 * @max_pending_cs: maximum of concurrent pending command submissions 615 * @max_queues: maximum amount of queues in the system 616 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 617 * capabilities reported by FW, bit description 618 * can be found in CPU_BOOT_DEV_STS0 619 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 620 * capabilities reported by FW, bit description 621 * can be found in CPU_BOOT_DEV_STS1 622 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 623 * status reported by FW, bit description can be 624 * found in CPU_BOOT_DEV_STS0 625 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 626 * status reported by FW, bit description can be 627 * found in CPU_BOOT_DEV_STS1 628 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 629 * status reported by FW, bit description can be 630 * found in CPU_BOOT_DEV_STS0 631 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 632 * status reported by FW, bit description can be 633 * found in CPU_BOOT_DEV_STS1 634 * @max_dec: maximum number of decoders 635 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 636 * 1- enabled, 0- isolated. 637 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 638 * 1- faulty cluster, 0- good cluster. 639 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 640 * 1- enabled, 0- isolated. 641 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 642 * which the property supports_user_set_page_size is true 643 * (i.e. the DRAM supports multiple page sizes), otherwise 644 * it will shall be equal to dram_page_size. 645 * @num_engine_cores: number of engine cpu cores. 646 * @max_num_of_engines: maximum number of all engines in the ASIC. 647 * @num_of_special_blocks: special_blocks array size. 648 * @glbl_err_cause_num: global err cause number. 649 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 650 * not supported. 651 * @reserved_fw_mem_size: size in MB of dram memory reserved for FW. 652 * @collective_first_sob: first sync object available for collective use 653 * @collective_first_mon: first monitor available for collective use 654 * @sync_stream_first_sob: first sync object available for sync stream use 655 * @sync_stream_first_mon: first monitor available for sync stream use 656 * @first_available_user_sob: first sob available for the user 657 * @first_available_user_mon: first monitor available for the user 658 * @first_available_user_interrupt: first available interrupt reserved for the user 659 * @first_available_cq: first available CQ for the user. 660 * @user_interrupt_count: number of user interrupts. 661 * @user_dec_intr_count: number of decoder interrupts exposed to user. 662 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 663 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. 664 * @cache_line_size: device cache line size. 665 * @server_type: Server type that the ASIC is currently installed in. 666 * The value is according to enum hl_server_type in uapi file. 667 * @completion_queues_count: number of completion queues. 668 * @completion_mode: 0 - job based completion, 1 - cs based completion 669 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 670 * in Master/Slave mode 671 * @fw_security_enabled: true if security measures are enabled in firmware, 672 * false otherwise 673 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 674 * BOOT_DEV_STS0 675 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 676 * BOOT_DEV_STS1 677 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 678 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 679 * @num_functional_hbms: number of functional HBMs in each DCORE. 680 * @hints_range_reservation: device support hint addresses range reservation. 681 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 682 * @dynamic_fw_load: is dynamic FW load is supported. 683 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 684 * false otherwise. 685 * @use_get_power_for_reset_history: To support backward compatibility for Goya 686 * and Gaudi 687 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 688 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 689 * initiated by user or TDR. This is only true 690 * in inference ASICs, as there is no real-world 691 * use-case of doing soft-reset in training (due 692 * to the fact that training runs on multiple 693 * devices) 694 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 695 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 696 * @supports_user_set_page_size: true if user can set the allocation page size. 697 * @dma_mask: the dma mask to be set for this device. 698 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 699 * @supports_engine_modes: true if changing engines/engine_cores modes is supported. 700 * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw. 701 */ 702 struct asic_fixed_properties { 703 struct hw_queue_properties *hw_queues_props; 704 struct hl_special_block_info *special_blocks; 705 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 706 struct cpucp_info cpucp_info; 707 char uboot_ver[VERSION_MAX_LEN]; 708 char preboot_ver[VERSION_MAX_LEN]; 709 struct hl_mmu_properties dmmu; 710 struct hl_mmu_properties pmmu; 711 struct hl_mmu_properties pmmu_huge; 712 struct hl_hints_range hints_dram_reserved_va_range; 713 struct hl_hints_range hints_host_reserved_va_range; 714 struct hl_hints_range hints_host_hpage_reserved_va_range; 715 u64 sram_base_address; 716 u64 sram_end_address; 717 u64 sram_user_base_address; 718 u64 dram_base_address; 719 u64 dram_end_address; 720 u64 dram_user_base_address; 721 u64 dram_size; 722 u64 dram_pci_bar_size; 723 u64 max_power_default; 724 u64 dc_power_default; 725 u64 dram_size_for_default_page_mapping; 726 u64 pcie_dbi_base_address; 727 u64 pcie_aux_dbi_reg_addr; 728 u64 mmu_pgt_addr; 729 u64 mmu_dram_default_page_addr; 730 u64 tpc_enabled_mask; 731 u64 tpc_binning_mask; 732 u64 dram_enabled_mask; 733 u64 dram_binning_mask; 734 u64 dram_hints_align_mask; 735 u64 cfg_base_address; 736 u64 mmu_cache_mng_addr; 737 u64 mmu_cache_mng_size; 738 u64 device_dma_offset_for_host_access; 739 u64 host_base_address; 740 u64 host_end_address; 741 u64 max_freq_value; 742 u64 engine_core_interrupt_reg_addr; 743 u32 clk_pll_index; 744 u32 mmu_pgt_size; 745 u32 mmu_pte_size; 746 u32 mmu_hop_table_size; 747 u32 mmu_hop0_tables_total_size; 748 u32 dram_page_size; 749 u32 cfg_size; 750 u32 sram_size; 751 u32 max_asid; 752 u32 num_of_events; 753 u32 psoc_pci_pll_nr; 754 u32 psoc_pci_pll_nf; 755 u32 psoc_pci_pll_od; 756 u32 psoc_pci_pll_div_factor; 757 u32 psoc_timestamp_frequency; 758 u32 high_pll; 759 u32 cb_pool_cb_cnt; 760 u32 cb_pool_cb_size; 761 u32 decoder_enabled_mask; 762 u32 decoder_binning_mask; 763 u32 rotator_enabled_mask; 764 u32 edma_enabled_mask; 765 u32 edma_binning_mask; 766 u32 max_pending_cs; 767 u32 max_queues; 768 u32 fw_preboot_cpu_boot_dev_sts0; 769 u32 fw_preboot_cpu_boot_dev_sts1; 770 u32 fw_bootfit_cpu_boot_dev_sts0; 771 u32 fw_bootfit_cpu_boot_dev_sts1; 772 u32 fw_app_cpu_boot_dev_sts0; 773 u32 fw_app_cpu_boot_dev_sts1; 774 u32 max_dec; 775 u32 hmmu_hif_enabled_mask; 776 u32 faulty_dram_cluster_map; 777 u32 xbar_edge_enabled_mask; 778 u32 device_mem_alloc_default_page_size; 779 u32 num_engine_cores; 780 u32 max_num_of_engines; 781 u32 num_of_special_blocks; 782 u32 glbl_err_cause_num; 783 u32 hbw_flush_reg; 784 u32 reserved_fw_mem_size; 785 u16 collective_first_sob; 786 u16 collective_first_mon; 787 u16 sync_stream_first_sob; 788 u16 sync_stream_first_mon; 789 u16 first_available_user_sob[HL_MAX_DCORES]; 790 u16 first_available_user_mon[HL_MAX_DCORES]; 791 u16 first_available_user_interrupt; 792 u16 first_available_cq[HL_MAX_DCORES]; 793 u16 user_interrupt_count; 794 u16 user_dec_intr_count; 795 u16 tpc_interrupt_id; 796 u16 eq_interrupt_id; 797 u16 cache_line_size; 798 u16 server_type; 799 u8 completion_queues_count; 800 u8 completion_mode; 801 u8 mme_master_slave_mode; 802 u8 fw_security_enabled; 803 u8 fw_cpu_boot_dev_sts0_valid; 804 u8 fw_cpu_boot_dev_sts1_valid; 805 u8 dram_supports_virtual_memory; 806 u8 hard_reset_done_by_fw; 807 u8 num_functional_hbms; 808 u8 hints_range_reservation; 809 u8 iatu_done_by_fw; 810 u8 dynamic_fw_load; 811 u8 gic_interrupts_enable; 812 u8 use_get_power_for_reset_history; 813 u8 supports_compute_reset; 814 u8 allow_inference_soft_reset; 815 u8 configurable_stop_on_err; 816 u8 set_max_power_on_device_init; 817 u8 supports_user_set_page_size; 818 u8 dma_mask; 819 u8 supports_advanced_cpucp_rc; 820 u8 supports_engine_modes; 821 u8 support_dynamic_resereved_fw_size; 822 }; 823 824 /** 825 * struct hl_fence - software synchronization primitive 826 * @completion: fence is implemented using completion 827 * @refcount: refcount for this fence 828 * @cs_sequence: sequence of the corresponding command submission 829 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 830 * masters QIDs that multi cs is waiting on 831 * @error: mark this fence with error 832 * @timestamp: timestamp upon completion 833 * @mcs_handling_done: indicates that corresponding command submission has 834 * finished msc handling, this does not mean it was part 835 * of the mcs 836 */ 837 struct hl_fence { 838 struct completion completion; 839 struct kref refcount; 840 u64 cs_sequence; 841 u32 stream_master_qid_map; 842 int error; 843 ktime_t timestamp; 844 u8 mcs_handling_done; 845 }; 846 847 /** 848 * struct hl_cs_compl - command submission completion object. 849 * @base_fence: hl fence object. 850 * @lock: spinlock to protect fence. 851 * @hdev: habanalabs device structure. 852 * @hw_sob: the H/W SOB used in this signal/wait CS. 853 * @encaps_sig_hdl: encaps signals handler. 854 * @cs_seq: command submission sequence number. 855 * @type: type of the CS - signal/wait. 856 * @sob_val: the SOB value that is used in this signal/wait CS. 857 * @sob_group: the SOB group that is used in this collective wait CS. 858 * @encaps_signals: indication whether it's a completion object of cs with 859 * encaps signals or not. 860 */ 861 struct hl_cs_compl { 862 struct hl_fence base_fence; 863 spinlock_t lock; 864 struct hl_device *hdev; 865 struct hl_hw_sob *hw_sob; 866 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 867 u64 cs_seq; 868 enum hl_cs_type type; 869 u16 sob_val; 870 u16 sob_group; 871 bool encaps_signals; 872 }; 873 874 /* 875 * Command Buffers 876 */ 877 878 /** 879 * struct hl_ts_buff - describes a timestamp buffer. 880 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 881 * @user_buff_address: Holds the user buffer's kernel virtual address. 882 * @kernel_buff_size: Holds the internal kernel buffer size. 883 */ 884 struct hl_ts_buff { 885 void *kernel_buff_address; 886 void *user_buff_address; 887 u32 kernel_buff_size; 888 }; 889 890 struct hl_mmap_mem_buf; 891 892 /** 893 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 894 * @dev: back pointer to the owning device 895 * @lock: protects handles 896 * @handles: an idr holding all active handles to the memory buffers in the system. 897 */ 898 struct hl_mem_mgr { 899 struct device *dev; 900 spinlock_t lock; 901 struct idr handles; 902 }; 903 904 /** 905 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 906 * @topic: string identifier used for logging 907 * @mem_id: memory type identifier, embedded in the handle and used to identify 908 * the memory type by handle. 909 * @alloc: callback executed on buffer allocation, shall allocate the memory, 910 * set it under buffer private, and set mappable size. 911 * @mmap: callback executed on mmap, must map the buffer to vma 912 * @release: callback executed on release, must free the resources used by the buffer 913 */ 914 struct hl_mmap_mem_buf_behavior { 915 const char *topic; 916 u64 mem_id; 917 918 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 919 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 920 void (*release)(struct hl_mmap_mem_buf *buf); 921 }; 922 923 /** 924 * struct hl_mmap_mem_buf - describes a single unified memory buffer 925 * @behavior: buffer behavior 926 * @mmg: back pointer to the unified memory manager 927 * @refcount: reference counter for buffer users 928 * @private: pointer to buffer behavior private data 929 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 930 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 931 * may change at runtime. 932 * @mappable_size: the original mappable size of the buffer, does not change after 933 * the allocation. 934 * @handle: the buffer id in mmg handles store 935 */ 936 struct hl_mmap_mem_buf { 937 struct hl_mmap_mem_buf_behavior *behavior; 938 struct hl_mem_mgr *mmg; 939 struct kref refcount; 940 void *private; 941 atomic_t mmap; 942 u64 real_mapped_size; 943 u64 mappable_size; 944 u64 handle; 945 }; 946 947 /** 948 * struct hl_cb - describes a Command Buffer. 949 * @hdev: pointer to device this CB belongs to. 950 * @ctx: pointer to the CB owner's context. 951 * @buf: back pointer to the parent mappable memory buffer 952 * @debugfs_list: node in debugfs list of command buffers. 953 * @pool_list: node in pool list of command buffers. 954 * @kernel_address: Holds the CB's kernel virtual address. 955 * @virtual_addr: Holds the CB's virtual address. 956 * @bus_address: Holds the CB's DMA address. 957 * @size: holds the CB's size. 958 * @roundup_size: holds the cb size after roundup to page size. 959 * @cs_cnt: holds number of CS that this CB participates in. 960 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 961 * @is_pool: true if CB was acquired from the pool, false otherwise. 962 * @is_internal: internally allocated 963 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 964 */ 965 struct hl_cb { 966 struct hl_device *hdev; 967 struct hl_ctx *ctx; 968 struct hl_mmap_mem_buf *buf; 969 struct list_head debugfs_list; 970 struct list_head pool_list; 971 void *kernel_address; 972 u64 virtual_addr; 973 dma_addr_t bus_address; 974 u32 size; 975 u32 roundup_size; 976 atomic_t cs_cnt; 977 atomic_t is_handle_destroyed; 978 u8 is_pool; 979 u8 is_internal; 980 u8 is_mmu_mapped; 981 }; 982 983 984 /* 985 * QUEUES 986 */ 987 988 struct hl_cs_job; 989 990 /* Queue length of external and HW queues */ 991 #define HL_QUEUE_LENGTH 4096 992 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 993 994 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 995 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 996 #endif 997 998 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 999 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 1000 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 1001 1002 /* Must be power of 2 */ 1003 #define HL_EQ_LENGTH 64 1004 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 1005 1006 /* Host <-> CPU-CP shared memory size */ 1007 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 1008 1009 /** 1010 * struct hl_sync_stream_properties - 1011 * describes a H/W queue sync stream properties 1012 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1013 * @next_sob_val: the next value to use for the currently used SOB. 1014 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1015 * @base_mon_id: the base MON id of the MONs used by this queue. 1016 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1017 * in order to sync with all slave queues. 1018 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1019 * sync with its master queue. 1020 * @collective_sob_id: current SOB id used by this collective slave queue 1021 * to signal its collective master queue upon completion. 1022 * @curr_sob_offset: the id offset to the currently used SOB from the 1023 * HL_RSVD_SOBS that are being used by this queue. 1024 */ 1025 struct hl_sync_stream_properties { 1026 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1027 u16 next_sob_val; 1028 u16 base_sob_id; 1029 u16 base_mon_id; 1030 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1031 u16 collective_slave_mon_id; 1032 u16 collective_sob_id; 1033 u8 curr_sob_offset; 1034 }; 1035 1036 /** 1037 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1038 * handlers manager 1039 * @lock: protects handles. 1040 * @handles: an idr to hold all encapsulated signals handles. 1041 */ 1042 struct hl_encaps_signals_mgr { 1043 spinlock_t lock; 1044 struct idr handles; 1045 }; 1046 1047 /** 1048 * struct hl_hw_queue - describes a H/W transport queue. 1049 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1050 * @sync_stream_prop: sync stream queue properties 1051 * @queue_type: type of queue. 1052 * @collective_mode: collective mode of current queue 1053 * @kernel_address: holds the queue's kernel virtual address. 1054 * @bus_address: holds the queue's DMA address. 1055 * @pi: holds the queue's pi value. 1056 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1057 * @hw_queue_id: the id of the H/W queue. 1058 * @cq_id: the id for the corresponding CQ for this H/W queue. 1059 * @msi_vec: the IRQ number of the H/W queue. 1060 * @int_queue_len: length of internal queue (number of entries). 1061 * @valid: is the queue valid (we have array of 32 queues, not all of them 1062 * exist). 