1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2023 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include <linux/habanalabs/cpucp_if.h> 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include <drm/drm_device.h> 33 #include <drm/drm_file.h> 34 35 #include "security.h" 36 37 #define HL_NAME "habanalabs" 38 39 struct hl_device; 40 struct hl_fpriv; 41 42 #define PCI_VENDOR_ID_HABANALABS 0x1da3 43 44 /* Use upper bits of mmap offset to store habana driver specific information. 45 * bits[63:59] - Encode mmap type 46 * bits[45:0] - mmap offset value 47 * 48 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 49 * defines are w.r.t to PAGE_SIZE 50 */ 51 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 52 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 53 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 54 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 55 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 56 57 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 58 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 59 60 #define HL_PENDING_RESET_PER_SEC 10 61 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 62 #define HL_PENDING_RESET_LONG_SEC 60 63 /* 64 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 65 * This is needed to prevent situation of clearing resources while user processes are still alive. 66 */ 67 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 68 69 #define HL_HARD_RESET_MAX_TIMEOUT 120 70 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 71 72 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 73 74 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */ 75 76 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 77 78 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 79 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 80 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 81 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 82 83 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 84 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 85 86 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 87 88 #define HL_INVALID_QUEUE UINT_MAX 89 90 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 91 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 92 93 #define HL_STATE_DUMP_HIST_LEN 5 94 95 /* Default value for device reset trigger , an invalid value */ 96 #define HL_RESET_TRIGGER_DEFAULT 0xFF 97 98 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 99 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 100 101 /* Memory */ 102 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 103 104 /* MMU */ 105 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 106 107 #define TIMESTAMP_FREE_NODES_NUM 512 108 109 /** 110 * enum hl_mmu_page_table_location - mmu page table location 111 * @MMU_DR_PGT: page-table is located on device DRAM. 112 * @MMU_HR_PGT: page-table is located on host memory. 113 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 114 */ 115 enum hl_mmu_page_table_location { 116 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 117 MMU_HR_PGT, /* host resident MMU PGT */ 118 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 119 }; 120 121 /* 122 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 123 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 124 */ 125 #define HL_RSVD_SOBS 2 126 #define HL_RSVD_MONS 1 127 128 /* 129 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 130 */ 131 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 132 133 #define HL_MAX_SOB_VAL (1 << 15) 134 135 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 136 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 137 138 #define HL_PCI_NUM_BARS 6 139 140 /* Completion queue entry relates to completed job */ 141 #define HL_COMPLETION_MODE_JOB 0 142 /* Completion queue entry relates to completed command submission */ 143 #define HL_COMPLETION_MODE_CS 1 144 145 #define HL_MAX_DCORES 8 146 147 /* DMA alloc/free wrappers */ 148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 149 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 150 151 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 152 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 153 154 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 155 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 156 157 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 158 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 159 160 #define hl_dma_map_sgtable(hdev, sgt, dir) \ 161 hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__) 162 #define hl_dma_unmap_sgtable(hdev, sgt, dir) \ 163 hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__) 164 165 /* 166 * Reset Flags 167 * 168 * - HL_DRV_RESET_HARD 169 * If set do hard reset to all engines. If not set reset just 170 * compute/DMA engines. 171 * 172 * - HL_DRV_RESET_FROM_RESET_THR 173 * Set if the caller is the hard-reset thread 174 * 175 * - HL_DRV_RESET_HEARTBEAT 176 * Set if reset is due to heartbeat 177 * 178 * - HL_DRV_RESET_TDR 179 * Set if reset is due to TDR 180 * 181 * - HL_DRV_RESET_DEV_RELEASE 182 * Set if reset is due to device release 183 * 184 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 185 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 186 * only when running with secured f/w 187 * 188 * - HL_DRV_RESET_FW_FATAL_ERR 189 * Set if reset is due to a fatal error from FW 190 * 191 * - HL_DRV_RESET_DELAY 192 * Set if a delay should be added before the reset 193 * 194 * - HL_DRV_RESET_FROM_WD_THR 195 * Set if the caller is the device release watchdog thread 196 */ 197 198 #define HL_DRV_RESET_HARD (1 << 0) 199 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 200 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 201 #define HL_DRV_RESET_TDR (1 << 3) 202 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 204 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 205 #define HL_DRV_RESET_DELAY (1 << 7) 206 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 207 208 /* 209 * Security 210 */ 211 212 #define HL_PB_SHARED 1 213 #define HL_PB_NA 0 214 #define HL_PB_SINGLE_INSTANCE 1 215 #define HL_BLOCK_SIZE 0x1000 216 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 217 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 218 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 219 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 220 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 221 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 222 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 223 224 enum hl_protection_levels { 225 SECURED_LVL, 226 PRIVILEGED_LVL, 227 NON_SECURED_LVL 228 }; 229 230 /** 231 * struct iterate_module_ctx - HW module iterator 232 * @fn: function to apply to each HW module instance 233 * @data: optional internal data to the function iterator 234 * @rc: return code for optional use of iterator/iterator-caller 235 */ 236 struct iterate_module_ctx { 237 /* 238 * callback for the HW module iterator 239 * @hdev: pointer to the habanalabs device structure 240 * @block: block (ASIC specific definition can be dcore/hdcore) 241 * @inst: HW module instance within the block 242 * @offset: current HW module instance offset from the 1-st HW module instance 243 * in the 1-st block 244 * @ctx: the iterator context. 245 */ 246 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 247 struct iterate_module_ctx *ctx); 248 void *data; 249 int rc; 250 }; 251 252 struct hl_block_glbl_sec { 253 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 254 }; 255 256 #define HL_MAX_SOBS_PER_MONITOR 8 257 258 /** 259 * struct hl_gen_wait_properties - properties for generating a wait CB 260 * @data: command buffer 261 * @q_idx: queue id is used to extract fence register address 262 * @size: offset in command buffer 263 * @sob_base: SOB base to use in this wait CB 264 * @sob_val: SOB value to wait for 265 * @mon_id: monitor to use in this wait CB 266 * @sob_mask: each bit represents a SOB offset from sob_base to be used 267 */ 268 struct hl_gen_wait_properties { 269 void *data; 270 u32 q_idx; 271 u32 size; 272 u16 sob_base; 273 u16 sob_val; 274 u16 mon_id; 275 u8 sob_mask; 276 }; 277 278 /** 279 * struct pgt_info - MMU hop page info. 280 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 281 * actual pgts for host resident MMU). 282 * @phys_addr: physical address of the pgt. 283 * @virt_addr: host virtual address of the pgt (see above device/host resident). 284 * @shadow_addr: shadow hop in the host for device resident MMU. 285 * @ctx: pointer to the owner ctx. 286 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 287 * allocated HOPs (all HOPs but HOP0) 288 * 289 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 290 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 291 * 292 * When a new level (hop) is needed during mapping this structure will be used to describe 293 * the newly allocated hop as well as to track number of PTEs in it. 294 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 295 * freed with its pgt_info structure. 296 */ 297 struct pgt_info { 298 struct hlist_node node; 299 u64 phys_addr; 300 u64 virt_addr; 301 u64 shadow_addr; 302 struct hl_ctx *ctx; 303 int num_of_ptes; 304 }; 305 306 /** 307 * enum hl_pci_match_mode - pci match mode per region 308 * @PCI_ADDRESS_MATCH_MODE: address match mode 309 * @PCI_BAR_MATCH_MODE: bar match mode 310 */ 311 enum hl_pci_match_mode { 312 PCI_ADDRESS_MATCH_MODE, 313 PCI_BAR_MATCH_MODE 314 }; 315 316 /** 317 * enum hl_fw_component - F/W components to read version through registers. 318 * @FW_COMP_BOOT_FIT: boot fit. 319 * @FW_COMP_PREBOOT: preboot. 320 * @FW_COMP_LINUX: linux. 321 */ 322 enum hl_fw_component { 323 FW_COMP_BOOT_FIT, 324 FW_COMP_PREBOOT, 325 FW_COMP_LINUX, 326 }; 327 328 /** 329 * enum hl_fw_types - F/W types present in the system 330 * @FW_TYPE_NONE: no FW component indication 331 * @FW_TYPE_LINUX: Linux image for device CPU 332 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 333 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 334 * (preboot, ppboot etc...) 335 * @FW_TYPE_ALL_TYPES: Mask for all types 336 */ 337 enum hl_fw_types { 338 FW_TYPE_NONE = 0x0, 339 FW_TYPE_LINUX = 0x1, 340 FW_TYPE_BOOT_CPU = 0x2, 341 FW_TYPE_PREBOOT_CPU = 0x4, 342 FW_TYPE_ALL_TYPES = 343 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 344 }; 345 346 /** 347 * enum hl_queue_type - Supported QUEUE types. 348 * @QUEUE_TYPE_NA: queue is not available. 349 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 350 * host. 351 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 352 * memories and/or operates the compute engines. 353 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 354 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 355 * notifications are sent by H/W. 356 */ 357 enum hl_queue_type { 358 QUEUE_TYPE_NA, 359 QUEUE_TYPE_EXT, 360 QUEUE_TYPE_INT, 361 QUEUE_TYPE_CPU, 362 QUEUE_TYPE_HW 363 }; 364 365 enum hl_cs_type { 366 CS_TYPE_DEFAULT, 367 CS_TYPE_SIGNAL, 368 CS_TYPE_WAIT, 369 CS_TYPE_COLLECTIVE_WAIT, 370 CS_RESERVE_SIGNALS, 371 CS_UNRESERVE_SIGNALS, 372 CS_TYPE_ENGINE_CORE, 373 CS_TYPE_ENGINES, 374 CS_TYPE_FLUSH_PCI_HBW_WRITES, 375 }; 376 377 /* 378 * struct hl_inbound_pci_region - inbound region descriptor 379 * @mode: pci match mode for this region 380 * @addr: region target address 381 * @size: region size in bytes 382 * @offset_in_bar: offset within bar (address match mode) 383 * @bar: bar id 384 */ 385 struct hl_inbound_pci_region { 386 enum hl_pci_match_mode mode; 387 u64 addr; 388 u64 size; 389 u64 offset_in_bar; 390 u8 bar; 391 }; 392 393 /* 394 * struct hl_outbound_pci_region - outbound region descriptor 395 * @addr: region target address 396 * @size: region size in bytes 397 */ 398 struct hl_outbound_pci_region { 399 u64 addr; 400 u64 size; 401 }; 402 403 /* 404 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 405 * allocated by Kernel or by User 406 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 407 * @CB_ALLOC_USER: support only CBs that allocated by User 408 */ 409 enum queue_cb_alloc_flags { 410 CB_ALLOC_KERNEL = 0x1, 411 CB_ALLOC_USER = 0x2 412 }; 413 414 /* 415 * struct hl_hw_sob - H/W SOB info. 416 * @hdev: habanalabs device structure. 417 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 418 * @sob_id: id of this SOB. 419 * @sob_addr: the sob offset from the base address. 420 * @q_idx: the H/W queue that uses this SOB. 421 * @need_reset: reset indication set when switching to the other sob. 422 */ 423 struct hl_hw_sob { 424 struct hl_device *hdev; 425 struct kref kref; 426 u32 sob_id; 427 u32 sob_addr; 428 u32 q_idx; 429 bool need_reset; 430 }; 431 432 enum hl_collective_mode { 433 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 434 HL_COLLECTIVE_MASTER = 0x1, 435 HL_COLLECTIVE_SLAVE = 0x2 436 }; 437 438 /** 439 * struct hw_queue_properties - queue information. 440 * @type: queue type. 441 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 442 * that allocated by the Kernel driver and therefore, 443 * a CB handle can be provided for jobs on this queue. 444 * Otherwise, a CB address must be provided. 445 * @collective_mode: collective mode of current queue 446 * @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM. 447 * @driver_only: true if only the driver is allowed to send a job to this queue, 448 * false otherwise. 449 * @binned: True if the queue is binned out and should not be used 450 * @supports_sync_stream: True if queue supports sync stream 451 * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram 452 */ 453 struct hw_queue_properties { 454 enum hl_queue_type type; 455 enum queue_cb_alloc_flags cb_alloc_flags; 456 enum hl_collective_mode collective_mode; 457 u64 q_dram_bd_address; 458 u8 driver_only; 459 u8 binned; 460 u8 supports_sync_stream; 461 u8 dram_bd; 462 }; 463 464 /** 465 * enum vm_type - virtual memory mapping request information. 466 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 467 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 468 */ 469 enum vm_type { 470 VM_TYPE_USERPTR = 0x1, 471 VM_TYPE_PHYS_PACK = 0x2 472 }; 473 474 /** 475 * enum mmu_op_flags - mmu operation relevant information. 476 * @MMU_OP_USERPTR: operation on user memory (host resident). 477 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 478 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 479 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 480 */ 481 enum mmu_op_flags { 482 MMU_OP_USERPTR = 0x1, 483 MMU_OP_PHYS_PACK = 0x2, 484 MMU_OP_CLEAR_MEMCACHE = 0x4, 485 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 486 }; 487 488 489 /** 490 * enum hl_device_hw_state - H/W device state. use this to understand whether 491 * to do reset before hw_init or not 492 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 493 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 494 * hw_init 495 */ 496 enum hl_device_hw_state { 497 HL_DEVICE_HW_STATE_CLEAN = 0, 498 HL_DEVICE_HW_STATE_DIRTY 499 }; 500 501 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 502 503 /** 504 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 505 * @start_addr: virtual start address of the memory region. 506 * @end_addr: virtual end address of the memory region. 507 * @hop_shifts: array holds HOPs shifts. 508 * @hop_masks: array holds HOPs masks. 509 * @last_mask: mask to get the bit indicating this is the last hop. 510 * @pgt_size: size for page tables. 511 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 512 * supporting multiple page size). 513 * @page_size: default page size used to allocate memory. 514 * @num_hops: The amount of hops supported by the translation table. 515 * @hop_table_size: HOP table size. 516 * @hop0_tables_total_size: total size for all HOP0 tables. 517 * @host_resident: Should the MMU page table reside in host memory or in the 518 * device DRAM. 519 */ 520 struct hl_mmu_properties { 521 u64 start_addr; 522 u64 end_addr; 523 u64 hop_shifts[MMU_HOP_MAX]; 524 u64 hop_masks[MMU_HOP_MAX]; 525 u64 last_mask; 526 u64 pgt_size; 527 u64 supported_pages_mask; 528 u32 page_size; 529 u32 num_hops; 530 u32 hop_table_size; 531 u32 hop0_tables_total_size; 532 u8 host_resident; 533 }; 534 535 /** 536 * struct hl_hints_range - hint addresses reserved va range. 537 * @start_addr: start address of the va range. 538 * @end_addr: end address of the va range. 539 */ 540 struct hl_hints_range { 541 u64 start_addr; 542 u64 end_addr; 543 }; 544 545 /** 546 * struct asic_fixed_properties - ASIC specific immutable properties. 547 * @hw_queues_props: H/W queues properties. 548 * @special_blocks: points to an array containing special blocks info. 549 * @skip_special_blocks_cfg: special blocks skip configs. 550 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 551 * available sensors. 552 * @uboot_ver: F/W U-boot version. 553 * @preboot_ver: F/W Preboot version. 554 * @dmmu: DRAM MMU address translation properties. 555 * @pmmu: PCI (host) MMU address translation properties. 556 * @pmmu_huge: PCI (host) MMU address translation properties for memory 557 * allocated with huge pages. 558 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 559 * @hints_host_reserved_va_range: host hint addresses reserved range. 560 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range. 561 * @sram_base_address: SRAM physical start address. 562 * @sram_end_address: SRAM physical end address. 563 * @sram_user_base_address - SRAM physical start address for user access. 564 * @dram_base_address: DRAM physical start address. 565 * @dram_end_address: DRAM physical end address. 566 * @dram_user_base_address: DRAM physical start address for user access. 567 * @dram_size: DRAM total size. 568 * @dram_pci_bar_size: size of PCI bar towards DRAM. 569 * @max_power_default: max power of the device after reset. 570 * @dc_power_default: power consumed by the device in mode idle. 571 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 572 * fault. 573 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 574 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 575 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 576 * @mmu_dram_default_page_addr: DRAM default page physical address. 577 * @tpc_enabled_mask: which TPCs are enabled. 578 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 579 * @dram_enabled_mask: which DRAMs are enabled. 580 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 581 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 582 * for hints validity check. 583 * @cfg_base_address: config space base address. 584 * @mmu_cache_mng_addr: address of the MMU cache. 585 * @mmu_cache_mng_size: size of the MMU cache. 586 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 587 * to enable the device to access them. 588 * @host_base_address: host physical start address for host DMA from device 589 * @host_end_address: host physical end address for host DMA from device 590 * @max_freq_value: current max clk frequency. 591 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 592 * in order to raise events toward FW. 593 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 594 * we display to the user 595 * @mmu_pgt_size: MMU page tables total size. 596 * @mmu_pte_size: PTE size in MMU page tables. 597 * @dram_page_size: The DRAM physical page size. 598 * @cfg_size: configuration space size on SRAM. 599 * @sram_size: total size of SRAM. 600 * @max_asid: maximum number of open contexts (ASIDs). 601 * @num_of_events: number of possible internal H/W IRQs. 602 * @psoc_pci_pll_nr: PCI PLL NR value. 603 * @psoc_pci_pll_nf: PCI PLL NF value. 604 * @psoc_pci_pll_od: PCI PLL OD value. 605 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 606 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 607 * @high_pll: high PLL frequency used by the device. 608 * @cb_pool_cb_cnt: number of CBs in the CB pool. 609 * @cb_pool_cb_size: size of each CB in the CB pool. 610 * @decoder_enabled_mask: which decoders are enabled. 611 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. 