xref: /linux/drivers/accel/habanalabs/common/habanalabs.h (revision 3e0bc2855b573bcffa2a52955a878f537f5ac0cd)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2023 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include <linux/habanalabs/cpucp_if.h>
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/drm/habanalabs_accel.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31 
32 #include <drm/drm_device.h>
33 #include <drm/drm_file.h>
34 
35 #include "security.h"
36 
37 #define HL_NAME				"habanalabs"
38 
39 struct hl_device;
40 struct hl_fpriv;
41 
42 #define PCI_VENDOR_ID_HABANALABS	0x1da3
43 
44 /* Use upper bits of mmap offset to store habana driver specific information.
45  * bits[63:59] - Encode mmap type
46  * bits[45:0]  - mmap offset value
47  *
48  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
49  *  defines are w.r.t to PAGE_SIZE
50  */
51 #define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
52 #define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
53 #define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
54 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
55 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
56 
57 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
58 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
59 
60 #define HL_PENDING_RESET_PER_SEC		10
61 #define HL_PENDING_RESET_MAX_TRIALS		60 /* 10 minutes */
62 #define HL_PENDING_RESET_LONG_SEC		60
63 /*
64  * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
65  * This is needed to prevent situation of clearing resources while user processes are still alive.
66  */
67 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI	600
68 
69 #define HL_HARD_RESET_MAX_TIMEOUT	120
70 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
71 
72 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
73 
74 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
75 
76 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
77 
78 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
79 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
80 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
81 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
82 
83 #define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
84 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */
85 
86 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
87 
88 #define HL_INVALID_QUEUE		UINT_MAX
89 
90 #define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
91 #define HL_COMMON_DEC_INTERRUPT_ID	0xFFE
92 
93 #define HL_STATE_DUMP_HIST_LEN		5
94 
95 /* Default value for device reset trigger , an invalid value */
96 #define HL_RESET_TRIGGER_DEFAULT	0xFF
97 
98 #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
99 #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
100 
101 /* Memory */
102 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
103 
104 /* MMU */
105 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
106 
107 #define TIMESTAMP_FREE_NODES_NUM	512
108 
109 /**
110  * enum hl_mmu_page_table_location - mmu page table location
111  * @MMU_DR_PGT: page-table is located on device DRAM.
112  * @MMU_HR_PGT: page-table is located on host memory.
113  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
114  */
115 enum hl_mmu_page_table_location {
116 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
117 	MMU_HR_PGT,		/* host resident MMU PGT */
118 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
119 };
120 
121 /*
122  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
123  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
124  */
125 #define HL_RSVD_SOBS			2
126 #define HL_RSVD_MONS			1
127 
128 /*
129  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
130  */
131 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
132 
133 #define HL_MAX_SOB_VAL			(1 << 15)
134 
135 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
136 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
137 
138 #define HL_PCI_NUM_BARS			6
139 
140 /* Completion queue entry relates to completed job */
141 #define HL_COMPLETION_MODE_JOB		0
142 /* Completion queue entry relates to completed command submission */
143 #define HL_COMPLETION_MODE_CS		1
144 
145 #define HL_MAX_DCORES			8
146 
147 /* DMA alloc/free wrappers */
148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
149 	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
150 
151 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
152 	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
153 
154 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
155 	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
156 
157 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
158 	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
159 
160 #define hl_dma_map_sgtable(hdev, sgt, dir) \
161 	hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__)
162 #define hl_dma_unmap_sgtable(hdev, sgt, dir) \
163 	hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__)
164 
165 /*
166  * Reset Flags
167  *
168  * - HL_DRV_RESET_HARD
169  *       If set do hard reset to all engines. If not set reset just
170  *       compute/DMA engines.
171  *
172  * - HL_DRV_RESET_FROM_RESET_THR
173  *       Set if the caller is the hard-reset thread
174  *
175  * - HL_DRV_RESET_HEARTBEAT
176  *       Set if reset is due to heartbeat
177  *
178  * - HL_DRV_RESET_TDR
179  *       Set if reset is due to TDR
180  *
181  * - HL_DRV_RESET_DEV_RELEASE
182  *       Set if reset is due to device release
183  *
184  * - HL_DRV_RESET_BYPASS_REQ_TO_FW
185  *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
186  *       only when running with secured f/w
187  *
188  * - HL_DRV_RESET_FW_FATAL_ERR
189  *       Set if reset is due to a fatal error from FW
190  *
191  * - HL_DRV_RESET_DELAY
192  *       Set if a delay should be added before the reset
193  *
194  * - HL_DRV_RESET_FROM_WD_THR
195  *       Set if the caller is the device release watchdog thread
196  */
197 
198 #define HL_DRV_RESET_HARD		(1 << 0)
199 #define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
200 #define HL_DRV_RESET_HEARTBEAT		(1 << 2)
201 #define HL_DRV_RESET_TDR		(1 << 3)
202 #define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
204 #define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
205 #define HL_DRV_RESET_DELAY		(1 << 7)
206 #define HL_DRV_RESET_FROM_WD_THR	(1 << 8)
207 
208 /*
209  * Security
210  */
211 
212 #define HL_PB_SHARED		1
213 #define HL_PB_NA		0
214 #define HL_PB_SINGLE_INSTANCE	1
215 #define HL_BLOCK_SIZE		0x1000
216 #define HL_BLOCK_GLBL_ERR_MASK	0xF40
217 #define HL_BLOCK_GLBL_ERR_ADDR	0xF44
218 #define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
219 #define HL_BLOCK_GLBL_SEC_OFFS	0xF80
220 #define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
221 #define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
222 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
223 
224 enum hl_protection_levels {
225 	SECURED_LVL,
226 	PRIVILEGED_LVL,
227 	NON_SECURED_LVL
228 };
229 
230 /**
231  * struct iterate_module_ctx - HW module iterator
232  * @fn: function to apply to each HW module instance
233  * @data: optional internal data to the function iterator
234  * @rc: return code for optional use of iterator/iterator-caller
235  */
236 struct iterate_module_ctx {
237 	/*
238 	 * callback for the HW module iterator
239 	 * @hdev: pointer to the habanalabs device structure
240 	 * @block: block (ASIC specific definition can be dcore/hdcore)
241 	 * @inst: HW module instance within the block
242 	 * @offset: current HW module instance offset from the 1-st HW module instance
243 	 *          in the 1-st block
244 	 * @ctx: the iterator context.
245 	 */
246 	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
247 			struct iterate_module_ctx *ctx);
248 	void *data;
249 	int rc;
250 };
251 
252 struct hl_block_glbl_sec {
253 	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
254 };
255 
256 #define HL_MAX_SOBS_PER_MONITOR	8
257 
258 /**
259  * struct hl_gen_wait_properties - properties for generating a wait CB
260  * @data: command buffer
261  * @q_idx: queue id is used to extract fence register address
262  * @size: offset in command buffer
263  * @sob_base: SOB base to use in this wait CB
264  * @sob_val: SOB value to wait for
265  * @mon_id: monitor to use in this wait CB
266  * @sob_mask: each bit represents a SOB offset from sob_base to be used
267  */
268 struct hl_gen_wait_properties {
269 	void	*data;
270 	u32	q_idx;
271 	u32	size;
272 	u16	sob_base;
273 	u16	sob_val;
274 	u16	mon_id;
275 	u8	sob_mask;
276 };
277 
278 /**
279  * struct pgt_info - MMU hop page info.
280  * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
281  *        actual pgts for host resident MMU).
282  * @phys_addr: physical address of the pgt.
283  * @virt_addr: host virtual address of the pgt (see above device/host resident).
284  * @shadow_addr: shadow hop in the host for device resident MMU.
285  * @ctx: pointer to the owner ctx.
286  * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
287  *               allocated HOPs (all HOPs but HOP0)
288  *
289  * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
290  * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
291  *
292  * When a new level (hop) is needed during mapping this structure will be used to describe
293  * the newly allocated hop as well as to track number of PTEs in it.
294  * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
295  * freed with its pgt_info structure.
296  */
297 struct pgt_info {
298 	struct hlist_node	node;
299 	u64			phys_addr;
300 	u64			virt_addr;
301 	u64			shadow_addr;
302 	struct hl_ctx		*ctx;
303 	int			num_of_ptes;
304 };
305 
306 /**
307  * enum hl_pci_match_mode - pci match mode per region
308  * @PCI_ADDRESS_MATCH_MODE: address match mode
309  * @PCI_BAR_MATCH_MODE: bar match mode
310  */
311 enum hl_pci_match_mode {
312 	PCI_ADDRESS_MATCH_MODE,
313 	PCI_BAR_MATCH_MODE
314 };
315 
316 /**
317  * enum hl_fw_component - F/W components to read version through registers.
318  * @FW_COMP_BOOT_FIT: boot fit.
319  * @FW_COMP_PREBOOT: preboot.
320  * @FW_COMP_LINUX: linux.
321  */
322 enum hl_fw_component {
323 	FW_COMP_BOOT_FIT,
324 	FW_COMP_PREBOOT,
325 	FW_COMP_LINUX,
326 };
327 
328 /**
329  * enum hl_fw_types - F/W types present in the system
330  * @FW_TYPE_NONE: no FW component indication
331  * @FW_TYPE_LINUX: Linux image for device CPU
332  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
333  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
334  *                       (preboot, ppboot etc...)