1063 * @supports_sync_stream: True if queue supports sync stream 1064 */ 1065 struct hl_hw_queue { 1066 struct hl_cs_job **shadow_queue; 1067 struct hl_sync_stream_properties sync_stream_prop; 1068 enum hl_queue_type queue_type; 1069 enum hl_collective_mode collective_mode; 1070 void *kernel_address; 1071 dma_addr_t bus_address; 1072 u32 pi; 1073 atomic_t ci; 1074 u32 hw_queue_id; 1075 u32 cq_id; 1076 u32 msi_vec; 1077 u16 int_queue_len; 1078 u8 valid; 1079 u8 supports_sync_stream; 1080 }; 1081 1082 /** 1083 * struct hl_cq - describes a completion queue 1084 * @hdev: pointer to the device structure 1085 * @kernel_address: holds the queue's kernel virtual address 1086 * @bus_address: holds the queue's DMA address 1087 * @cq_idx: completion queue index in array 1088 * @hw_queue_id: the id of the matching H/W queue 1089 * @ci: ci inside the queue 1090 * @pi: pi inside the queue 1091 * @free_slots_cnt: counter of free slots in queue 1092 */ 1093 struct hl_cq { 1094 struct hl_device *hdev; 1095 void *kernel_address; 1096 dma_addr_t bus_address; 1097 u32 cq_idx; 1098 u32 hw_queue_id; 1099 u32 ci; 1100 u32 pi; 1101 atomic_t free_slots_cnt; 1102 }; 1103 1104 enum hl_user_interrupt_type { 1105 HL_USR_INTERRUPT_CQ = 0, 1106 HL_USR_INTERRUPT_DECODER, 1107 HL_USR_INTERRUPT_TPC, 1108 HL_USR_INTERRUPT_UNEXPECTED 1109 }; 1110 1111 /** 1112 * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data 1113 * @free_nodes_pool: pool of nodes to be used for free timestamp jobs 1114 * @free_nodes_length: number of nodes in free_nodes_pool 1115 * @next_avail_free_node_idx: index of the next free node in the pool 1116 * 1117 * the free nodes pool must be protected by the user interrupt lock 1118 * to avoid race between different interrupts which are using the same 1119 * ts buffer with different offsets. 1120 */ 1121 struct hl_ts_free_jobs { 1122 struct timestamp_reg_free_node *free_nodes_pool; 1123 u32 free_nodes_length; 1124 u32 next_avail_free_node_idx; 1125 }; 1126 1127 /** 1128 * struct hl_user_interrupt - holds user interrupt information 1129 * @hdev: pointer to the device structure 1130 * @ts_free_jobs_data: timestamp free jobs related data 1131 * @type: user interrupt type 1132 * @wait_list_head: head to the list of user threads pending on this interrupt 1133 * @ts_list_head: head to the list of timestamp records 1134 * @wait_list_lock: protects wait_list_head 1135 * @ts_list_lock: protects ts_list_head 1136 * @timestamp: last timestamp taken upon interrupt 1137 * @interrupt_id: msix interrupt id 1138 */ 1139 struct hl_user_interrupt { 1140 struct hl_device *hdev; 1141 struct hl_ts_free_jobs ts_free_jobs_data; 1142 enum hl_user_interrupt_type type; 1143 struct list_head wait_list_head; 1144 struct list_head ts_list_head; 1145 spinlock_t wait_list_lock; 1146 spinlock_t ts_list_lock; 1147 ktime_t timestamp; 1148 u32 interrupt_id; 1149 }; 1150 1151 /** 1152 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1153 * @free_objects_node: node in the list free_obj_jobs 1154 * @cq_cb: pointer to cq command buffer to be freed 1155 * @buf: pointer to timestamp buffer to be freed 1156 * @in_use: indicates whether the node still in use in workqueue thread. 1157 * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler 1158 */ 1159 struct timestamp_reg_free_node { 1160 struct list_head free_objects_node; 1161 struct hl_cb *cq_cb; 1162 struct hl_mmap_mem_buf *buf; 1163 atomic_t in_use; 1164 u8 dynamic_alloc; 1165 }; 1166 1167 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1168 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1169 * in each node of the list 1170 * @free_obj: workqueue object to free timestamp registration node objects 1171 * @hdev: pointer to the device structure 1172 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1173 * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the 1174 * interrupt handler. 1175 */ 1176 struct timestamp_reg_work_obj { 1177 struct work_struct free_obj; 1178 struct hl_device *hdev; 1179 struct list_head *free_obj_head; 1180 struct list_head *dynamic_alloc_free_obj_head; 1181 }; 1182 1183 /* struct timestamp_reg_info - holds the timestamp registration related data. 1184 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1185 * relevant only when doing timestamps records registration. 1186 * @cq_cb: pointer to CQ counter CB. 1187 * @interrupt: interrupt that the node hanged on it's wait list. 1188 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1189 * relevant only when doing timestamps records 1190 * registration. 1191 * @in_use: indicates if the node already in use. relevant only when doing 1192 * timestamps records registration, since in this case the driver 1193 * will have it's own buffer which serve as a records pool instead of 1194 * allocating records dynamically. 1195 */ 1196 struct timestamp_reg_info { 1197 struct hl_mmap_mem_buf *buf; 1198 struct hl_cb *cq_cb; 1199 struct hl_user_interrupt *interrupt; 1200 u64 *timestamp_kernel_addr; 1201 bool in_use; 1202 }; 1203 1204 /** 1205 * struct hl_user_pending_interrupt - holds a context to a user thread 1206 * pending on an interrupt 1207 * @ts_reg_info: holds the timestamps registration nodes info 1208 * @list_node: node in the list of user threads pending on an interrupt or timestamp 1209 * @fence: hl fence object for interrupt completion 1210 * @cq_target_value: CQ target value 1211 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1212 * handler for target value comparison 1213 */ 1214 struct hl_user_pending_interrupt { 1215 struct timestamp_reg_info ts_reg_info; 1216 struct list_head list_node; 1217 struct hl_fence fence; 1218 u64 cq_target_value; 1219 u64 *cq_kernel_addr; 1220 }; 1221 1222 /** 1223 * struct hl_eq - describes the event queue (single one per device) 1224 * @hdev: pointer to the device structure 1225 * @kernel_address: holds the queue's kernel virtual address 1226 * @bus_address: holds the queue's DMA address 1227 * @ci: ci inside the queue 1228 * @prev_eqe_index: the index of the previous event queue entry. The index of 1229 * the current entry's index must be +1 of the previous one. 1230 * @check_eqe_index: do we need to check the index of the current entry vs. the 1231 * previous one. This is for backward compatibility with older 1232 * firmwares 1233 */ 1234 struct hl_eq { 1235 struct hl_device *hdev; 1236 void *kernel_address; 1237 dma_addr_t bus_address; 1238 u32 ci; 1239 u32 prev_eqe_index; 1240 bool check_eqe_index; 1241 }; 1242 1243 /** 1244 * struct hl_dec - describes a decoder sw instance. 1245 * @hdev: pointer to the device structure. 1246 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. 1247 * @core_id: ID of the decoder. 1248 * @base_addr: base address of the decoder. 1249 */ 1250 struct hl_dec { 1251 struct hl_device *hdev; 1252 struct work_struct abnrm_intr_work; 1253 u32 core_id; 1254 u32 base_addr; 1255 }; 1256 1257 /** 1258 * enum hl_asic_type - supported ASIC types. 1259 * @ASIC_INVALID: Invalid ASIC type. 1260 * @ASIC_GOYA: Goya device (HL-1000). 1261 * @ASIC_GAUDI: Gaudi device (HL-2000). 1262 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1263 * @ASIC_GAUDI2: Gaudi2 device. 1264 * @ASIC_GAUDI2B: Gaudi2B device. 1265 * @ASIC_GAUDI2C: Gaudi2C device. 1266 */ 1267 enum hl_asic_type { 1268 ASIC_INVALID, 1269 ASIC_GOYA, 1270 ASIC_GAUDI, 1271 ASIC_GAUDI_SEC, 1272 ASIC_GAUDI2, 1273 ASIC_GAUDI2B, 1274 ASIC_GAUDI2C, 1275 }; 1276 1277 struct hl_cs_parser; 1278 1279 /** 1280 * enum hl_pm_mng_profile - power management profile. 1281 * @PM_AUTO: internal clock is set by the Linux driver. 1282 * @PM_MANUAL: internal clock is set by the user. 1283 * @PM_LAST: last power management type. 1284 */ 1285 enum hl_pm_mng_profile { 1286 PM_AUTO = 1, 1287 PM_MANUAL, 1288 PM_LAST 1289 }; 1290 1291 /** 1292 * enum hl_pll_frequency - PLL frequency. 1293 * @PLL_HIGH: high frequency. 1294 * @PLL_LOW: low frequency. 1295 * @PLL_LAST: last frequency values that were configured by the user. 1296 */ 1297 enum hl_pll_frequency { 1298 PLL_HIGH = 1, 1299 PLL_LOW, 1300 PLL_LAST 1301 }; 1302 1303 #define PLL_REF_CLK 50 1304 1305 enum div_select_defs { 1306 DIV_SEL_REF_CLK = 0, 1307 DIV_SEL_PLL_CLK = 1, 1308 DIV_SEL_DIVIDED_REF = 2, 1309 DIV_SEL_DIVIDED_PLL = 3, 1310 }; 1311 1312 enum debugfs_access_type { 1313 DEBUGFS_READ8, 1314 DEBUGFS_WRITE8, 1315 DEBUGFS_READ32, 1316 DEBUGFS_WRITE32, 1317 DEBUGFS_READ64, 1318 DEBUGFS_WRITE64, 1319 }; 1320 1321 enum pci_region { 1322 PCI_REGION_CFG, 1323 PCI_REGION_SRAM, 1324 PCI_REGION_DRAM, 1325 PCI_REGION_SP_SRAM, 1326 PCI_REGION_NUMBER, 1327 }; 1328 1329 /** 1330 * struct pci_mem_region - describe memory region in a PCI bar 1331 * @region_base: region base address 1332 * @region_size: region size 1333 * @bar_size: size of the BAR 1334 * @offset_in_bar: region offset into the bar 1335 * @bar_id: bar ID of the region 1336 * @used: if used 1, otherwise 0 1337 */ 1338 struct pci_mem_region { 1339 u64 region_base; 1340 u64 region_size; 1341 u64 bar_size; 1342 u64 offset_in_bar; 1343 u8 bar_id; 1344 u8 used; 1345 }; 1346 1347 /** 1348 * struct static_fw_load_mgr - static FW load manager 1349 * @preboot_version_max_off: max offset to preboot version 1350 * @boot_fit_version_max_off: max offset to boot fit version 1351 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1352 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1353 * @cpu_boot_status_reg: boot status register 1354 * @cpu_boot_dev_status0_reg: boot device status register 0 1355 * @cpu_boot_dev_status1_reg: boot device status register 1 1356 * @boot_err0_reg: boot error register 0 1357 * @boot_err1_reg: boot error register 1 1358 * @preboot_version_offset_reg: SRAM offset to preboot version register 1359 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1360 * @sram_offset_mask: mask for getting offset into the SRAM 1361 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1362 */ 1363 struct static_fw_load_mgr { 1364 u64 preboot_version_max_off; 1365 u64 boot_fit_version_max_off; 1366 u32 kmd_msg_to_cpu_reg; 1367 u32 cpu_cmd_status_to_host_reg; 1368 u32 cpu_boot_status_reg; 1369 u32 cpu_boot_dev_status0_reg; 1370 u32 cpu_boot_dev_status1_reg; 1371 u32 boot_err0_reg; 1372 u32 boot_err1_reg; 1373 u32 preboot_version_offset_reg; 1374 u32 boot_fit_version_offset_reg; 1375 u32 sram_offset_mask; 1376 u32 cpu_reset_wait_msec; 1377 }; 1378 1379 /** 1380 * struct fw_response - FW response to LKD command 1381 * @ram_offset: descriptor offset into the RAM 1382 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1383 * @status: command status 1384 */ 1385 struct fw_response { 1386 u32 ram_offset; 1387 u8 ram_type; 1388 u8 status; 1389 }; 1390 1391 /** 1392 * struct dynamic_fw_load_mgr - dynamic FW load manager 1393 * @response: FW to LKD response 1394 * @comm_desc: the communication descriptor with FW 1395 * @image_region: region to copy the FW image to 1396 * @fw_image_size: size of FW image to load 1397 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1398 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1399 */ 1400 struct dynamic_fw_load_mgr { 1401 struct fw_response response; 1402 struct lkd_fw_comms_desc comm_desc; 1403 struct pci_mem_region *image_region; 1404 size_t fw_image_size; 1405 u32 wait_for_bl_timeout; 1406 bool fw_desc_valid; 1407 }; 1408 1409 /** 1410 * struct pre_fw_load_props - needed properties for pre-FW load 1411 * @cpu_boot_status_reg: cpu_boot_status register address 1412 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1413 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1414 * @boot_err0_reg: boot_err0 register address 1415 * @boot_err1_reg: boot_err1 register address 1416 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1417 * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know 1418 * preboot needs longer time. 1419 */ 1420 struct pre_fw_load_props { 1421 u32 cpu_boot_status_reg; 1422 u32 sts_boot_dev_sts0_reg; 1423 u32 sts_boot_dev_sts1_reg; 1424 u32 boot_err0_reg; 1425 u32 boot_err1_reg; 1426 u32 wait_for_preboot_timeout; 1427 u32 wait_for_preboot_extended_timeout; 1428 }; 1429 1430 /** 1431 * struct fw_image_props - properties of FW image 1432 * @image_name: name of the image 1433 * @src_off: offset in src FW to copy from 1434 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1435 */ 1436 struct fw_image_props { 1437 char *image_name; 1438 u32 src_off; 1439 u32 copy_size; 1440 }; 1441 1442 /** 1443 * struct fw_load_mgr - manager FW loading process 1444 * @dynamic_loader: specific structure for dynamic load 1445 * @static_loader: specific structure for static load 1446 * @pre_fw_load_props: parameter for pre FW load 1447 * @boot_fit_img: boot fit image properties 1448 * @linux_img: linux image properties 1449 * @cpu_timeout: CPU response timeout in usec 1450 * @boot_fit_timeout: Boot fit load timeout in usec 1451 * @skip_bmc: should BMC be skipped 1452 * @sram_bar_id: SRAM bar ID 1453 * @dram_bar_id: DRAM bar ID 1454 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1455 * component. values are set according to enum hl_fw_types. 1456 */ 1457 struct fw_load_mgr { 1458 union { 1459 struct dynamic_fw_load_mgr dynamic_loader; 1460 struct static_fw_load_mgr static_loader; 1461 }; 1462 struct pre_fw_load_props pre_fw_load; 1463 struct fw_image_props boot_fit_img; 1464 struct fw_image_props linux_img; 1465 u32 cpu_timeout; 1466 u32 boot_fit_timeout; 1467 u8 skip_bmc; 1468 u8 sram_bar_id; 1469 u8 dram_bar_id; 1470 u8 fw_comp_loaded; 1471 }; 1472 1473 struct hl_cs; 1474 1475 /** 1476 * struct engines_data - asic engines data 1477 * @buf: buffer for engines data in ascii 1478 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1479 * @allocated_buf_size: total size of allocated buffer 1480 */ 1481 struct engines_data { 1482 char *buf; 1483 int actual_size; 1484 u32 allocated_buf_size; 1485 }; 1486 1487 /** 1488 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1489 * common code. 1490 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1491 * @early_fini: tears down what was done in early_init. 1492 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1493 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1494 * @sw_init: sets up driver state, does not configure H/W. 1495 * @sw_fini: tears down driver state, does not configure H/W. 1496 * @hw_init: sets up the H/W state. 1497 * @hw_fini: tears down the H/W state. 1498 * @halt_engines: halt engines, needed for reset sequence. This also disables 1499 * interrupts from the device. Should be called before 1500 * hw_fini and before CS rollback. 1501 * @suspend: handles IP specific H/W or SW changes for suspend. 1502 * @resume: handles IP specific H/W or SW changes for resume. 1503 * @mmap: maps a memory. 1504 * @ring_doorbell: increment PI on a given QMAN. 1505 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1506 * function because the PQs are located in different memory areas 1507 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1508 * writing the PQE must match the destination memory area 1509 * properties. 1510 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1511 * dma_alloc_coherent(). This is ASIC function because 1512 * its implementation is not trivial when the driver 1513 * is loaded in simulation mode (not upstreamed). 1514 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1515 * dma_free_coherent(). This is ASIC function because 1516 * its implementation is not trivial when the driver 1517 * is loaded in simulation mode (not upstreamed). 1518 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1519 * @scrub_device_dram: Scrub the dram memory of the device. 1520 * @get_int_queue_base: get the internal queue base address. 1521 * @test_queues: run simple test on all queues for sanity check. 1522 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1523 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1524 * @asic_dma_pool_free: free small DMA allocation from pool. 1525 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1526 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1527 * @dma_unmap_sgtable: DMA unmap scatter-gather table. 1528 * @dma_map_sgtable: DMA map scatter-gather table. 1529 * @cs_parser: parse Command Submission. 1530 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1531 * @update_eq_ci: update event queue CI. 1532 * @context_switch: called upon ASID context switch. 1533 * @restore_phase_topology: clear all SOBs amd MONs. 1534 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1535 * internal memory via DMA engine. 1536 * @add_device_attr: add ASIC specific device attributes. 1537 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1538 * @get_events_stat: retrieve event queue entries histogram. 1539 * @read_pte: read MMU page table entry from DRAM. 1540 * @write_pte: write MMU page table entry to DRAM. 1541 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1542 * (L1 only) or hard (L0 & L1) flush. 1543 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1544 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1545 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1546 * @debug_coresight: perform certain actions on Coresight for debugging. 1547 * @is_device_idle: return true if device is idle, false otherwise. 1548 * @compute_reset_late_init: perform certain actions needed after a compute reset 1549 * @hw_queues_lock: acquire H/W queues lock. 1550 * @hw_queues_unlock: release H/W queues lock. 1551 * @get_pci_id: retrieve PCI ID. 1552 * @get_eeprom_data: retrieve EEPROM data from F/W. 1553 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1554 * @send_cpu_message: send message to F/W. If the message is timedout, the 1555 * driver will eventually reset the device. The timeout can 1556 * be determined by the calling function or it can be 0 and 1557 * then the timeout is the default timeout for the specific 1558 * ASIC 1559 * @get_hw_state: retrieve the H/W state 1560 * @pci_bars_map: Map PCI BARs. 1561 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1562 * @rreg: Read a register. Needed for simulator support. 