612 * @rotator_enabled_mask: which rotators are enabled. 613 * @edma_enabled_mask: which EDMAs are enabled. 614 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 615 * binned (at most one binned DMA). 616 * @max_pending_cs: maximum of concurrent pending command submissions 617 * @max_queues: maximum amount of queues in the system 618 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 619 * capabilities reported by FW, bit description 620 * can be found in CPU_BOOT_DEV_STS0 621 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 622 * capabilities reported by FW, bit description 623 * can be found in CPU_BOOT_DEV_STS1 624 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 625 * status reported by FW, bit description can be 626 * found in CPU_BOOT_DEV_STS0 627 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 628 * status reported by FW, bit description can be 629 * found in CPU_BOOT_DEV_STS1 630 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 631 * status reported by FW, bit description can be 632 * found in CPU_BOOT_DEV_STS0 633 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 634 * status reported by FW, bit description can be 635 * found in CPU_BOOT_DEV_STS1 636 * @max_dec: maximum number of decoders 637 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 638 * 1- enabled, 0- isolated. 639 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 640 * 1- faulty cluster, 0- good cluster. 641 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 642 * 1- enabled, 0- isolated. 643 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 644 * which the property supports_user_set_page_size is true 645 * (i.e. the DRAM supports multiple page sizes), otherwise 646 * it will shall be equal to dram_page_size. 647 * @num_engine_cores: number of engine cpu cores. 648 * @max_num_of_engines: maximum number of all engines in the ASIC. 649 * @num_of_special_blocks: special_blocks array size. 650 * @glbl_err_max_cause_num: global err max cause number. 651 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 652 * not supported. 653 * @reserved_fw_mem_size: size of dram memory reserved for FW. 654 * @collective_first_sob: first sync object available for collective use 655 * @collective_first_mon: first monitor available for collective use 656 * @sync_stream_first_sob: first sync object available for sync stream use 657 * @sync_stream_first_mon: first monitor available for sync stream use 658 * @first_available_user_sob: first sob available for the user 659 * @first_available_user_mon: first monitor available for the user 660 * @first_available_user_interrupt: first available interrupt reserved for the user 661 * @first_available_cq: first available CQ for the user. 662 * @user_interrupt_count: number of user interrupts. 663 * @user_dec_intr_count: number of decoder interrupts exposed to user. 664 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 665 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. 666 * @cache_line_size: device cache line size. 667 * @server_type: Server type that the ASIC is currently installed in. 668 * The value is according to enum hl_server_type in uapi file. 669 * @completion_queues_count: number of completion queues. 670 * @completion_mode: 0 - job based completion, 1 - cs based completion 671 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 672 * in Master/Slave mode 673 * @fw_security_enabled: true if security measures are enabled in firmware, 674 * false otherwise 675 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 676 * BOOT_DEV_STS0 677 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 678 * BOOT_DEV_STS1 679 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 680 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 681 * @num_functional_hbms: number of functional HBMs in each DCORE. 682 * @hints_range_reservation: device support hint addresses range reservation. 683 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 684 * @dynamic_fw_load: is dynamic FW load is supported. 685 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 686 * false otherwise. 687 * @use_get_power_for_reset_history: To support backward compatibility for Goya 688 * and Gaudi 689 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 690 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 691 * initiated by user or TDR. This is only true 692 * in inference ASICs, as there is no real-world 693 * use-case of doing soft-reset in training (due 694 * to the fact that training runs on multiple 695 * devices) 696 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 697 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 698 * @supports_user_set_page_size: true if user can set the allocation page size. 699 * @dma_mask: the dma mask to be set for this device. 700 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 701 * @supports_engine_modes: true if changing engines/engine_cores modes is supported. 702 * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw. 703 */ 704 struct asic_fixed_properties { 705 struct hw_queue_properties *hw_queues_props; 706 struct hl_special_block_info *special_blocks; 707 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 708 struct cpucp_info cpucp_info; 709 char uboot_ver[VERSION_MAX_LEN]; 710 char preboot_ver[VERSION_MAX_LEN]; 711 struct hl_mmu_properties dmmu; 712 struct hl_mmu_properties pmmu; 713 struct hl_mmu_properties pmmu_huge; 714 struct hl_hints_range hints_dram_reserved_va_range; 715 struct hl_hints_range hints_host_reserved_va_range; 716 struct hl_hints_range hints_host_hpage_reserved_va_range; 717 u64 sram_base_address; 718 u64 sram_end_address; 719 u64 sram_user_base_address; 720 u64 dram_base_address; 721 u64 dram_end_address; 722 u64 dram_user_base_address; 723 u64 dram_size; 724 u64 dram_pci_bar_size; 725 u64 max_power_default; 726 u64 dc_power_default; 727 u64 dram_size_for_default_page_mapping; 728 u64 pcie_dbi_base_address; 729 u64 pcie_aux_dbi_reg_addr; 730 u64 mmu_pgt_addr; 731 u64 mmu_dram_default_page_addr; 732 u64 tpc_enabled_mask; 733 u64 tpc_binning_mask; 734 u64 dram_enabled_mask; 735 u64 dram_binning_mask; 736 u64 dram_hints_align_mask; 737 u64 cfg_base_address; 738 u64 mmu_cache_mng_addr; 739 u64 mmu_cache_mng_size; 740 u64 device_dma_offset_for_host_access; 741 u64 host_base_address; 742 u64 host_end_address; 743 u64 max_freq_value; 744 u64 engine_core_interrupt_reg_addr; 745 u32 clk_pll_index; 746 u32 mmu_pgt_size; 747 u32 mmu_pte_size; 748 u32 dram_page_size; 749 u32 cfg_size; 750 u32 sram_size; 751 u32 max_asid; 752 u32 num_of_events; 753 u32 psoc_pci_pll_nr; 754 u32 psoc_pci_pll_nf; 755 u32 psoc_pci_pll_od; 756 u32 psoc_pci_pll_div_factor; 757 u32 psoc_timestamp_frequency; 758 u32 high_pll; 759 u32 cb_pool_cb_cnt; 760 u32 cb_pool_cb_size; 761 u32 decoder_enabled_mask; 762 u32 decoder_binning_mask; 763 u32 rotator_enabled_mask; 764 u32 edma_enabled_mask; 765 u32 edma_binning_mask; 766 u32 max_pending_cs; 767 u32 max_queues; 768 u32 fw_preboot_cpu_boot_dev_sts0; 769 u32 fw_preboot_cpu_boot_dev_sts1; 770 u32 fw_bootfit_cpu_boot_dev_sts0; 771 u32 fw_bootfit_cpu_boot_dev_sts1; 772 u32 fw_app_cpu_boot_dev_sts0; 773 u32 fw_app_cpu_boot_dev_sts1; 774 u32 max_dec; 775 u32 hmmu_hif_enabled_mask; 776 u32 faulty_dram_cluster_map; 777 u32 xbar_edge_enabled_mask; 778 u32 device_mem_alloc_default_page_size; 779 u32 num_engine_cores; 780 u32 max_num_of_engines; 781 u32 num_of_special_blocks; 782 u32 glbl_err_max_cause_num; 783 u32 hbw_flush_reg; 784 u32 reserved_fw_mem_size; 785 u16 collective_first_sob; 786 u16 collective_first_mon; 787 u16 sync_stream_first_sob; 788 u16 sync_stream_first_mon; 789 u16 first_available_user_sob[HL_MAX_DCORES]; 790 u16 first_available_user_mon[HL_MAX_DCORES]; 791 u16 first_available_user_interrupt; 792 u16 first_available_cq[HL_MAX_DCORES]; 793 u16 user_interrupt_count; 794 u16 user_dec_intr_count; 795 u16 tpc_interrupt_id; 796 u16 eq_interrupt_id; 797 u16 cache_line_size; 798 u16 server_type; 799 u8 completion_queues_count; 800 u8 completion_mode; 801 u8 mme_master_slave_mode; 802 u8 fw_security_enabled; 803 u8 fw_cpu_boot_dev_sts0_valid; 804 u8 fw_cpu_boot_dev_sts1_valid; 805 u8 dram_supports_virtual_memory; 806 u8 hard_reset_done_by_fw; 807 u8 num_functional_hbms; 808 u8 hints_range_reservation; 809 u8 iatu_done_by_fw; 810 u8 dynamic_fw_load; 811 u8 gic_interrupts_enable; 812 u8 use_get_power_for_reset_history; 813 u8 supports_compute_reset; 814 u8 allow_inference_soft_reset; 815 u8 configurable_stop_on_err; 816 u8 set_max_power_on_device_init; 817 u8 supports_user_set_page_size; 818 u8 dma_mask; 819 u8 supports_advanced_cpucp_rc; 820 u8 supports_engine_modes; 821 u8 support_dynamic_resereved_fw_size; 822 }; 823 824 /** 825 * struct hl_fence - software synchronization primitive 826 * @completion: fence is implemented using completion 827 * @refcount: refcount for this fence 828 * @cs_sequence: sequence of the corresponding command submission 829 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 830 * masters QIDs that multi cs is waiting on 831 * @error: mark this fence with error 832 * @timestamp: timestamp upon completion 833 * @mcs_handling_done: indicates that corresponding command submission has 834 * finished msc handling, this does not mean it was part 835 * of the mcs 836 */ 837 struct hl_fence { 838 struct completion completion; 839 struct kref refcount; 840 u64 cs_sequence; 841 u32 stream_master_qid_map; 842 int error; 843 ktime_t timestamp; 844 u8 mcs_handling_done; 845 }; 846 847 /** 848 * struct hl_cs_compl - command submission completion object. 849 * @base_fence: hl fence object. 850 * @lock: spinlock to protect fence. 851 * @hdev: habanalabs device structure. 852 * @hw_sob: the H/W SOB used in this signal/wait CS. 853 * @encaps_sig_hdl: encaps signals handler. 854 * @cs_seq: command submission sequence number. 855 * @type: type of the CS - signal/wait. 856 * @sob_val: the SOB value that is used in this signal/wait CS. 857 * @sob_group: the SOB group that is used in this collective wait CS. 858 * @encaps_signals: indication whether it's a completion object of cs with 859 * encaps signals or not. 860 */ 861 struct hl_cs_compl { 862 struct hl_fence base_fence; 863 spinlock_t lock; 864 struct hl_device *hdev; 865 struct hl_hw_sob *hw_sob; 866 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 867 u64 cs_seq; 868 enum hl_cs_type type; 869 u16 sob_val; 870 u16 sob_group; 871 bool encaps_signals; 872 }; 873 874 /* 875 * Command Buffers 876 */ 877 878 /** 879 * struct hl_ts_buff - describes a timestamp buffer. 880 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 881 * @user_buff_address: Holds the user buffer's kernel virtual address. 882 * @kernel_buff_size: Holds the internal kernel buffer size. 883 */ 884 struct hl_ts_buff { 885 void *kernel_buff_address; 886 void *user_buff_address; 887 u32 kernel_buff_size; 888 }; 889 890 struct hl_mmap_mem_buf; 891 892 /** 893 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 894 * @dev: back pointer to the owning device 895 * @lock: protects handles 896 * @handles: an idr holding all active handles to the memory buffers in the system. 897 */ 898 struct hl_mem_mgr { 899 struct device *dev; 900 spinlock_t lock; 901 struct idr handles; 902 }; 903 904 /** 905 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 906 * @topic: string identifier used for logging 907 * @mem_id: memory type identifier, embedded in the handle and used to identify 908 * the memory type by handle. 909 * @alloc: callback executed on buffer allocation, shall allocate the memory, 910 * set it under buffer private, and set mappable size. 911 * @mmap: callback executed on mmap, must map the buffer to vma 912 * @release: callback executed on release, must free the resources used by the buffer 913 */ 914 struct hl_mmap_mem_buf_behavior { 915 const char *topic; 916 u64 mem_id; 917 918 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 919 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 920 void (*release)(struct hl_mmap_mem_buf *buf); 921 }; 922 923 /** 924 * struct hl_mmap_mem_buf - describes a single unified memory buffer 925 * @behavior: buffer behavior 926 * @mmg: back pointer to the unified memory manager 927 * @refcount: reference counter for buffer users 928 * @private: pointer to buffer behavior private data 929 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 930 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 931 * may change at runtime. 932 * @mappable_size: the original mappable size of the buffer, does not change after 933 * the allocation. 934 * @handle: the buffer id in mmg handles store 935 */ 936 struct hl_mmap_mem_buf { 937 struct hl_mmap_mem_buf_behavior *behavior; 938 struct hl_mem_mgr *mmg; 939 struct kref refcount; 940 void *private; 941 atomic_t mmap; 942 u64 real_mapped_size; 943 u64 mappable_size; 944 u64 handle; 945 }; 946 947 /** 948 * struct hl_cb - describes a Command Buffer. 949 * @hdev: pointer to device this CB belongs to. 950 * @ctx: pointer to the CB owner's context. 951 * @buf: back pointer to the parent mappable memory buffer 952 * @debugfs_list: node in debugfs list of command buffers. 953 * @pool_list: node in pool list of command buffers. 954 * @kernel_address: Holds the CB's kernel virtual address. 955 * @virtual_addr: Holds the CB's virtual address. 956 * @bus_address: Holds the CB's DMA address. 957 * @size: holds the CB's size. 958 * @roundup_size: holds the cb size after roundup to page size. 959 * @cs_cnt: holds number of CS that this CB participates in. 960 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 961 * @is_pool: true if CB was acquired from the pool, false otherwise. 962 * @is_internal: internally allocated 963 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 964 */ 965 struct hl_cb { 966 struct hl_device *hdev; 967 struct hl_ctx *ctx; 968 struct hl_mmap_mem_buf *buf; 969 struct list_head debugfs_list; 970 struct list_head pool_list; 971 void *kernel_address; 972 u64 virtual_addr; 973 dma_addr_t bus_address; 974 u32 size; 975 u32 roundup_size; 976 atomic_t cs_cnt; 977 atomic_t is_handle_destroyed; 978 u8 is_pool; 979 u8 is_internal; 980 u8 is_mmu_mapped; 981 }; 982 983 984 /* 985 * QUEUES 986 */ 987 988 struct hl_cs_job; 989 990 /* Queue length of external and HW queues */ 991 #define HL_QUEUE_LENGTH 4096 992 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 993 994 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 995 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 996 #endif 997 998 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 999 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 1000 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 1001 1002 /* Must be power of 2 */ 1003 #define HL_EQ_LENGTH 64 1004 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 1005 1006 /* Host <-> CPU-CP shared memory size */ 1007 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 1008 1009 /** 1010 * struct hl_sync_stream_properties - 1011 * describes a H/W queue sync stream properties 1012 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1013 * @next_sob_val: the next value to use for the currently used SOB. 1014 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1015 * @base_mon_id: the base MON id of the MONs used by this queue. 1016 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1017 * in order to sync with all slave queues. 1018 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1019 * sync with its master queue. 1020 * @collective_sob_id: current SOB id used by this collective slave queue 1021 * to signal its collective master queue upon completion. 1022 * @curr_sob_offset: the id offset to the currently used SOB from the 1023 * HL_RSVD_SOBS that are being used by this queue. 1024 */ 1025 struct hl_sync_stream_properties { 1026 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1027 u16 next_sob_val; 1028 u16 base_sob_id; 1029 u16 base_mon_id; 1030 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1031 u16 collective_slave_mon_id; 1032 u16 collective_sob_id; 1033 u8 curr_sob_offset; 1034 }; 1035 1036 /** 1037 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1038 * handlers manager 1039 * @lock: protects handles. 1040 * @handles: an idr to hold all encapsulated signals handles. 1041 */ 1042 struct hl_encaps_signals_mgr { 1043 spinlock_t lock; 1044 struct idr handles; 1045 }; 1046 1047 /** 1048 * struct hl_hw_queue - describes a H/W transport queue. 1049 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1050 * @sync_stream_prop: sync stream queue properties 1051 * @queue_type: type of queue. 1052 * @collective_mode: collective mode of current queue 1053 * @kernel_address: holds the queue's kernel virtual address. 1054 * @bus_address: holds the queue's DMA address. 1055 * @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in 1056 * queue properites. 1057 * @pi: holds the queue's pi value. 1058 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1059 * @hw_queue_id: the id of the H/W queue. 1060 * @cq_id: the id for the corresponding CQ for this H/W queue. 1061 * @msi_vec: the IRQ number of the H/W queue. 1062 * @int_queue_len: length of internal queue (number of entries). 1063 * @valid: is the queue valid (we have array of 32 queues, not all of them 1064 * exist). 1065 * @supports_sync_stream: True if queue supports sync stream 1066 * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram 1067 */ 1068 struct hl_hw_queue { 1069 struct hl_cs_job **shadow_queue; 1070 struct hl_sync_stream_properties sync_stream_prop; 1071 enum hl_queue_type queue_type; 1072 enum hl_collective_mode collective_mode; 1073 void *kernel_address; 1074 dma_addr_t bus_address; 1075 u64 pq_dram_address; 1076 u32 pi; 1077 atomic_t ci; 1078 u32 hw_queue_id; 1079 u32 cq_id; 1080 u32 msi_vec; 1081 u16 int_queue_len; 1082 u8 valid; 1083 u8 supports_sync_stream; 1084 u8 dram_bd; 1085 }; 1086 1087 /** 1088 * struct hl_cq - describes a completion queue 1089 * @hdev: pointer to the device structure 1090 * @kernel_address: holds the queue's kernel virtual address 1091 * @bus_address: holds the queue's DMA address 1092 * @cq_idx: completion queue index in array 1093 * @hw_queue_id: the id of the matching H/W queue 1094 * @ci: ci inside the queue 1095 * @pi: pi inside the queue 1096 * @free_slots_cnt: counter of free slots in queue 1097 */ 1098 struct hl_cq { 1099 struct hl_device *hdev; 1100 void *kernel_address; 1101 dma_addr_t bus_address; 1102 u32 cq_idx; 1103 u32 hw_queue_id; 1104 u32 ci; 1105 u32 pi; 1106 atomic_t free_slots_cnt; 1107 }; 1108 1109 enum hl_user_interrupt_type { 1110 HL_USR_INTERRUPT_CQ = 0, 1111 HL_USR_INTERRUPT_DECODER, 1112 HL_USR_INTERRUPT_TPC, 1113 HL_USR_INTERRUPT_UNEXPECTED 1114 }; 1115 1116 /** 1117 * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data 1118 * @free_nodes_pool: pool of nodes to be used for free timestamp jobs 1119 * @free_nodes_length: number of nodes in free_nodes_pool 1120 * @next_avail_free_node_idx: index of the next free node in the pool 1121 * 1122 * the free nodes pool must be protected by the user interrupt lock 1123 * to avoid race between different interrupts which are using the same 1124 * ts buffer with different offsets. 1125 */ 1126 struct hl_ts_free_jobs { 1127 struct timestamp_reg_free_node *free_nodes_pool; 1128 u32 free_nodes_length; 1129 u32 next_avail_free_node_idx; 1130 }; 1131 1132 /** 1133 * struct hl_user_interrupt - holds user interrupt information 1134 * @hdev: pointer to the device structure 1135 * @ts_free_jobs_data: timestamp free jobs related data 1136 * @type: user interrupt type 1137 * @wait_list_head: head to the list of user threads pending on this interrupt 1138 * @ts_list_head: head to the list of timestamp records 1139 * @wait_list_lock: protects wait_list_head 1140 * @ts_list_lock: protects ts_list_head 1141 * @timestamp: last timestamp taken upon interrupt 1142 * @interrupt_id: msix interrupt id 1143 */ 1144 struct hl_user_interrupt { 1145 struct hl_device *hdev; 1146 struct hl_ts_free_jobs ts_free_jobs_data; 1147 enum hl_user_interrupt_type type; 1148 struct list_head wait_list_head; 1149 struct list_head ts_list_head; 1150 spinlock_t wait_list_lock; 1151 spinlock_t ts_list_lock; 1152 ktime_t timestamp; 1153 u32 interrupt_id; 1154 }; 1155 1156 /** 1157 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1158 * @free_objects_node: node in the list free_obj_jobs 1159 * @cq_cb: pointer to cq command buffer to be freed 1160 * @buf: pointer to timestamp buffer to be freed 1161 * @in_use: indicates whether the node still in use in workqueue thread. 