335  * @FW_TYPE_ALL_TYPES: Mask for all types
336  */
337 enum hl_fw_types {
338 	FW_TYPE_NONE = 0x0,
339 	FW_TYPE_LINUX = 0x1,
340 	FW_TYPE_BOOT_CPU = 0x2,
341 	FW_TYPE_PREBOOT_CPU = 0x4,
342 	FW_TYPE_ALL_TYPES =
343 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
344 };
345 
346 /**
347  * enum hl_queue_type - Supported QUEUE types.
348  * @QUEUE_TYPE_NA: queue is not available.
349  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
350  *                  host.
351  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
352  *			memories and/or operates the compute engines.
353  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
354  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
355  *                 notifications are sent by H/W.
356  */
357 enum hl_queue_type {
358 	QUEUE_TYPE_NA,
359 	QUEUE_TYPE_EXT,
360 	QUEUE_TYPE_INT,
361 	QUEUE_TYPE_CPU,
362 	QUEUE_TYPE_HW
363 };
364 
365 enum hl_cs_type {
366 	CS_TYPE_DEFAULT,
367 	CS_TYPE_SIGNAL,
368 	CS_TYPE_WAIT,
369 	CS_TYPE_COLLECTIVE_WAIT,
370 	CS_RESERVE_SIGNALS,
371 	CS_UNRESERVE_SIGNALS,
372 	CS_TYPE_ENGINE_CORE,
373 	CS_TYPE_ENGINES,
374 	CS_TYPE_FLUSH_PCI_HBW_WRITES,
375 };
376 
377 /*
378  * struct hl_inbound_pci_region - inbound region descriptor
379  * @mode: pci match mode for this region
380  * @addr: region target address
381  * @size: region size in bytes
382  * @offset_in_bar: offset within bar (address match mode)
383  * @bar: bar id
384  */
385 struct hl_inbound_pci_region {
386 	enum hl_pci_match_mode	mode;
387 	u64			addr;
388 	u64			size;
389 	u64			offset_in_bar;
390 	u8			bar;
391 };
392 
393 /*
394  * struct hl_outbound_pci_region - outbound region descriptor
395  * @addr: region target address
396  * @size: region size in bytes
397  */
398 struct hl_outbound_pci_region {
399 	u64	addr;
400 	u64	size;
401 };
402 
403 /*
404  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
405  * allocated by Kernel or by User
406  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
407  * @CB_ALLOC_USER: support only CBs that allocated by User
408  */
409 enum queue_cb_alloc_flags {
410 	CB_ALLOC_KERNEL = 0x1,
411 	CB_ALLOC_USER   = 0x2
412 };
413 
414 /*
415  * struct hl_hw_sob - H/W SOB info.
416  * @hdev: habanalabs device structure.
417  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
418  * @sob_id: id of this SOB.
419  * @sob_addr: the sob offset from the base address.
420  * @q_idx: the H/W queue that uses this SOB.
421  * @need_reset: reset indication set when switching to the other sob.
422  */
423 struct hl_hw_sob {
424 	struct hl_device	*hdev;
425 	struct kref		kref;
426 	u32			sob_id;
427 	u32			sob_addr;
428 	u32			q_idx;
429 	bool			need_reset;
430 };
431 
432 enum hl_collective_mode {
433 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
434 	HL_COLLECTIVE_MASTER = 0x1,
435 	HL_COLLECTIVE_SLAVE = 0x2
436 };
437 
438 /**
439  * struct hw_queue_properties - queue information.
440  * @type: queue type.
441  * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
442  *                  that allocated by the Kernel driver and therefore,
443  *                  a CB handle can be provided for jobs on this queue.
444  *                  Otherwise, a CB address must be provided.
445  * @collective_mode: collective mode of current queue
446  * @driver_only: true if only the driver is allowed to send a job to this queue,
447  *               false otherwise.
448  * @binned: True if the queue is binned out and should not be used
449  * @supports_sync_stream: True if queue supports sync stream
450  */
451 struct hw_queue_properties {
452 	enum hl_queue_type		type;
453 	enum queue_cb_alloc_flags	cb_alloc_flags;
454 	enum hl_collective_mode		collective_mode;
455 	u8				driver_only;
456 	u8				binned;
457 	u8				supports_sync_stream;
458 };
459 
460 /**
461  * enum vm_type - virtual memory mapping request information.
462  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
463  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
464  */
465 enum vm_type {
466 	VM_TYPE_USERPTR = 0x1,
467 	VM_TYPE_PHYS_PACK = 0x2
468 };
469 
470 /**
471  * enum mmu_op_flags - mmu operation relevant information.
472  * @MMU_OP_USERPTR: operation on user memory (host resident).
473  * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
474  * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
475  * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
476  */
477 enum mmu_op_flags {
478 	MMU_OP_USERPTR = 0x1,
479 	MMU_OP_PHYS_PACK = 0x2,
480 	MMU_OP_CLEAR_MEMCACHE = 0x4,
481 	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
482 };
483 
484 
485 /**
486  * enum hl_device_hw_state - H/W device state. use this to understand whether
487  *                           to do reset before hw_init or not
488  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
489  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
490  *                            hw_init
491  */
492 enum hl_device_hw_state {
493 	HL_DEVICE_HW_STATE_CLEAN = 0,
494 	HL_DEVICE_HW_STATE_DIRTY
495 };
496 
497 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
498 
499 /**
500  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
501  * @start_addr: virtual start address of the memory region.
502  * @end_addr: virtual end address of the memory region.
503  * @hop_shifts: array holds HOPs shifts.
504  * @hop_masks: array holds HOPs masks.
505  * @last_mask: mask to get the bit indicating this is the last hop.
506  * @pgt_size: size for page tables.
507  * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
508  *                        supporting multiple page size).
509  * @page_size: default page size used to allocate memory.
510  * @num_hops: The amount of hops supported by the translation table.
511  * @hop_table_size: HOP table size.
512  * @hop0_tables_total_size: total size for all HOP0 tables.
513  * @host_resident: Should the MMU page table reside in host memory or in the
514  *                 device DRAM.
515  */
516 struct hl_mmu_properties {
517 	u64	start_addr;
518 	u64	end_addr;
519 	u64	hop_shifts[MMU_HOP_MAX];
520 	u64	hop_masks[MMU_HOP_MAX];
521 	u64	last_mask;
522 	u64	pgt_size;
523 	u64	supported_pages_mask;
524 	u32	page_size;
525 	u32	num_hops;
526 	u32	hop_table_size;
527 	u32	hop0_tables_total_size;
528 	u8	host_resident;
529 };
530 
531 /**
532  * struct hl_hints_range - hint addresses reserved va range.
533  * @start_addr: start address of the va range.
534  * @end_addr: end address of the va range.
535  */
536 struct hl_hints_range {
537 	u64 start_addr;
538 	u64 end_addr;
539 };
540 
541 /**
542  * struct asic_fixed_properties - ASIC specific immutable properties.
543  * @hw_queues_props: H/W queues properties.
544  * @special_blocks: points to an array containing special blocks info.
545  * @skip_special_blocks_cfg: special blocks skip configs.
546  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
547  *		available sensors.
548  * @uboot_ver: F/W U-boot version.
549  * @preboot_ver: F/W Preboot version.
550  * @dmmu: DRAM MMU address translation properties.
551  * @pmmu: PCI (host) MMU address translation properties.
552  * @pmmu_huge: PCI (host) MMU address translation properties for memory
553  *              allocated with huge pages.
554  * @hints_dram_reserved_va_range: dram hint addresses reserved range.
555  * @hints_host_reserved_va_range: host hint addresses reserved range.
556  * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range.
557  * @sram_base_address: SRAM physical start address.
558  * @sram_end_address: SRAM physical end address.
559  * @sram_user_base_address - SRAM physical start address for user access.
560  * @dram_base_address: DRAM physical start address.
561  * @dram_end_address: DRAM physical end address.
562  * @dram_user_base_address: DRAM physical start address for user access.
563  * @dram_size: DRAM total size.
564  * @dram_pci_bar_size: size of PCI bar towards DRAM.
565  * @max_power_default: max power of the device after reset.
566  * @dc_power_default: power consumed by the device in mode idle.
567  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
568  *                                      fault.
569  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
570  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
571  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
572  * @mmu_dram_default_page_addr: DRAM default page physical address.
573  * @tpc_enabled_mask: which TPCs are enabled.
574  * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
575  * @dram_enabled_mask: which DRAMs are enabled.
576  * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
577  * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
578  *                  for hints validity check.
579  * @cfg_base_address: config space base address.
580  * @mmu_cache_mng_addr: address of the MMU cache.
581  * @mmu_cache_mng_size: size of the MMU cache.
582  * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
583  *                                     to enable the device to access them.
584  * @host_base_address: host physical start address for host DMA from device
585  * @host_end_address: host physical end address for host DMA from device
586  * @max_freq_value: current max clk frequency.
587  * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
588  *                                  in order to raise events toward FW.
589  * @clk_pll_index: clock PLL index that specify which PLL determines the clock
590  *                 we display to the user
591  * @mmu_pgt_size: MMU page tables total size.
592  * @mmu_pte_size: PTE size in MMU page tables.
593  * @mmu_hop_table_size: MMU hop table size.
594  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
595  * @dram_page_size: The DRAM physical page size.
596  * @cfg_size: configuration space size on SRAM.
597  * @sram_size: total size of SRAM.
598  * @max_asid: maximum number of open contexts (ASIDs).
599  * @num_of_events: number of possible internal H/W IRQs.
600  * @psoc_pci_pll_nr: PCI PLL NR value.
601  * @psoc_pci_pll_nf: PCI PLL NF value.