1563 * @wreg: Write a register. Needed for simulator support. 1564 * @halt_coresight: stop the ETF and ETR traces. 1565 * @ctx_init: context dependent initialization. 1566 * @ctx_fini: context dependent cleanup. 1567 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1568 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1569 * @load_firmware_to_device: load the firmware to the device's memory 1570 * @load_boot_fit_to_device: load boot fit to device's memory 1571 * @get_signal_cb_size: Get signal CB size. 1572 * @get_wait_cb_size: Get wait CB size. 1573 * @gen_signal_cb: Generate a signal CB. 1574 * @gen_wait_cb: Generate a wait CB. 1575 * @reset_sob: Reset a SOB. 1576 * @reset_sob_group: Reset SOB group 1577 * @get_device_time: Get the device time. 1578 * @pb_print_security_errors: print security errors according block and cause 1579 * @collective_wait_init_cs: Generate collective master/slave packets 1580 * and place them in the relevant cs jobs 1581 * @collective_wait_create_jobs: allocate collective wait cs jobs 1582 * @get_dec_base_addr: get the base address of a given decoder. 1583 * @scramble_addr: Routine to scramble the address prior of mapping it 1584 * in the MMU. 1585 * @descramble_addr: Routine to de-scramble the address prior of 1586 * showing it to users. 1587 * @ack_protection_bits_errors: ack and dump all security violations 1588 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1589 * also returns the size of the block if caller supplies 1590 * a valid pointer for it 1591 * @hw_block_mmap: mmap a HW block with a given id. 1592 * @enable_events_from_fw: send interrupt to firmware to notify them the 1593 * driver is ready to receive asynchronous events. This 1594 * function should be called during the first init and 1595 * after every hard-reset of the device 1596 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1597 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1598 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1599 * generic f/w compatible PLL Indexes 1600 * @init_firmware_preload_params: initialize pre FW-load parameters. 1601 * @init_firmware_loader: initialize data for FW loader. 1602 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1603 * @state_dump_init: initialize constants required for state dump 1604 * @get_sob_addr: get SOB base address offset. 1605 * @set_pci_memory_regions: setting properties of PCI memory regions 1606 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1607 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1608 * @access_dev_mem: access device memory 1609 * @set_dram_bar_base: set the base of the DRAM BAR 1610 * @set_engine_cores: set a config command to engine cores 1611 * @set_engines: set a config command to user engines 1612 * @send_device_activity: indication to FW about device availability 1613 * @set_dram_properties: set DRAM related properties. 1614 * @set_binning_masks: set binning/enable masks for all relevant components. 1615 */ 1616 struct hl_asic_funcs { 1617 int (*early_init)(struct hl_device *hdev); 1618 int (*early_fini)(struct hl_device *hdev); 1619 int (*late_init)(struct hl_device *hdev); 1620 void (*late_fini)(struct hl_device *hdev); 1621 int (*sw_init)(struct hl_device *hdev); 1622 int (*sw_fini)(struct hl_device *hdev); 1623 int (*hw_init)(struct hl_device *hdev); 1624 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1625 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1626 int (*suspend)(struct hl_device *hdev); 1627 int (*resume)(struct hl_device *hdev); 1628 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1629 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1630 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1631 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1632 struct hl_bd *bd); 1633 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1634 dma_addr_t *dma_handle, gfp_t flag); 1635 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1636 void *cpu_addr, dma_addr_t dma_handle); 1637 int (*scrub_device_mem)(struct hl_device *hdev); 1638 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1639 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1640 dma_addr_t *dma_handle, u16 *queue_len); 1641 int (*test_queues)(struct hl_device *hdev); 1642 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1643 gfp_t mem_flags, dma_addr_t *dma_handle); 1644 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1645 dma_addr_t dma_addr); 1646 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1647 size_t size, dma_addr_t *dma_handle); 1648 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1649 size_t size, void *vaddr); 1650 void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1651 enum dma_data_direction dir); 1652 int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1653 enum dma_data_direction dir); 1654 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1655 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1656 void *kernel_address, u32 len, 1657 u32 original_len, 1658 u64 cq_addr, u32 cq_val, u32 msix_num, 1659 bool eb); 1660 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1661 int (*context_switch)(struct hl_device *hdev, u32 asid); 1662 void (*restore_phase_topology)(struct hl_device *hdev); 1663 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1664 void *blob_addr); 1665 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1666 struct attribute_group *dev_vrm_attr_grp); 1667 void (*handle_eqe)(struct hl_device *hdev, 1668 struct hl_eq_entry *eq_entry); 1669 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1670 u32 *size); 1671 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1672 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1673 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1674 u32 flags); 1675 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1676 u32 flags, u32 asid, u64 va, u64 size); 1677 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1678 int (*send_heartbeat)(struct hl_device *hdev); 1679 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1680 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1681 struct engines_data *e); 1682 int (*compute_reset_late_init)(struct hl_device *hdev); 1683 void (*hw_queues_lock)(struct hl_device *hdev); 1684 void (*hw_queues_unlock)(struct hl_device *hdev); 1685 u32 (*get_pci_id)(struct hl_device *hdev); 1686 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1687 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1688 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1689 u16 len, u32 timeout, u64 *result); 1690 int (*pci_bars_map)(struct hl_device *hdev); 1691 int (*init_iatu)(struct hl_device *hdev); 1692 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1693 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1694 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1695 int (*ctx_init)(struct hl_ctx *ctx); 1696 void (*ctx_fini)(struct hl_ctx *ctx); 1697 int (*pre_schedule_cs)(struct hl_cs *cs); 1698 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1699 int (*load_firmware_to_device)(struct hl_device *hdev); 1700 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1701 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1702 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1703 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1704 u32 size, bool eb); 1705 u32 (*gen_wait_cb)(struct hl_device *hdev, 1706 struct hl_gen_wait_properties *prop); 1707 void (*reset_sob)(struct hl_device *hdev, void *data); 1708 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1709 u64 (*get_device_time)(struct hl_device *hdev); 1710 void (*pb_print_security_errors)(struct hl_device *hdev, 1711 u32 block_addr, u32 cause, u32 offended_addr); 1712 int (*collective_wait_init_cs)(struct hl_cs *cs); 1713 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1714 struct hl_ctx *ctx, struct hl_cs *cs, 1715 u32 wait_queue_id, u32 collective_engine_id, 1716 u32 encaps_signal_offset); 1717 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1718 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1719 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1720 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1721 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1722 u32 *block_size, u32 *block_id); 1723 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1724 u32 block_id, u32 block_size); 1725 void (*enable_events_from_fw)(struct hl_device *hdev); 1726 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1727 void (*get_msi_info)(__le32 *table); 1728 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1729 void (*init_firmware_preload_params)(struct hl_device *hdev); 1730 void (*init_firmware_loader)(struct hl_device *hdev); 1731 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1732 void (*state_dump_init)(struct hl_device *hdev); 1733 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1734 void (*set_pci_memory_regions)(struct hl_device *hdev); 1735 u32* (*get_stream_master_qid_arr)(void); 1736 void (*check_if_razwi_happened)(struct hl_device *hdev); 1737 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1738 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1739 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1740 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1741 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1742 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1743 u32 num_cores, u32 core_command); 1744 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, 1745 u32 num_engines, u32 engine_command); 1746 int (*send_device_activity)(struct hl_device *hdev, bool open); 1747 int (*set_dram_properties)(struct hl_device *hdev); 1748 int (*set_binning_masks)(struct hl_device *hdev); 1749 }; 1750 1751 1752 /* 1753 * CONTEXTS 1754 */ 1755 1756 #define HL_KERNEL_ASID_ID 0 1757 1758 /** 1759 * enum hl_va_range_type - virtual address range type. 1760 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1761 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1762 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1763 */ 1764 enum hl_va_range_type { 1765 HL_VA_RANGE_TYPE_HOST, 1766 HL_VA_RANGE_TYPE_HOST_HUGE, 1767 HL_VA_RANGE_TYPE_DRAM, 1768 HL_VA_RANGE_TYPE_MAX 1769 }; 1770 1771 /** 1772 * struct hl_va_range - virtual addresses range. 1773 * @lock: protects the virtual addresses list. 1774 * @list: list of virtual addresses blocks available for mappings. 1775 * @start_addr: range start address. 1776 * @end_addr: range end address. 1777 * @page_size: page size of this va range. 1778 */ 1779 struct hl_va_range { 1780 struct mutex lock; 1781 struct list_head list; 1782 u64 start_addr; 1783 u64 end_addr; 1784 u32 page_size; 1785 }; 1786 1787 /** 1788 * struct hl_cs_counters_atomic - command submission counters 1789 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1790 * @parsing_drop_cnt: dropped due to error in packet parsing 1791 * @queue_full_drop_cnt: dropped due to queue full 1792 * @device_in_reset_drop_cnt: dropped due to device in reset 1793 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1794 * @validation_drop_cnt: dropped due to error in validation 1795 */ 1796 struct hl_cs_counters_atomic { 1797 atomic64_t out_of_mem_drop_cnt; 1798 atomic64_t parsing_drop_cnt; 1799 atomic64_t queue_full_drop_cnt; 1800 atomic64_t device_in_reset_drop_cnt; 1801 atomic64_t max_cs_in_flight_drop_cnt; 1802 atomic64_t validation_drop_cnt; 1803 }; 1804 1805 /** 1806 * struct hl_dmabuf_priv - a dma-buf private object. 1807 * @dmabuf: pointer to dma-buf object. 1808 * @ctx: pointer to the dma-buf owner's context. 1809 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1810 * where virtual memory is supported. 1811 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1812 * @offset: the offset into the buffer from which the memory is exported. 1813 * Relevant only if virtual memory is supported and phys_pg_pack is being used. 1814 * device_phys_addr: physical address of the device's memory. Relevant only 1815 * if phys_pg_pack is NULL (dma-buf was exported from address). 1816 * The total size can be taken from the dmabuf object. 1817 */ 1818 struct hl_dmabuf_priv { 1819 struct dma_buf *dmabuf; 1820 struct hl_ctx *ctx; 1821 struct hl_vm_phys_pg_pack *phys_pg_pack; 1822 struct hl_vm_hash_node *memhash_hnode; 1823 u64 offset; 1824 u64 device_phys_addr; 1825 }; 1826 1827 #define HL_CS_OUTCOME_HISTORY_LEN 256 1828 1829 /** 1830 * struct hl_cs_outcome - represents a single completed CS outcome 1831 * @list_link: link to either container's used list or free list 1832 * @map_link: list to the container hash map 1833 * @ts: completion ts 1834 * @seq: the original cs sequence 1835 * @error: error code cs completed with, if any 1836 */ 1837 struct hl_cs_outcome { 1838 struct list_head list_link; 1839 struct hlist_node map_link; 1840 ktime_t ts; 1841 u64 seq; 1842 int error; 1843 }; 1844 1845 /** 1846 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1847 * @outcome_map: index of completed CS searchable by sequence number 1848 * @used_list: list of outcome objects currently in use 1849 * @free_list: list of outcome objects currently not in use 1850 * @nodes_pool: a static pool of pre-allocated outcome objects 1851 * @db_lock: any operation on the store must take this lock 1852 */ 1853 struct hl_cs_outcome_store { 1854 DECLARE_HASHTABLE(outcome_map, 8); 1855 struct list_head used_list; 1856 struct list_head free_list; 1857 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1858 spinlock_t db_lock; 1859 }; 1860 1861 /** 1862 * struct hl_ctx - user/kernel context. 1863 * @mem_hash: holds mapping from virtual address to virtual memory area 1864 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1865 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1866 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1867 * MMU-hop-page physical address to its host-resident 1868 * pgt_info structure. 1869 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1870 * @hdev: pointer to the device structure. 1871 * @refcount: reference counter for the context. Context is released only when 1872 * this hits 0. It is incremented on CS and CS_WAIT. 1873 * @cs_pending: array of hl fence objects representing pending CS. 1874 * @outcome_store: storage data structure used to remember outcomes of completed 1875 * command submissions for a long time after CS id wraparound. 1876 * @va_range: holds available virtual addresses for host and dram mappings. 1877 * @mem_hash_lock: protects the mem_hash. 1878 * @hw_block_list_lock: protects the HW block memory list. 1879 * @ts_reg_lock: timestamp registration ioctls lock. 1880 * @debugfs_list: node in debugfs list of contexts. 1881 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1882 * @cs_counters: context command submission counters. 1883 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1884 * device's MMU. 1885 * @sig_mgr: encaps signals handle manager. 1886 * @cb_va_pool_base: the base address for the device VA pool 1887 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1888 * to user so user could inquire about CS. It is used as 1889 * index to cs_pending array. 1890 * @dram_default_hops: array that holds all hops addresses needed for default 1891 * DRAM mapping. 1892 * @cs_lock: spinlock to protect cs_sequence. 1893 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1894 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1895 * context from running the context switch phase. 1896 * Only a single thread should run it. 1897 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1898 * the context switch phase from moving to their 1899 * execution phase before the context switch phase 1900 * has finished. 1901 * @asid: context's unique address space ID in the device's MMU. 1902 * @handle: context's opaque handle for user 1903 */ 1904 struct hl_ctx { 1905 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1906 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1907 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1908 struct hl_fpriv *hpriv; 1909 struct hl_device *hdev; 1910 struct kref refcount; 1911 struct hl_fence **cs_pending; 1912 struct hl_cs_outcome_store outcome_store; 1913 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1914 struct mutex mem_hash_lock; 1915 struct mutex hw_block_list_lock; 1916 struct mutex ts_reg_lock; 1917 struct list_head debugfs_list; 1918 struct list_head hw_block_mem_list; 1919 struct hl_cs_counters_atomic cs_counters; 1920 struct gen_pool *cb_va_pool; 1921 struct hl_encaps_signals_mgr sig_mgr; 1922 u64 cb_va_pool_base; 1923 u64 cs_sequence; 1924 u64 *dram_default_hops; 1925 spinlock_t cs_lock; 1926 atomic64_t dram_phys_mem; 1927 atomic_t thread_ctx_switch_token; 1928 u32 thread_ctx_switch_wait_token; 1929 u32 asid; 1930 u32 handle; 1931 }; 1932 1933 /** 1934 * struct hl_ctx_mgr - for handling multiple contexts. 1935 * @lock: protects ctx_handles. 1936 * @handles: idr to hold all ctx handles. 