1162 * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler 1163 */ 1164 struct timestamp_reg_free_node { 1165 struct list_head free_objects_node; 1166 struct hl_cb *cq_cb; 1167 struct hl_mmap_mem_buf *buf; 1168 atomic_t in_use; 1169 u8 dynamic_alloc; 1170 }; 1171 1172 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1173 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1174 * in each node of the list 1175 * @free_obj: workqueue object to free timestamp registration node objects 1176 * @hdev: pointer to the device structure 1177 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1178 * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the 1179 * interrupt handler. 1180 */ 1181 struct timestamp_reg_work_obj { 1182 struct work_struct free_obj; 1183 struct hl_device *hdev; 1184 struct list_head *free_obj_head; 1185 struct list_head *dynamic_alloc_free_obj_head; 1186 }; 1187 1188 /* struct timestamp_reg_info - holds the timestamp registration related data. 1189 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1190 * relevant only when doing timestamps records registration. 1191 * @cq_cb: pointer to CQ counter CB. 1192 * @interrupt: interrupt that the node hanged on it's wait list. 1193 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1194 * relevant only when doing timestamps records 1195 * registration. 1196 * @in_use: indicates if the node already in use. relevant only when doing 1197 * timestamps records registration, since in this case the driver 1198 * will have it's own buffer which serve as a records pool instead of 1199 * allocating records dynamically. 1200 */ 1201 struct timestamp_reg_info { 1202 struct hl_mmap_mem_buf *buf; 1203 struct hl_cb *cq_cb; 1204 struct hl_user_interrupt *interrupt; 1205 u64 *timestamp_kernel_addr; 1206 bool in_use; 1207 }; 1208 1209 /** 1210 * struct hl_user_pending_interrupt - holds a context to a user thread 1211 * pending on an interrupt 1212 * @ts_reg_info: holds the timestamps registration nodes info 1213 * @list_node: node in the list of user threads pending on an interrupt or timestamp 1214 * @fence: hl fence object for interrupt completion 1215 * @cq_target_value: CQ target value 1216 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1217 * handler for target value comparison 1218 */ 1219 struct hl_user_pending_interrupt { 1220 struct timestamp_reg_info ts_reg_info; 1221 struct list_head list_node; 1222 struct hl_fence fence; 1223 u64 cq_target_value; 1224 u64 *cq_kernel_addr; 1225 }; 1226 1227 /** 1228 * struct hl_eq - describes the event queue (single one per device) 1229 * @hdev: pointer to the device structure 1230 * @kernel_address: holds the queue's kernel virtual address 1231 * @bus_address: holds the queue's DMA address 1232 * @ci: ci inside the queue 1233 * @prev_eqe_index: the index of the previous event queue entry. The index of 1234 * the current entry's index must be +1 of the previous one. 1235 * @check_eqe_index: do we need to check the index of the current entry vs. the 1236 * previous one. This is for backward compatibility with older 1237 * firmwares 1238 */ 1239 struct hl_eq { 1240 struct hl_device *hdev; 1241 void *kernel_address; 1242 dma_addr_t bus_address; 1243 u32 ci; 1244 u32 prev_eqe_index; 1245 bool check_eqe_index; 1246 }; 1247 1248 /** 1249 * struct hl_dec - describes a decoder sw instance. 1250 * @hdev: pointer to the device structure. 1251 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. 1252 * @core_id: ID of the decoder. 1253 * @base_addr: base address of the decoder. 1254 */ 1255 struct hl_dec { 1256 struct hl_device *hdev; 1257 struct work_struct abnrm_intr_work; 1258 u32 core_id; 1259 u32 base_addr; 1260 }; 1261 1262 /** 1263 * enum hl_asic_type - supported ASIC types. 1264 * @ASIC_INVALID: Invalid ASIC type. 1265 * @ASIC_GOYA: Goya device (HL-1000). 1266 * @ASIC_GAUDI: Gaudi device (HL-2000). 1267 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1268 * @ASIC_GAUDI2: Gaudi2 device. 1269 * @ASIC_GAUDI2B: Gaudi2B device. 1270 * @ASIC_GAUDI2C: Gaudi2C device. 1271 */ 1272 enum hl_asic_type { 1273 ASIC_INVALID, 1274 ASIC_GOYA, 1275 ASIC_GAUDI, 1276 ASIC_GAUDI_SEC, 1277 ASIC_GAUDI2, 1278 ASIC_GAUDI2B, 1279 ASIC_GAUDI2C, 1280 }; 1281 1282 struct hl_cs_parser; 1283 1284 /** 1285 * enum hl_pm_mng_profile - power management profile. 1286 * @PM_AUTO: internal clock is set by the Linux driver. 1287 * @PM_MANUAL: internal clock is set by the user. 1288 * @PM_LAST: last power management type. 1289 */ 1290 enum hl_pm_mng_profile { 1291 PM_AUTO = 1, 1292 PM_MANUAL, 1293 PM_LAST 1294 }; 1295 1296 /** 1297 * enum hl_pll_frequency - PLL frequency. 1298 * @PLL_HIGH: high frequency. 1299 * @PLL_LOW: low frequency. 1300 * @PLL_LAST: last frequency values that were configured by the user. 1301 */ 1302 enum hl_pll_frequency { 1303 PLL_HIGH = 1, 1304 PLL_LOW, 1305 PLL_LAST 1306 }; 1307 1308 #define PLL_REF_CLK 50 1309 1310 enum div_select_defs { 1311 DIV_SEL_REF_CLK = 0, 1312 DIV_SEL_PLL_CLK = 1, 1313 DIV_SEL_DIVIDED_REF = 2, 1314 DIV_SEL_DIVIDED_PLL = 3, 1315 }; 1316 1317 enum debugfs_access_type { 1318 DEBUGFS_READ8, 1319 DEBUGFS_WRITE8, 1320 DEBUGFS_READ32, 1321 DEBUGFS_WRITE32, 1322 DEBUGFS_READ64, 1323 DEBUGFS_WRITE64, 1324 }; 1325 1326 enum pci_region { 1327 PCI_REGION_CFG, 1328 PCI_REGION_SRAM, 1329 PCI_REGION_DRAM, 1330 PCI_REGION_SP_SRAM, 1331 PCI_REGION_NUMBER, 1332 }; 1333 1334 /** 1335 * struct pci_mem_region - describe memory region in a PCI bar 1336 * @region_base: region base address 1337 * @region_size: region size 1338 * @bar_size: size of the BAR 1339 * @offset_in_bar: region offset into the bar 1340 * @bar_id: bar ID of the region 1341 * @used: if used 1, otherwise 0 1342 */ 1343 struct pci_mem_region { 1344 u64 region_base; 1345 u64 region_size; 1346 u64 bar_size; 1347 u64 offset_in_bar; 1348 u8 bar_id; 1349 u8 used; 1350 }; 1351 1352 /** 1353 * struct static_fw_load_mgr - static FW load manager 1354 * @preboot_version_max_off: max offset to preboot version 1355 * @boot_fit_version_max_off: max offset to boot fit version 1356 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1357 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1358 * @cpu_boot_status_reg: boot status register 1359 * @cpu_boot_dev_status0_reg: boot device status register 0 1360 * @cpu_boot_dev_status1_reg: boot device status register 1 1361 * @boot_err0_reg: boot error register 0 1362 * @boot_err1_reg: boot error register 1 1363 * @preboot_version_offset_reg: SRAM offset to preboot version register 1364 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1365 * @sram_offset_mask: mask for getting offset into the SRAM 1366 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1367 */ 1368 struct static_fw_load_mgr { 1369 u64 preboot_version_max_off; 1370 u64 boot_fit_version_max_off; 1371 u32 kmd_msg_to_cpu_reg; 1372 u32 cpu_cmd_status_to_host_reg; 1373 u32 cpu_boot_status_reg; 1374 u32 cpu_boot_dev_status0_reg; 1375 u32 cpu_boot_dev_status1_reg; 1376 u32 boot_err0_reg; 1377 u32 boot_err1_reg; 1378 u32 preboot_version_offset_reg; 1379 u32 boot_fit_version_offset_reg; 1380 u32 sram_offset_mask; 1381 u32 cpu_reset_wait_msec; 1382 }; 1383 1384 /** 1385 * struct fw_response - FW response to LKD command 1386 * @ram_offset: descriptor offset into the RAM 1387 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1388 * @status: command status 1389 */ 1390 struct fw_response { 1391 u32 ram_offset; 1392 u8 ram_type; 1393 u8 status; 1394 }; 1395 1396 /** 1397 * struct dynamic_fw_load_mgr - dynamic FW load manager 1398 * @response: FW to LKD response 1399 * @comm_desc: the communication descriptor with FW 1400 * @image_region: region to copy the FW image to 1401 * @fw_image_size: size of FW image to load 1402 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1403 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1404 */ 1405 struct dynamic_fw_load_mgr { 1406 struct fw_response response; 1407 struct lkd_fw_comms_desc comm_desc; 1408 struct pci_mem_region *image_region; 1409 size_t fw_image_size; 1410 u32 wait_for_bl_timeout; 1411 bool fw_desc_valid; 1412 }; 1413 1414 /** 1415 * struct pre_fw_load_props - needed properties for pre-FW load 1416 * @cpu_boot_status_reg: cpu_boot_status register address 1417 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1418 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1419 * @boot_err0_reg: boot_err0 register address 1420 * @boot_err1_reg: boot_err1 register address 1421 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1422 * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know 1423 * preboot needs longer time. 1424 */ 1425 struct pre_fw_load_props { 1426 u32 cpu_boot_status_reg; 1427 u32 sts_boot_dev_sts0_reg; 1428 u32 sts_boot_dev_sts1_reg; 1429 u32 boot_err0_reg; 1430 u32 boot_err1_reg; 1431 u32 wait_for_preboot_timeout; 1432 u32 wait_for_preboot_extended_timeout; 1433 }; 1434 1435 /** 1436 * struct fw_image_props - properties of FW image 1437 * @image_name: name of the image 1438 * @src_off: offset in src FW to copy from 1439 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1440 */ 1441 struct fw_image_props { 1442 char *image_name; 1443 u32 src_off; 1444 u32 copy_size; 1445 }; 1446 1447 /** 1448 * struct fw_load_mgr - manager FW loading process 1449 * @dynamic_loader: specific structure for dynamic load 1450 * @static_loader: specific structure for static load 1451 * @pre_fw_load_props: parameter for pre FW load 1452 * @boot_fit_img: boot fit image properties 1453 * @linux_img: linux image properties 1454 * @cpu_timeout: CPU response timeout in usec 1455 * @boot_fit_timeout: Boot fit load timeout in usec 1456 * @skip_bmc: should BMC be skipped 1457 * @sram_bar_id: SRAM bar ID 1458 * @dram_bar_id: DRAM bar ID 1459 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1460 * component. values are set according to enum hl_fw_types. 1461 */ 1462 struct fw_load_mgr { 1463 union { 1464 struct dynamic_fw_load_mgr dynamic_loader; 1465 struct static_fw_load_mgr static_loader; 1466 }; 1467 struct pre_fw_load_props pre_fw_load; 1468 struct fw_image_props boot_fit_img; 1469 struct fw_image_props linux_img; 1470 u32 cpu_timeout; 1471 u32 boot_fit_timeout; 1472 u8 skip_bmc; 1473 u8 sram_bar_id; 1474 u8 dram_bar_id; 1475 u8 fw_comp_loaded; 1476 }; 1477 1478 struct hl_cs; 1479 1480 /** 1481 * struct engines_data - asic engines data 1482 * @buf: buffer for engines data in ascii 1483 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1484 * @allocated_buf_size: total size of allocated buffer 1485 */ 1486 struct engines_data { 1487 char *buf; 1488 int actual_size; 1489 u32 allocated_buf_size; 1490 }; 1491 1492 /** 1493 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1494 * common code. 1495 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1496 * @early_fini: tears down what was done in early_init. 1497 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1498 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1499 * @sw_init: sets up driver state, does not configure H/W. 1500 * @sw_fini: tears down driver state, does not configure H/W. 1501 * @hw_init: sets up the H/W state. 1502 * @hw_fini: tears down the H/W state. 1503 * @halt_engines: halt engines, needed for reset sequence. This also disables 1504 * interrupts from the device. Should be called before 1505 * hw_fini and before CS rollback. 1506 * @suspend: handles IP specific H/W or SW changes for suspend. 1507 * @resume: handles IP specific H/W or SW changes for resume. 1508 * @mmap: maps a memory. 1509 * @ring_doorbell: increment PI on a given QMAN. 1510 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1511 * function because the PQs are located in different memory areas 1512 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1513 * writing the PQE must match the destination memory area 1514 * properties. 1515 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1516 * dma_alloc_coherent(). This is ASIC function because 1517 * its implementation is not trivial when the driver 1518 * is loaded in simulation mode (not upstreamed). 1519 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1520 * dma_free_coherent(). This is ASIC function because 1521 * its implementation is not trivial when the driver 1522 * is loaded in simulation mode (not upstreamed). 1523 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1524 * @scrub_device_dram: Scrub the dram memory of the device. 1525 * @get_int_queue_base: get the internal queue base address. 1526 * @test_queues: run simple test on all queues for sanity check. 1527 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1528 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1529 * @asic_dma_pool_free: free small DMA allocation from pool. 1530 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1531 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1532 * @dma_unmap_sgtable: DMA unmap scatter-gather table. 1533 * @dma_map_sgtable: DMA map scatter-gather table. 1534 * @cs_parser: parse Command Submission. 1535 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1536 * @update_eq_ci: update event queue CI. 1537 * @context_switch: called upon ASID context switch. 1538 * @restore_phase_topology: clear all SOBs amd MONs. 1539 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1540 * internal memory via DMA engine. 1541 * @add_device_attr: add ASIC specific device attributes. 1542 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1543 * @get_events_stat: retrieve event queue entries histogram. 1544 * @read_pte: read MMU page table entry from DRAM. 1545 * @write_pte: write MMU page table entry to DRAM. 1546 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1547 * (L1 only) or hard (L0 & L1) flush. 1548 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1549 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1550 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1551 * @debug_coresight: perform certain actions on Coresight for debugging. 1552 * @is_device_idle: return true if device is idle, false otherwise. 1553 * @compute_reset_late_init: perform certain actions needed after a compute reset 1554 * @hw_queues_lock: acquire H/W queues lock. 1555 * @hw_queues_unlock: release H/W queues lock. 1556 * @get_pci_id: retrieve PCI ID. 1557 * @get_eeprom_data: retrieve EEPROM data from F/W. 1558 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1559 * @send_cpu_message: send message to F/W. If the message is timedout, the 1560 * driver will eventually reset the device. The timeout can 1561 * be determined by the calling function or it can be 0 and 1562 * then the timeout is the default timeout for the specific 1563 * ASIC 1564 * @get_hw_state: retrieve the H/W state 1565 * @pci_bars_map: Map PCI BARs. 1566 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1567 * @rreg: Read a register. Needed for simulator support. 1568 * @wreg: Write a register. Needed for simulator support. 1569 * @halt_coresight: stop the ETF and ETR traces. 1570 * @ctx_init: context dependent initialization. 1571 * @ctx_fini: context dependent cleanup. 1572 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1573 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1574 * @load_firmware_to_device: load the firmware to the device's memory 1575 * @load_boot_fit_to_device: load boot fit to device's memory 1576 * @get_signal_cb_size: Get signal CB size. 1577 * @get_wait_cb_size: Get wait CB size. 1578 * @gen_signal_cb: Generate a signal CB. 1579 * @gen_wait_cb: Generate a wait CB. 1580 * @reset_sob: Reset a SOB. 1581 * @reset_sob_group: Reset SOB group 1582 * @get_device_time: Get the device time. 1583 * @pb_print_security_errors: print security errors according block and cause 1584 * @collective_wait_init_cs: Generate collective master/slave packets 1585 * and place them in the relevant cs jobs 1586 * @collective_wait_create_jobs: allocate collective wait cs jobs 1587 * @get_dec_base_addr: get the base address of a given decoder. 1588 * @scramble_addr: Routine to scramble the address prior of mapping it 1589 * in the MMU. 1590 * @descramble_addr: Routine to de-scramble the address prior of 1591 * showing it to users. 1592 * @ack_protection_bits_errors: ack and dump all security violations 1593 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1594 * also returns the size of the block if caller supplies 1595 * a valid pointer for it 1596 * @hw_block_mmap: mmap a HW block with a given id. 1597 * @enable_events_from_fw: send interrupt to firmware to notify them the 1598 * driver is ready to receive asynchronous events. This 1599 * function should be called during the first init and 1600 * after every hard-reset of the device 1601 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1602 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1603 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1604 * generic f/w compatible PLL Indexes 1605 * @init_firmware_preload_params: initialize pre FW-load parameters. 1606 * @init_firmware_loader: initialize data for FW loader. 1607 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1608 * @state_dump_init: initialize constants required for state dump 1609 * @get_sob_addr: get SOB base address offset. 1610 * @set_pci_memory_regions: setting properties of PCI memory regions 1611 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1612 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1613 * @access_dev_mem: access device memory 1614 * @set_dram_bar_base: set the base of the DRAM BAR 1615 * @set_engine_cores: set a config command to engine cores 1616 * @set_engines: set a config command to user engines 1617 * @send_device_activity: indication to FW about device availability 1618 * @set_dram_properties: set DRAM related properties. 1619 * @set_binning_masks: set binning/enable masks for all relevant components. 