602  * @psoc_pci_pll_od: PCI PLL OD value.
603  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
604  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
605  * @high_pll: high PLL frequency used by the device.
606  * @cb_pool_cb_cnt: number of CBs in the CB pool.
607  * @cb_pool_cb_size: size of each CB in the CB pool.
608  * @decoder_enabled_mask: which decoders are enabled.
609  * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
610  * @rotator_enabled_mask: which rotators are enabled.
611  * @edma_enabled_mask: which EDMAs are enabled.
612  * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
613  *                     binned (at most one binned DMA).
614  * @max_pending_cs: maximum of concurrent pending command submissions
615  * @max_queues: maximum amount of queues in the system
616  * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
617  *                                capabilities reported by FW, bit description
618  *                                can be found in CPU_BOOT_DEV_STS0
619  * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
620  *                                capabilities reported by FW, bit description
621  *                                can be found in CPU_BOOT_DEV_STS1
622  * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
623  *                                status reported by FW, bit description can be
624  *                                found in CPU_BOOT_DEV_STS0
625  * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
626  *                                status reported by FW, bit description can be
627  *                                found in CPU_BOOT_DEV_STS1
628  * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
629  *                            status reported by FW, bit description can be
630  *                            found in CPU_BOOT_DEV_STS0
631  * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
632  *                            status reported by FW, bit description can be
633  *                            found in CPU_BOOT_DEV_STS1
634  * @max_dec: maximum number of decoders
635  * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
636  *                         1- enabled, 0- isolated.
637  * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
638  *                         1- faulty cluster, 0- good cluster.
639  * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
640  *                          1- enabled, 0- isolated.
641  * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
642  *                                      which the property supports_user_set_page_size is true
643  *                                      (i.e. the DRAM supports multiple page sizes), otherwise
644  *                                      it will shall  be equal to dram_page_size.
645  * @num_engine_cores: number of engine cpu cores.
646  * @max_num_of_engines: maximum number of all engines in the ASIC.
647  * @num_of_special_blocks: special_blocks array size.
648  * @glbl_err_cause_num: global err cause number.
649  * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
650  *                 not supported.
651  * @reserved_fw_mem_size: size in MB of dram memory reserved for FW.
652  * @collective_first_sob: first sync object available for collective use
653  * @collective_first_mon: first monitor available for collective use
654  * @sync_stream_first_sob: first sync object available for sync stream use
655  * @sync_stream_first_mon: first monitor available for sync stream use
656  * @first_available_user_sob: first sob available for the user
657  * @first_available_user_mon: first monitor available for the user
658  * @first_available_user_interrupt: first available interrupt reserved for the user
659  * @first_available_cq: first available CQ for the user.
660  * @user_interrupt_count: number of user interrupts.
661  * @user_dec_intr_count: number of decoder interrupts exposed to user.
662  * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
663  * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
664  * @cache_line_size: device cache line size.
665  * @server_type: Server type that the ASIC is currently installed in.
666  *               The value is according to enum hl_server_type in uapi file.
667  * @completion_queues_count: number of completion queues.
668  * @completion_mode: 0 - job based completion, 1 - cs based completion
669  * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
670  *                         in Master/Slave mode
671  * @fw_security_enabled: true if security measures are enabled in firmware,
672  *                       false otherwise
673  * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
674  *                              BOOT_DEV_STS0
675  * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
676  *                              BOOT_DEV_STS1
677  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
678  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
679  * @num_functional_hbms: number of functional HBMs in each DCORE.
680  * @hints_range_reservation: device support hint addresses range reservation.
681  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
682  * @dynamic_fw_load: is dynamic FW load is supported.
683  * @gic_interrupts_enable: true if FW is not blocking GIC controller,
684  *                         false otherwise.
685  * @use_get_power_for_reset_history: To support backward compatibility for Goya
686  *                                   and Gaudi
687  * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
688  * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
689  *                              initiated by user or TDR. This is only true
690  *                              in inference ASICs, as there is no real-world
691  *                              use-case of doing soft-reset in training (due
692  *                              to the fact that training runs on multiple
693  *                              devices)
694  * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
695  * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
696  * @supports_user_set_page_size: true if user can set the allocation page size.
697  * @dma_mask: the dma mask to be set for this device.
698  * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
699  * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
700  * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw.
701  */
702 struct asic_fixed_properties {
703 	struct hw_queue_properties	*hw_queues_props;
704 	struct hl_special_block_info	*special_blocks;
705 	struct hl_skip_blocks_cfg	skip_special_blocks_cfg;
706 	struct cpucp_info		cpucp_info;
707 	char				uboot_ver[VERSION_MAX_LEN];
708 	char				preboot_ver[VERSION_MAX_LEN];
709 	struct hl_mmu_properties	dmmu;
710 	struct hl_mmu_properties	pmmu;
711 	struct hl_mmu_properties	pmmu_huge;
712 	struct hl_hints_range		hints_dram_reserved_va_range;
713 	struct hl_hints_range		hints_host_reserved_va_range;
714 	struct hl_hints_range		hints_host_hpage_reserved_va_range;
715 	u64				sram_base_address;
716 	u64				sram_end_address;
717 	u64				sram_user_base_address;
718 	u64				dram_base_address;
719 	u64				dram_end_address;
720 	u64				dram_user_base_address;
721 	u64				dram_size;
722 	u64				dram_pci_bar_size;
723 	u64				max_power_default;
724 	u64				dc_power_default;
725 	u64				dram_size_for_default_page_mapping;
726 	u64				pcie_dbi_base_address;
727 	u64				pcie_aux_dbi_reg_addr;
728 	u64				mmu_pgt_addr;
729 	u64				mmu_dram_default_page_addr;
730 	u64				tpc_enabled_mask;
731 	u64				tpc_binning_mask;
732 	u64				dram_enabled_mask;
733 	u64				dram_binning_mask;
734 	u64				dram_hints_align_mask;
735 	u64				cfg_base_address;
736 	u64				mmu_cache_mng_addr;
737 	u64				mmu_cache_mng_size;
738 	u64				device_dma_offset_for_host_access;
739 	u64				host_base_address;
740 	u64				host_end_address;
741 	u64				max_freq_value;
742 	u64				engine_core_interrupt_reg_addr;
743 	u32				clk_pll_index;
744 	u32				mmu_pgt_size;
745 	u32				mmu_pte_size;
746 	u32				mmu_hop_table_size;
747 	u32				mmu_hop0_tables_total_size;
748 	u32				dram_page_size;
749 	u32				cfg_size;
750 	u32				sram_size;
751 	u32				max_asid;
752 	u32				num_of_events;
753 	u32				psoc_pci_pll_nr;
754 	u32				psoc_pci_pll_nf;
755 	u32				psoc_pci_pll_od;
756 	u32				psoc_pci_pll_div_factor;
757 	u32				psoc_timestamp_frequency;
758 	u32				high_pll;
759 	u32				cb_pool_cb_cnt;
760 	u32				cb_pool_cb_size;
761 	u32				decoder_enabled_mask;
762 	u32				decoder_binning_mask;
763 	u32				rotator_enabled_mask;
764 	u32				edma_enabled_mask;
765 	u32				edma_binning_mask;
766 	u32				max_pending_cs;
767 	u32				max_queues;
768 	u32				fw_preboot_cpu_boot_dev_sts0;
769 	u32				fw_preboot_cpu_boot_dev_sts1;
770 	u32				fw_bootfit_cpu_boot_dev_sts0;
771 	u32				fw_bootfit_cpu_boot_dev_sts1;
772 	u32				fw_app_cpu_boot_dev_sts0;
773 	u32				fw_app_cpu_boot_dev_sts1;
774 	u32				max_dec;
775 	u32				hmmu_hif_enabled_mask;
776 	u32				faulty_dram_cluster_map;
777 	u32				xbar_edge_enabled_mask;
778 	u32				device_mem_alloc_default_page_size;
779 	u32				num_engine_cores;
780 	u32				max_num_of_engines;
781 	u32				num_of_special_blocks;
782 	u32				glbl_err_cause_num;
783 	u32				hbw_flush_reg;
784 	u32				reserved_fw_mem_size;
785 	u16				collective_first_sob;
786 	u16				collective_first_mon;
787 	u16				sync_stream_first_sob;
788 	u16				sync_stream_first_mon;
789 	u16				first_available_user_sob[HL_MAX_DCORES];
790 	u16				first_available_user_mon[HL_MAX_DCORES];
791 	u16				first_available_user_interrupt;
792 	u16				first_available_cq[HL_MAX_DCORES];
793 	u16				user_interrupt_count;
794 	u16				user_dec_intr_count;
795 	u16				tpc_interrupt_id;
796 	u16				eq_interrupt_id;
797 	u16				cache_line_size;
798 	u16				server_type;
799 	u8				completion_queues_count;
800 	u8				completion_mode;
801 	u8				mme_master_slave_mode;
802 	u8				fw_security_enabled;
803 	u8				fw_cpu_boot_dev_sts0_valid;
804 	u8				fw_cpu_boot_dev_sts1_valid;
805 	u8				dram_supports_virtual_memory;
806 	u8				hard_reset_done_by_fw;
807 	u8				num_functional_hbms;
808 	u8				hints_range_reservation;
809 	u8				iatu_done_by_fw;
810 	u8				dynamic_fw_load;
811 	u8				gic_interrupts_enable;
812 	u8				use_get_power_for_reset_history;
813 	u8				supports_compute_reset;
814 	u8				allow_inference_soft_reset;
815 	u8				configurable_stop_on_err;
816 	u8				set_max_power_on_device_init;
817 	u8				supports_user_set_page_size;
818 	u8				dma_mask;
819 	u8				supports_advanced_cpucp_rc;
820 	u8				supports_engine_modes;
821 	u8				support_dynamic_resereved_fw_size;
822 };
823 
824 /**
825  * struct hl_fence - software synchronization primitive
826  * @completion: fence is implemented using completion
827  * @refcount: refcount for this fence
828  * @cs_sequence: sequence of the corresponding command submission
829  * @stream_master_qid_map: streams masters QID bitmap to represent all streams
830  *                         masters QIDs that multi cs is waiting on
831  * @error: mark this fence with error
832  * @timestamp: timestamp upon completion
833  * @mcs_handling_done: indicates that corresponding command submission has
834  *                     finished msc handling, this does not mean it was part
835  *                     of the mcs
836  */
837 struct hl_fence {
838 	struct completion	completion;
839 	struct kref		refcount;
840 	u64			cs_sequence;
841 	u32			stream_master_qid_map;
842 	int			error;
843 	ktime_t			timestamp;
844 	u8			mcs_handling_done;
845 };
846 
847 /**
848  * struct hl_cs_compl - command submission completion object.