1937 */ 1938 struct hl_ctx_mgr { 1939 struct mutex lock; 1940 struct idr handles; 1941 }; 1942 1943 1944 /* 1945 * COMMAND SUBMISSIONS 1946 */ 1947 1948 /** 1949 * struct hl_userptr - memory mapping chunk information 1950 * @vm_type: type of the VM. 1951 * @job_node: linked-list node for hanging the object on the Job's list. 1952 * @pages: pointer to struct page array 1953 * @npages: size of @pages array 1954 * @sgt: pointer to the scatter-gather table that holds the pages. 1955 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1956 * @debugfs_list: node in debugfs list of command submissions. 1957 * @pid: the pid of the user process owning the memory 1958 * @addr: user-space virtual address of the start of the memory area. 1959 * @size: size of the memory area to pin & map. 1960 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1961 */ 1962 struct hl_userptr { 1963 enum vm_type vm_type; /* must be first */ 1964 struct list_head job_node; 1965 struct page **pages; 1966 unsigned int npages; 1967 struct sg_table *sgt; 1968 enum dma_data_direction dir; 1969 struct list_head debugfs_list; 1970 pid_t pid; 1971 u64 addr; 1972 u64 size; 1973 u8 dma_mapped; 1974 }; 1975 1976 /** 1977 * struct hl_cs - command submission. 1978 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1979 * @ctx: the context this CS belongs to. 1980 * @job_list: list of the CS's jobs in the various queues. 1981 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1982 * @refcount: reference counter for usage of the CS. 1983 * @fence: pointer to the fence object of this CS. 1984 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1985 * CS only). 1986 * @finish_work: workqueue object to run when CS is completed by H/W. 1987 * @work_tdr: delayed work node for TDR. 1988 * @mirror_node : node in device mirror list of command submissions. 1989 * @staged_cs_node: node in the staged cs list. 1990 * @debugfs_list: node in debugfs list of command submissions. 1991 * @encaps_sig_hdl: holds the encaps signals handle. 1992 * @sequence: the sequence number of this CS. 1993 * @staged_sequence: the sequence of the staged submission this CS is part of, 1994 * relevant only if staged_cs is set. 1995 * @timeout_jiffies: cs timeout in jiffies. 1996 * @submission_time_jiffies: submission time of the cs 1997 * @type: CS_TYPE_*. 1998 * @jobs_cnt: counter of submitted jobs on all queues. 1999 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 2000 * @completion_timestamp: timestamp of the last completed cs job. 2001 * @sob_addr_offset: sob offset from the configuration base address. 2002 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 2003 * cs with encaps signals. 2004 * @submitted: true if CS was submitted to H/W. 2005 * @completed: true if CS was completed by device. 2006 * @timedout : true if CS was timedout. 2007 * @tdr_active: true if TDR was activated for this CS (to prevent 2008 * double TDR activation). 2009 * @aborted: true if CS was aborted due to some device error. 2010 * @timestamp: true if a timestamp must be captured upon completion. 2011 * @staged_last: true if this is the last staged CS and needs completion. 2012 * @staged_first: true if this is the first staged CS and we need to receive 2013 * timeout for this CS. 2014 * @staged_cs: true if this CS is part of a staged submission. 2015 * @skip_reset_on_timeout: true if we shall not reset the device in case 2016 * timeout occurs (debug scenario). 2017 * @encaps_signals: true if this CS has encaps reserved signals. 2018 */ 2019 struct hl_cs { 2020 u16 *jobs_in_queue_cnt; 2021 struct hl_ctx *ctx; 2022 struct list_head job_list; 2023 spinlock_t job_lock; 2024 struct kref refcount; 2025 struct hl_fence *fence; 2026 struct hl_fence *signal_fence; 2027 struct work_struct finish_work; 2028 struct delayed_work work_tdr; 2029 struct list_head mirror_node; 2030 struct list_head staged_cs_node; 2031 struct list_head debugfs_list; 2032 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2033 ktime_t completion_timestamp; 2034 u64 sequence; 2035 u64 staged_sequence; 2036 u64 timeout_jiffies; 2037 u64 submission_time_jiffies; 2038 enum hl_cs_type type; 2039 u32 jobs_cnt; 2040 u32 encaps_sig_hdl_id; 2041 u32 sob_addr_offset; 2042 u16 initial_sob_count; 2043 u8 submitted; 2044 u8 completed; 2045 u8 timedout; 2046 u8 tdr_active; 2047 u8 aborted; 2048 u8 timestamp; 2049 u8 staged_last; 2050 u8 staged_first; 2051 u8 staged_cs; 2052 u8 skip_reset_on_timeout; 2053 u8 encaps_signals; 2054 }; 2055 2056 /** 2057 * struct hl_cs_job - command submission job. 2058 * @cs_node: the node to hang on the CS jobs list. 2059 * @cs: the CS this job belongs to. 2060 * @user_cb: the CB we got from the user. 2061 * @patched_cb: in case of patching, this is internal CB which is submitted on 2062 * the queue instead of the CB we got from the IOCTL. 2063 * @finish_work: workqueue object to run when job is completed. 2064 * @userptr_list: linked-list of userptr mappings that belong to this job and 2065 * wait for completion. 2066 * @debugfs_list: node in debugfs list of command submission jobs. 2067 * @refcount: reference counter for usage of the CS job. 2068 * @queue_type: the type of the H/W queue this job is submitted to. 2069 * @timestamp: timestamp upon job completion 2070 * @id: the id of this job inside a CS. 2071 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2072 * @user_cb_size: the actual size of the CB we got from the user. 2073 * @job_cb_size: the actual size of the CB that we put on the queue. 2074 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2075 * to wait on part of the reserved signals. 2076 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2077 * handle to a kernel-allocated CB object, false 2078 * otherwise (SRAM/DRAM/host address). 2079 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2080 * info is needed later, when adding the 2xMSG_PROT at the 2081 * end of the JOB, to know which barriers to put in the 2082 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2083 * have streams so the engine can't be busy by another 2084 * stream. 2085 */ 2086 struct hl_cs_job { 2087 struct list_head cs_node; 2088 struct hl_cs *cs; 2089 struct hl_cb *user_cb; 2090 struct hl_cb *patched_cb; 2091 struct work_struct finish_work; 2092 struct list_head userptr_list; 2093 struct list_head debugfs_list; 2094 struct kref refcount; 2095 enum hl_queue_type queue_type; 2096 ktime_t timestamp; 2097 u32 id; 2098 u32 hw_queue_id; 2099 u32 user_cb_size; 2100 u32 job_cb_size; 2101 u32 encaps_sig_wait_offset; 2102 u8 is_kernel_allocated_cb; 2103 u8 contains_dma_pkt; 2104 }; 2105 2106 /** 2107 * struct hl_cs_parser - command submission parser properties. 2108 * @user_cb: the CB we got from the user. 2109 * @patched_cb: in case of patching, this is internal CB which is submitted on 2110 * the queue instead of the CB we got from the IOCTL. 2111 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2112 * job and wait for completion. 2113 * @cs_sequence: the sequence number of the related CS. 2114 * @queue_type: the type of the H/W queue this job is submitted to. 2115 * @ctx_id: the ID of the context the related CS belongs to. 2116 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2117 * @user_cb_size: the actual size of the CB we got from the user. 2118 * @patched_cb_size: the size of the CB after parsing. 2119 * @job_id: the id of the related job inside the related CS. 2120 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2121 * handle to a kernel-allocated CB object, false 2122 * otherwise (SRAM/DRAM/host address). 2123 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2124 * info is needed later, when adding the 2xMSG_PROT at the 2125 * end of the JOB, to know which barriers to put in the 2126 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2127 * have streams so the engine can't be busy by another 2128 * stream. 2129 * @completion: true if we need completion for this CS. 2130 */ 2131 struct hl_cs_parser { 2132 struct hl_cb *user_cb; 2133 struct hl_cb *patched_cb; 2134 struct list_head *job_userptr_list; 2135 u64 cs_sequence; 2136 enum hl_queue_type queue_type; 2137 u32 ctx_id; 2138 u32 hw_queue_id; 2139 u32 user_cb_size; 2140 u32 patched_cb_size; 2141 u8 job_id; 2142 u8 is_kernel_allocated_cb; 2143 u8 contains_dma_pkt; 2144 u8 completion; 2145 }; 2146 2147 /* 2148 * MEMORY STRUCTURE 2149 */ 2150 2151 /** 2152 * struct hl_vm_hash_node - hash element from virtual address to virtual 2153 * memory area descriptor (hl_vm_phys_pg_list or 2154 * hl_userptr). 2155 * @node: node to hang on the hash table in context object. 2156 * @vaddr: key virtual address. 2157 * @handle: memory handle for device memory allocation. 2158 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2159 * @export_cnt: number of exports from within the VA block. 2160 */ 2161 struct hl_vm_hash_node { 2162 struct hlist_node node; 2163 u64 vaddr; 2164 u64 handle; 2165 void *ptr; 2166 int export_cnt; 2167 }; 2168 2169 /** 2170 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2171 * HW block id. 2172 * @node: node to hang on the list in context object. 2173 * @ctx: the context this node belongs to. 2174 * @vaddr: virtual address of the HW block. 2175 * @block_size: size of the block. 2176 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2177 * @id: HW block id (handle). 2178 */ 2179 struct hl_vm_hw_block_list_node { 2180 struct list_head node; 2181 struct hl_ctx *ctx; 2182 unsigned long vaddr; 2183 u32 block_size; 2184 u32 mapped_size; 2185 u32 id; 2186 }; 2187 2188 /** 2189 * struct hl_vm_phys_pg_pack - physical page pack. 2190 * @vm_type: describes the type of the virtual area descriptor. 2191 * @pages: the physical page array. 2192 * @npages: num physical pages in the pack. 2193 * @total_size: total size of all the pages in this list. 2194 * @node: used to attach to deletion list that is used when all the allocations are cleared 2195 * at the teardown of the context. 2196 * @mapping_cnt: number of shared mappings. 2197 * @asid: the context related to this list. 2198 * @page_size: size of each page in the pack. 2199 * @flags: HL_MEM_* flags related to this list. 2200 * @handle: the provided handle related to this list. 2201 * @offset: offset from the first page. 2202 * @contiguous: is contiguous physical memory. 2203 * @created_from_userptr: is product of host virtual address. 2204 */ 2205 struct hl_vm_phys_pg_pack { 2206 enum vm_type vm_type; /* must be first */ 2207 u64 *pages; 2208 u64 npages; 2209 u64 total_size; 2210 struct list_head node; 2211 atomic_t mapping_cnt; 2212 u32 asid; 2213 u32 page_size; 2214 u32 flags; 2215 u32 handle; 2216 u32 offset; 2217 u8 contiguous; 2218 u8 created_from_userptr; 2219 }; 2220 2221 /** 2222 * struct hl_vm_va_block - virtual range block information. 2223 * @node: node to hang on the virtual range list in context object. 2224 * @start: virtual range start address. 2225 * @end: virtual range end address. 2226 * @size: virtual range size. 2227 */ 2228 struct hl_vm_va_block { 2229 struct list_head node; 2230 u64 start; 2231 u64 end; 2232 u64 size; 2233 }; 2234 2235 /** 2236 * struct hl_vm - virtual memory manager for MMU. 2237 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2238 * @dram_pg_pool_refcount: reference counter for the pool usage. 2239 * @idr_lock: protects the phys_pg_list_handles. 2240 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2241 * @init_done: whether initialization was done. We need this because VM 2242 * initialization might be skipped during device initialization. 2243 */ 2244 struct hl_vm { 2245 struct gen_pool *dram_pg_pool; 2246 struct kref dram_pg_pool_refcount; 2247 spinlock_t idr_lock; 2248 struct idr phys_pg_pack_handles; 2249 u8 init_done; 2250 }; 2251 2252 2253 /* 2254 * DEBUG, PROFILING STRUCTURE 2255 */ 2256 2257 /** 2258 * struct hl_debug_params - Coresight debug parameters. 2259 * @input: pointer to component specific input parameters. 2260 * @output: pointer to component specific output parameters. 2261 * @output_size: size of output buffer. 2262 * @reg_idx: relevant register ID. 2263 * @op: component operation to execute. 2264 * @enable: true if to enable component debugging, false otherwise. 2265 */ 2266 struct hl_debug_params { 2267 void *input; 2268 void *output; 2269 u32 output_size; 2270 u32 reg_idx; 2271 u32 op; 2272 bool enable; 2273 }; 2274 2275 /** 2276 * struct hl_notifier_event - holds the notifier data structure 2277 * @eventfd: the event file descriptor to raise the notifications 2278 * @lock: mutex lock to protect the notifier data flows 2279 * @events_mask: indicates the bitmap events 2280 */ 2281 struct hl_notifier_event { 2282 struct eventfd_ctx *eventfd; 2283 struct mutex lock; 2284 u64 events_mask; 2285 }; 2286 2287 /* 2288 * FILE PRIVATE STRUCTURE 2289 */ 2290 2291 /** 2292 * struct hl_fpriv - process information stored in FD private data. 2293 * @hdev: habanalabs device structure. 2294 * @file_priv: pointer to the DRM file private data structure. 2295 * @taskpid: current process ID. 2296 * @ctx: current executing context. TODO: remove for multiple ctx per process 2297 * @ctx_mgr: context manager to handle multiple context for this FD. 2298 * @mem_mgr: manager descriptor for memory exportable via mmap 2299 * @notifier_event: notifier eventfd towards user process 2300 * @debugfs_list: list of relevant ASIC debugfs. 2301 * @dev_node: node in the device list of file private data 2302 * @refcount: number of related contexts. 2303 * @restore_phase_mutex: lock for context switch and restore phase. 2304 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2305 * ctx per process. 2306 */ 2307 struct hl_fpriv { 2308 struct hl_device *hdev; 2309 struct drm_file *file_priv; 2310 struct pid *taskpid; 2311 struct hl_ctx *ctx; 2312 struct hl_ctx_mgr ctx_mgr; 2313 struct hl_mem_mgr mem_mgr; 2314 struct hl_notifier_event notifier_event; 2315 struct list_head debugfs_list; 2316 struct list_head dev_node; 2317 struct kref refcount; 2318 struct mutex restore_phase_mutex; 2319 struct mutex ctx_lock; 2320 }; 2321 2322 2323 /* 2324 * DebugFS 2325 */ 2326 2327 /** 2328 * struct hl_info_list - debugfs file ops. 2329 * @name: file name. 2330 * @show: function to output information. 2331 * @write: function to write to the file. 2332 */ 2333 struct hl_info_list { 2334 const char *name; 2335 int (*show)(struct seq_file *s, void *data); 2336 ssize_t (*write)(struct file *file, const char __user *buf, 2337 size_t count, loff_t *f_pos); 2338 }; 2339 2340 /** 2341 * struct hl_debugfs_entry - debugfs dentry wrapper. 2342 * @info_ent: dentry related ops. 2343 * @dev_entry: ASIC specific debugfs manager. 2344 */ 2345 struct hl_debugfs_entry { 2346 const struct hl_info_list *info_ent; 2347 struct hl_dbg_device_entry *dev_entry; 2348 }; 2349 2350 /** 2351 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2352 * @root: root dentry. 2353 * @hdev: habanalabs device structure. 2354 * @entry_arr: array of available hl_debugfs_entry. 2355 * @file_list: list of available debugfs files. 2356 * @file_mutex: protects file_list. 2357 * @cb_list: list of available CBs. 2358 * @cb_spinlock: protects cb_list. 2359 * @cs_list: list of available CSs. 2360 * @cs_spinlock: protects cs_list. 2361 * @cs_job_list: list of available CB jobs. 2362 * @cs_job_spinlock: protects cs_job_list. 2363 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2364 * @userptr_spinlock: protects userptr_list. 2365 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2366 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. 2367 * @data_dma_blob_desc: data DMA descriptor of blob. 2368 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2369 * @state_dump: data of the system states in case of a bad cs. 2370 * @state_dump_sem: protects state_dump. 2371 * @addr: next address to read/write from/to in read/write32. 2372 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2373 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2374 * @userptr_lookup: the target user ptr to look up for on demand. 