1620 */ 1621 struct hl_asic_funcs { 1622 int (*early_init)(struct hl_device *hdev); 1623 int (*early_fini)(struct hl_device *hdev); 1624 int (*late_init)(struct hl_device *hdev); 1625 void (*late_fini)(struct hl_device *hdev); 1626 int (*sw_init)(struct hl_device *hdev); 1627 int (*sw_fini)(struct hl_device *hdev); 1628 int (*hw_init)(struct hl_device *hdev); 1629 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1630 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1631 int (*suspend)(struct hl_device *hdev); 1632 int (*resume)(struct hl_device *hdev); 1633 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1634 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1635 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1636 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1637 struct hl_bd *bd); 1638 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1639 dma_addr_t *dma_handle, gfp_t flag); 1640 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1641 void *cpu_addr, dma_addr_t dma_handle); 1642 int (*scrub_device_mem)(struct hl_device *hdev); 1643 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1644 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1645 dma_addr_t *dma_handle, u16 *queue_len); 1646 int (*test_queues)(struct hl_device *hdev); 1647 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1648 gfp_t mem_flags, dma_addr_t *dma_handle); 1649 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1650 dma_addr_t dma_addr); 1651 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1652 size_t size, dma_addr_t *dma_handle); 1653 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1654 size_t size, void *vaddr); 1655 void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1656 enum dma_data_direction dir); 1657 int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1658 enum dma_data_direction dir); 1659 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1660 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1661 void *kernel_address, u32 len, 1662 u32 original_len, 1663 u64 cq_addr, u32 cq_val, u32 msix_num, 1664 bool eb); 1665 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1666 int (*context_switch)(struct hl_device *hdev, u32 asid); 1667 void (*restore_phase_topology)(struct hl_device *hdev); 1668 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1669 void *blob_addr); 1670 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1671 struct attribute_group *dev_vrm_attr_grp); 1672 void (*handle_eqe)(struct hl_device *hdev, 1673 struct hl_eq_entry *eq_entry); 1674 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1675 u32 *size); 1676 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1677 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1678 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1679 u32 flags); 1680 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1681 u32 flags, u32 asid, u64 va, u64 size); 1682 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1683 int (*send_heartbeat)(struct hl_device *hdev); 1684 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1685 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1686 struct engines_data *e); 1687 int (*compute_reset_late_init)(struct hl_device *hdev); 1688 void (*hw_queues_lock)(struct hl_device *hdev); 1689 void (*hw_queues_unlock)(struct hl_device *hdev); 1690 u32 (*get_pci_id)(struct hl_device *hdev); 1691 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1692 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1693 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1694 u16 len, u32 timeout, u64 *result); 1695 int (*pci_bars_map)(struct hl_device *hdev); 1696 int (*init_iatu)(struct hl_device *hdev); 1697 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1698 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1699 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1700 int (*ctx_init)(struct hl_ctx *ctx); 1701 void (*ctx_fini)(struct hl_ctx *ctx); 1702 int (*pre_schedule_cs)(struct hl_cs *cs); 1703 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1704 int (*load_firmware_to_device)(struct hl_device *hdev); 1705 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1706 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1707 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1708 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1709 u32 size, bool eb); 1710 u32 (*gen_wait_cb)(struct hl_device *hdev, 1711 struct hl_gen_wait_properties *prop); 1712 void (*reset_sob)(struct hl_device *hdev, void *data); 1713 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1714 u64 (*get_device_time)(struct hl_device *hdev); 1715 void (*pb_print_security_errors)(struct hl_device *hdev, 1716 u32 block_addr, u32 cause, u32 offended_addr); 1717 int (*collective_wait_init_cs)(struct hl_cs *cs); 1718 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1719 struct hl_ctx *ctx, struct hl_cs *cs, 1720 u32 wait_queue_id, u32 collective_engine_id, 1721 u32 encaps_signal_offset); 1722 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1723 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1724 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1725 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1726 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1727 u32 *block_size, u32 *block_id); 1728 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1729 u32 block_id, u32 block_size); 1730 void (*enable_events_from_fw)(struct hl_device *hdev); 1731 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1732 void (*get_msi_info)(__le32 *table); 1733 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1734 void (*init_firmware_preload_params)(struct hl_device *hdev); 1735 void (*init_firmware_loader)(struct hl_device *hdev); 1736 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1737 void (*state_dump_init)(struct hl_device *hdev); 1738 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1739 void (*set_pci_memory_regions)(struct hl_device *hdev); 1740 u32* (*get_stream_master_qid_arr)(void); 1741 void (*check_if_razwi_happened)(struct hl_device *hdev); 1742 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1743 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1744 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1745 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1746 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1747 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1748 u32 num_cores, u32 core_command); 1749 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, 1750 u32 num_engines, u32 engine_command); 1751 int (*send_device_activity)(struct hl_device *hdev, bool open); 1752 int (*set_dram_properties)(struct hl_device *hdev); 1753 int (*set_binning_masks)(struct hl_device *hdev); 1754 }; 1755 1756 1757 /* 1758 * CONTEXTS 1759 */ 1760 1761 #define HL_KERNEL_ASID_ID 0 1762 1763 /** 1764 * enum hl_va_range_type - virtual address range type. 1765 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1766 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1767 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1768 */ 1769 enum hl_va_range_type { 1770 HL_VA_RANGE_TYPE_HOST, 1771 HL_VA_RANGE_TYPE_HOST_HUGE, 1772 HL_VA_RANGE_TYPE_DRAM, 1773 HL_VA_RANGE_TYPE_MAX 1774 }; 1775 1776 /** 1777 * struct hl_va_range - virtual addresses range. 1778 * @lock: protects the virtual addresses list. 1779 * @list: list of virtual addresses blocks available for mappings. 1780 * @start_addr: range start address. 1781 * @end_addr: range end address. 1782 * @page_size: page size of this va range. 1783 */ 1784 struct hl_va_range { 1785 struct mutex lock; 1786 struct list_head list; 1787 u64 start_addr; 1788 u64 end_addr; 1789 u32 page_size; 1790 }; 1791 1792 /** 1793 * struct hl_cs_counters_atomic - command submission counters 1794 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1795 * @parsing_drop_cnt: dropped due to error in packet parsing 1796 * @queue_full_drop_cnt: dropped due to queue full 1797 * @device_in_reset_drop_cnt: dropped due to device in reset 1798 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1799 * @validation_drop_cnt: dropped due to error in validation 1800 */ 1801 struct hl_cs_counters_atomic { 1802 atomic64_t out_of_mem_drop_cnt; 1803 atomic64_t parsing_drop_cnt; 1804 atomic64_t queue_full_drop_cnt; 1805 atomic64_t device_in_reset_drop_cnt; 1806 atomic64_t max_cs_in_flight_drop_cnt; 1807 atomic64_t validation_drop_cnt; 1808 }; 1809 1810 /** 1811 * struct hl_dmabuf_priv - a dma-buf private object. 1812 * @dmabuf: pointer to dma-buf object. 1813 * @ctx: pointer to the dma-buf owner's context. 1814 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1815 * where virtual memory is supported. 1816 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1817 * @offset: the offset into the buffer from which the memory is exported. 1818 * Relevant only if virtual memory is supported and phys_pg_pack is being used. 1819 * device_phys_addr: physical address of the device's memory. Relevant only 1820 * if phys_pg_pack is NULL (dma-buf was exported from address). 1821 * The total size can be taken from the dmabuf object. 1822 */ 1823 struct hl_dmabuf_priv { 1824 struct dma_buf *dmabuf; 1825 struct hl_ctx *ctx; 1826 struct hl_vm_phys_pg_pack *phys_pg_pack; 1827 struct hl_vm_hash_node *memhash_hnode; 1828 u64 offset; 1829 u64 device_phys_addr; 1830 }; 1831 1832 #define HL_CS_OUTCOME_HISTORY_LEN 256 1833 1834 /** 1835 * struct hl_cs_outcome - represents a single completed CS outcome 1836 * @list_link: link to either container's used list or free list 1837 * @map_link: list to the container hash map 1838 * @ts: completion ts 1839 * @seq: the original cs sequence 1840 * @error: error code cs completed with, if any 1841 */ 1842 struct hl_cs_outcome { 1843 struct list_head list_link; 1844 struct hlist_node map_link; 1845 ktime_t ts; 1846 u64 seq; 1847 int error; 1848 }; 1849 1850 /** 1851 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1852 * @outcome_map: index of completed CS searchable by sequence number 1853 * @used_list: list of outcome objects currently in use 1854 * @free_list: list of outcome objects currently not in use 1855 * @nodes_pool: a static pool of pre-allocated outcome objects 1856 * @db_lock: any operation on the store must take this lock 1857 */ 1858 struct hl_cs_outcome_store { 1859 DECLARE_HASHTABLE(outcome_map, 8); 1860 struct list_head used_list; 1861 struct list_head free_list; 1862 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1863 spinlock_t db_lock; 1864 }; 1865 1866 /** 1867 * struct hl_ctx - user/kernel context. 1868 * @mem_hash: holds mapping from virtual address to virtual memory area 1869 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1870 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1871 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1872 * MMU-hop-page physical address to its host-resident 1873 * pgt_info structure. 1874 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1875 * @hdev: pointer to the device structure. 1876 * @refcount: reference counter for the context. Context is released only when 1877 * this hits 0. It is incremented on CS and CS_WAIT. 1878 * @cs_pending: array of hl fence objects representing pending CS. 1879 * @outcome_store: storage data structure used to remember outcomes of completed 1880 * command submissions for a long time after CS id wraparound. 1881 * @va_range: holds available virtual addresses for host and dram mappings. 1882 * @mem_hash_lock: protects the mem_hash. 1883 * @hw_block_list_lock: protects the HW block memory list. 1884 * @ts_reg_lock: timestamp registration ioctls lock. 1885 * @debugfs_list: node in debugfs list of contexts. 1886 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1887 * @cs_counters: context command submission counters. 1888 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1889 * device's MMU. 1890 * @sig_mgr: encaps signals handle manager. 1891 * @cb_va_pool_base: the base address for the device VA pool 1892 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1893 * to user so user could inquire about CS. It is used as 1894 * index to cs_pending array. 1895 * @dram_default_hops: array that holds all hops addresses needed for default 1896 * DRAM mapping. 1897 * @cs_lock: spinlock to protect cs_sequence. 1898 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1899 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1900 * context from running the context switch phase. 1901 * Only a single thread should run it. 1902 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1903 * the context switch phase from moving to their 1904 * execution phase before the context switch phase 1905 * has finished. 1906 * @asid: context's unique address space ID in the device's MMU. 1907 * @handle: context's opaque handle for user 1908 */ 1909 struct hl_ctx { 1910 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1911 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1912 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1913 struct hl_fpriv *hpriv; 1914 struct hl_device *hdev; 1915 struct kref refcount; 1916 struct hl_fence **cs_pending; 1917 struct hl_cs_outcome_store outcome_store; 1918 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1919 struct mutex mem_hash_lock; 1920 struct mutex hw_block_list_lock; 1921 struct mutex ts_reg_lock; 1922 struct list_head debugfs_list; 1923 struct list_head hw_block_mem_list; 1924 struct hl_cs_counters_atomic cs_counters; 1925 struct gen_pool *cb_va_pool; 1926 struct hl_encaps_signals_mgr sig_mgr; 1927 u64 cb_va_pool_base; 1928 u64 cs_sequence; 1929 u64 *dram_default_hops; 1930 spinlock_t cs_lock; 1931 atomic64_t dram_phys_mem; 1932 atomic_t thread_ctx_switch_token; 1933 u32 thread_ctx_switch_wait_token; 1934 u32 asid; 1935 u32 handle; 1936 }; 1937 1938 /** 1939 * struct hl_ctx_mgr - for handling multiple contexts. 1940 * @lock: protects ctx_handles. 1941 * @handles: idr to hold all ctx handles. 1942 */ 1943 struct hl_ctx_mgr { 1944 struct mutex lock; 1945 struct idr handles; 1946 }; 1947 1948 1949 /* 1950 * COMMAND SUBMISSIONS 1951 */ 1952 1953 /** 1954 * struct hl_userptr - memory mapping chunk information 1955 * @vm_type: type of the VM. 1956 * @job_node: linked-list node for hanging the object on the Job's list. 1957 * @pages: pointer to struct page array 1958 * @npages: size of @pages array 1959 * @sgt: pointer to the scatter-gather table that holds the pages. 1960 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1961 * @debugfs_list: node in debugfs list of command submissions. 1962 * @pid: the pid of the user process owning the memory 1963 * @addr: user-space virtual address of the start of the memory area. 1964 * @size: size of the memory area to pin & map. 1965 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1966 */ 1967 struct hl_userptr { 1968 enum vm_type vm_type; /* must be first */ 1969 struct list_head job_node; 1970 struct page **pages; 1971 unsigned int npages; 1972 struct sg_table *sgt; 1973 enum dma_data_direction dir; 1974 struct list_head debugfs_list; 1975 pid_t pid; 1976 u64 addr; 1977 u64 size; 1978 u8 dma_mapped; 1979 }; 1980 1981 /** 1982 * struct hl_cs - command submission. 1983 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 1984 * @ctx: the context this CS belongs to. 1985 * @job_list: list of the CS's jobs in the various queues. 1986 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 1987 * @refcount: reference counter for usage of the CS. 1988 * @fence: pointer to the fence object of this CS. 1989 * @signal_fence: pointer to the fence object of the signal CS (used by wait 1990 * CS only). 1991 * @finish_work: workqueue object to run when CS is completed by H/W. 1992 * @work_tdr: delayed work node for TDR. 1993 * @mirror_node : node in device mirror list of command submissions. 1994 * @staged_cs_node: node in the staged cs list. 1995 * @debugfs_list: node in debugfs list of command submissions. 1996 * @encaps_sig_hdl: holds the encaps signals handle. 1997 * @sequence: the sequence number of this CS. 1998 * @staged_sequence: the sequence of the staged submission this CS is part of, 1999 * relevant only if staged_cs is set. 2000 * @timeout_jiffies: cs timeout in jiffies. 2001 * @submission_time_jiffies: submission time of the cs 2002 * @type: CS_TYPE_*. 2003 * @jobs_cnt: counter of submitted jobs on all queues. 2004 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 2005 * @completion_timestamp: timestamp of the last completed cs job. 2006 * @sob_addr_offset: sob offset from the configuration base address. 2007 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 2008 * cs with encaps signals. 2009 * @submitted: true if CS was submitted to H/W. 2010 * @completed: true if CS was completed by device. 2011 * @timedout : true if CS was timedout. 2012 * @tdr_active: true if TDR was activated for this CS (to prevent 2013 * double TDR activation). 2014 * @aborted: true if CS was aborted due to some device error. 2015 * @timestamp: true if a timestamp must be captured upon completion. 2016 * @staged_last: true if this is the last staged CS and needs completion. 2017 * @staged_first: true if this is the first staged CS and we need to receive 2018 * timeout for this CS. 2019 * @staged_cs: true if this CS is part of a staged submission. 2020 * @skip_reset_on_timeout: true if we shall not reset the device in case 2021 * timeout occurs (debug scenario). 2022 * @encaps_signals: true if this CS has encaps reserved signals. 2023 */ 2024 struct hl_cs { 2025 u16 *jobs_in_queue_cnt; 2026 struct hl_ctx *ctx; 2027 struct list_head job_list; 2028 spinlock_t job_lock; 2029 struct kref refcount; 2030 struct hl_fence *fence; 2031 struct hl_fence *signal_fence; 2032 struct work_struct finish_work; 2033 struct delayed_work work_tdr; 2034 struct list_head mirror_node; 2035 struct list_head staged_cs_node; 2036 struct list_head debugfs_list; 2037 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2038 ktime_t completion_timestamp; 2039 u64 sequence; 2040 u64 staged_sequence; 2041 u64 timeout_jiffies; 2042 u64 submission_time_jiffies; 2043 enum hl_cs_type type; 2044 u32 jobs_cnt; 2045 u32 encaps_sig_hdl_id; 2046 u32 sob_addr_offset; 2047 u16 initial_sob_count; 2048 u8 submitted; 2049 u8 completed; 2050 u8 timedout; 2051 u8 tdr_active; 2052 u8 aborted; 2053 u8 timestamp; 2054 u8 staged_last; 2055 u8 staged_first; 2056 u8 staged_cs; 2057 u8 skip_reset_on_timeout; 2058 u8 encaps_signals; 2059 }; 2060 2061 /** 2062 * struct hl_cs_job - command submission job. 2063 * @cs_node: the node to hang on the CS jobs list. 2064 * @cs: the CS this job belongs to. 2065 * @user_cb: the CB we got from the user. 2066 * @patched_cb: in case of patching, this is internal CB which is submitted on 2067 * the queue instead of the CB we got from the IOCTL. 2068 * @finish_work: workqueue object to run when job is completed. 2069 * @userptr_list: linked-list of userptr mappings that belong to this job and 2070 * wait for completion. 2071 * @debugfs_list: node in debugfs list of command submission jobs. 2072 * @refcount: reference counter for usage of the CS job. 2073 * @queue_type: the type of the H/W queue this job is submitted to. 2074 * @timestamp: timestamp upon job completion 2075 * @id: the id of this job inside a CS. 2076 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2077 * @user_cb_size: the actual size of the CB we got from the user. 2078 * @job_cb_size: the actual size of the CB that we put on the queue. 2079 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2080 * to wait on part of the reserved signals. 2081 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2082 * handle to a kernel-allocated CB object, false 2083 * otherwise (SRAM/DRAM/host address). 2084 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2085 * info is needed later, when adding the 2xMSG_PROT at the 2086 * end of the JOB, to know which barriers to put in the 2087 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2088 * have streams so the engine can't be busy by another 2089 * stream. 2090 */ 2091 struct hl_cs_job { 2092 struct list_head cs_node; 2093 struct hl_cs *cs; 2094 struct hl_cb *user_cb; 2095 struct hl_cb *patched_cb; 2096 struct work_struct finish_work; 2097 struct list_head userptr_list; 2098 struct list_head debugfs_list; 2099 struct kref refcount; 2100 enum hl_queue_type queue_type; 2101 ktime_t timestamp; 2102 u32 id; 2103 u32 hw_queue_id; 2104 u32 user_cb_size; 2105 u32 job_cb_size; 2106 u32 encaps_sig_wait_offset; 2107 u8 is_kernel_allocated_cb; 2108 u8 contains_dma_pkt; 2109 }; 2110 2111 /** 2112 * struct hl_cs_parser - command submission parser properties. 2113 * @user_cb: the CB we got from the user. 2114 * @patched_cb: in case of patching, this is internal CB which is submitted on 2115 * the queue instead of the CB we got from the IOCTL. 2116 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2117 * job and wait for completion. 2118 * @cs_sequence: the sequence number of the related CS. 2119 * @queue_type: the type of the H/W queue this job is submitted to. 2120 * @ctx_id: the ID of the context the related CS belongs to. 2121 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2122 * @user_cb_size: the actual size of the CB we got from the user. 2123 * @patched_cb_size: the size of the CB after parsing. 2124 * @job_id: the id of the related job inside the related CS. 2125 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2126 * handle to a kernel-allocated CB object, false 2127 * otherwise (SRAM/DRAM/host address). 2128 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2129 * info is needed later, when adding the 2xMSG_PROT at the 2130 * end of the JOB, to know which barriers to put in the 2131 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2132 * have streams so the engine can't be busy by another 2133 * stream. 