849  * @base_fence: hl fence object.
850  * @lock: spinlock to protect fence.
851  * @hdev: habanalabs device structure.
852  * @hw_sob: the H/W SOB used in this signal/wait CS.
853  * @encaps_sig_hdl: encaps signals handler.
854  * @cs_seq: command submission sequence number.
855  * @type: type of the CS - signal/wait.
856  * @sob_val: the SOB value that is used in this signal/wait CS.
857  * @sob_group: the SOB group that is used in this collective wait CS.
858  * @encaps_signals: indication whether it's a completion object of cs with
859  * encaps signals or not.
860  */
861 struct hl_cs_compl {
862 	struct hl_fence		base_fence;
863 	spinlock_t		lock;
864 	struct hl_device	*hdev;
865 	struct hl_hw_sob	*hw_sob;
866 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
867 	u64			cs_seq;
868 	enum hl_cs_type		type;
869 	u16			sob_val;
870 	u16			sob_group;
871 	bool			encaps_signals;
872 };
873 
874 /*
875  * Command Buffers
876  */
877 
878 /**
879  * struct hl_ts_buff - describes a timestamp buffer.
880  * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
881  * @user_buff_address: Holds the user buffer's kernel virtual address.
882  * @kernel_buff_size: Holds the internal kernel buffer size.
883  */
884 struct hl_ts_buff {
885 	void			*kernel_buff_address;
886 	void			*user_buff_address;
887 	u32			kernel_buff_size;
888 };
889 
890 struct hl_mmap_mem_buf;
891 
892 /**
893  * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
894  * @dev: back pointer to the owning device
895  * @lock: protects handles
896  * @handles: an idr holding all active handles to the memory buffers in the system.
897  */
898 struct hl_mem_mgr {
899 	struct device *dev;
900 	spinlock_t lock;
901 	struct idr handles;
902 };
903 
904 /**
905  * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
906  * @topic: string identifier used for logging
907  * @mem_id: memory type identifier, embedded in the handle and used to identify
908  *          the memory type by handle.
909  * @alloc: callback executed on buffer allocation, shall allocate the memory,
910  *         set it under buffer private, and set mappable size.
911  * @mmap: callback executed on mmap, must map the buffer to vma
912  * @release: callback executed on release, must free the resources used by the buffer
913  */
914 struct hl_mmap_mem_buf_behavior {
915 	const char *topic;
916 	u64 mem_id;
917 
918 	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
919 	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
920 	void (*release)(struct hl_mmap_mem_buf *buf);
921 };
922 
923 /**
924  * struct hl_mmap_mem_buf - describes a single unified memory buffer
925  * @behavior: buffer behavior
926  * @mmg: back pointer to the unified memory manager
927  * @refcount: reference counter for buffer users
928  * @private: pointer to buffer behavior private data
929  * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
930  * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
931  *                   may change at runtime.
932  * @mappable_size: the original mappable size of the buffer, does not change after
933  *                 the allocation.
934  * @handle: the buffer id in mmg handles store
935  */
936 struct hl_mmap_mem_buf {
937 	struct hl_mmap_mem_buf_behavior *behavior;
938 	struct hl_mem_mgr *mmg;
939 	struct kref refcount;
940 	void *private;
941 	atomic_t mmap;
942 	u64 real_mapped_size;
943 	u64 mappable_size;
944 	u64 handle;
945 };
946 
947 /**
948  * struct hl_cb - describes a Command Buffer.
949  * @hdev: pointer to device this CB belongs to.
950  * @ctx: pointer to the CB owner's context.
951  * @buf: back pointer to the parent mappable memory buffer
952  * @debugfs_list: node in debugfs list of command buffers.
953  * @pool_list: node in pool list of command buffers.
954  * @kernel_address: Holds the CB's kernel virtual address.
955  * @virtual_addr: Holds the CB's virtual address.
956  * @bus_address: Holds the CB's DMA address.
957  * @size: holds the CB's size.
958  * @roundup_size: holds the cb size after roundup to page size.
959  * @cs_cnt: holds number of CS that this CB participates in.
960  * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
961  * @is_pool: true if CB was acquired from the pool, false otherwise.
962  * @is_internal: internally allocated
963  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
964  */
965 struct hl_cb {
966 	struct hl_device	*hdev;
967 	struct hl_ctx		*ctx;
968 	struct hl_mmap_mem_buf	*buf;
969 	struct list_head	debugfs_list;
970 	struct list_head	pool_list;
971 	void			*kernel_address;
972 	u64			virtual_addr;
973 	dma_addr_t		bus_address;
974 	u32			size;
975 	u32			roundup_size;
976 	atomic_t		cs_cnt;
977 	atomic_t		is_handle_destroyed;
978 	u8			is_pool;
979 	u8			is_internal;
980 	u8			is_mmu_mapped;
981 };
982 
983 
984 /*
985  * QUEUES
986  */
987 
988 struct hl_cs_job;
989 
990 /* Queue length of external and HW queues */
991 #define HL_QUEUE_LENGTH			4096
992 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
993 
994 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
995 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
996 #endif
997 
998 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
999 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
1000 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
1001 
1002 /* Must be power of 2 */
1003 #define HL_EQ_LENGTH			64
1004 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
1005 
1006 /* Host <-> CPU-CP shared memory size */
1007 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
1008 
1009 /**
1010  * struct hl_sync_stream_properties -
1011  *     describes a H/W queue sync stream properties
1012  * @hw_sob: array of the used H/W SOBs by this H/W queue.
1013  * @next_sob_val: the next value to use for the currently used SOB.
1014  * @base_sob_id: the base SOB id of the SOBs used by this queue.
1015  * @base_mon_id: the base MON id of the MONs used by this queue.
1016  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1017  *                          in order to sync with all slave queues.
1018  * @collective_slave_mon_id: the MON id used by this slave queue in order to
1019  *                           sync with its master queue.
1020  * @collective_sob_id: current SOB id used by this collective slave queue
1021  *                     to signal its collective master queue upon completion.
1022  * @curr_sob_offset: the id offset to the currently used SOB from the
1023  *                   HL_RSVD_SOBS that are being used by this queue.
1024  */
1025 struct hl_sync_stream_properties {
1026 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1027 	u16		next_sob_val;
1028 	u16		base_sob_id;
1029 	u16		base_mon_id;
1030 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1031 	u16		collective_slave_mon_id;
1032 	u16		collective_sob_id;
1033 	u8		curr_sob_offset;
1034 };
1035 
1036 /**
1037  * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1038  * handlers manager
1039  * @lock: protects handles.
1040  * @handles: an idr to hold all encapsulated signals handles.
1041  */
1042 struct hl_encaps_signals_mgr {
1043 	spinlock_t		lock;
1044 	struct idr		handles;
1045 };
1046 
1047 /**
1048  * struct hl_hw_queue - describes a H/W transport queue.
1049  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1050  * @sync_stream_prop: sync stream queue properties
1051  * @queue_type: type of queue.
1052  * @collective_mode: collective mode of current queue
1053  * @kernel_address: holds the queue's kernel virtual address.
1054  * @bus_address: holds the queue's DMA address.
1055  * @pi: holds the queue's pi value.
1056  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1057  * @hw_queue_id: the id of the H/W queue.
1058  * @cq_id: the id for the corresponding CQ for this H/W queue.
1059  * @msi_vec: the IRQ number of the H/W queue.
1060  * @int_queue_len: length of internal queue (number of entries).
1061  * @valid: is the queue valid (we have array of 32 queues, not all of them
1062  *         exist).