2375 * @mmu_asid: ASID to use while translating in mmu_show. 2376 * @state_dump_head: index of the latest state dump 2377 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2378 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2379 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2380 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2381 */ 2382 struct hl_dbg_device_entry { 2383 struct dentry *root; 2384 struct hl_device *hdev; 2385 struct hl_debugfs_entry *entry_arr; 2386 struct list_head file_list; 2387 struct mutex file_mutex; 2388 struct list_head cb_list; 2389 spinlock_t cb_spinlock; 2390 struct list_head cs_list; 2391 spinlock_t cs_spinlock; 2392 struct list_head cs_job_list; 2393 spinlock_t cs_job_spinlock; 2394 struct list_head userptr_list; 2395 spinlock_t userptr_spinlock; 2396 struct list_head ctx_mem_hash_list; 2397 struct mutex ctx_mem_hash_mutex; 2398 struct debugfs_blob_wrapper data_dma_blob_desc; 2399 struct debugfs_blob_wrapper mon_dump_blob_desc; 2400 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2401 struct rw_semaphore state_dump_sem; 2402 u64 addr; 2403 u64 mmu_addr; 2404 u64 mmu_cap_mask; 2405 u64 userptr_lookup; 2406 u32 mmu_asid; 2407 u32 state_dump_head; 2408 u8 i2c_bus; 2409 u8 i2c_addr; 2410 u8 i2c_reg; 2411 u8 i2c_len; 2412 }; 2413 2414 /** 2415 * struct hl_hw_obj_name_entry - single hw object name, member of 2416 * hl_state_dump_specs 2417 * @node: link to the containing hash table 2418 * @name: hw object name 2419 * @id: object identifier 2420 */ 2421 struct hl_hw_obj_name_entry { 2422 struct hlist_node node; 2423 const char *name; 2424 u32 id; 2425 }; 2426 2427 enum hl_state_dump_specs_props { 2428 SP_SYNC_OBJ_BASE_ADDR, 2429 SP_NEXT_SYNC_OBJ_ADDR, 2430 SP_SYNC_OBJ_AMOUNT, 2431 SP_MON_OBJ_WR_ADDR_LOW, 2432 SP_MON_OBJ_WR_ADDR_HIGH, 2433 SP_MON_OBJ_WR_DATA, 2434 SP_MON_OBJ_ARM_DATA, 2435 SP_MON_OBJ_STATUS, 2436 SP_MONITORS_AMOUNT, 2437 SP_TPC0_CMDQ, 2438 SP_TPC0_CFG_SO, 2439 SP_NEXT_TPC, 2440 SP_MME_CMDQ, 2441 SP_MME_CFG_SO, 2442 SP_NEXT_MME, 2443 SP_DMA_CMDQ, 2444 SP_DMA_CFG_SO, 2445 SP_DMA_QUEUES_OFFSET, 2446 SP_NUM_OF_MME_ENGINES, 2447 SP_SUB_MME_ENG_NUM, 2448 SP_NUM_OF_DMA_ENGINES, 2449 SP_NUM_OF_TPC_ENGINES, 2450 SP_ENGINE_NUM_OF_QUEUES, 2451 SP_ENGINE_NUM_OF_STREAMS, 2452 SP_ENGINE_NUM_OF_FENCES, 2453 SP_FENCE0_CNT_OFFSET, 2454 SP_FENCE0_RDATA_OFFSET, 2455 SP_CP_STS_OFFSET, 2456 SP_NUM_CORES, 2457 2458 SP_MAX 2459 }; 2460 2461 enum hl_sync_engine_type { 2462 ENGINE_TPC, 2463 ENGINE_DMA, 2464 ENGINE_MME, 2465 }; 2466 2467 /** 2468 * struct hl_mon_state_dump - represents a state dump of a single monitor 2469 * @id: monitor id 2470 * @wr_addr_low: address monitor will write to, low bits 2471 * @wr_addr_high: address monitor will write to, high bits 2472 * @wr_data: data monitor will write 2473 * @arm_data: register value containing monitor configuration 2474 * @status: monitor status 2475 */ 2476 struct hl_mon_state_dump { 2477 u32 id; 2478 u32 wr_addr_low; 2479 u32 wr_addr_high; 2480 u32 wr_data; 2481 u32 arm_data; 2482 u32 status; 2483 }; 2484 2485 /** 2486 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2487 * @engine_type: type of the engine 2488 * @engine_id: id of the engine 2489 * @sync_id: id of the sync object 2490 */ 2491 struct hl_sync_to_engine_map_entry { 2492 struct hlist_node node; 2493 enum hl_sync_engine_type engine_type; 2494 u32 engine_id; 2495 u32 sync_id; 2496 }; 2497 2498 /** 2499 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2500 * @tb: hash table containing the mapping, each element is of type 2501 * struct hl_sync_to_engine_map_entry 2502 */ 2503 struct hl_sync_to_engine_map { 2504 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2505 }; 2506 2507 /** 2508 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2509 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2510 * @print_single_monitor: format monitor data as string 2511 * @monitor_valid: return true if given monitor dump is valid 2512 * @print_fences_single_engine: format fences data as string 2513 */ 2514 struct hl_state_dump_specs_funcs { 2515 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2516 struct hl_sync_to_engine_map *map); 2517 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2518 struct hl_device *hdev, 2519 struct hl_mon_state_dump *mon); 2520 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2521 int (*print_fences_single_engine)(struct hl_device *hdev, 2522 u64 base_offset, 2523 u64 status_base_offset, 2524 enum hl_sync_engine_type engine_type, 2525 u32 engine_id, char **buf, 2526 size_t *size, size_t *offset); 2527 }; 2528 2529 /** 2530 * struct hl_state_dump_specs - defines ASIC known hw objects names 2531 * @so_id_to_str_tb: sync objects names index table 2532 * @monitor_id_to_str_tb: monitors names index table 2533 * @funcs: virtual functions used for state dump 2534 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2535 * @props: pointer to a per asic const props array required for state dump 2536 */ 2537 struct hl_state_dump_specs { 2538 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2539 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2540 struct hl_state_dump_specs_funcs funcs; 2541 const char * const *sync_namager_names; 2542 s64 *props; 2543 }; 2544 2545 2546 /* 2547 * DEVICES 2548 */ 2549 2550 #define HL_STR_MAX 32 2551 2552 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2553 2554 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2555 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2556 */ 2557 #define HL_MAX_MINORS 256 2558 2559 /* 2560 * Registers read & write functions. 2561 */ 2562 2563 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2564 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2565 2566 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2567 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2568 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2569 hdev->asic_funcs->rreg(hdev, (reg))) 2570 2571 #define WREG32_P(reg, val, mask) \ 2572 do { \ 2573 u32 tmp_ = RREG32(reg); \ 2574 tmp_ &= (mask); \ 2575 tmp_ |= ((val) & ~(mask)); \ 2576 WREG32(reg, tmp_); \ 2577 } while (0) 2578 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2579 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2580 2581 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2582 2583 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2584 2585 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2586 2587 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2588 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2589 #define WREG32_FIELD(reg, offset, field, val) \ 2590 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2591 ~REG_FIELD_MASK(reg, field)) | \ 2592 (val) << REG_FIELD_SHIFT(reg, field)) 2593 2594 /* Timeout should be longer when working with simulator but cap the 2595 * increased timeout to some maximum 2596 */ 2597 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2598 ({ \ 2599 ktime_t __timeout; \ 2600 u32 __elbi_read; \ 2601 int __rc = 0; \ 2602 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2603 might_sleep_if(sleep_us); \ 2604 for (;;) { \ 2605 if (elbi) { \ 2606 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2607 if (__rc) \ 2608 break; \ 2609 (val) = __elbi_read; \ 2610 } else {\ 2611 (val) = RREG32(lower_32_bits(addr)); \ 2612 } \ 2613 if (cond) \ 2614 break; \ 2615 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2616 if (elbi) { \ 2617 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2618 if (__rc) \ 2619 break; \ 2620 (val) = __elbi_read; \ 2621 } else {\ 2622 (val) = RREG32(lower_32_bits(addr)); \ 2623 } \ 2624 break; \ 2625 } \ 2626 if (sleep_us) \ 2627 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2628 } \ 2629 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2630 }) 2631 2632 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2633 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2634 2635 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2636 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2637 2638 /* 2639 * poll array of register addresses. 2640 * condition is satisfied if all registers values match the expected value. 2641 * once some register in the array satisfies the condition it will not be polled again, 2642 * this is done both for efficiency and due to some registers are "clear on read". 2643 * TODO: use read from PCI bar in other places in the code (SW-91406) 2644 */ 2645 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2646 timeout_us, elbi) \ 2647 ({ \ 2648 ktime_t __timeout; \ 2649 u64 __elem_bitmask; \ 2650 u32 __read_val; \ 2651 u8 __arr_idx; \ 2652 int __rc = 0; \ 2653 \ 2654 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2655 might_sleep_if(sleep_us); \ 2656 if (arr_size >= 64) \ 2657 __rc = -EINVAL; \ 2658 else \ 2659 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2660 for (;;) { \ 2661 if (__rc) \ 2662 break; \ 2663 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2664 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2665 continue; \ 2666 if (elbi) { \ 2667 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2668 if (__rc) \ 2669 break; \ 2670 } else { \ 2671 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2672 } \ 2673 if (__read_val == (expected_val)) \ 2674 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2675 } \ 2676 if (__rc || (__elem_bitmask == 0)) \ 2677 break; \ 2678 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2679 break; \ 2680 if (sleep_us) \ 2681 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2682 } \ 2683 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2684 }) 2685 2686 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2687 timeout_us) \ 2688 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2689 timeout_us, false) 2690 2691 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2692 timeout_us) \ 2693 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2694 timeout_us, true) 2695 2696 /* 2697 * address in this macro points always to a memory location in the 2698 * host's (server's) memory. That location is updated asynchronously 2699 * either by the direct access of the device or by another core. 2700 * 2701 * To work both in LE and BE architectures, we need to distinguish between the 2702 * two states (device or another core updates the memory location). Therefore, 2703 * if mem_written_by_device is true, the host memory being polled will be 2704 * updated directly by the device. If false, the host memory being polled will 2705 * be updated by host CPU. Required so host knows whether or not the memory 2706 * might need to be byte-swapped before returning value to caller. 2707 */ 2708 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2709 mem_written_by_device) \ 2710 ({ \ 2711 ktime_t __timeout; \ 2712 \ 2713 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2714 might_sleep_if(sleep_us); \ 2715 for (;;) { \ 2716 /* Verify we read updates done by other cores or by device */ \ 2717 mb(); \ 2718 (val) = *((u32 *)(addr)); \ 2719 if (mem_written_by_device) \ 2720 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2721 if (cond) \ 2722 break; \ 2723 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2724 (val) = *((u32 *)(addr)); \ 2725 if (mem_written_by_device) \ 2726 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2727 break; \ 2728 } \ 2729 if (sleep_us) \ 2730 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2731 } \ 2732 (cond) ? 0 : -ETIMEDOUT; \ 2733 }) 2734 2735 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2736 ({ \ 2737 struct user_mapped_block *p = blk; \ 2738 \ 2739 p->address = base; \ 2740 p->size = sz; \ 2741 }) 2742 2743 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2744 ({ \ 2745 usr_intr.hdev = hdev; \ 2746 usr_intr.interrupt_id = intr_id; \ 2747 usr_intr.type = intr_type; \ 2748 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2749 spin_lock_init(&usr_intr.wait_list_lock); \ 2750 INIT_LIST_HEAD(&usr_intr.ts_list_head); \ 2751 spin_lock_init(&usr_intr.ts_list_lock); \ 2752 }) 2753 2754 struct hwmon_chip_info; 2755 2756 /** 2757 * struct hl_device_reset_work - reset work wrapper. 2758 * @reset_work: reset work to be done. 2759 * @hdev: habanalabs device structure. 2760 * @flags: reset flags. 2761 */ 2762 struct hl_device_reset_work { 2763 struct delayed_work reset_work; 2764 struct hl_device *hdev; 2765 u32 flags; 2766 }; 2767 2768 /** 2769 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2770 * page-table internal information. 2771 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2772 * allocating hops. 2773 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2774 */ 2775 struct hl_mmu_hr_priv { 2776 struct gen_pool *mmu_pgt_pool; 2777 struct pgt_info *mmu_asid_hop0; 2778 }; 2779 2780 /** 2781 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2782 * page-table internal information. 2783 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2784 * @mmu_shadow_hop0: shadow array of hop0 tables. 2785 */ 2786 struct hl_mmu_dr_priv { 2787 struct gen_pool *mmu_pgt_pool; 2788 void *mmu_shadow_hop0; 2789 }; 2790 2791 /** 2792 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2793 * @dr: information on the device-resident MMU, when exists. 2794 * @hr: information on the host-resident MMU, when exists. 2795 */ 2796 struct hl_mmu_priv { 2797 struct hl_mmu_dr_priv dr; 2798 struct hl_mmu_hr_priv hr; 2799 }; 2800 2801 /** 2802 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2803 * that was created in order to translate a virtual address to a 2804 * physical one. 2805 * @hop_addr: The address of the hop. 2806 * @hop_pte_addr: The address of the hop entry. 2807 * @hop_pte_val: The value in the hop entry. 2808 */ 2809 struct hl_mmu_per_hop_info { 2810 u64 hop_addr; 2811 u64 hop_pte_addr; 2812 u64 hop_pte_val; 2813 }; 2814 2815 /** 2816 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2817 * hop-entries that were created in order to translate a virtual address to a 2818 * physical one. 2819 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2820 * address replaces the original virtual-address when mapped 2821 * in the MMU tables. 2822 * @unscrambled_paddr: The un-scrambled physical address. 2823 * @hop_info: Array holding the per-hop information used for the translation. 2824 * @used_hops: The number of hops used for the translation. 2825 * @range_type: virtual address range type. 2826 */ 2827 struct hl_mmu_hop_info { 2828 u64 scrambled_vaddr; 2829 u64 unscrambled_paddr; 2830 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2831 u32 used_hops; 2832 enum hl_va_range_type range_type; 2833 }; 2834 2835 /** 2836 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2837 * @get_hop0_pgt_info: get page table info structure for HOP0. 2838 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2839 * @add_pgt_info: add page table info structure to hash. 2840 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2841 */ 2842 struct hl_hr_mmu_funcs { 2843 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2844 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2845 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2846 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2847 struct hl_mmu_hop_info *hops, 2848 u64 virt_addr, bool *is_huge); 2849 }; 2850 2851 /** 2852 * struct hl_mmu_funcs - Device related MMU functions. 2853 * @init: initialize the MMU module. 2854 * @fini: release the MMU module. 2855 * @ctx_init: Initialize a context for using the MMU module. 2856 * @ctx_fini: disable a ctx from using the mmu module. 2857 * @map: maps a virtual address to physical address for a context. 2858 * @unmap: unmap a virtual address of a context. 2859 * @flush: flush all writes from all cores to reach device MMU. 2860 * @swap_out: marks all mapping of the given context as swapped out. 2861 * @swap_in: marks all mapping of the given context as swapped in. 2862 * @get_tlb_info: returns the list of hops and hop-entries used that were 2863 * created in order to translate the giver virtual address to a 2864 * physical one. 2865 * @hr_funcs: functions specific to host resident MMU. 2866 */ 2867 struct hl_mmu_funcs { 2868 int (*init)(struct hl_device *hdev); 2869 void (*fini)(struct hl_device *hdev); 2870 int (*ctx_init)(struct hl_ctx *ctx); 2871 void (*ctx_fini)(struct hl_ctx *ctx); 2872 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2873 bool is_dram_addr); 2874 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2875 void (*flush)(struct hl_ctx *ctx); 2876 void (*swap_out)(struct hl_ctx *ctx); 2877 void (*swap_in)(struct hl_ctx *ctx); 2878 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2879 struct hl_hr_mmu_funcs hr_funcs; 2880 }; 2881 2882 /** 2883 * struct hl_prefetch_work - prefetch work structure handler 2884 * @prefetch_work: actual work struct. 2885 * @ctx: compute context. 2886 * @va: virtual address to pre-fetch. 2887 * @size: pre-fetch size. 2888 * @flags: operation flags. 2889 * @asid: ASID for maintenance operation. 2890 */ 2891 struct hl_prefetch_work { 2892 struct work_struct prefetch_work; 2893 struct hl_ctx *ctx; 2894 u64 va; 2895 u64 size; 2896 u32 flags; 2897 u32 asid; 2898 }; 2899 2900 /* 2901 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2902 * parallel 2903 */ 2904 #define MULTI_CS_MAX_USER_CTX 2 2905 2906 /** 2907 * struct multi_cs_completion - multi CS wait completion. 2908 * @completion: completion of any of the CS in the list 2909 * @lock: spinlock for the completion structure 2910 * @timestamp: timestamp for the multi-CS completion 2911 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2912 * is waiting 2913 * @used: 1 if in use, otherwise 0 2914 */ 2915 struct multi_cs_completion { 2916 struct completion completion; 2917 spinlock_t lock; 2918 s64 timestamp; 2919 u32 stream_master_qid_map; 2920 u8 used; 2921 }; 2922 2923 /** 2924 * struct multi_cs_data - internal data for multi CS call 2925 * @ctx: pointer to the context structure 2926 * @fence_arr: array of fences of all CSs 2927 * @seq_arr: array of CS sequence numbers 2928 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2929 * @timestamp: timestamp of first completed CS 2930 * @wait_status: wait for CS status 2931 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2932 * @arr_len: fence_arr and seq_arr array length 2933 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2934 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2935 */ 2936 struct multi_cs_data { 2937 struct hl_ctx *ctx; 2938 struct hl_fence **fence_arr; 2939 u64 *seq_arr; 2940 s64 timeout_jiffies; 2941 s64 timestamp; 2942 long wait_status; 2943 u32 completion_bitmap; 2944 u8 arr_len; 2945 u8 gone_cs; 2946 u8 update_ts; 2947 }; 2948 2949 /** 2950 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2951 * @start: timestamp taken when 'start' event is received in driver 2952 * @end: timestamp taken when 'end' event is received in driver 2953 */ 2954 struct hl_clk_throttle_timestamp { 2955 ktime_t start; 2956 ktime_t end; 2957 }; 2958 2959 /** 2960 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2961 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2962 * index 1 refers to THERMAL 2963 * @lock: protects this structure as it can be accessed from both event queue 2964 * context and info_ioctl context 2965 * @current_reason: bitmask represents the current clk throttling reasons 2966 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2967 */ 2968 struct hl_clk_throttle { 2969 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2970 struct mutex lock; 2971 u32 current_reason; 2972 u32 aggregated_reason; 2973 }; 2974 2975 /** 2976 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2977 * @address: physical HW block address 2978 * @size: allowed size for mmap 2979 */ 2980 struct user_mapped_block { 2981 u32 address; 2982 u32 size; 2983 }; 2984 2985 /** 2986 * struct cs_timeout_info - info of last CS timeout occurred. 