2134 * @completion: true if we need completion for this CS. 2135 */ 2136 struct hl_cs_parser { 2137 struct hl_cb *user_cb; 2138 struct hl_cb *patched_cb; 2139 struct list_head *job_userptr_list; 2140 u64 cs_sequence; 2141 enum hl_queue_type queue_type; 2142 u32 ctx_id; 2143 u32 hw_queue_id; 2144 u32 user_cb_size; 2145 u32 patched_cb_size; 2146 u8 job_id; 2147 u8 is_kernel_allocated_cb; 2148 u8 contains_dma_pkt; 2149 u8 completion; 2150 }; 2151 2152 /* 2153 * MEMORY STRUCTURE 2154 */ 2155 2156 /** 2157 * struct hl_vm_hash_node - hash element from virtual address to virtual 2158 * memory area descriptor (hl_vm_phys_pg_list or 2159 * hl_userptr). 2160 * @node: node to hang on the hash table in context object. 2161 * @vaddr: key virtual address. 2162 * @handle: memory handle for device memory allocation. 2163 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2164 * @export_cnt: number of exports from within the VA block. 2165 */ 2166 struct hl_vm_hash_node { 2167 struct hlist_node node; 2168 u64 vaddr; 2169 u64 handle; 2170 void *ptr; 2171 int export_cnt; 2172 }; 2173 2174 /** 2175 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2176 * HW block id. 2177 * @node: node to hang on the list in context object. 2178 * @ctx: the context this node belongs to. 2179 * @vaddr: virtual address of the HW block. 2180 * @block_size: size of the block. 2181 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2182 * @id: HW block id (handle). 2183 */ 2184 struct hl_vm_hw_block_list_node { 2185 struct list_head node; 2186 struct hl_ctx *ctx; 2187 unsigned long vaddr; 2188 u32 block_size; 2189 u32 mapped_size; 2190 u32 id; 2191 }; 2192 2193 /** 2194 * struct hl_vm_phys_pg_pack - physical page pack. 2195 * @vm_type: describes the type of the virtual area descriptor. 2196 * @pages: the physical page array. 2197 * @npages: num physical pages in the pack. 2198 * @total_size: total size of all the pages in this list. 2199 * @node: used to attach to deletion list that is used when all the allocations are cleared 2200 * at the teardown of the context. 2201 * @mapping_cnt: number of shared mappings. 2202 * @asid: the context related to this list. 2203 * @page_size: size of each page in the pack. 2204 * @flags: HL_MEM_* flags related to this list. 2205 * @handle: the provided handle related to this list. 2206 * @offset: offset from the first page. 2207 * @contiguous: is contiguous physical memory. 2208 * @created_from_userptr: is product of host virtual address. 2209 */ 2210 struct hl_vm_phys_pg_pack { 2211 enum vm_type vm_type; /* must be first */ 2212 u64 *pages; 2213 u64 npages; 2214 u64 total_size; 2215 struct list_head node; 2216 atomic_t mapping_cnt; 2217 u32 asid; 2218 u32 page_size; 2219 u32 flags; 2220 u32 handle; 2221 u32 offset; 2222 u8 contiguous; 2223 u8 created_from_userptr; 2224 }; 2225 2226 /** 2227 * struct hl_vm_va_block - virtual range block information. 2228 * @node: node to hang on the virtual range list in context object. 2229 * @start: virtual range start address. 2230 * @end: virtual range end address. 2231 * @size: virtual range size. 2232 */ 2233 struct hl_vm_va_block { 2234 struct list_head node; 2235 u64 start; 2236 u64 end; 2237 u64 size; 2238 }; 2239 2240 /** 2241 * struct hl_vm - virtual memory manager for MMU. 2242 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2243 * @dram_pg_pool_refcount: reference counter for the pool usage. 2244 * @idr_lock: protects the phys_pg_list_handles. 2245 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2246 * @init_done: whether initialization was done. We need this because VM 2247 * initialization might be skipped during device initialization. 2248 */ 2249 struct hl_vm { 2250 struct gen_pool *dram_pg_pool; 2251 struct kref dram_pg_pool_refcount; 2252 spinlock_t idr_lock; 2253 struct idr phys_pg_pack_handles; 2254 u8 init_done; 2255 }; 2256 2257 2258 /* 2259 * DEBUG, PROFILING STRUCTURE 2260 */ 2261 2262 /** 2263 * struct hl_debug_params - Coresight debug parameters. 2264 * @input: pointer to component specific input parameters. 2265 * @output: pointer to component specific output parameters. 2266 * @output_size: size of output buffer. 2267 * @reg_idx: relevant register ID. 2268 * @op: component operation to execute. 2269 * @enable: true if to enable component debugging, false otherwise. 2270 */ 2271 struct hl_debug_params { 2272 void *input; 2273 void *output; 2274 u32 output_size; 2275 u32 reg_idx; 2276 u32 op; 2277 bool enable; 2278 }; 2279 2280 /** 2281 * struct hl_notifier_event - holds the notifier data structure 2282 * @eventfd: the event file descriptor to raise the notifications 2283 * @lock: mutex lock to protect the notifier data flows 2284 * @events_mask: indicates the bitmap events 2285 */ 2286 struct hl_notifier_event { 2287 struct eventfd_ctx *eventfd; 2288 struct mutex lock; 2289 u64 events_mask; 2290 }; 2291 2292 /* 2293 * FILE PRIVATE STRUCTURE 2294 */ 2295 2296 /** 2297 * struct hl_fpriv - process information stored in FD private data. 2298 * @hdev: habanalabs device structure. 2299 * @file_priv: pointer to the DRM file private data structure. 2300 * @taskpid: current process ID. 2301 * @ctx: current executing context. TODO: remove for multiple ctx per process 2302 * @ctx_mgr: context manager to handle multiple context for this FD. 2303 * @mem_mgr: manager descriptor for memory exportable via mmap 2304 * @notifier_event: notifier eventfd towards user process 2305 * @debugfs_list: list of relevant ASIC debugfs. 2306 * @dev_node: node in the device list of file private data 2307 * @refcount: number of related contexts. 2308 * @restore_phase_mutex: lock for context switch and restore phase. 2309 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2310 * ctx per process. 2311 */ 2312 struct hl_fpriv { 2313 struct hl_device *hdev; 2314 struct drm_file *file_priv; 2315 struct pid *taskpid; 2316 struct hl_ctx *ctx; 2317 struct hl_ctx_mgr ctx_mgr; 2318 struct hl_mem_mgr mem_mgr; 2319 struct hl_notifier_event notifier_event; 2320 struct list_head debugfs_list; 2321 struct list_head dev_node; 2322 struct kref refcount; 2323 struct mutex restore_phase_mutex; 2324 struct mutex ctx_lock; 2325 }; 2326 2327 2328 /* 2329 * DebugFS 2330 */ 2331 2332 /** 2333 * struct hl_info_list - debugfs file ops. 2334 * @name: file name. 2335 * @show: function to output information. 2336 * @write: function to write to the file. 2337 */ 2338 struct hl_info_list { 2339 const char *name; 2340 int (*show)(struct seq_file *s, void *data); 2341 ssize_t (*write)(struct file *file, const char __user *buf, 2342 size_t count, loff_t *f_pos); 2343 }; 2344 2345 /** 2346 * struct hl_debugfs_entry - debugfs dentry wrapper. 2347 * @info_ent: dentry related ops. 2348 * @dev_entry: ASIC specific debugfs manager. 2349 */ 2350 struct hl_debugfs_entry { 2351 const struct hl_info_list *info_ent; 2352 struct hl_dbg_device_entry *dev_entry; 2353 }; 2354 2355 /** 2356 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2357 * @root: root dentry. 2358 * @hdev: habanalabs device structure. 2359 * @entry_arr: array of available hl_debugfs_entry. 2360 * @file_list: list of available debugfs files. 2361 * @file_mutex: protects file_list. 2362 * @cb_list: list of available CBs. 2363 * @cb_spinlock: protects cb_list. 2364 * @cs_list: list of available CSs. 2365 * @cs_spinlock: protects cs_list. 2366 * @cs_job_list: list of available CB jobs. 2367 * @cs_job_spinlock: protects cs_job_list. 2368 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2369 * @userptr_spinlock: protects userptr_list. 2370 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2371 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. 2372 * @data_dma_blob_desc: data DMA descriptor of blob. 2373 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2374 * @state_dump: data of the system states in case of a bad cs. 2375 * @state_dump_sem: protects state_dump. 2376 * @addr: next address to read/write from/to in read/write32. 2377 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2378 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2379 * @userptr_lookup: the target user ptr to look up for on demand. 2380 * @mmu_asid: ASID to use while translating in mmu_show. 2381 * @state_dump_head: index of the latest state dump 2382 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2383 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2384 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2385 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2386 */ 2387 struct hl_dbg_device_entry { 2388 struct dentry *root; 2389 struct hl_device *hdev; 2390 struct hl_debugfs_entry *entry_arr; 2391 struct list_head file_list; 2392 struct mutex file_mutex; 2393 struct list_head cb_list; 2394 spinlock_t cb_spinlock; 2395 struct list_head cs_list; 2396 spinlock_t cs_spinlock; 2397 struct list_head cs_job_list; 2398 spinlock_t cs_job_spinlock; 2399 struct list_head userptr_list; 2400 spinlock_t userptr_spinlock; 2401 struct list_head ctx_mem_hash_list; 2402 struct mutex ctx_mem_hash_mutex; 2403 struct debugfs_blob_wrapper data_dma_blob_desc; 2404 struct debugfs_blob_wrapper mon_dump_blob_desc; 2405 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2406 struct rw_semaphore state_dump_sem; 2407 u64 addr; 2408 u64 mmu_addr; 2409 u64 mmu_cap_mask; 2410 u64 userptr_lookup; 2411 u32 mmu_asid; 2412 u32 state_dump_head; 2413 u8 i2c_bus; 2414 u8 i2c_addr; 2415 u8 i2c_reg; 2416 u8 i2c_len; 2417 }; 2418 2419 /** 2420 * struct hl_hw_obj_name_entry - single hw object name, member of 2421 * hl_state_dump_specs 2422 * @node: link to the containing hash table 2423 * @name: hw object name 2424 * @id: object identifier 2425 */ 2426 struct hl_hw_obj_name_entry { 2427 struct hlist_node node; 2428 const char *name; 2429 u32 id; 2430 }; 2431 2432 enum hl_state_dump_specs_props { 2433 SP_SYNC_OBJ_BASE_ADDR, 2434 SP_NEXT_SYNC_OBJ_ADDR, 2435 SP_SYNC_OBJ_AMOUNT, 2436 SP_MON_OBJ_WR_ADDR_LOW, 2437 SP_MON_OBJ_WR_ADDR_HIGH, 2438 SP_MON_OBJ_WR_DATA, 2439 SP_MON_OBJ_ARM_DATA, 2440 SP_MON_OBJ_STATUS, 2441 SP_MONITORS_AMOUNT, 2442 SP_TPC0_CMDQ, 2443 SP_TPC0_CFG_SO, 2444 SP_NEXT_TPC, 2445 SP_MME_CMDQ, 2446 SP_MME_CFG_SO, 2447 SP_NEXT_MME, 2448 SP_DMA_CMDQ, 2449 SP_DMA_CFG_SO, 2450 SP_DMA_QUEUES_OFFSET, 2451 SP_NUM_OF_MME_ENGINES, 2452 SP_SUB_MME_ENG_NUM, 2453 SP_NUM_OF_DMA_ENGINES, 2454 SP_NUM_OF_TPC_ENGINES, 2455 SP_ENGINE_NUM_OF_QUEUES, 2456 SP_ENGINE_NUM_OF_STREAMS, 2457 SP_ENGINE_NUM_OF_FENCES, 2458 SP_FENCE0_CNT_OFFSET, 2459 SP_FENCE0_RDATA_OFFSET, 2460 SP_CP_STS_OFFSET, 2461 SP_NUM_CORES, 2462 2463 SP_MAX 2464 }; 2465 2466 enum hl_sync_engine_type { 2467 ENGINE_TPC, 2468 ENGINE_DMA, 2469 ENGINE_MME, 2470 }; 2471 2472 /** 2473 * struct hl_mon_state_dump - represents a state dump of a single monitor 2474 * @id: monitor id 2475 * @wr_addr_low: address monitor will write to, low bits 2476 * @wr_addr_high: address monitor will write to, high bits 2477 * @wr_data: data monitor will write 2478 * @arm_data: register value containing monitor configuration 2479 * @status: monitor status 2480 */ 2481 struct hl_mon_state_dump { 2482 u32 id; 2483 u32 wr_addr_low; 2484 u32 wr_addr_high; 2485 u32 wr_data; 2486 u32 arm_data; 2487 u32 status; 2488 }; 2489 2490 /** 2491 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2492 * @engine_type: type of the engine 2493 * @engine_id: id of the engine 2494 * @sync_id: id of the sync object 2495 */ 2496 struct hl_sync_to_engine_map_entry { 2497 struct hlist_node node; 2498 enum hl_sync_engine_type engine_type; 2499 u32 engine_id; 2500 u32 sync_id; 2501 }; 2502 2503 /** 2504 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2505 * @tb: hash table containing the mapping, each element is of type 2506 * struct hl_sync_to_engine_map_entry 2507 */ 2508 struct hl_sync_to_engine_map { 2509 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2510 }; 2511 2512 /** 2513 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2514 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2515 * @print_single_monitor: format monitor data as string 2516 * @monitor_valid: return true if given monitor dump is valid 2517 * @print_fences_single_engine: format fences data as string 2518 */ 2519 struct hl_state_dump_specs_funcs { 2520 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2521 struct hl_sync_to_engine_map *map); 2522 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2523 struct hl_device *hdev, 2524 struct hl_mon_state_dump *mon); 2525 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2526 int (*print_fences_single_engine)(struct hl_device *hdev, 2527 u64 base_offset, 2528 u64 status_base_offset, 2529 enum hl_sync_engine_type engine_type, 2530 u32 engine_id, char **buf, 2531 size_t *size, size_t *offset); 2532 }; 2533 2534 /** 2535 * struct hl_state_dump_specs - defines ASIC known hw objects names 2536 * @so_id_to_str_tb: sync objects names index table 2537 * @monitor_id_to_str_tb: monitors names index table 2538 * @funcs: virtual functions used for state dump 2539 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2540 * @props: pointer to a per asic const props array required for state dump 2541 */ 2542 struct hl_state_dump_specs { 2543 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2544 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2545 struct hl_state_dump_specs_funcs funcs; 2546 const char * const *sync_namager_names; 2547 s64 *props; 2548 }; 2549 2550 2551 /* 2552 * DEVICES 2553 */ 2554 2555 #define HL_STR_MAX 64 2556 2557 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2558 2559 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2560 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2561 */ 2562 #define HL_MAX_MINORS 256 2563 2564 /* 2565 * Registers read & write functions. 2566 */ 2567 2568 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2569 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2570 2571 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2572 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2573 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2574 hdev->asic_funcs->rreg(hdev, (reg))) 2575 2576 #define WREG32_P(reg, val, mask) \ 2577 do { \ 2578 u32 tmp_ = RREG32(reg); \ 2579 tmp_ &= (mask); \ 2580 tmp_ |= ((val) & ~(mask)); \ 2581 WREG32(reg, tmp_); \ 2582 } while (0) 2583 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2584 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2585 2586 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2587 2588 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2589 2590 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2591 2592 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2593 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2594 #define WREG32_FIELD(reg, offset, field, val) \ 2595 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2596 ~REG_FIELD_MASK(reg, field)) | \ 2597 (val) << REG_FIELD_SHIFT(reg, field)) 2598 2599 /* Timeout should be longer when working with simulator but cap the 2600 * increased timeout to some maximum 2601 */ 2602 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2603 ({ \ 2604 ktime_t __timeout; \ 2605 u32 __elbi_read; \ 2606 int __rc = 0; \ 2607 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2608 might_sleep_if(sleep_us); \ 2609 for (;;) { \ 2610 if (elbi) { \ 2611 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2612 if (__rc) \ 2613 break; \ 2614 (val) = __elbi_read; \ 2615 } else {\ 2616 (val) = RREG32(lower_32_bits(addr)); \ 2617 } \ 2618 if (cond) \ 2619 break; \ 2620 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2621 if (elbi) { \ 2622 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2623 if (__rc) \ 2624 break; \ 2625 (val) = __elbi_read; \ 2626 } else {\ 2627 (val) = RREG32(lower_32_bits(addr)); \ 2628 } \ 2629 break; \ 2630 } \ 2631 if (sleep_us) \ 2632 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2633 } \ 2634 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2635 }) 2636 2637 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2638 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2639 2640 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2641 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2642 2643 /* 2644 * poll array of register addresses. 2645 * condition is satisfied if all registers values match the expected value. 2646 * once some register in the array satisfies the condition it will not be polled again, 2647 * this is done both for efficiency and due to some registers are "clear on read". 2648 * TODO: use read from PCI bar in other places in the code (SW-91406) 2649 */ 2650 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2651 timeout_us, elbi) \ 2652 ({ \ 2653 ktime_t __timeout; \ 2654 u64 __elem_bitmask; \ 2655 u32 __read_val; \ 2656 u8 __arr_idx; \ 2657 int __rc = 0; \ 2658 \ 2659 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2660 might_sleep_if(sleep_us); \ 2661 if (arr_size >= 64) \ 2662 __rc = -EINVAL; \ 2663 else \ 2664 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2665 for (;;) { \ 2666 if (__rc) \ 2667 break; \ 2668 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2669 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2670 continue; \ 2671 if (elbi) { \ 2672 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2673 if (__rc) \ 2674 break; \ 2675 } else { \ 2676 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2677 } \ 2678 if (__read_val == (expected_val)) \ 2679 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2680 } \ 2681 if (__rc || (__elem_bitmask == 0)) \ 2682 break; \ 2683 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2684 break; \ 2685 if (sleep_us) \ 2686 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2687 } \ 2688 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2689 }) 2690 2691 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2692 timeout_us) \ 2693 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2694 timeout_us, false) 2695 2696 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2697 timeout_us) \ 2698 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2699 timeout_us, true) 2700 2701 /* 2702 * address in this macro points always to a memory location in the 2703 * host's (server's) memory. That location is updated asynchronously 2704 * either by the direct access of the device or by another core. 2705 * 2706 * To work both in LE and BE architectures, we need to distinguish between the 2707 * two states (device or another core updates the memory location). Therefore, 2708 * if mem_written_by_device is true, the host memory being polled will be 2709 * updated directly by the device. If false, the host memory being polled will 2710 * be updated by host CPU. Required so host knows whether or not the memory 2711 * might need to be byte-swapped before returning value to caller. 2712 */ 2713 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2714 mem_written_by_device) \ 2715 ({ \ 2716 ktime_t __timeout; \ 2717 \ 2718 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2719 might_sleep_if(sleep_us); \ 2720 for (;;) { \ 2721 /* Verify we read updates done by other cores or by device */ \ 2722 mb(); \ 2723 (val) = *((u32 *)(addr)); \ 2724 if (mem_written_by_device) \ 2725 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2726 if (cond) \ 2727 break; \ 2728 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2729 (val) = *((u32 *)(addr)); \ 2730 if (mem_written_by_device) \ 2731 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2732 break; \ 2733 } \ 2734 if (sleep_us) \ 2735 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2736 } \ 2737 (cond) ? 0 : -ETIMEDOUT; \ 2738 }) 2739 2740 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2741 ({ \ 2742 struct user_mapped_block *p = blk; \ 2743 \ 2744 p->address = base; \ 2745 p->size = sz; \ 2746 }) 2747 2748 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2749 ({ \ 2750 usr_intr.hdev = hdev; \ 2751 usr_intr.interrupt_id = intr_id; \ 2752 usr_intr.type = intr_type; \ 2753 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2754 spin_lock_init(&usr_intr.wait_list_lock); \ 2755 INIT_LIST_HEAD(&usr_intr.ts_list_head); \ 2756 spin_lock_init(&usr_intr.ts_list_lock); \ 2757 }) 2758 2759 struct hwmon_chip_info; 2760 2761 /** 2762 * struct hl_device_reset_work - reset work wrapper. 