1063  * @supports_sync_stream: True if queue supports sync stream
1064  */
1065 struct hl_hw_queue {
1066 	struct hl_cs_job			**shadow_queue;
1067 	struct hl_sync_stream_properties	sync_stream_prop;
1068 	enum hl_queue_type			queue_type;
1069 	enum hl_collective_mode			collective_mode;
1070 	void					*kernel_address;
1071 	dma_addr_t				bus_address;
1072 	u32					pi;
1073 	atomic_t				ci;
1074 	u32					hw_queue_id;
1075 	u32					cq_id;
1076 	u32					msi_vec;
1077 	u16					int_queue_len;
1078 	u8					valid;
1079 	u8					supports_sync_stream;
1080 };
1081 
1082 /**
1083  * struct hl_cq - describes a completion queue
1084  * @hdev: pointer to the device structure
1085  * @kernel_address: holds the queue's kernel virtual address
1086  * @bus_address: holds the queue's DMA address
1087  * @cq_idx: completion queue index in array
1088  * @hw_queue_id: the id of the matching H/W queue
1089  * @ci: ci inside the queue
1090  * @pi: pi inside the queue
1091  * @free_slots_cnt: counter of free slots in queue
1092  */
1093 struct hl_cq {
1094 	struct hl_device	*hdev;
1095 	void			*kernel_address;
1096 	dma_addr_t		bus_address;
1097 	u32			cq_idx;
1098 	u32			hw_queue_id;
1099 	u32			ci;
1100 	u32			pi;
1101 	atomic_t		free_slots_cnt;
1102 };
1103 
1104 enum hl_user_interrupt_type {
1105 	HL_USR_INTERRUPT_CQ = 0,
1106 	HL_USR_INTERRUPT_DECODER,
1107 	HL_USR_INTERRUPT_TPC,
1108 	HL_USR_INTERRUPT_UNEXPECTED
1109 };
1110 
1111 /**
1112  * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data
1113  * @free_nodes_pool: pool of nodes to be used for free timestamp jobs
1114  * @free_nodes_length: number of nodes in free_nodes_pool
1115  * @next_avail_free_node_idx: index of the next free node in the pool
1116  *
1117  * the free nodes pool must be protected by the user interrupt lock
1118  * to avoid race between different interrupts which are using the same
1119  * ts buffer with different offsets.
1120  */
1121 struct hl_ts_free_jobs {
1122 	struct timestamp_reg_free_node *free_nodes_pool;
1123 	u32				free_nodes_length;
1124 	u32				next_avail_free_node_idx;
1125 };
1126 
1127 /**
1128  * struct hl_user_interrupt - holds user interrupt information
1129  * @hdev: pointer to the device structure
1130  * @ts_free_jobs_data: timestamp free jobs related data
1131  * @type: user interrupt type
1132  * @wait_list_head: head to the list of user threads pending on this interrupt
1133  * @ts_list_head: head to the list of timestamp records
1134  * @wait_list_lock: protects wait_list_head
1135  * @ts_list_lock: protects ts_list_head
1136  * @timestamp: last timestamp taken upon interrupt
1137  * @interrupt_id: msix interrupt id
1138  */
1139 struct hl_user_interrupt {
1140 	struct hl_device		*hdev;
1141 	struct hl_ts_free_jobs		ts_free_jobs_data;
1142 	enum hl_user_interrupt_type	type;
1143 	struct list_head		wait_list_head;
1144 	struct list_head		ts_list_head;
1145 	spinlock_t			wait_list_lock;
1146 	spinlock_t			ts_list_lock;
1147 	ktime_t				timestamp;
1148 	u32				interrupt_id;
1149 };
1150 
1151 /**
1152  * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1153  * @free_objects_node: node in the list free_obj_jobs
1154  * @cq_cb: pointer to cq command buffer to be freed
1155  * @buf: pointer to timestamp buffer to be freed
1156  * @in_use: indicates whether the node still in use in workqueue thread.
1157  * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler
1158  */
1159 struct timestamp_reg_free_node {
1160 	struct list_head	free_objects_node;
1161 	struct hl_cb		*cq_cb;
1162 	struct hl_mmap_mem_buf	*buf;
1163 	atomic_t		in_use;
1164 	u8			dynamic_alloc;
1165 };
1166 
1167 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1168  * the job will be to pass over the free_obj_jobs list and put refcount to objects
1169  * in each node of the list
1170  * @free_obj: workqueue object to free timestamp registration node objects
1171  * @hdev: pointer to the device structure
1172  * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1173  * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the
1174  *                               interrupt handler.
1175  */
1176 struct timestamp_reg_work_obj {
1177 	struct work_struct	free_obj;
1178 	struct hl_device	*hdev;
1179 	struct list_head	*free_obj_head;
1180 	struct list_head	*dynamic_alloc_free_obj_head;
1181 };
1182 
1183 /* struct timestamp_reg_info - holds the timestamp registration related data.
1184  * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1185  *       relevant only when doing timestamps records registration.
1186  * @cq_cb: pointer to CQ counter CB.
1187  * @interrupt: interrupt that the node hanged on it's wait list.
1188  * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1189  *                         relevant only when doing timestamps records
1190  *                         registration.
1191  * @in_use: indicates if the node already in use. relevant only when doing
1192  *          timestamps records registration, since in this case the driver
1193  *          will have it's own buffer which serve as a records pool instead of
1194  *          allocating records dynamically.
1195  */
1196 struct timestamp_reg_info {
1197 	struct hl_mmap_mem_buf		*buf;
1198 	struct hl_cb			*cq_cb;
1199 	struct hl_user_interrupt	*interrupt;
1200 	u64				*timestamp_kernel_addr;
1201 	bool				in_use;
1202 };
1203 
1204 /**
1205  * struct hl_user_pending_interrupt - holds a context to a user thread
1206  *                                    pending on an interrupt
1207  * @ts_reg_info: holds the timestamps registration nodes info
1208  * @list_node: node in the list of user threads pending on an interrupt or timestamp
1209  * @fence: hl fence object for interrupt completion
1210  * @cq_target_value: CQ target value
1211  * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1212  *                  handler for target value comparison
1213  */
1214 struct hl_user_pending_interrupt {
1215 	struct timestamp_reg_info	ts_reg_info;
1216 	struct list_head		list_node;
1217 	struct hl_fence			fence;
1218 	u64				cq_target_value;
1219 	u64				*cq_kernel_addr;
1220 };
1221 
1222 /**
1223  * struct hl_eq - describes the event queue (single one per device)
1224  * @hdev: pointer to the device structure
1225  * @kernel_address: holds the queue's kernel virtual address
1226  * @bus_address: holds the queue's DMA address
1227  * @ci: ci inside the queue
1228  * @prev_eqe_index: the index of the previous event queue entry. The index of
1229  *                  the current entry's index must be +1 of the previous one.
1230  * @check_eqe_index: do we need to check the index of the current entry vs. the
1231  *                   previous one. This is for backward compatibility with older
1232  *                   firmwares
1233  */
1234 struct hl_eq {
1235 	struct hl_device	*hdev;
1236 	void			*kernel_address;
1237 	dma_addr_t		bus_address;
1238 	u32			ci;
1239 	u32			prev_eqe_index;
1240 	bool			check_eqe_index;
1241 };
1242 
1243 /**
1244  * struct hl_dec - describes a decoder sw instance.
1245  * @hdev: pointer to the device structure.
1246  * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1247  * @core_id: ID of the decoder.
1248  * @base_addr: base address of the decoder.
1249  */
1250 struct hl_dec {
1251 	struct hl_device	*hdev;
1252 	struct work_struct	abnrm_intr_work;
1253 	u32			core_id;
1254 	u32			base_addr;
1255 };
1256 
1257 /**
1258  * enum hl_asic_type - supported ASIC types.
1259  * @ASIC_INVALID: Invalid ASIC type.
1260  * @ASIC_GOYA: Goya device (HL-1000).
1261  * @ASIC_GAUDI: Gaudi device (HL-2000).
1262  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1263  * @ASIC_GAUDI2: Gaudi2 device.
1264  * @ASIC_GAUDI2B: Gaudi2B device.
1265  * @ASIC_GAUDI2C: Gaudi2C device.
1266  */
1267 enum hl_asic_type {
1268 	ASIC_INVALID,
1269 	ASIC_GOYA,
1270 	ASIC_GAUDI,
1271 	ASIC_GAUDI_SEC,
1272 	ASIC_GAUDI2,
1273 	ASIC_GAUDI2B,
1274 	ASIC_GAUDI2C,
1275 };
1276 
1277 struct hl_cs_parser;
1278 
1279 /**
1280  * enum hl_pm_mng_profile - power management profile.
1281  * @PM_AUTO: internal clock is set by the Linux driver.
1282  * @PM_MANUAL: internal clock is set by the user.
1283  * @PM_LAST: last power management type.
1284  */
1285 enum hl_pm_mng_profile {
1286 	PM_AUTO = 1,
1287 	PM_MANUAL,
1288 	PM_LAST
1289 };
1290 
1291 /**
1292  * enum hl_pll_frequency - PLL frequency.
1293  * @PLL_HIGH: high frequency.
1294  * @PLL_LOW: low frequency.
1295  * @PLL_LAST: last frequency values that were configured by the user.