2987 * @timestamp: CS timeout timestamp. 2988 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2989 * so the first (root cause) CS timeout will not be overwritten. 2990 * @seq: CS timeout sequence number. 2991 */ 2992 struct cs_timeout_info { 2993 ktime_t timestamp; 2994 atomic_t write_enable; 2995 u64 seq; 2996 }; 2997 2998 #define MAX_QMAN_STREAMS_INFO 4 2999 #define OPCODE_INFO_MAX_ADDR_SIZE 8 3000 /** 3001 * struct undefined_opcode_info - info about last undefined opcode error 3002 * @timestamp: timestamp of the undefined opcode error 3003 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 3004 * entries. In case all streams array entries are 3005 * filled with values, it means the execution was in Lower-CP. 3006 * @cq_addr: the address of the current handled command buffer 3007 * @cq_size: the size of the current handled command buffer 3008 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 3009 * should be equal to 1 in case of undefined opcode 3010 * in Upper-CP (specific stream) and equal to 4 in case 3011 * of undefined opcode in Lower-CP. 3012 * @engine_id: engine-id that the error occurred on 3013 * @stream_id: the stream id the error occurred on. In case the stream equals to 3014 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 3015 * @write_enable: if set, writing to undefined opcode parameters in the structure 3016 * is enable so the first (root cause) undefined opcode will not be 3017 * overwritten. 3018 */ 3019 struct undefined_opcode_info { 3020 ktime_t timestamp; 3021 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 3022 u64 cq_addr; 3023 u32 cq_size; 3024 u32 cb_addr_streams_len; 3025 u32 engine_id; 3026 u32 stream_id; 3027 bool write_enable; 3028 }; 3029 3030 /** 3031 * struct page_fault_info - page fault information. 3032 * @page_fault: holds information collected during a page fault. 3033 * @user_mappings: buffer containing user mappings. 3034 * @num_of_user_mappings: number of user mappings. 3035 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 3036 * first time after the driver has finished booting-up. 3037 * Since we're looking for the page-fault's root cause, 3038 * we don't care of the others that might follow it- 3039 * so once changed to 1, it will remain that way. 3040 * @page_fault_info_available: indicates that a page fault info is now available. 3041 */ 3042 struct page_fault_info { 3043 struct hl_page_fault_info page_fault; 3044 struct hl_user_mapping *user_mappings; 3045 u64 num_of_user_mappings; 3046 atomic_t page_fault_detected; 3047 bool page_fault_info_available; 3048 }; 3049 3050 /** 3051 * struct razwi_info - RAZWI information. 3052 * @razwi: holds information collected during a RAZWI 3053 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3054 * first time after the driver has finished booting-up. 3055 * Since we're looking for the RAZWI's root cause, 3056 * we don't care of the others that might follow it- 3057 * so once changed to 1, it will remain that way. 3058 * @razwi_info_available: indicates that a RAZWI info is now available. 3059 */ 3060 struct razwi_info { 3061 struct hl_info_razwi_event razwi; 3062 atomic_t razwi_detected; 3063 bool razwi_info_available; 3064 }; 3065 3066 /** 3067 * struct hw_err_info - HW error information. 3068 * @event: holds information on the event. 3069 * @event_detected: if set as 1, then a HW event was discovered for the 3070 * first time after the driver has finished booting-up. 3071 * currently we assume that only fatal events (that require hard-reset) are 3072 * reported so we don't care of the others that might follow it. 3073 * so once changed to 1, it will remain that way. 3074 * TODO: support multiple events. 3075 * @event_info_available: indicates that a HW event info is now available. 3076 */ 3077 struct hw_err_info { 3078 struct hl_info_hw_err_event event; 3079 atomic_t event_detected; 3080 bool event_info_available; 3081 }; 3082 3083 /** 3084 * struct fw_err_info - FW error information. 3085 * @event: holds information on the event. 3086 * @event_detected: if set as 1, then a FW event was discovered for the 3087 * first time after the driver has finished booting-up. 3088 * currently we assume that only fatal events (that require hard-reset) are 3089 * reported so we don't care of the others that might follow it. 3090 * so once changed to 1, it will remain that way. 3091 * TODO: support multiple events. 3092 * @event_info_available: indicates that a HW event info is now available. 3093 */ 3094 struct fw_err_info { 3095 struct hl_info_fw_err_event event; 3096 atomic_t event_detected; 3097 bool event_info_available; 3098 }; 3099 3100 /** 3101 * struct engine_err_info - engine error information. 3102 * @event: holds information on the event. 3103 * @event_detected: if set as 1, then an engine event was discovered for the 3104 * first time after the driver has finished booting-up. 3105 * @event_info_available: indicates that an engine event info is now available. 3106 */ 3107 struct engine_err_info { 3108 struct hl_info_engine_err_event event; 3109 atomic_t event_detected; 3110 bool event_info_available; 3111 }; 3112 3113 3114 /** 3115 * struct hl_error_info - holds information collected during an error. 3116 * @cs_timeout: CS timeout error information. 3117 * @razwi_info: RAZWI information. 3118 * @undef_opcode: undefined opcode information. 3119 * @page_fault_info: page fault information. 3120 * @hw_err: (fatal) hardware error information. 3121 * @fw_err: firmware error information. 3122 * @engine_err: engine error information. 3123 */ 3124 struct hl_error_info { 3125 struct cs_timeout_info cs_timeout; 3126 struct razwi_info razwi_info; 3127 struct undefined_opcode_info undef_opcode; 3128 struct page_fault_info page_fault_info; 3129 struct hw_err_info hw_err; 3130 struct fw_err_info fw_err; 3131 struct engine_err_info engine_err; 3132 }; 3133 3134 /** 3135 * struct hl_reset_info - holds current device reset information. 3136 * @lock: lock to protect critical reset flows. 3137 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3138 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3139 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3140 * here we hold the hard reset flags. 3141 * @in_reset: is device in reset flow. 3142 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3143 * @needs_reset: true if reset_on_lockup is false and device should be reset 3144 * due to lockup. 3145 * @hard_reset_pending: is there a hard reset work pending. 3146 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3147 * triggered, and cleared after it is shared with preboot. 3148 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3149 * with a new value on next reset 3150 * @reset_trigger_repeated: set if device reset is triggered more than once with 3151 * same cause. 3152 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3153 * complete instead. 3154 * @watchdog_active: true if a device release watchdog work is scheduled. 3155 */ 3156 struct hl_reset_info { 3157 spinlock_t lock; 3158 u32 compute_reset_cnt; 3159 u32 hard_reset_cnt; 3160 u32 hard_reset_schedule_flags; 3161 u8 in_reset; 3162 u8 in_compute_reset; 3163 u8 needs_reset; 3164 u8 hard_reset_pending; 3165 u8 curr_reset_cause; 3166 u8 prev_reset_trigger; 3167 u8 reset_trigger_repeated; 3168 u8 skip_reset_on_timeout; 3169 u8 watchdog_active; 3170 }; 3171 3172 /** 3173 * struct hl_device - habanalabs device structure. 3174 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3175 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3176 * (required only for PCI address match mode) 3177 * @pcie_bar: array of available PCIe bars virtual addresses. 3178 * @rmmio: configuration area address on SRAM. 3179 * @drm: related DRM device. 3180 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3181 * @dev: related kernel basic device structure. 3182 * @dev_ctrl: related kernel device structure for the control device 3183 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3184 * @device_reset_work: delayed work which performs hard reset 3185 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3186 * device upon certain error cases. 3187 * @asic_name: ASIC specific name. 3188 * @asic_type: ASIC specific type. 3189 * @completion_queue: array of hl_cq. 3190 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3191 * interrupt, driver will monitor the list of fences 3192 * registered to this interrupt. 3193 * @tpc_interrupt: single TPC interrupt for all TPCs. 3194 * @unexpected_error_interrupt: single interrupt for unexpected user error indication. 3195 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3196 * upon any user CQ interrupt, driver will monitor the 3197 * list of fences registered to this common structure. 3198 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3199 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3200 * outstanding command submissions. 3201 * @cq_wq: work queues of completion queues for executing work in process 3202 * context. 3203 * @eq_wq: work queue of event queue for executing work in process context. 3204 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3205 * context. 3206 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3207 * @prefetch_wq: work queue for MMU pre-fetch operations. 3208 * @reset_wq: work queue for device reset procedure. 3209 * @kernel_ctx: Kernel driver context structure. 3210 * @kernel_queues: array of hl_hw_queue. 3211 * @cs_mirror_list: CS mirror list for TDR. 3212 * @cs_mirror_lock: protects cs_mirror_list. 3213 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3214 * @event_queue: event queue for IRQ from CPU-CP. 3215 * @dma_pool: DMA pool for small allocations. 3216 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3217 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3218 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3219 * @asid_bitmap: holds used/available ASIDs. 3220 * @asid_mutex: protects asid_bitmap. 3221 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3222 * @debug_lock: protects critical section of setting debug mode for device 3223 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3224 * page tables are per context, the invalidation h/w is per MMU. 3225 * Therefore, we can't allow multiple contexts (we only have two, 3226 * user and kernel) to access the invalidation h/w at the same time. 3227 * In addition, any change to the PGT, modifying the MMU hash or 3228 * walking the PGT requires talking this lock. 3229 * @asic_prop: ASIC specific immutable properties. 3230 * @asic_funcs: ASIC specific functions. 3231 * @asic_specific: ASIC specific information to use only from ASIC files. 3232 * @vm: virtual memory manager for MMU. 3233 * @hwmon_dev: H/W monitor device. 3234 * @hl_chip_info: ASIC's sensors information. 3235 * @device_status_description: device status description. 3236 * @hl_debugfs: device's debugfs manager. 3237 * @cb_pool: list of pre allocated CBs. 3238 * @cb_pool_lock: protects the CB pool. 3239 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3240 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3241 * @internal_cb_pool: internal command buffer memory pool. 3242 * @internal_cb_va_base: internal cb pool mmu virtual address base 3243 * @fpriv_list: list of file private data structures. Each structure is created 3244 * when a user opens the device 3245 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3246 * when a user opens the control device 3247 * @fpriv_list_lock: protects the fpriv_list 3248 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3249 * @aggregated_cs_counters: aggregated cs counters among all contexts 3250 * @mmu_priv: device-specific MMU data. 3251 * @mmu_func: device-related MMU functions. 3252 * @dec: list of decoder sw instance 3253 * @fw_loader: FW loader manager. 3254 * @pci_mem_region: array of memory regions in the PCI 3255 * @state_dump_specs: constants and dictionaries needed to dump system state. 3256 * @multi_cs_completion: array of multi-CS completion. 3257 * @clk_throttling: holds information about current/previous clock throttling events 3258 * @captured_err_info: holds information about errors. 3259 * @reset_info: holds current device reset information. 3260 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3261 * @fw_inner_major_ver: the major of current loaded preboot inner version. 3262 * @fw_inner_minor_ver: the minor of current loaded preboot inner version. 3263 * @fw_sw_major_ver: the major of current loaded preboot SW version. 3264 * @fw_sw_minor_ver: the minor of current loaded preboot SW version. 3265 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. 3266 * @dram_used_mem: current DRAM memory consumption. 3267 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3268 * @timeout_jiffies: device CS timeout value. 3269 * @max_power: the max power of the device, as configured by the sysadmin. This 3270 * value is saved so in case of hard-reset, the driver will restore 3271 * this value and update the F/W after the re-initialization 3272 * @boot_error_status_mask: contains a mask of the device boot error status. 3273 * Each bit represents a different error, according to 3274 * the defines in hl_boot_if.h. If the bit is cleared, 3275 * the error will be ignored by the driver during 3276 * device initialization. Mainly used to debug and 3277 * workaround firmware bugs 3278 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3279 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3280 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3281 * device open. 3282 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3283 * session. 3284 * @open_counter: number of successful device open operations. 3285 * @fw_poll_interval_usec: FW status poll interval in usec. 3286 * used for CPU boot status 3287 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3288 * used for COMMs protocols cmds(COMMS_STS_*) 3289 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3290 * drams are binned-out 3291 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3292 * tpc engines are binned-out 3293 * @dmabuf_export_cnt: number of dma-buf exporting. 3294 * @card_type: Various ASICs have several card types. This indicates the card 3295 * type of the current device. 3296 * @major: habanalabs kernel driver major. 3297 * @high_pll: high PLL profile frequency. 3298 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3299 * indicates which decoder engines are binned-out 3300 * @edma_binning: contains mask of edma engines that is received from the f/w which 3301 * indicates which edma engines are binned-out 3302 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3303 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3304 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3305 * @id: device minor. 3306 * @cdev_idx: char device index. 3307 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3308 * addresses. 3309 * @is_in_dram_scrub: true if dram scrub operation is on going. 3310 * @disabled: is device disabled. 3311 * @late_init_done: is late init stage was done during initialization. 3312 * @hwmon_initialized: is H/W monitor sensors was initialized. 3313 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3314 * otherwise. 3315 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3316 * @memory_scrub: true to perform device memory scrub in various locations, 3317 * such as context-switch, context close, page free, etc. 3318 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3319 * huge pages. 3320 * @init_done: is the initialization of the device done. 3321 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3322 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3323 * can be used. This indication is needed because in some ASICs we need to do 3324 * specific operations to enable that infrastructure. 3325 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. 3326 * @stop_on_err: true if engines should stop on error. 3327 * @supports_sync_stream: is sync stream supported. 3328 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3329 * @collective_mon_idx: helper index for collective initialization 3330 * @supports_coresight: is CoreSight supported. 