2763 * @reset_work: reset work to be done. 2764 * @hdev: habanalabs device structure. 2765 * @flags: reset flags. 2766 */ 2767 struct hl_device_reset_work { 2768 struct delayed_work reset_work; 2769 struct hl_device *hdev; 2770 u32 flags; 2771 }; 2772 2773 /** 2774 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2775 * page-table internal information. 2776 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2777 * allocating hops. 2778 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2779 */ 2780 struct hl_mmu_hr_priv { 2781 struct gen_pool *mmu_pgt_pool; 2782 struct pgt_info *mmu_asid_hop0; 2783 }; 2784 2785 /** 2786 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2787 * page-table internal information. 2788 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2789 * @mmu_shadow_hop0: shadow array of hop0 tables. 2790 */ 2791 struct hl_mmu_dr_priv { 2792 struct gen_pool *mmu_pgt_pool; 2793 void *mmu_shadow_hop0; 2794 }; 2795 2796 /** 2797 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2798 * @dr: information on the device-resident MMU, when exists. 2799 * @hr: information on the host-resident MMU, when exists. 2800 */ 2801 struct hl_mmu_priv { 2802 struct hl_mmu_dr_priv dr; 2803 struct hl_mmu_hr_priv hr; 2804 }; 2805 2806 /** 2807 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2808 * that was created in order to translate a virtual address to a 2809 * physical one. 2810 * @hop_addr: The address of the hop. 2811 * @hop_pte_addr: The address of the hop entry. 2812 * @hop_pte_val: The value in the hop entry. 2813 */ 2814 struct hl_mmu_per_hop_info { 2815 u64 hop_addr; 2816 u64 hop_pte_addr; 2817 u64 hop_pte_val; 2818 }; 2819 2820 /** 2821 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2822 * hop-entries that were created in order to translate a virtual address to a 2823 * physical one. 2824 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2825 * address replaces the original virtual-address when mapped 2826 * in the MMU tables. 2827 * @unscrambled_paddr: The un-scrambled physical address. 2828 * @hop_info: Array holding the per-hop information used for the translation. 2829 * @used_hops: The number of hops used for the translation. 2830 * @range_type: virtual address range type. 2831 */ 2832 struct hl_mmu_hop_info { 2833 u64 scrambled_vaddr; 2834 u64 unscrambled_paddr; 2835 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2836 u32 used_hops; 2837 enum hl_va_range_type range_type; 2838 }; 2839 2840 /** 2841 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2842 * @get_hop0_pgt_info: get page table info structure for HOP0. 2843 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2844 * @add_pgt_info: add page table info structure to hash. 2845 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2846 */ 2847 struct hl_hr_mmu_funcs { 2848 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2849 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2850 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2851 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2852 struct hl_mmu_hop_info *hops, 2853 u64 virt_addr, bool *is_huge); 2854 }; 2855 2856 /** 2857 * struct hl_mmu_funcs - Device related MMU functions. 2858 * @init: initialize the MMU module. 2859 * @fini: release the MMU module. 2860 * @ctx_init: Initialize a context for using the MMU module. 2861 * @ctx_fini: disable a ctx from using the mmu module. 2862 * @map: maps a virtual address to physical address for a context. 2863 * @unmap: unmap a virtual address of a context. 2864 * @flush: flush all writes from all cores to reach device MMU. 2865 * @swap_out: marks all mapping of the given context as swapped out. 2866 * @swap_in: marks all mapping of the given context as swapped in. 2867 * @get_tlb_info: returns the list of hops and hop-entries used that were 2868 * created in order to translate the giver virtual address to a 2869 * physical one. 2870 * @hr_funcs: functions specific to host resident MMU. 2871 */ 2872 struct hl_mmu_funcs { 2873 int (*init)(struct hl_device *hdev); 2874 void (*fini)(struct hl_device *hdev); 2875 int (*ctx_init)(struct hl_ctx *ctx); 2876 void (*ctx_fini)(struct hl_ctx *ctx); 2877 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2878 bool is_dram_addr); 2879 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2880 void (*flush)(struct hl_ctx *ctx); 2881 void (*swap_out)(struct hl_ctx *ctx); 2882 void (*swap_in)(struct hl_ctx *ctx); 2883 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2884 struct hl_hr_mmu_funcs hr_funcs; 2885 }; 2886 2887 /** 2888 * struct hl_prefetch_work - prefetch work structure handler 2889 * @prefetch_work: actual work struct. 2890 * @ctx: compute context. 2891 * @va: virtual address to pre-fetch. 2892 * @size: pre-fetch size. 2893 * @flags: operation flags. 2894 * @asid: ASID for maintenance operation. 2895 */ 2896 struct hl_prefetch_work { 2897 struct work_struct prefetch_work; 2898 struct hl_ctx *ctx; 2899 u64 va; 2900 u64 size; 2901 u32 flags; 2902 u32 asid; 2903 }; 2904 2905 /* 2906 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2907 * parallel 2908 */ 2909 #define MULTI_CS_MAX_USER_CTX 2 2910 2911 /** 2912 * struct multi_cs_completion - multi CS wait completion. 2913 * @completion: completion of any of the CS in the list 2914 * @lock: spinlock for the completion structure 2915 * @timestamp: timestamp for the multi-CS completion 2916 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2917 * is waiting 2918 * @used: 1 if in use, otherwise 0 2919 */ 2920 struct multi_cs_completion { 2921 struct completion completion; 2922 spinlock_t lock; 2923 s64 timestamp; 2924 u32 stream_master_qid_map; 2925 u8 used; 2926 }; 2927 2928 /** 2929 * struct multi_cs_data - internal data for multi CS call 2930 * @ctx: pointer to the context structure 2931 * @fence_arr: array of fences of all CSs 2932 * @seq_arr: array of CS sequence numbers 2933 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2934 * @timestamp: timestamp of first completed CS 2935 * @wait_status: wait for CS status 2936 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2937 * @arr_len: fence_arr and seq_arr array length 2938 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2939 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2940 */ 2941 struct multi_cs_data { 2942 struct hl_ctx *ctx; 2943 struct hl_fence **fence_arr; 2944 u64 *seq_arr; 2945 s64 timeout_jiffies; 2946 s64 timestamp; 2947 long wait_status; 2948 u32 completion_bitmap; 2949 u8 arr_len; 2950 u8 gone_cs; 2951 u8 update_ts; 2952 }; 2953 2954 /** 2955 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2956 * @start: timestamp taken when 'start' event is received in driver 2957 * @end: timestamp taken when 'end' event is received in driver 2958 */ 2959 struct hl_clk_throttle_timestamp { 2960 ktime_t start; 2961 ktime_t end; 2962 }; 2963 2964 /** 2965 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2966 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2967 * index 1 refers to THERMAL 2968 * @lock: protects this structure as it can be accessed from both event queue 2969 * context and info_ioctl context 2970 * @current_reason: bitmask represents the current clk throttling reasons 2971 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2972 */ 2973 struct hl_clk_throttle { 2974 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 2975 struct mutex lock; 2976 u32 current_reason; 2977 u32 aggregated_reason; 2978 }; 2979 2980 /** 2981 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 2982 * @address: physical HW block address 2983 * @size: allowed size for mmap 2984 */ 2985 struct user_mapped_block { 2986 u32 address; 2987 u32 size; 2988 }; 2989 2990 /** 2991 * struct cs_timeout_info - info of last CS timeout occurred. 2992 * @timestamp: CS timeout timestamp. 2993 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 2994 * so the first (root cause) CS timeout will not be overwritten. 2995 * @seq: CS timeout sequence number. 2996 */ 2997 struct cs_timeout_info { 2998 ktime_t timestamp; 2999 atomic_t write_enable; 3000 u64 seq; 3001 }; 3002 3003 #define MAX_QMAN_STREAMS_INFO 4 3004 #define OPCODE_INFO_MAX_ADDR_SIZE 8 3005 /** 3006 * struct undefined_opcode_info - info about last undefined opcode error 3007 * @timestamp: timestamp of the undefined opcode error 3008 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 3009 * entries. In case all streams array entries are 3010 * filled with values, it means the execution was in Lower-CP. 3011 * @cq_addr: the address of the current handled command buffer 3012 * @cq_size: the size of the current handled command buffer 3013 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 3014 * should be equal to 1 in case of undefined opcode 3015 * in Upper-CP (specific stream) and equal to 4 in case 3016 * of undefined opcode in Lower-CP. 3017 * @engine_id: engine-id that the error occurred on 3018 * @stream_id: the stream id the error occurred on. In case the stream equals to 3019 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 3020 * @write_enable: if set, writing to undefined opcode parameters in the structure 3021 * is enable so the first (root cause) undefined opcode will not be 3022 * overwritten. 3023 */ 3024 struct undefined_opcode_info { 3025 ktime_t timestamp; 3026 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 3027 u64 cq_addr; 3028 u32 cq_size; 3029 u32 cb_addr_streams_len; 3030 u32 engine_id; 3031 u32 stream_id; 3032 bool write_enable; 3033 }; 3034 3035 /** 3036 * struct page_fault_info - page fault information. 3037 * @page_fault: holds information collected during a page fault. 3038 * @user_mappings: buffer containing user mappings. 3039 * @num_of_user_mappings: number of user mappings. 3040 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 3041 * first time after the driver has finished booting-up. 3042 * Since we're looking for the page-fault's root cause, 3043 * we don't care of the others that might follow it- 3044 * so once changed to 1, it will remain that way. 3045 * @page_fault_info_available: indicates that a page fault info is now available. 3046 */ 3047 struct page_fault_info { 3048 struct hl_page_fault_info page_fault; 3049 struct hl_user_mapping *user_mappings; 3050 u64 num_of_user_mappings; 3051 atomic_t page_fault_detected; 3052 bool page_fault_info_available; 3053 }; 3054 3055 /** 3056 * struct razwi_info - RAZWI information. 3057 * @razwi: holds information collected during a RAZWI 3058 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3059 * first time after the driver has finished booting-up. 3060 * Since we're looking for the RAZWI's root cause, 3061 * we don't care of the others that might follow it- 3062 * so once changed to 1, it will remain that way. 3063 * @razwi_info_available: indicates that a RAZWI info is now available. 3064 */ 3065 struct razwi_info { 3066 struct hl_info_razwi_event razwi; 3067 atomic_t razwi_detected; 3068 bool razwi_info_available; 3069 }; 3070 3071 /** 3072 * struct hw_err_info - HW error information. 3073 * @event: holds information on the event. 3074 * @event_detected: if set as 1, then a HW event was discovered for the 3075 * first time after the driver has finished booting-up. 3076 * currently we assume that only fatal events (that require hard-reset) are 3077 * reported so we don't care of the others that might follow it. 3078 * so once changed to 1, it will remain that way. 3079 * TODO: support multiple events. 3080 * @event_info_available: indicates that a HW event info is now available. 3081 */ 3082 struct hw_err_info { 3083 struct hl_info_hw_err_event event; 3084 atomic_t event_detected; 3085 bool event_info_available; 3086 }; 3087 3088 /** 3089 * struct fw_err_info - FW error information. 3090 * @event: holds information on the event. 3091 * @event_detected: if set as 1, then a FW event was discovered for the 3092 * first time after the driver has finished booting-up. 3093 * currently we assume that only fatal events (that require hard-reset) are 3094 * reported so we don't care of the others that might follow it. 3095 * so once changed to 1, it will remain that way. 3096 * TODO: support multiple events. 3097 * @event_info_available: indicates that a HW event info is now available. 3098 */ 3099 struct fw_err_info { 3100 struct hl_info_fw_err_event event; 3101 atomic_t event_detected; 3102 bool event_info_available; 3103 }; 3104 3105 /** 3106 * struct engine_err_info - engine error information. 3107 * @event: holds information on the event. 3108 * @event_detected: if set as 1, then an engine event was discovered for the 3109 * first time after the driver has finished booting-up. 3110 * @event_info_available: indicates that an engine event info is now available. 3111 */ 3112 struct engine_err_info { 3113 struct hl_info_engine_err_event event; 3114 atomic_t event_detected; 3115 bool event_info_available; 3116 }; 3117 3118 3119 /** 3120 * struct hl_error_info - holds information collected during an error. 3121 * @cs_timeout: CS timeout error information. 3122 * @razwi_info: RAZWI information. 3123 * @undef_opcode: undefined opcode information. 3124 * @page_fault_info: page fault information. 3125 * @hw_err: (fatal) hardware error information. 3126 * @fw_err: firmware error information. 3127 * @engine_err: engine error information. 3128 */ 3129 struct hl_error_info { 3130 struct cs_timeout_info cs_timeout; 3131 struct razwi_info razwi_info; 3132 struct undefined_opcode_info undef_opcode; 3133 struct page_fault_info page_fault_info; 3134 struct hw_err_info hw_err; 3135 struct fw_err_info fw_err; 3136 struct engine_err_info engine_err; 3137 }; 3138 3139 /** 3140 * struct hl_reset_info - holds current device reset information. 3141 * @lock: lock to protect critical reset flows. 3142 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3143 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3144 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3145 * here we hold the hard reset flags. 3146 * @in_reset: is device in reset flow. 3147 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3148 * @needs_reset: true if reset_on_lockup is false and device should be reset 3149 * due to lockup. 3150 * @hard_reset_pending: is there a hard reset work pending. 3151 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3152 * triggered, and cleared after it is shared with preboot. 3153 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3154 * with a new value on next reset 3155 * @reset_trigger_repeated: set if device reset is triggered more than once with 3156 * same cause. 3157 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3158 * complete instead. 3159 * @watchdog_active: true if a device release watchdog work is scheduled. 3160 */ 3161 struct hl_reset_info { 3162 spinlock_t lock; 3163 u32 compute_reset_cnt; 3164 u32 hard_reset_cnt; 3165 u32 hard_reset_schedule_flags; 3166 u8 in_reset; 3167 u8 in_compute_reset; 3168 u8 needs_reset; 3169 u8 hard_reset_pending; 3170 u8 curr_reset_cause; 3171 u8 prev_reset_trigger; 3172 u8 reset_trigger_repeated; 3173 u8 skip_reset_on_timeout; 3174 u8 watchdog_active; 3175 }; 3176 3177 /** 3178 * struct hl_device - habanalabs device structure. 3179 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3180 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3181 * (required only for PCI address match mode) 3182 * @pcie_bar: array of available PCIe bars virtual addresses. 3183 * @rmmio: configuration area address on SRAM. 3184 * @drm: related DRM device. 3185 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3186 * @dev: related kernel basic device structure. 3187 * @dev_ctrl: related kernel device structure for the control device 3188 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3189 * @device_reset_work: delayed work which performs hard reset 3190 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3191 * device upon certain error cases. 3192 * @asic_name: ASIC specific name. 3193 * @asic_type: ASIC specific type. 3194 * @completion_queue: array of hl_cq. 3195 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3196 * interrupt, driver will monitor the list of fences 3197 * registered to this interrupt. 3198 * @tpc_interrupt: single TPC interrupt for all TPCs. 3199 * @unexpected_error_interrupt: single interrupt for unexpected user error indication. 3200 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3201 * upon any user CQ interrupt, driver will monitor the 3202 * list of fences registered to this common structure. 3203 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3204 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3205 * outstanding command submissions. 3206 * @cq_wq: work queues of completion queues for executing work in process 3207 * context. 3208 * @eq_wq: work queue of event queue for executing work in process context. 3209 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3210 * context. 3211 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3212 * @prefetch_wq: work queue for MMU pre-fetch operations. 3213 * @reset_wq: work queue for device reset procedure. 3214 * @kernel_ctx: Kernel driver context structure. 3215 * @kernel_queues: array of hl_hw_queue. 3216 * @cs_mirror_list: CS mirror list for TDR. 3217 * @cs_mirror_lock: protects cs_mirror_list. 3218 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3219 * @event_queue: event queue for IRQ from CPU-CP. 3220 * @dma_pool: DMA pool for small allocations. 3221 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3222 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3223 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3224 * @asid_bitmap: holds used/available ASIDs. 3225 * @asid_mutex: protects asid_bitmap. 3226 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3227 * @debug_lock: protects critical section of setting debug mode for device 3228 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3229 * page tables are per context, the invalidation h/w is per MMU. 3230 * Therefore, we can't allow multiple contexts (we only have two, 3231 * user and kernel) to access the invalidation h/w at the same time. 3232 * In addition, any change to the PGT, modifying the MMU hash or 3233 * walking the PGT requires talking this lock. 3234 * @asic_prop: ASIC specific immutable properties. 3235 * @asic_funcs: ASIC specific functions. 3236 * @asic_specific: ASIC specific information to use only from ASIC files. 3237 * @vm: virtual memory manager for MMU. 3238 * @hwmon_dev: H/W monitor device. 3239 * @hl_chip_info: ASIC's sensors information. 3240 * @device_status_description: device status description. 3241 * @hl_debugfs: device's debugfs manager. 3242 * @cb_pool: list of pre allocated CBs. 3243 * @cb_pool_lock: protects the CB pool. 3244 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3245 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3246 * @internal_cb_pool: internal command buffer memory pool. 3247 * @internal_cb_va_base: internal cb pool mmu virtual address base 3248 * @fpriv_list: list of file private data structures. Each structure is created 3249 * when a user opens the device 3250 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3251 * when a user opens the control device 3252 * @fpriv_list_lock: protects the fpriv_list 3253 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3254 * @aggregated_cs_counters: aggregated cs counters among all contexts 3255 * @mmu_priv: device-specific MMU data. 3256 * @mmu_func: device-related MMU functions. 3257 * @dec: list of decoder sw instance 3258 * @fw_loader: FW loader manager. 3259 * @pci_mem_region: array of memory regions in the PCI 3260 * @state_dump_specs: constants and dictionaries needed to dump system state. 3261 * @multi_cs_completion: array of multi-CS completion. 