1296  */
1297 enum hl_pll_frequency {
1298 	PLL_HIGH = 1,
1299 	PLL_LOW,
1300 	PLL_LAST
1301 };
1302 
1303 #define PLL_REF_CLK 50
1304 
1305 enum div_select_defs {
1306 	DIV_SEL_REF_CLK = 0,
1307 	DIV_SEL_PLL_CLK = 1,
1308 	DIV_SEL_DIVIDED_REF = 2,
1309 	DIV_SEL_DIVIDED_PLL = 3,
1310 };
1311 
1312 enum debugfs_access_type {
1313 	DEBUGFS_READ8,
1314 	DEBUGFS_WRITE8,
1315 	DEBUGFS_READ32,
1316 	DEBUGFS_WRITE32,
1317 	DEBUGFS_READ64,
1318 	DEBUGFS_WRITE64,
1319 };
1320 
1321 enum pci_region {
1322 	PCI_REGION_CFG,
1323 	PCI_REGION_SRAM,
1324 	PCI_REGION_DRAM,
1325 	PCI_REGION_SP_SRAM,
1326 	PCI_REGION_NUMBER,
1327 };
1328 
1329 /**
1330  * struct pci_mem_region - describe memory region in a PCI bar
1331  * @region_base: region base address
1332  * @region_size: region size
1333  * @bar_size: size of the BAR
1334  * @offset_in_bar: region offset into the bar
1335  * @bar_id: bar ID of the region
1336  * @used: if used 1, otherwise 0
1337  */
1338 struct pci_mem_region {
1339 	u64 region_base;
1340 	u64 region_size;
1341 	u64 bar_size;
1342 	u64 offset_in_bar;
1343 	u8 bar_id;
1344 	u8 used;
1345 };
1346 
1347 /**
1348  * struct static_fw_load_mgr - static FW load manager
1349  * @preboot_version_max_off: max offset to preboot version
1350  * @boot_fit_version_max_off: max offset to boot fit version
1351  * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1352  * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1353  * @cpu_boot_status_reg: boot status register
1354  * @cpu_boot_dev_status0_reg: boot device status register 0
1355  * @cpu_boot_dev_status1_reg: boot device status register 1
1356  * @boot_err0_reg: boot error register 0
1357  * @boot_err1_reg: boot error register 1
1358  * @preboot_version_offset_reg: SRAM offset to preboot version register
1359  * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1360  * @sram_offset_mask: mask for getting offset into the SRAM
1361  * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1362  */
1363 struct static_fw_load_mgr {
1364 	u64 preboot_version_max_off;
1365 	u64 boot_fit_version_max_off;
1366 	u32 kmd_msg_to_cpu_reg;
1367 	u32 cpu_cmd_status_to_host_reg;
1368 	u32 cpu_boot_status_reg;
1369 	u32 cpu_boot_dev_status0_reg;
1370 	u32 cpu_boot_dev_status1_reg;
1371 	u32 boot_err0_reg;
1372 	u32 boot_err1_reg;
1373 	u32 preboot_version_offset_reg;
1374 	u32 boot_fit_version_offset_reg;
1375 	u32 sram_offset_mask;
1376 	u32 cpu_reset_wait_msec;
1377 };
1378 
1379 /**
1380  * struct fw_response - FW response to LKD command
1381  * @ram_offset: descriptor offset into the RAM
1382  * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1383  * @status: command status
1384  */
1385 struct fw_response {
1386 	u32 ram_offset;
1387 	u8 ram_type;
1388 	u8 status;
1389 };
1390 
1391 /**
1392  * struct dynamic_fw_load_mgr - dynamic FW load manager
1393  * @response: FW to LKD response
1394  * @comm_desc: the communication descriptor with FW
1395  * @image_region: region to copy the FW image to
1396  * @fw_image_size: size of FW image to load
1397  * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1398  * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1399  */
1400 struct dynamic_fw_load_mgr {
1401 	struct fw_response response;
1402 	struct lkd_fw_comms_desc comm_desc;
1403 	struct pci_mem_region *image_region;
1404 	size_t fw_image_size;
1405 	u32 wait_for_bl_timeout;
1406 	bool fw_desc_valid;
1407 };
1408 
1409 /**
1410  * struct pre_fw_load_props - needed properties for pre-FW load
1411  * @cpu_boot_status_reg: cpu_boot_status register address
1412  * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1413  * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1414  * @boot_err0_reg: boot_err0 register address
1415  * @boot_err1_reg: boot_err1 register address
1416  * @wait_for_preboot_timeout: timeout to poll for preboot ready
1417  * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know
1418  *		preboot needs longer time.
1419  */
1420 struct pre_fw_load_props {
1421 	u32 cpu_boot_status_reg;
1422 	u32 sts_boot_dev_sts0_reg;
1423 	u32 sts_boot_dev_sts1_reg;
1424 	u32 boot_err0_reg;
1425 	u32 boot_err1_reg;
1426 	u32 wait_for_preboot_timeout;
1427 	u32 wait_for_preboot_extended_timeout;
1428 };
1429 
1430 /**
1431  * struct fw_image_props - properties of FW image
1432  * @image_name: name of the image
1433  * @src_off: offset in src FW to copy from
1434  * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1435  */
1436 struct fw_image_props {
1437 	char *image_name;
1438 	u32 src_off;
1439 	u32 copy_size;
1440 };
1441 
1442 /**
1443  * struct fw_load_mgr - manager FW loading process
1444  * @dynamic_loader: specific structure for dynamic load
1445  * @static_loader: specific structure for static load
1446  * @pre_fw_load_props: parameter for pre FW load
1447  * @boot_fit_img: boot fit image properties
1448  * @linux_img: linux image properties
1449  * @cpu_timeout: CPU response timeout in usec
1450  * @boot_fit_timeout: Boot fit load timeout in usec
1451  * @skip_bmc: should BMC be skipped
1452  * @sram_bar_id: SRAM bar ID
1453  * @dram_bar_id: DRAM bar ID
1454  * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1455  *                  component. values are set according to enum hl_fw_types.
1456  */
1457 struct fw_load_mgr {
1458 	union {
1459 		struct dynamic_fw_load_mgr dynamic_loader;
1460 		struct static_fw_load_mgr static_loader;
1461 	};
1462 	struct pre_fw_load_props pre_fw_load;
1463 	struct fw_image_props boot_fit_img;
1464 	struct fw_image_props linux_img;
1465 	u32 cpu_timeout;
1466 	u32 boot_fit_timeout;
1467 	u8 skip_bmc;
1468 	u8 sram_bar_id;
1469 	u8 dram_bar_id;
1470 	u8 fw_comp_loaded;
1471 };
1472 
1473 struct hl_cs;
1474 
1475 /**
1476  * struct engines_data - asic engines data
1477  * @buf: buffer for engines data in ascii
1478  * @actual_size: actual size of data that was written by the driver to the allocated buffer
1479  * @allocated_buf_size: total size of allocated buffer
1480  */
1481 struct engines_data {
1482 	char *buf;
1483 	int actual_size;
1484 	u32 allocated_buf_size;
1485 };
1486 
1487 /**
1488  * struct hl_asic_funcs - ASIC specific functions that are can be called from
1489  *                        common code.
1490  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1491  * @early_fini: tears down what was done in early_init.
1492  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1493  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1494  * @sw_init: sets up driver state, does not configure H/W.
1495  * @sw_fini: tears down driver state, does not configure H/W.
1496  * @hw_init: sets up the H/W state.
1497  * @hw_fini: tears down the H/W state.
1498  * @halt_engines: halt engines, needed for reset sequence. This also disables
1499  *                interrupts from the device. Should be called before
1500  *                hw_fini and before CS rollback.
1501  * @suspend: handles IP specific H/W or SW changes for suspend.
1502  * @resume: handles IP specific H/W or SW changes for resume.
1503  * @mmap: maps a memory.
1504  * @ring_doorbell: increment PI on a given QMAN.
1505  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1506  *             function because the PQs are located in different memory areas
1507  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1508  *             writing the PQE must match the destination memory area
1509  *             properties.
1510  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1511  *                           dma_alloc_coherent(). This is ASIC function because
1512  *                           its implementation is not trivial when the driver
1513  *                           is loaded in simulation mode (not upstreamed).
1514  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1515  *                           dma_free_coherent(). This is ASIC function because
1516  *                           its implementation is not trivial when the driver
1517  *                           is loaded in simulation mode (not upstreamed).
1518  * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1519  * @scrub_device_dram: Scrub the dram memory of the device.
1520  * @get_int_queue_base: get the internal queue base address.
1521  * @test_queues: run simple test on all queues for sanity check.
1522  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1523  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1524  * @asic_dma_pool_free: free small DMA allocation from pool.
1525  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1526  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1527  * @dma_unmap_sgtable: DMA unmap scatter-gather table.
1528  * @dma_map_sgtable: DMA map scatter-gather table.
1529  * @cs_parser: parse Command Submission.
1530  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1531  * @update_eq_ci: update event queue CI.
1532  * @context_switch: called upon ASID context switch.
1533  * @restore_phase_topology: clear all SOBs amd MONs.
1534  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1535  *                    internal memory via DMA engine.
1536  * @add_device_attr: add ASIC specific device attributes.
1537  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1538  * @get_events_stat: retrieve event queue entries histogram.
1539  * @read_pte: read MMU page table entry from DRAM.
1540  * @write_pte: write MMU page table entry to DRAM.
1541  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1542  *                        (L1 only) or hard (L0 & L1) flush.
1543  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1544  * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1545  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1546  * @debug_coresight: perform certain actions on Coresight for debugging.
1547  * @is_device_idle: return true if device is idle, false otherwise.
1548  * @compute_reset_late_init: perform certain actions needed after a compute reset
1549  * @hw_queues_lock: acquire H/W queues lock.
1550  * @hw_queues_unlock: release H/W queues lock.
1551  * @get_pci_id: retrieve PCI ID.
1552  * @get_eeprom_data: retrieve EEPROM data from F/W.
1553  * @get_monitor_dump: retrieve monitor registers dump from F/W.
1554  * @send_cpu_message: send message to F/W. If the message is timedout, the
1555  *                    driver will eventually reset the device. The timeout can
1556  *                    be determined by the calling function or it can be 0 and
1557  *                    then the timeout is the default timeout for the specific
1558  *                    ASIC
1559  * @get_hw_state: retrieve the H/W state
1560  * @pci_bars_map: Map PCI BARs.
1561  * @init_iatu: Initialize the iATU unit inside the PCI controller.