3331 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3332 * @process_kill_trial_cnt: number of trials reset thread tried killing 3333 * user processes 3334 * @device_fini_pending: true if device_fini was called and might be 3335 * waiting for the reset thread to finish 3336 * @supports_staged_submission: true if staged submissions are supported 3337 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3338 * halted. We can't halt it again because the COMMS 3339 * protocol will throw an error. Relevant only for 3340 * cases where Linux was not loaded to device CPU 3341 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3342 * @is_compute_ctx_active: Whether there is an active compute context executing. 3343 * @compute_ctx_in_release: true if the current compute context is being released. 3344 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3345 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3346 * device. 3347 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3348 * @support_preboot_binning: true if we support read binning info from preboot. 3349 * @eq_heartbeat_received: indication that eq heartbeat event has received from FW. 3350 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3351 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3352 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3353 * @mmu_disable: Disable the device MMU(s). Used only for testing. 3354 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3355 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3356 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3357 * the f/w. Used only for testing. 3358 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3359 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3360 * Used only for testing. 3361 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3362 * that the f/w is always alive. Used only for testing. 3363 */ 3364 struct hl_device { 3365 struct pci_dev *pdev; 3366 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3367 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3368 void __iomem *rmmio; 3369 struct drm_device drm; 3370 struct cdev cdev_ctrl; 3371 struct device *dev; 3372 struct device *dev_ctrl; 3373 struct delayed_work work_heartbeat; 3374 struct hl_device_reset_work device_reset_work; 3375 struct hl_device_reset_work device_release_watchdog_work; 3376 char asic_name[HL_STR_MAX]; 3377 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3378 enum hl_asic_type asic_type; 3379 struct hl_cq *completion_queue; 3380 struct hl_user_interrupt *user_interrupt; 3381 struct hl_user_interrupt tpc_interrupt; 3382 struct hl_user_interrupt unexpected_error_interrupt; 3383 struct hl_user_interrupt common_user_cq_interrupt; 3384 struct hl_user_interrupt common_decoder_interrupt; 3385 struct hl_cs **shadow_cs_queue; 3386 struct workqueue_struct **cq_wq; 3387 struct workqueue_struct *eq_wq; 3388 struct workqueue_struct *cs_cmplt_wq; 3389 struct workqueue_struct *ts_free_obj_wq; 3390 struct workqueue_struct *prefetch_wq; 3391 struct workqueue_struct *reset_wq; 3392 struct hl_ctx *kernel_ctx; 3393 struct hl_hw_queue *kernel_queues; 3394 struct list_head cs_mirror_list; 3395 spinlock_t cs_mirror_lock; 3396 struct hl_mem_mgr kernel_mem_mgr; 3397 struct hl_eq event_queue; 3398 struct dma_pool *dma_pool; 3399 void *cpu_accessible_dma_mem; 3400 dma_addr_t cpu_accessible_dma_address; 3401 struct gen_pool *cpu_accessible_dma_pool; 3402 unsigned long *asid_bitmap; 3403 struct mutex asid_mutex; 3404 struct mutex send_cpu_message_lock; 3405 struct mutex debug_lock; 3406 struct mutex mmu_lock; 3407 struct asic_fixed_properties asic_prop; 3408 const struct hl_asic_funcs *asic_funcs; 3409 void *asic_specific; 3410 struct hl_vm vm; 3411 struct device *hwmon_dev; 3412 struct hwmon_chip_info *hl_chip_info; 3413 3414 struct hl_dbg_device_entry hl_debugfs; 3415 3416 struct list_head cb_pool; 3417 spinlock_t cb_pool_lock; 3418 3419 void *internal_cb_pool_virt_addr; 3420 dma_addr_t internal_cb_pool_dma_addr; 3421 struct gen_pool *internal_cb_pool; 3422 u64 internal_cb_va_base; 3423 3424 struct list_head fpriv_list; 3425 struct list_head fpriv_ctrl_list; 3426 struct mutex fpriv_list_lock; 3427 struct mutex fpriv_ctrl_list_lock; 3428 3429 struct hl_cs_counters_atomic aggregated_cs_counters; 3430 3431 struct hl_mmu_priv mmu_priv; 3432 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3433 3434 struct hl_dec *dec; 3435 3436 struct fw_load_mgr fw_loader; 3437 3438 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3439 3440 struct hl_state_dump_specs state_dump_specs; 3441 3442 struct multi_cs_completion multi_cs_completion[ 3443 MULTI_CS_MAX_USER_CTX]; 3444 struct hl_clk_throttle clk_throttling; 3445 struct hl_error_info captured_err_info; 3446 3447 struct hl_reset_info reset_info; 3448 3449 u32 *stream_master_qid_arr; 3450 u32 fw_inner_major_ver; 3451 u32 fw_inner_minor_ver; 3452 u32 fw_sw_major_ver; 3453 u32 fw_sw_minor_ver; 3454 u32 fw_sw_sub_minor_ver; 3455 atomic64_t dram_used_mem; 3456 u64 memory_scrub_val; 3457 u64 timeout_jiffies; 3458 u64 max_power; 3459 u64 boot_error_status_mask; 3460 u64 dram_pci_bar_start; 3461 u64 last_successful_open_jif; 3462 u64 last_open_session_duration_jif; 3463 u64 open_counter; 3464 u64 fw_poll_interval_usec; 3465 ktime_t last_successful_open_ktime; 3466 u64 fw_comms_poll_interval_usec; 3467 u64 dram_binning; 3468 u64 tpc_binning; 3469 atomic_t dmabuf_export_cnt; 3470 enum cpucp_card_types card_type; 3471 u32 major; 3472 u32 high_pll; 3473 u32 decoder_binning; 3474 u32 edma_binning; 3475 u32 device_release_watchdog_timeout_sec; 3476 u32 rotator_binning; 3477 u16 id; 3478 u16 cdev_idx; 3479 u16 cpu_pci_msb_addr; 3480 u8 is_in_dram_scrub; 3481 u8 disabled; 3482 u8 late_init_done; 3483 u8 hwmon_initialized; 3484 u8 reset_on_lockup; 3485 u8 dram_default_page_mapping; 3486 u8 memory_scrub; 3487 u8 pmmu_huge_range; 3488 u8 init_done; 3489 u8 device_cpu_disabled; 3490 u8 in_debug; 3491 u8 cdev_sysfs_debugfs_created; 3492 u8 stop_on_err; 3493 u8 supports_sync_stream; 3494 u8 sync_stream_queue_idx; 3495 u8 collective_mon_idx; 3496 u8 supports_coresight; 3497 u8 supports_cb_mapping; 3498 u8 process_kill_trial_cnt; 3499 u8 device_fini_pending; 3500 u8 supports_staged_submission; 3501 u8 device_cpu_is_halted; 3502 u8 supports_wait_for_multi_cs; 3503 u8 stream_master_qid_arr_size; 3504 u8 is_compute_ctx_active; 3505 u8 compute_ctx_in_release; 3506 u8 supports_mmu_prefetch; 3507 u8 reset_upon_device_release; 3508 u8 supports_ctx_switch; 3509 u8 support_preboot_binning; 3510 u8 eq_heartbeat_received; 3511 3512 /* Parameters for bring-up to be upstreamed */ 3513 u64 nic_ports_mask; 3514 u64 fw_components; 3515 u8 mmu_disable; 3516 u8 cpu_queues_enable; 3517 u8 pldm; 3518 u8 hard_reset_on_fw_events; 3519 u8 bmc_enable; 3520 u8 reset_on_preboot_fail; 3521 u8 heartbeat; 3522 }; 3523 3524 /* Retrieve PCI device name in case of a PCI device or dev name in simulator */ 3525 #define HL_DEV_NAME(hdev) \ 3526 ((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE") 3527 3528 /** 3529 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3530 * @refcount: refcount used to protect removing this id when several 3531 * wait cs are used to wait of the reserved encaps signals. 3532 * @hdev: pointer to habanalabs device structure. 3533 * @hw_sob: pointer to H/W SOB used in the reservation. 3534 * @ctx: pointer to the user's context data structure 3535 * @cs_seq: staged cs sequence which contains encapsulated signals 3536 * @id: idr handler id to be used to fetch the handler info 3537 * @q_idx: stream queue index 3538 * @pre_sob_val: current SOB value before reservation 3539 * @count: signals number 3540 */ 3541 struct hl_cs_encaps_sig_handle { 3542 struct kref refcount; 3543 struct hl_device *hdev; 3544 struct hl_hw_sob *hw_sob; 3545 struct hl_ctx *ctx; 3546 u64 cs_seq; 3547 u32 id; 3548 u32 q_idx; 3549 u32 pre_sob_val; 3550 u32 count; 3551 }; 3552 3553 /** 3554 * struct hl_info_fw_err_info - firmware error information structure 3555 * @err_type: The type of error detected (or reported). 3556 * @event_mask: Pointer to the event mask to be modified with the detected error flag 3557 * (can be NULL) 3558 * @event_id: The id of the event that reported the error 3559 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). 3560 */ 3561 struct hl_info_fw_err_info { 3562 enum hl_info_fw_err_type err_type; 3563 u64 *event_mask; 3564 u16 event_id; 3565 }; 3566 3567 /* 3568 * IOCTLs 3569 */ 3570 3571 /** 3572 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3573 * @hpriv: pointer to the FD's private data, which contains state of 3574 * user process 3575 * @data: pointer to the input/output arguments structure of the IOCTL 3576 * 3577 * Return: 0 for success, negative value for error 3578 */ 3579 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3580 3581 /** 3582 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3583 * @cmd: the IOCTL code as created by the kernel macros. 3584 * @func: pointer to the driver's function that should be called for this IOCTL. 3585 */ 3586 struct hl_ioctl_desc { 3587 unsigned int cmd; 3588 hl_ioctl_t *func; 3589 }; 3590 3591 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor) 3592 { 3593 if (hdev->fw_sw_major_ver < fw_sw_major) 3594 return true; 3595 if (hdev->fw_sw_major_ver > fw_sw_major) 3596 return false; 3597 if (hdev->fw_sw_minor_ver < fw_sw_minor) 3598 return true; 3599 return false; 3600 } 3601 3602 static inline bool hl_is_fw_sw_ver_equal_or_greater(struct hl_device *hdev, u32 fw_sw_major, 3603 u32 fw_sw_minor) 3604 { 3605 return (hdev->fw_sw_major_ver > fw_sw_major || 3606 (hdev->fw_sw_major_ver == fw_sw_major && 3607 hdev->fw_sw_minor_ver >= fw_sw_minor)); 3608 } 3609 3610 /* 3611 * Kernel module functions that can be accessed by entire module 3612 */ 3613 3614 /** 3615 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3616 * @sg: the SG list. 3617 * @dma_addr: pointer to DMA address to return. 3618 * 3619 * Calculate the number of consecutive pages described by the SG list. Take the 3620 * offset of the address in the first page, add to it the length and round it up 3621 * to the number of needed pages. 3622 */ 3623 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3624 { 3625 *dma_addr = sg_dma_address(sg); 3626 3627 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3628 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3629 } 3630 3631 /** 3632 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3633 * @address: The start address of the area we want to validate. 3634 * @size: The size in bytes of the area we want to validate. 3635 * @range_start_address: The start address of the valid range. 3636 * @range_end_address: The end address of the valid range. 3637 * 3638 * Return: true if the area is inside the valid range, false otherwise. 3639 */ 3640 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3641 u64 range_start_address, u64 range_end_address) 3642 { 3643 u64 end_address = address + size; 3644 3645 if ((address >= range_start_address) && 3646 (end_address <= range_end_address) && 3647 (end_address > address)) 3648 return true; 3649 3650 return false; 3651 } 3652 3653 static inline struct hl_device *to_hl_device(struct drm_device *ddev) 3654 { 3655 return container_of(ddev, struct hl_device, drm); 3656 } 3657 3658 /** 3659 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3660 * @address: The start address of the area we want to validate. 3661 * @size: The size in bytes of the area we want to validate. 3662 * @range_start_address: The start address of the valid range. 3663 * @range_end_address: The end address of the valid range. 3664 * 3665 * Return: true if the area overlaps part or all of the valid range, 3666 * false otherwise. 3667 */ 3668 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3669 u64 range_start_address, u64 range_end_address) 3670 { 3671 u64 end_address = address + size - 1; 3672 3673 return ((address <= range_end_address) && (range_start_address <= end_address)); 3674 } 3675 3676 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3677 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); 3678 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); 3679 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3680 gfp_t flag, const char *caller); 3681 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3682 dma_addr_t dma_handle, const char *caller); 3683 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3684 dma_addr_t *dma_handle, const char *caller); 3685 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3686 const char *caller); 3687 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3688 enum dma_data_direction dir, const char *caller); 3689 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3690 enum dma_data_direction dir, const char *caller); 3691 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3692 enum dma_data_direction dir); 3693 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3694 enum dma_data_direction dir); 3695 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3696 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3697 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3698 enum debugfs_access_type acc_type); 3699 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3700 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3701 3702 int hl_mmap(struct file *filp, struct vm_area_struct *vma); 3703 3704 int hl_device_open(struct drm_device *drm, struct drm_file *file_priv); 3705 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv); 3706 3707 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3708 bool hl_device_operational(struct hl_device *hdev, 3709 enum hl_device_status *status); 3710 bool hl_ctrl_device_operational(struct hl_device *hdev, 3711 enum hl_device_status *status); 3712 enum hl_device_status hl_device_status(struct hl_device *hdev); 3713 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3714 int hl_hw_queues_create(struct hl_device *hdev); 3715 void hl_hw_queues_destroy(struct hl_device *hdev); 3716 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3717 u32 cb_size, u64 cb_ptr); 3718 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3719 u32 ctl, u32 len, u64 ptr); 3720 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3721 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3722 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3723 void hl_hw_queue_update_ci(struct hl_cs *cs); 3724 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3725 3726 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3727 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3728 3729 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3730 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3731 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3732 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3733 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3734 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3735 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3736 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3737 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3738 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg); 3739 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); 3740 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg); 3741 u32 hl_cq_inc_ptr(u32 ptr); 3742 3743 int hl_asid_init(struct hl_device *hdev); 3744 void hl_asid_fini(struct hl_device *hdev); 3745 unsigned long hl_asid_alloc(struct hl_device *hdev); 3746 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3747 3748 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3749 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3750 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3751 void hl_ctx_do_release(struct kref *ref); 3752 void hl_ctx_get(struct hl_ctx *ctx); 3753 int hl_ctx_put(struct hl_ctx *ctx); 3754 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3755 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3756 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3757 struct hl_fence **fence, u32 arr_len); 3758 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3759 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3760 3761 int hl_device_init(struct hl_device *hdev); 3762 void hl_device_fini(struct hl_device *hdev); 3763 int hl_device_suspend(struct hl_device *hdev); 3764 int hl_device_resume(struct hl_device *hdev); 3765 int hl_device_reset(struct hl_device *hdev, u32 flags); 3766 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3767 void hl_hpriv_get(struct hl_fpriv *hpriv); 3768 int hl_hpriv_put(struct hl_fpriv *hpriv); 3769 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3770 3771 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3772 struct cpucp_sensor *sensors_arr); 3773 3774 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3775 3776 int hl_sysfs_init(struct hl_device *hdev); 3777 void hl_sysfs_fini(struct hl_device *hdev); 3778 3779 int hl_hwmon_init(struct hl_device *hdev); 3780 void hl_hwmon_fini(struct hl_device *hdev); 3781 void hl_hwmon_release_resources(struct hl_device *hdev); 3782 3783 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3784 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3785 bool map_cb, u64 *handle); 3786 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3787 