3262 * @clk_throttling: holds information about current/previous clock throttling events 3263 * @captured_err_info: holds information about errors. 3264 * @reset_info: holds current device reset information. 3265 * @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling. 3266 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3267 * @fw_inner_major_ver: the major of current loaded preboot inner version. 3268 * @fw_inner_minor_ver: the minor of current loaded preboot inner version. 3269 * @fw_sw_major_ver: the major of current loaded preboot SW version. 3270 * @fw_sw_minor_ver: the minor of current loaded preboot SW version. 3271 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. 3272 * @dram_used_mem: current DRAM memory consumption. 3273 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3274 * @timeout_jiffies: device CS timeout value. 3275 * @max_power: the max power of the device, as configured by the sysadmin. This 3276 * value is saved so in case of hard-reset, the driver will restore 3277 * this value and update the F/W after the re-initialization 3278 * @boot_error_status_mask: contains a mask of the device boot error status. 3279 * Each bit represents a different error, according to 3280 * the defines in hl_boot_if.h. If the bit is cleared, 3281 * the error will be ignored by the driver during 3282 * device initialization. Mainly used to debug and 3283 * workaround firmware bugs 3284 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3285 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3286 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3287 * device open. 3288 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3289 * session. 3290 * @open_counter: number of successful device open operations. 3291 * @fw_poll_interval_usec: FW status poll interval in usec. 3292 * used for CPU boot status 3293 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3294 * used for COMMs protocols cmds(COMMS_STS_*) 3295 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3296 * drams are binned-out 3297 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3298 * tpc engines are binned-out 3299 * @dmabuf_export_cnt: number of dma-buf exporting. 3300 * @card_type: Various ASICs have several card types. This indicates the card 3301 * type of the current device. 3302 * @major: habanalabs kernel driver major. 3303 * @high_pll: high PLL profile frequency. 3304 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3305 * indicates which decoder engines are binned-out 3306 * @edma_binning: contains mask of edma engines that is received from the f/w which 3307 * indicates which edma engines are binned-out 3308 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3309 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3310 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3311 * @id: device minor. 3312 * @cdev_idx: char device index. 3313 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3314 * addresses. 3315 * @is_in_dram_scrub: true if dram scrub operation is on going. 3316 * @disabled: is device disabled. 3317 * @late_init_done: is late init stage was done during initialization. 3318 * @hwmon_initialized: is H/W monitor sensors was initialized. 3319 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3320 * otherwise. 3321 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3322 * @memory_scrub: true to perform device memory scrub in various locations, 3323 * such as context-switch, context close, page free, etc. 3324 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3325 * huge pages. 3326 * @init_done: is the initialization of the device done. 3327 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3328 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3329 * can be used. This indication is needed because in some ASICs we need to do 3330 * specific operations to enable that infrastructure. 3331 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. 3332 * @stop_on_err: true if engines should stop on error. 3333 * @supports_sync_stream: is sync stream supported. 3334 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3335 * @collective_mon_idx: helper index for collective initialization 3336 * @supports_coresight: is CoreSight supported. 3337 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3338 * @process_kill_trial_cnt: number of trials reset thread tried killing 3339 * user processes 3340 * @device_fini_pending: true if device_fini was called and might be 3341 * waiting for the reset thread to finish 3342 * @supports_staged_submission: true if staged submissions are supported 3343 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3344 * halted. We can't halt it again because the COMMS 3345 * protocol will throw an error. Relevant only for 3346 * cases where Linux was not loaded to device CPU 3347 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3348 * @is_compute_ctx_active: Whether there is an active compute context executing. 3349 * @compute_ctx_in_release: true if the current compute context is being released. 3350 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3351 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3352 * device. 3353 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3354 * @support_preboot_binning: true if we support read binning info from preboot. 3355 * @eq_heartbeat_received: indication that eq heartbeat event has received from FW. 3356 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3357 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3358 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3359 * @mmu_disable: Disable the device MMU(s). Used only for testing. 3360 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3361 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3362 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3363 * the f/w. Used only for testing. 3364 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3365 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3366 * Used only for testing. 3367 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3368 * that the f/w is always alive. Used only for testing. 3369 */ 3370 struct hl_device { 3371 struct pci_dev *pdev; 3372 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3373 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3374 void __iomem *rmmio; 3375 struct drm_device drm; 3376 struct cdev cdev_ctrl; 3377 struct device *dev; 3378 struct device *dev_ctrl; 3379 struct delayed_work work_heartbeat; 3380 struct hl_device_reset_work device_reset_work; 3381 struct hl_device_reset_work device_release_watchdog_work; 3382 char asic_name[HL_STR_MAX]; 3383 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3384 enum hl_asic_type asic_type; 3385 struct hl_cq *completion_queue; 3386 struct hl_user_interrupt *user_interrupt; 3387 struct hl_user_interrupt tpc_interrupt; 3388 struct hl_user_interrupt unexpected_error_interrupt; 3389 struct hl_user_interrupt common_user_cq_interrupt; 3390 struct hl_user_interrupt common_decoder_interrupt; 3391 struct hl_cs **shadow_cs_queue; 3392 struct workqueue_struct **cq_wq; 3393 struct workqueue_struct *eq_wq; 3394 struct workqueue_struct *cs_cmplt_wq; 3395 struct workqueue_struct *ts_free_obj_wq; 3396 struct workqueue_struct *prefetch_wq; 3397 struct workqueue_struct *reset_wq; 3398 struct hl_ctx *kernel_ctx; 3399 struct hl_hw_queue *kernel_queues; 3400 struct list_head cs_mirror_list; 3401 spinlock_t cs_mirror_lock; 3402 struct hl_mem_mgr kernel_mem_mgr; 3403 struct hl_eq event_queue; 3404 struct dma_pool *dma_pool; 3405 void *cpu_accessible_dma_mem; 3406 dma_addr_t cpu_accessible_dma_address; 3407 struct gen_pool *cpu_accessible_dma_pool; 3408 unsigned long *asid_bitmap; 3409 struct mutex asid_mutex; 3410 struct mutex send_cpu_message_lock; 3411 struct mutex debug_lock; 3412 struct mutex mmu_lock; 3413 struct asic_fixed_properties asic_prop; 3414 const struct hl_asic_funcs *asic_funcs; 3415 void *asic_specific; 3416 struct hl_vm vm; 3417 struct device *hwmon_dev; 3418 struct hwmon_chip_info *hl_chip_info; 3419 3420 struct hl_dbg_device_entry hl_debugfs; 3421 3422 struct list_head cb_pool; 3423 spinlock_t cb_pool_lock; 3424 3425 void *internal_cb_pool_virt_addr; 3426 dma_addr_t internal_cb_pool_dma_addr; 3427 struct gen_pool *internal_cb_pool; 3428 u64 internal_cb_va_base; 3429 3430 struct list_head fpriv_list; 3431 struct list_head fpriv_ctrl_list; 3432 struct mutex fpriv_list_lock; 3433 struct mutex fpriv_ctrl_list_lock; 3434 3435 struct hl_cs_counters_atomic aggregated_cs_counters; 3436 3437 struct hl_mmu_priv mmu_priv; 3438 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3439 3440 struct hl_dec *dec; 3441 3442 struct fw_load_mgr fw_loader; 3443 3444 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3445 3446 struct hl_state_dump_specs state_dump_specs; 3447 3448 struct multi_cs_completion multi_cs_completion[ 3449 MULTI_CS_MAX_USER_CTX]; 3450 struct hl_clk_throttle clk_throttling; 3451 struct hl_error_info captured_err_info; 3452 3453 struct hl_reset_info reset_info; 3454 3455 cpumask_t irq_affinity_mask; 3456 3457 u32 *stream_master_qid_arr; 3458 u32 fw_inner_major_ver; 3459 u32 fw_inner_minor_ver; 3460 u32 fw_sw_major_ver; 3461 u32 fw_sw_minor_ver; 3462 u32 fw_sw_sub_minor_ver; 3463 atomic64_t dram_used_mem; 3464 u64 memory_scrub_val; 3465 u64 timeout_jiffies; 3466 u64 max_power; 3467 u64 boot_error_status_mask; 3468 u64 dram_pci_bar_start; 3469 u64 last_successful_open_jif; 3470 u64 last_open_session_duration_jif; 3471 u64 open_counter; 3472 u64 fw_poll_interval_usec; 3473 ktime_t last_successful_open_ktime; 3474 u64 fw_comms_poll_interval_usec; 3475 u64 dram_binning; 3476 u64 tpc_binning; 3477 atomic_t dmabuf_export_cnt; 3478 enum cpucp_card_types card_type; 3479 u32 major; 3480 u32 high_pll; 3481 u32 decoder_binning; 3482 u32 edma_binning; 3483 u32 device_release_watchdog_timeout_sec; 3484 u32 rotator_binning; 3485 u16 id; 3486 u16 cdev_idx; 3487 u16 cpu_pci_msb_addr; 3488 u8 is_in_dram_scrub; 3489 u8 disabled; 3490 u8 late_init_done; 3491 u8 hwmon_initialized; 3492 u8 reset_on_lockup; 3493 u8 dram_default_page_mapping; 3494 u8 memory_scrub; 3495 u8 pmmu_huge_range; 3496 u8 init_done; 3497 u8 device_cpu_disabled; 3498 u8 in_debug; 3499 u8 cdev_sysfs_debugfs_created; 3500 u8 stop_on_err; 3501 u8 supports_sync_stream; 3502 u8 sync_stream_queue_idx; 3503 u8 collective_mon_idx; 3504 u8 supports_coresight; 3505 u8 supports_cb_mapping; 3506 u8 process_kill_trial_cnt; 3507 u8 device_fini_pending; 3508 u8 supports_staged_submission; 3509 u8 device_cpu_is_halted; 3510 u8 supports_wait_for_multi_cs; 3511 u8 stream_master_qid_arr_size; 3512 u8 is_compute_ctx_active; 3513 u8 compute_ctx_in_release; 3514 u8 supports_mmu_prefetch; 3515 u8 reset_upon_device_release; 3516 u8 supports_ctx_switch; 3517 u8 support_preboot_binning; 3518 u8 eq_heartbeat_received; 3519 3520 /* Parameters for bring-up to be upstreamed */ 3521 u64 nic_ports_mask; 3522 u64 fw_components; 3523 u8 mmu_disable; 3524 u8 cpu_queues_enable; 3525 u8 pldm; 3526 u8 hard_reset_on_fw_events; 3527 u8 bmc_enable; 3528 u8 reset_on_preboot_fail; 3529 u8 heartbeat; 3530 }; 3531 3532 /* Retrieve PCI device name in case of a PCI device or dev name in simulator */ 3533 #define HL_DEV_NAME(hdev) \ 3534 ((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE") 3535 3536 /** 3537 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3538 * @refcount: refcount used to protect removing this id when several 3539 * wait cs are used to wait of the reserved encaps signals. 3540 * @hdev: pointer to habanalabs device structure. 3541 * @hw_sob: pointer to H/W SOB used in the reservation. 3542 * @ctx: pointer to the user's context data structure 3543 * @cs_seq: staged cs sequence which contains encapsulated signals 3544 * @id: idr handler id to be used to fetch the handler info 3545 * @q_idx: stream queue index 3546 * @pre_sob_val: current SOB value before reservation 3547 * @count: signals number 3548 */ 3549 struct hl_cs_encaps_sig_handle { 3550 struct kref refcount; 3551 struct hl_device *hdev; 3552 struct hl_hw_sob *hw_sob; 3553 struct hl_ctx *ctx; 3554 u64 cs_seq; 3555 u32 id; 3556 u32 q_idx; 3557 u32 pre_sob_val; 3558 u32 count; 3559 }; 3560 3561 /** 3562 * struct hl_info_fw_err_info - firmware error information structure 3563 * @err_type: The type of error detected (or reported). 3564 * @event_mask: Pointer to the event mask to be modified with the detected error flag 3565 * (can be NULL) 3566 * @event_id: The id of the event that reported the error 3567 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). 3568 */ 3569 struct hl_info_fw_err_info { 3570 enum hl_info_fw_err_type err_type; 3571 u64 *event_mask; 3572 u16 event_id; 3573 }; 3574 3575 /* 3576 * IOCTLs 3577 */ 3578 3579 /** 3580 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3581 * @hpriv: pointer to the FD's private data, which contains state of 3582 * user process 3583 * @data: pointer to the input/output arguments structure of the IOCTL 3584 * 3585 * Return: 0 for success, negative value for error 3586 */ 3587 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3588 3589 /** 3590 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3591 * @cmd: the IOCTL code as created by the kernel macros. 3592 * @func: pointer to the driver's function that should be called for this IOCTL. 3593 */ 3594 struct hl_ioctl_desc { 3595 unsigned int cmd; 3596 hl_ioctl_t *func; 3597 }; 3598 3599 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor) 3600 { 3601 if (hdev->fw_sw_major_ver < fw_sw_major) 3602 return true; 3603 if (hdev->fw_sw_major_ver > fw_sw_major) 3604 return false; 3605 if (hdev->fw_sw_minor_ver < fw_sw_minor) 3606 return true; 3607 return false; 3608 } 3609 3610 static inline bool hl_is_fw_sw_ver_equal_or_greater(struct hl_device *hdev, u32 fw_sw_major, 3611 u32 fw_sw_minor) 3612 { 3613 return (hdev->fw_sw_major_ver > fw_sw_major || 3614 (hdev->fw_sw_major_ver == fw_sw_major && 3615 hdev->fw_sw_minor_ver >= fw_sw_minor)); 3616 } 3617 3618 /* 3619 * Kernel module functions that can be accessed by entire module 3620 */ 3621 3622 /** 3623 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3624 * @sg: the SG list. 3625 * @dma_addr: pointer to DMA address to return. 3626 * 3627 * Calculate the number of consecutive pages described by the SG list. Take the 3628 * offset of the address in the first page, add to it the length and round it up 3629 * to the number of needed pages. 3630 */ 3631 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3632 { 3633 *dma_addr = sg_dma_address(sg); 3634 3635 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3636 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3637 } 3638 3639 /** 3640 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3641 * @address: The start address of the area we want to validate. 3642 * @size: The size in bytes of the area we want to validate. 3643 * @range_start_address: The start address of the valid range. 3644 * @range_end_address: The end address of the valid range. 3645 * 3646 * Return: true if the area is inside the valid range, false otherwise. 3647 */ 3648 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3649 u64 range_start_address, u64 range_end_address) 3650 { 3651 u64 end_address = address + size; 3652 3653 if ((address >= range_start_address) && 3654 (end_address <= range_end_address) && 3655 (end_address > address)) 3656 return true; 3657 3658 return false; 3659 } 3660 3661 static inline struct hl_device *to_hl_device(struct drm_device *ddev) 3662 { 3663 return container_of(ddev, struct hl_device, drm); 3664 } 3665 3666 /** 3667 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3668 * @address: The start address of the area we want to validate. 3669 * @size: The size in bytes of the area we want to validate. 3670 * @range_start_address: The start address of the valid range. 3671 * @range_end_address: The end address of the valid range. 3672 * 3673 * Return: true if the area overlaps part or all of the valid range, 3674 * false otherwise. 3675 */ 3676 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3677 u64 range_start_address, u64 range_end_address) 3678 { 3679 u64 end_address = address + size - 1; 3680 3681 return ((address <= range_end_address) && (range_start_address <= end_address)); 3682 } 3683 3684 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3685 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); 3686 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); 3687 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3688 gfp_t flag, const char *caller); 3689 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3690 dma_addr_t dma_handle, const char *caller); 3691 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3692 dma_addr_t *dma_handle, const char *caller); 3693 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3694 const char *caller); 3695 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3696 enum dma_data_direction dir, const char *caller); 3697 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3698 enum dma_data_direction dir, const char *caller); 3699 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3700 enum dma_data_direction dir); 3701 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3702 enum dma_data_direction dir); 3703 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3704 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3705 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3706 enum debugfs_access_type acc_type); 3707 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3708 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3709 3710 int hl_mmap(struct file *filp, struct vm_area_struct *vma); 3711 3712 int hl_device_open(struct drm_device *drm, struct drm_file *file_priv); 3713 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv); 3714 3715 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3716 bool hl_device_operational(struct hl_device *hdev, 3717 enum hl_device_status *status); 3718 bool hl_ctrl_device_operational(struct hl_device *hdev, 3719 enum hl_device_status *status); 3720 enum hl_device_status hl_device_status(struct hl_device *hdev); 3721 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3722 int hl_hw_queues_create(struct hl_device *hdev); 3723 void hl_hw_queues_destroy(struct hl_device *hdev); 3724 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3725 u32 cb_size, u64 cb_ptr); 3726 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3727 u32 ctl, u32 len, u64 ptr); 3728 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3729 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3730 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3731 void hl_hw_queue_update_ci(struct hl_cs *cs); 3732 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3733 3734 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3735 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3736 3737 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3738 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3739 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3740 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3741 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3742 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3743 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3744 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3745 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3746 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg); 3747 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); 3748 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg); 3749 u32 hl_cq_inc_ptr(u32 ptr); 3750 3751 int hl_asid_init(struct hl_device *hdev); 3752 void hl_asid_fini(struct hl_device *hdev); 3753 unsigned long hl_asid_alloc(struct hl_device *hdev); 3754 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3755 3756 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3757 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3758 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3759 void hl_ctx_do_release(struct