1562  * @rreg: Read a register. Needed for simulator support.
1563  * @wreg: Write a register. Needed for simulator support.
1564  * @halt_coresight: stop the ETF and ETR traces.
1565  * @ctx_init: context dependent initialization.
1566  * @ctx_fini: context dependent cleanup.
1567  * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1568  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1569  * @load_firmware_to_device: load the firmware to the device's memory
1570  * @load_boot_fit_to_device: load boot fit to device's memory
1571  * @get_signal_cb_size: Get signal CB size.
1572  * @get_wait_cb_size: Get wait CB size.
1573  * @gen_signal_cb: Generate a signal CB.
1574  * @gen_wait_cb: Generate a wait CB.
1575  * @reset_sob: Reset a SOB.
1576  * @reset_sob_group: Reset SOB group
1577  * @get_device_time: Get the device time.
1578  * @pb_print_security_errors: print security errors according block and cause
1579  * @collective_wait_init_cs: Generate collective master/slave packets
1580  *                           and place them in the relevant cs jobs
1581  * @collective_wait_create_jobs: allocate collective wait cs jobs
1582  * @get_dec_base_addr: get the base address of a given decoder.
1583  * @scramble_addr: Routine to scramble the address prior of mapping it
1584  *                 in the MMU.
1585  * @descramble_addr: Routine to de-scramble the address prior of
1586  *                   showing it to users.
1587  * @ack_protection_bits_errors: ack and dump all security violations
1588  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1589  *                   also returns the size of the block if caller supplies
1590  *                   a valid pointer for it
1591  * @hw_block_mmap: mmap a HW block with a given id.
1592  * @enable_events_from_fw: send interrupt to firmware to notify them the
1593  *                         driver is ready to receive asynchronous events. This
1594  *                         function should be called during the first init and
1595  *                         after every hard-reset of the device
1596  * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1597  * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1598  * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1599  *                         generic f/w compatible PLL Indexes
1600  * @init_firmware_preload_params: initialize pre FW-load parameters.
1601  * @init_firmware_loader: initialize data for FW loader.
1602  * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1603  * @state_dump_init: initialize constants required for state dump
1604  * @get_sob_addr: get SOB base address offset.
1605  * @set_pci_memory_regions: setting properties of PCI memory regions
1606  * @get_stream_master_qid_arr: get pointer to stream masters QID array
1607  * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1608  * @access_dev_mem: access device memory
1609  * @set_dram_bar_base: set the base of the DRAM BAR
1610  * @set_engine_cores: set a config command to engine cores
1611  * @set_engines: set a config command to user engines
1612  * @send_device_activity: indication to FW about device availability
1613  * @set_dram_properties: set DRAM related properties.
1614  * @set_binning_masks: set binning/enable masks for all relevant components.
1615  */
1616 struct hl_asic_funcs {
1617 	int (*early_init)(struct hl_device *hdev);
1618 	int (*early_fini)(struct hl_device *hdev);
1619 	int (*late_init)(struct hl_device *hdev);
1620 	void (*late_fini)(struct hl_device *hdev);
1621 	int (*sw_init)(struct hl_device *hdev);
1622 	int (*sw_fini)(struct hl_device *hdev);
1623 	int (*hw_init)(struct hl_device *hdev);
1624 	int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1625 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1626 	int (*suspend)(struct hl_device *hdev);
1627 	int (*resume)(struct hl_device *hdev);
1628 	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1629 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1630 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1631 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1632 			struct hl_bd *bd);
1633 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1634 					dma_addr_t *dma_handle, gfp_t flag);
1635 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1636 					void *cpu_addr, dma_addr_t dma_handle);
1637 	int (*scrub_device_mem)(struct hl_device *hdev);
1638 	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1639 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1640 				dma_addr_t *dma_handle, u16 *queue_len);
1641 	int (*test_queues)(struct hl_device *hdev);
1642 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1643 				gfp_t mem_flags, dma_addr_t *dma_handle);
1644 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1645 				dma_addr_t dma_addr);
1646 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1647 				size_t size, dma_addr_t *dma_handle);
1648 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1649 				size_t size, void *vaddr);
1650 	void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1651 				enum dma_data_direction dir);
1652 	int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1653 				enum dma_data_direction dir);
1654 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1655 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1656 					void *kernel_address, u32 len,
1657 					u32 original_len,
1658 					u64 cq_addr, u32 cq_val, u32 msix_num,
1659 					bool eb);
1660 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1661 	int (*context_switch)(struct hl_device *hdev, u32 asid);
1662 	void (*restore_phase_topology)(struct hl_device *hdev);
1663 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1664 				void *blob_addr);
1665 	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1666 				struct attribute_group *dev_vrm_attr_grp);
1667 	void (*handle_eqe)(struct hl_device *hdev,
1668 				struct hl_eq_entry *eq_entry);
1669 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1670 				u32 *size);
1671 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1672 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1673 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1674 					u32 flags);
1675 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1676 				u32 flags, u32 asid, u64 va, u64 size);
1677 	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1678 	int (*send_heartbeat)(struct hl_device *hdev);
1679 	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1680 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1681 				struct engines_data *e);
1682 	int (*compute_reset_late_init)(struct hl_device *hdev);
1683 	void (*hw_queues_lock)(struct hl_device *hdev);
1684 	void (*hw_queues_unlock)(struct hl_device *hdev);
1685 	u32 (*get_pci_id)(struct hl_device *hdev);
1686 	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1687 	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1688 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1689 				u16 len, u32 timeout, u64 *result);
1690 	int (*pci_bars_map)(struct hl_device *hdev);
1691 	int (*init_iatu)(struct hl_device *hdev);
1692 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1693 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1694 	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1695 	int (*ctx_init)(struct hl_ctx *ctx);
1696 	void (*ctx_fini)(struct hl_ctx *ctx);
1697 	int (*pre_schedule_cs)(struct hl_cs *cs);
1698 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1699 	int (*load_firmware_to_device)(struct hl_device *hdev);
1700 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1701 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1702 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1703 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1704 			u32 size, bool eb);
1705 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1706 			struct hl_gen_wait_properties *prop);
1707 	void (*reset_sob)(struct hl_device *hdev, void *data);
1708 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1709 	u64 (*get_device_time)(struct hl_device *hdev);
1710 	void (*pb_print_security_errors)(struct hl_device *hdev,
1711 			u32 block_addr, u32 cause, u32 offended_addr);
1712 	int (*collective_wait_init_cs)(struct hl_cs *cs);
1713 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1714 			struct hl_ctx *ctx, struct hl_cs *cs,
1715 			u32 wait_queue_id, u32 collective_engine_id,
1716 			u32 encaps_signal_offset);
1717 	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1718 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1719 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1720 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1721 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1722 				u32 *block_size, u32 *block_id);
1723 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1724 			u32 block_id, u32 block_size);
1725 	void (*enable_events_from_fw)(struct hl_device *hdev);
1726 	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1727 	void (*get_msi_info)(__le32 *table);
1728 	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1729 	void (*init_firmware_preload_params)(struct hl_device *hdev);
1730 	void (*init_firmware_loader)(struct hl_device *hdev);
1731 	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1732 	void (*state_dump_init)(struct hl_device *hdev);
1733 	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1734 	void (*set_pci_memory_regions)(struct hl_device *hdev);
1735 	u32* (*get_stream_master_qid_arr)(void);
1736 	void (*check_if_razwi_happened)(struct hl_device *hdev);
1737 	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1738 					u32 page_size, u32 *real_page_size, bool is_dram_addr);
1739 	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1740 				u64 addr, u64 *val, enum debugfs_access_type acc_type);
1741 	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1742 	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1743 					u32 num_cores, u32 core_command);
1744 	int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1745 					u32 num_engines, u32 engine_command);
1746 	int (*send_device_activity)(struct hl_device *hdev, bool open);
1747 	int (*set_dram_properties)(struct hl_device *hdev);
1748 	int (*set_binning_masks)(struct hl_device *hdev);
1749 };
1750 
1751 
1752 /*
1753  * CONTEXTS
1754  */
1755 
1756 #define HL_KERNEL_ASID_ID	0
1757 
1758 /**
1759  * enum hl_va_range_type - virtual address range type.
1760  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1761  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1762  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1763  */
1764 enum hl_va_range_type {
1765 	HL_VA_RANGE_TYPE_HOST,
1766 	HL_VA_RANGE_TYPE_HOST_HUGE,
1767 	HL_VA_RANGE_TYPE_DRAM,
1768 	HL_VA_RANGE_TYPE_MAX
1769 };
1770 
1771 /**
1772  * struct hl_va_range - virtual addresses range.
1773  * @lock: protects the virtual addresses list.
1774  * @list: list of virtual addresses blocks available for mappings.
1775  * @start_addr: range start address.
1776  * @end_addr: range end address.
1777  * @page_size: page size of this va range.
1778  */
1779 struct hl_va_range {
1780 	struct mutex		lock;
1781 	struct list_head	list;
1782 	u64			start_addr;
1783 	u64			end_addr;
1784 	u32			page_size;
1785 };
1786 
1787 /**
1788  * struct hl_cs_counters_atomic - command submission counters
1789  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1790  * @parsing_drop_cnt: dropped due to error in packet parsing
1791  * @queue_full_drop_cnt: dropped due to queue full
1792  * @device_in_reset_drop_cnt: dropped due to device in reset
1793  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1794  * @validation_drop_cnt: dropped due to error in validation
1795  */
1796 struct hl_cs_counters_atomic {
1797 	atomic64_t out_of_mem_drop_cnt;
1798 	atomic64_t parsing_drop_cnt;
1799 	atomic64_t queue_full_drop_cnt;
1800 	atomic64_t device_in_reset_drop_cnt;
1801 	atomic64_t max_cs_in_flight_drop_cnt;
1802 	atomic64_t validation_drop_cnt;
1803 };
1804 
1805 /**
1806  * struct hl_dmabuf_priv - a dma-buf private object.