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3788 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3789 void hl_cb_put(struct hl_cb *cb); 3790 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3791 bool internal_cb); 3792 int hl_cb_pool_init(struct hl_device *hdev); 3793 int hl_cb_pool_fini(struct hl_device *hdev); 3794 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3795 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3796 3797 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3798 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3799 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3800 void hl_sob_reset_error(struct kref *ref); 3801 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3802 void hl_fence_put(struct hl_fence *fence); 3803 void hl_fences_put(struct hl_fence **fence, int len); 3804 void hl_fence_get(struct hl_fence *fence); 3805 void cs_get(struct hl_cs *cs); 3806 bool cs_needs_completion(struct hl_cs *cs); 3807 bool cs_needs_timeout(struct hl_cs *cs); 3808 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3809 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3810 void hl_multi_cs_completion_init(struct hl_device *hdev); 3811 u32 hl_get_active_cs_num(struct hl_device *hdev); 3812 3813 void goya_set_asic_funcs(struct hl_device *hdev); 3814 void gaudi_set_asic_funcs(struct hl_device *hdev); 3815 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3816 3817 int hl_vm_ctx_init(struct hl_ctx *ctx); 3818 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3819 3820 int hl_vm_init(struct hl_device *hdev); 3821 void hl_vm_fini(struct hl_device *hdev); 3822 3823 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3824 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3825 3826 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3827 enum hl_va_range_type type, u64 size, u32 alignment); 3828 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3829 u64 start_addr, u64 size); 3830 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3831 struct hl_userptr *userptr); 3832 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3833 void hl_userptr_delete_list(struct hl_device *hdev, 3834 struct list_head *userptr_list); 3835 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3836 struct list_head *userptr_list, 3837 struct hl_userptr **userptr); 3838 3839 int hl_mmu_init(struct hl_device *hdev); 3840 void hl_mmu_fini(struct hl_device *hdev); 3841 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3842 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3843 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3844 u32 page_size, bool flush_pte); 3845 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3846 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3847 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3848 bool flush_pte); 3849 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3850 u64 phys_addr, u32 size); 3851 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3852 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3853 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3854 u32 flags, u32 asid, u64 va, u64 size); 3855 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3856 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3857 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3858 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3859 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3860 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3861 u64 pgt_size); 3862 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3863 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3864 u32 hop_table_size); 3865 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3866 u32 hop_table_size); 3867 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3868 u64 val, u32 hop_table_size); 3869 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3870 u32 hop_table_size); 3871 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3872 u32 hop_table_size); 3873 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3874 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3875 struct hl_hr_mmu_funcs *hr_func, 3876 u64 curr_pte); 3877 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3878 struct hl_hr_mmu_funcs *hr_func, 3879 struct hl_mmu_properties *mmu_prop); 3880 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3881 struct hl_mmu_hr_priv *hr_priv, 3882 struct hl_hr_mmu_funcs *hr_func, 3883 struct hl_mmu_properties *mmu_prop, 3884 u64 curr_pte, bool *is_new_hop); 3885 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3886 struct hl_hr_mmu_funcs *hr_func); 3887 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3888 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3889 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3890 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3891 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3892 struct hl_mmu_hop_info *hops); 3893 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3894 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3895 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3896 3897 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3898 void __iomem *dst, u32 src_offset, u32 size); 3899 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3900 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3901 u16 len, u32 timeout, u64 *result); 3902 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3903 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3904 size_t irq_arr_size); 3905 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3906 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3907 dma_addr_t *dma_handle); 3908 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3909 void *vaddr); 3910 int hl_fw_send_heartbeat(struct hl_device *hdev); 3911 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3912 u32 sts_boot_dev_sts0_reg, 3913 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3914 u32 boot_err1_reg); 3915 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3916 u32 sts_boot_dev_sts0_reg, 3917 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3918 u32 boot_err1_reg); 3919 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3920 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3921 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3922 struct hl_info_pci_counters *counters); 3923 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3924 u64 *total_energy); 3925 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3926 enum pll_index *pll_index); 3927 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3928 u16 *pll_freq_arr); 3929 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3930 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3931 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3932 int hl_fw_init_cpu(struct hl_device *hdev); 3933 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3934 int hl_fw_read_preboot_status(struct hl_device *hdev); 3935 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3936 struct fw_load_mgr *fw_loader, 3937 enum comms_cmd cmd, unsigned int size, 3938 bool wait_ok, u32 timeout); 3939 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3940 struct cpucp_hbm_row_info *info); 3941 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3942 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3943 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3944 int hl_fw_send_soft_reset(struct hl_device *hdev); 3945 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3946 bool is_wc[3]); 3947 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3948 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3949 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3950 struct hl_inbound_pci_region *pci_region); 3951 int hl_pci_set_outbound_region(struct hl_device *hdev, 3952 struct hl_outbound_pci_region *pci_region); 3953 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3954 int hl_pci_init(struct hl_device *hdev); 3955 void hl_pci_fini(struct hl_device *hdev); 3956 3957 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3958 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3959 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3960 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3961 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3962 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3963 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3964 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3965 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3966 long hl_fw_get_max_power(struct hl_device *hdev); 3967 void hl_fw_set_max_power(struct hl_device *hdev); 3968 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3969 u32 nonce); 3970 int hl_fw_get_dev_info_signed(struct hl_device *hdev, 3971 struct cpucp_dev_info_signed *dev_info_signed, u32 nonce); 3972 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3973 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3974 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3975 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3976 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 3977 void hl_fw_set_pll_profile(struct hl_device *hdev); 3978 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 3979 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 3980 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3981 dma_addr_t buff, u32 *size); 3982 3983 void hw_sob_get(struct hl_hw_sob *hw_sob); 3984 void hw_sob_put(struct hl_hw_sob *hw_sob); 3985 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 3986 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 3987 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 3988 struct hl_cs *cs, struct hl_cs_job *job, 3989 struct hl_cs_compl *cs_cmpl); 3990 3991 int hl_dec_init(struct hl_device *hdev); 3992 void hl_dec_fini(struct hl_device *hdev); 3993 void hl_dec_ctx_fini(struct hl_ctx *ctx); 3994 3995 void hl_release_pending_user_interrupts(struct hl_device *hdev); 3996 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); 3997 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 3998 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 3999 4000 int hl_state_dump(struct hl_device *hdev); 4001 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 4002 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 4003 struct hl_mon_state_dump *mon); 4004 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 4005 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 4006 const char *format, ...); 4007 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 4008 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 4009 4010 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 4011 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 4012 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); 4013 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 4014 void *args); 4015 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 4016 u64 handle); 4017 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 4018 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 4019 struct hl_mmap_mem_buf * 4020 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 4021 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 4022 void *args); 4023 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 4024 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4025 u8 flags); 4026 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4027 u8 flags, u64 *event_mask); 4028 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 4029 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 4030 u64 *event_mask); 4031 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); 4032 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); 4033 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count); 4034 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); 4035 4036 #ifdef CONFIG_DEBUG_FS 4037 4038 int hl_debugfs_device_init(struct hl_device *hdev); 4039 void hl_debugfs_device_fini(struct hl_device *hdev); 4040 void hl_debugfs_add_device(struct hl_device *hdev); 4041 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 4042 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 4043 void hl_debugfs_add_cb(struct hl_cb *cb); 4044 void hl_debugfs_remove_cb(struct hl_cb *cb); 4045 void hl_debugfs_add_cs(struct hl_cs *cs); 4046 void hl_debugfs_remove_cs(struct hl_cs *cs); 4047 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 4048 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 4049 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 4050 void hl_debugfs_remove_userptr(struct hl_device *hdev, 4051 struct hl_userptr *userptr); 4052 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4053 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4054 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 4055 unsigned long length); 4056 4057 #else 4058 4059 static inline int hl_debugfs_device_init(struct hl_device *hdev) 4060 { 4061 return 0; 4062 } 4063 4064 static inline void hl_debugfs_device_fini(struct hl_device *hdev) 4065 { 4066 } 4067 4068 static inline void hl_debugfs_add_device(struct hl_device *hdev) 4069 { 4070 } 4071 4072 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 4073 { 4074 } 4075 4076 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 4077 { 4078 } 4079 4080 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 4081 { 4082 } 4083 4084 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 4085 { 4086 } 4087 4088 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 4089 { 4090 } 4091 4092 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 4093 { 4094 } 4095 4096 static inline void hl_debugfs_add_job(struct hl_device *hdev, 4097 struct hl_cs_job *job) 4098 { 4099 } 4100 4101 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 4102 struct hl_cs_job *job) 4103 { 4104 } 4105 4106 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 4107 struct hl_userptr *userptr) 4108 { 4109 } 4110 4111 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 4112 struct hl_userptr *userptr) 4113 { 4114 } 4115 4116 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 4117 struct hl_ctx *ctx) 4118 { 4119 } 4120 4121 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 4122 struct hl_ctx *ctx) 4123 { 4124 } 4125 4126 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 4127 char *data, unsigned long length) 4128 { 4129 } 4130 4131 #endif 4132 4133 /* Security */ 4134 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 4135 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 4136 int array_size); 4137 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 4138 int mm_array_size, int offset, const u32 pb_blocks[], 4139 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 4140 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 4141 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 4142 int array_size); 4143 void hl_secure_block(struct hl_device *hdev, 4144 struct hl_block_glbl_sec sgs_array[], int array_size); 4145 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4146 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4147 const u32 pb_blocks[], u32 blocks_array_size, 4148 const u32 *regs_array, u32 regs_array_size, u64 mask); 4149 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4150 u32 num_instances, u32 instance_offset, 4151 const u32 pb_blocks[], u32 blocks_array_size, 4152 const u32 *regs_array, u32 regs_array_size); 4153 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4154 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4155 const u32 pb_blocks[], u32 blocks_array_size, 4156 const struct range *regs_range_array, u32 regs_range_array_size, 4157 u64 mask); 4158 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4159 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4160 const u32 pb_blocks[], u32 blocks_array_size, 4161 const struct range *regs_range_array, 4162 u32 regs_range_array_size); 4163 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4164 u32 num_instances, u32 instance_offset, 4165 const u32 pb_blocks[], u32 blocks_array_size, 4166 const u32 *regs_array, u32 regs_array_size); 4167 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4168 u32 num_instances, u32 instance_offset, 4169 const u32 pb_blocks[], u32 blocks_array_size, 4170 const struct range *regs_range_array, 4171 u32 regs_range_array_size); 4172 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4173 u32 num_instances, u32 instance_offset, 4174 const u32 pb_blocks[], u32 blocks_array_size); 4175 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4176 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4177 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4178 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4179 u32 num_instances, u32 instance_offset, 4180 const u32 pb_blocks[], u32 blocks_array_size); 4181 4182 /* IOCTLs */ 4183 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4184 int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4185 int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4186 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4187 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4188 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4189 int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4190 4191 #endif /* HABANALABSP_H_ */ 4192