kref *ref); 3760 void hl_ctx_get(struct hl_ctx *ctx); 3761 int hl_ctx_put(struct hl_ctx *ctx); 3762 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3763 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3764 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3765 struct hl_fence **fence, u32 arr_len); 3766 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3767 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3768 3769 int hl_device_init(struct hl_device *hdev); 3770 void hl_device_fini(struct hl_device *hdev); 3771 int hl_device_suspend(struct hl_device *hdev); 3772 int hl_device_resume(struct hl_device *hdev); 3773 int hl_device_reset(struct hl_device *hdev, u32 flags); 3774 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3775 void hl_hpriv_get(struct hl_fpriv *hpriv); 3776 int hl_hpriv_put(struct hl_fpriv *hpriv); 3777 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3778 3779 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3780 struct cpucp_sensor *sensors_arr); 3781 3782 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3783 3784 int hl_sysfs_init(struct hl_device *hdev); 3785 void hl_sysfs_fini(struct hl_device *hdev); 3786 3787 int hl_hwmon_init(struct hl_device *hdev); 3788 void hl_hwmon_fini(struct hl_device *hdev); 3789 void hl_hwmon_release_resources(struct hl_device *hdev); 3790 3791 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3792 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3793 bool map_cb, u64 *handle); 3794 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3795 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3796 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3797 void hl_cb_put(struct hl_cb *cb); 3798 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3799 bool internal_cb); 3800 int hl_cb_pool_init(struct hl_device *hdev); 3801 int hl_cb_pool_fini(struct hl_device *hdev); 3802 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3803 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3804 3805 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3806 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3807 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3808 void hl_sob_reset_error(struct kref *ref); 3809 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3810 void hl_fence_put(struct hl_fence *fence); 3811 void hl_fences_put(struct hl_fence **fence, int len); 3812 void hl_fence_get(struct hl_fence *fence); 3813 void cs_get(struct hl_cs *cs); 3814 bool cs_needs_completion(struct hl_cs *cs); 3815 bool cs_needs_timeout(struct hl_cs *cs); 3816 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3817 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3818 void hl_multi_cs_completion_init(struct hl_device *hdev); 3819 u32 hl_get_active_cs_num(struct hl_device *hdev); 3820 3821 void goya_set_asic_funcs(struct hl_device *hdev); 3822 void gaudi_set_asic_funcs(struct hl_device *hdev); 3823 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3824 3825 int hl_vm_ctx_init(struct hl_ctx *ctx); 3826 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3827 3828 int hl_vm_init(struct hl_device *hdev); 3829 void hl_vm_fini(struct hl_device *hdev); 3830 3831 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3832 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3833 3834 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3835 enum hl_va_range_type type, u64 size, u32 alignment); 3836 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3837 u64 start_addr, u64 size); 3838 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3839 struct hl_userptr *userptr); 3840 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3841 void hl_userptr_delete_list(struct hl_device *hdev, 3842 struct list_head *userptr_list); 3843 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3844 struct list_head *userptr_list, 3845 struct hl_userptr **userptr); 3846 3847 int hl_mmu_init(struct hl_device *hdev); 3848 void hl_mmu_fini(struct hl_device *hdev); 3849 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3850 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3851 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3852 u32 page_size, bool flush_pte); 3853 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3854 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3855 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3856 bool flush_pte); 3857 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3858 u64 phys_addr, u32 size); 3859 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3860 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3861 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3862 u32 flags, u32 asid, u64 va, u64 size); 3863 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3864 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3865 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3866 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3867 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3868 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3869 u64 pgt_size); 3870 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3871 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3872 u32 hop_table_size); 3873 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3874 u32 hop_table_size); 3875 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3876 u64 val, u32 hop_table_size); 3877 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3878 u32 hop_table_size); 3879 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3880 u32 hop_table_size); 3881 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3882 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3883 struct hl_hr_mmu_funcs *hr_func, 3884 u64 curr_pte); 3885 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3886 struct hl_hr_mmu_funcs *hr_func, 3887 struct hl_mmu_properties *mmu_prop); 3888 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3889 struct hl_mmu_hr_priv *hr_priv, 3890 struct hl_hr_mmu_funcs *hr_func, 3891 struct hl_mmu_properties *mmu_prop, 3892 u64 curr_pte, bool *is_new_hop); 3893 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3894 struct hl_hr_mmu_funcs *hr_func); 3895 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3896 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3897 void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3898 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3899 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3900 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3901 struct hl_mmu_hop_info *hops); 3902 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3903 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3904 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3905 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr); 3906 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr); 3907 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info); 3908 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx); 3909 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx); 3910 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); 3911 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); 3912 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr); 3913 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); 3914 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr); 3915 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr); 3916 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop); 3917 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx); 3918 void hl_mmu_dr_flush(struct hl_ctx *ctx); 3919 int hl_mmu_dr_init(struct hl_device *hdev); 3920 void hl_mmu_dr_fini(struct hl_device *hdev); 3921 3922 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3923 void __iomem *dst, u32 src_offset, u32 size); 3924 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3925 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3926 u16 len, u32 timeout, u64 *result); 3927 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3928 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3929 size_t irq_arr_size); 3930 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3931 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3932 dma_addr_t *dma_handle); 3933 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3934 void *vaddr); 3935 int hl_fw_send_heartbeat(struct hl_device *hdev); 3936 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3937 u32 sts_boot_dev_sts0_reg, 3938 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3939 u32 boot_err1_reg); 3940 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3941 u32 sts_boot_dev_sts0_reg, 3942 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3943 u32 boot_err1_reg); 3944 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3945 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3946 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3947 struct hl_info_pci_counters *counters); 3948 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3949 u64 *total_energy); 3950 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3951 enum pll_index *pll_index); 3952 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3953 u16 *pll_freq_arr); 3954 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3955 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3956 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3957 int hl_fw_init_cpu(struct hl_device *hdev); 3958 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3959 int hl_fw_read_preboot_status(struct hl_device *hdev); 3960 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3961 struct fw_load_mgr *fw_loader, 3962 enum comms_cmd cmd, unsigned int size, 3963 bool wait_ok, u32 timeout); 3964 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3965 struct cpucp_hbm_row_info *info); 3966 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3967 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3968 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3969 int hl_fw_send_soft_reset(struct hl_device *hdev); 3970 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3971 bool is_wc[3]); 3972 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 3973 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 3974 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 3975 struct hl_inbound_pci_region *pci_region); 3976 int hl_pci_set_outbound_region(struct hl_device *hdev, 3977 struct hl_outbound_pci_region *pci_region); 3978 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 3979 int hl_pci_init(struct hl_device *hdev); 3980 void hl_pci_fini(struct hl_device *hdev); 3981 3982 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 3983 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 3984 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3985 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3986 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3987 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3988 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3989 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 3990 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3991 long hl_fw_get_max_power(struct hl_device *hdev); 3992 void hl_fw_set_max_power(struct hl_device *hdev); 3993 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3994 u32 nonce); 3995 int hl_fw_get_dev_info_signed(struct hl_device *hdev, 3996 struct cpucp_dev_info_signed *dev_info_signed, u32 nonce); 3997 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3998 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 3999 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4000 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4001 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 4002 void hl_fw_set_pll_profile(struct hl_device *hdev); 4003 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 4004 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 4005 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 4006 dma_addr_t buff, u32 *size); 4007 4008 void hw_sob_get(struct hl_hw_sob *hw_sob); 4009 void hw_sob_put(struct hl_hw_sob *hw_sob); 4010 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 4011 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 4012 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 4013 struct hl_cs *cs, struct hl_cs_job *job, 4014 struct hl_cs_compl *cs_cmpl); 4015 4016 int hl_dec_init(struct hl_device *hdev); 4017 void hl_dec_fini(struct hl_device *hdev); 4018 void hl_dec_ctx_fini(struct hl_ctx *ctx); 4019 4020 void hl_release_pending_user_interrupts(struct hl_device *hdev); 4021 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); 4022 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 4023 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 4024 4025 int hl_state_dump(struct hl_device *hdev); 4026 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 4027 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 4028 struct hl_mon_state_dump *mon); 4029 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 4030 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 4031 const char *format, ...); 4032 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 4033 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 4034 4035 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 4036 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg); 4037 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); 4038 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 4039 void *args); 4040 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 4041 u64 handle); 4042 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 4043 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 4044 struct hl_mmap_mem_buf * 4045 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 4046 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 4047 void *args); 4048 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 4049 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4050 u8 flags); 4051 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4052 u8 flags, u64 *event_mask); 4053 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 4054 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 4055 u64 *event_mask); 4056 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); 4057 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); 4058 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count); 4059 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); 4060 void hl_init_cpu_for_irq(struct hl_device *hdev); 4061 void hl_set_irq_affinity(struct hl_device *hdev, int irq); 4062 4063 #ifdef CONFIG_DEBUG_FS 4064 4065 int hl_debugfs_device_init(struct hl_device *hdev); 4066 void hl_debugfs_device_fini(struct hl_device *hdev); 4067 void hl_debugfs_add_device(struct hl_device *hdev); 4068 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 4069 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 4070 void hl_debugfs_add_cb(struct hl_cb *cb); 4071 void hl_debugfs_remove_cb(struct hl_cb *cb); 4072 void hl_debugfs_add_cs(struct hl_cs *cs); 4073 void hl_debugfs_remove_cs(struct hl_cs *cs); 4074 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 4075 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 4076 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 4077 void hl_debugfs_remove_userptr(struct hl_device *hdev, 4078 struct hl_userptr *userptr); 4079 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4080 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4081 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 4082 unsigned long length); 4083 4084 #else 4085 4086 static inline int hl_debugfs_device_init(struct hl_device *hdev) 4087 { 4088 return 0; 4089 } 4090 4091 static inline void hl_debugfs_device_fini(struct hl_device *hdev) 4092 { 4093 } 4094 4095 static inline void hl_debugfs_add_device(struct hl_device *hdev) 4096 { 4097 } 4098 4099 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 4100 { 4101 } 4102 4103 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 4104 { 4105 } 4106 4107 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 4108 { 4109 } 4110 4111 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 4112 { 4113 } 4114 4115 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 4116 { 4117 } 4118 4119 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 4120 { 4121 } 4122 4123 static inline void hl_debugfs_add_job(struct hl_device *hdev, 4124 struct hl_cs_job *job) 4125 { 4126 } 4127 4128 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 4129 struct hl_cs_job *job) 4130 { 4131 } 4132 4133 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 4134 struct hl_userptr *userptr) 4135 { 4136 } 4137 4138 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 4139 struct hl_userptr *userptr) 4140 { 4141 } 4142 4143 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 4144 struct hl_ctx *ctx) 4145 { 4146 } 4147 4148 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 4149 struct hl_ctx *ctx) 4150 { 4151 } 4152 4153 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 4154 char *data, unsigned long length) 4155 { 4156 } 4157 4158 #endif 4159 4160 /* Security */ 4161 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 4162 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 4163 int array_size); 4164 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 4165 int mm_array_size, int offset, const u32 pb_blocks[], 4166 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 4167 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 4168 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 4169 int array_size); 4170 void hl_secure_block(struct hl_device *hdev, 4171 struct hl_block_glbl_sec sgs_array[], int array_size); 4172 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4173 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4174 const u32 pb_blocks[], u32 blocks_array_size, 4175 const u32 *regs_array, u32 regs_array_size, u64 mask); 4176 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4177 u32 num_instances, u32 instance_offset, 4178 const u32 pb_blocks[], u32 blocks_array_size, 4179 const u32 *regs_array, u32 regs_array_size); 4180 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4181 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4182 const u32 pb_blocks[], u32 blocks_array_size, 4183 const struct range *regs_range_array, u32 regs_range_array_size, 4184 u64 mask); 4185 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4186 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4187 const u32 pb_blocks[], u32 blocks_array_size, 4188 const struct range *regs_range_array, 4189 u32 regs_range_array_size); 4190 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4191 u32 num_instances, u32 instance_offset, 4192 const u32 pb_blocks[], u32 blocks_array_size, 4193 const u32 *regs_array, u32 regs_array_size); 4194 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4195 u32 num_instances, u32 instance_offset, 4196 const u32 pb_blocks[], u32 blocks_array_size, 4197 const struct range *regs_range_array, 4198 u32 regs_range_array_size); 4199 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4200 u32 num_instances, u32 instance_offset, 4201 const u32 pb_blocks[], u32 blocks_array_size); 4202 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4203 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4204 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4205 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4206 u32 num_instances, u32 instance_offset, 4207 const u32 pb_blocks[], u32 blocks_array_size); 4208 4209 /* IOCTLs */ 4210 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4211 int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4212 int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4213 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4214 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4215 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4216 int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4217 4218 #endif /* HABANALABSP_H_ */ 4219