1807  * @dmabuf: pointer to dma-buf object.
1808  * @ctx: pointer to the dma-buf owner's context.
1809  * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1810  *                where virtual memory is supported.
1811  * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1812  * @offset: the offset into the buffer from which the memory is exported.
1813  *          Relevant only if virtual memory is supported and phys_pg_pack is being used.
1814  * device_phys_addr: physical address of the device's memory. Relevant only
1815  *                   if phys_pg_pack is NULL (dma-buf was exported from address).
1816  *                   The total size can be taken from the dmabuf object.
1817  */
1818 struct hl_dmabuf_priv {
1819 	struct dma_buf			*dmabuf;
1820 	struct hl_ctx			*ctx;
1821 	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1822 	struct hl_vm_hash_node		*memhash_hnode;
1823 	u64				offset;
1824 	u64				device_phys_addr;
1825 };
1826 
1827 #define HL_CS_OUTCOME_HISTORY_LEN 256
1828 
1829 /**
1830  * struct hl_cs_outcome - represents a single completed CS outcome
1831  * @list_link: link to either container's used list or free list
1832  * @map_link: list to the container hash map
1833  * @ts: completion ts
1834  * @seq: the original cs sequence
1835  * @error: error code cs completed with, if any
1836  */
1837 struct hl_cs_outcome {
1838 	struct list_head list_link;
1839 	struct hlist_node map_link;
1840 	ktime_t ts;
1841 	u64 seq;
1842 	int error;
1843 };
1844 
1845 /**
1846  * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1847  * @outcome_map: index of completed CS searchable by sequence number
1848  * @used_list: list of outcome objects currently in use
1849  * @free_list: list of outcome objects currently not in use
1850  * @nodes_pool: a static pool of pre-allocated outcome objects
1851  * @db_lock: any operation on the store must take this lock
1852  */
1853 struct hl_cs_outcome_store {
1854 	DECLARE_HASHTABLE(outcome_map, 8);
1855 	struct list_head used_list;
1856 	struct list_head free_list;
1857 	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1858 	spinlock_t db_lock;
1859 };
1860 
1861 /**
1862  * struct hl_ctx - user/kernel context.
1863  * @mem_hash: holds mapping from virtual address to virtual memory area
1864  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1865  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1866  * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1867  *                    MMU-hop-page physical address to its host-resident
1868  *                    pgt_info structure.
1869  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1870  * @hdev: pointer to the device structure.
1871  * @refcount: reference counter for the context. Context is released only when
1872  *		this hits 0. It is incremented on CS and CS_WAIT.
1873  * @cs_pending: array of hl fence objects representing pending CS.
1874  * @outcome_store: storage data structure used to remember outcomes of completed
1875  *                 command submissions for a long time after CS id wraparound.
1876  * @va_range: holds available virtual addresses for host and dram mappings.
1877  * @mem_hash_lock: protects the mem_hash.
1878  * @hw_block_list_lock: protects the HW block memory list.
1879  * @ts_reg_lock: timestamp registration ioctls lock.
1880  * @debugfs_list: node in debugfs list of contexts.
1881  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1882  * @cs_counters: context command submission counters.
1883  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1884  *              device's MMU.
1885  * @sig_mgr: encaps signals handle manager.
1886  * @cb_va_pool_base: the base address for the device VA pool
1887  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1888  *			to user so user could inquire about CS. It is used as
1889  *			index to cs_pending array.
1890  * @dram_default_hops: array that holds all hops addresses needed for default
1891  *                     DRAM mapping.
1892  * @cs_lock: spinlock to protect cs_sequence.
1893  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1894  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1895  *				context	from running the context switch phase.
1896  *				Only a single thread should run it.
1897  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1898  *				the context switch phase from moving to their
1899  *				execution phase before the context switch phase
1900  *				has finished.
1901  * @asid: context's unique address space ID in the device's MMU.
1902  * @handle: context's opaque handle for user
1903  */
1904 struct hl_ctx {
1905 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1906 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1907 	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1908 	struct hl_fpriv			*hpriv;
1909 	struct hl_device		*hdev;
1910 	struct kref			refcount;
1911 	struct hl_fence			**cs_pending;
1912 	struct hl_cs_outcome_store	outcome_store;
1913 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1914 	struct mutex			mem_hash_lock;
1915 	struct mutex			hw_block_list_lock;
1916 	struct mutex			ts_reg_lock;
1917 	struct list_head		debugfs_list;
1918 	struct list_head		hw_block_mem_list;
1919 	struct hl_cs_counters_atomic	cs_counters;
1920 	struct gen_pool			*cb_va_pool;
1921 	struct hl_encaps_signals_mgr	sig_mgr;
1922 	u64				cb_va_pool_base;
1923 	u64				cs_sequence;
1924 	u64				*dram_default_hops;
1925 	spinlock_t			cs_lock;
1926 	atomic64_t			dram_phys_mem;
1927 	atomic_t			thread_ctx_switch_token;
1928 	u32				thread_ctx_switch_wait_token;
1929 	u32				asid;
1930 	u32				handle;
1931 };
1932 
1933 /**
1934  * struct hl_ctx_mgr - for handling multiple contexts.
1935  * @lock: protects ctx_handles.
1936  * @handles: idr to hold all ctx handles.
1937  */
1938 struct hl_ctx_mgr {
1939 	struct mutex	lock;
1940 	struct idr	handles;
1941 };
1942 
1943 
1944 /*
1945  * COMMAND SUBMISSIONS
1946  */
1947 
1948 /**
1949  * struct hl_userptr - memory mapping chunk information
1950  * @vm_type: type of the VM.
1951  * @job_node: linked-list node for hanging the object on the Job's list.
1952  * @pages: pointer to struct page array
1953  * @npages: size of @pages array
1954  * @sgt: pointer to the scatter-gather table that holds the pages.
1955  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1956  * @debugfs_list: node in debugfs list of command submissions.
1957  * @pid: the pid of the user process owning the memory
1958  * @addr: user-space virtual address of the start of the memory area.
1959  * @size: size of the memory area to pin & map.
1960  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1961  */
1962 struct hl_userptr {
1963 	enum vm_type			vm_type; /* must be first */
1964 	struct list_head		job_node;
1965 	struct page			**pages;
1966 	unsigned int			npages;
1967 	struct sg_table			*sgt;
1968 	enum dma_data_direction		dir;
1969 	struct list_head		debugfs_list;
1970 	pid_t				pid;
1971 	u64				addr;
1972 	u64				size;
1973 	u8				dma_mapped;
1974 };
1975 
1976 /**
1977  * struct hl_cs - command submission.
1978  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1979  * @ctx: the context this CS belongs to.
1980  * @job_list: list of the CS's jobs in the various queues.
1981  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1982  * @refcount: reference counter for usage of the CS.
1983  * @fence: pointer to the fence object of this CS.
1984  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1985  *                CS only).
1986  * @finish_work: workqueue object to run when CS is completed by H/W.
1987  * @work_tdr: delayed work node for TDR.
1988  * @mirror_node : node in device mirror list of command submissions.
1989  * @staged_cs_node: node in the staged cs list.
1990  * @debugfs_list: node in debugfs list of command submissions.
1991  * @encaps_sig_hdl: holds the encaps signals handle.
1992  * @sequence: the sequence number of this CS.
1993  * @staged_sequence: the sequence of the staged submission this CS is part of,
1994  *                   relevant only if staged_cs is set.
1995  * @timeout_jiffies: cs timeout in jiffies.
1996  * @submission_time_jiffies: submission time of the cs
1997  * @type: CS_TYPE_*.
1998  * @jobs_cnt: counter of submitted jobs on all queues.
1999  * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
2000  * @completion_timestamp: timestamp of the last completed cs job.
2001  * @sob_addr_offset: sob offset from the configuration base address.
2002  * @initial_sob_count: count of completed signals in SOB before current submission of signal or
2003  *                     cs with encaps signals.
2004  * @submitted: true if CS was submitted to H/W.
2005  * @completed: true if CS was completed by device.
2006  * @timedout : true if CS was timedout.
2007  * @tdr_active: true if TDR was activated for this CS (to prevent
2008  *		double TDR activation).
2009  * @aborted: true if CS was aborted due to some device error.
2010  * @timestamp: true if a timestamp must be captured upon completion.
2011  * @staged_last: true if this is the last staged CS and needs completion.
2012  * @staged_first: true if this is the first staged CS and we need to receive
2013  *                timeout for this CS.
2014  * @staged_cs: true if this CS is part of a staged submission.
2015  * @skip_reset_on_timeout: true if we shall not reset the device in case
2016  *                         timeout occurs (debug scenario).
2017  * @encaps_signals: true if this CS has encaps reserved signals.
2018  */
2019 struct hl_cs {
2020 	u16			*jobs_in_queue_cnt;
2021 	struct hl_ctx		*ctx;
2022 	struct list_head	job_list;
2023 	spinlock_t		job_lock;
2024 	struct kref		refcount;
2025 	struct hl_fence		*fence;
2026 	struct hl_fence		*signal_fence;
2027 	struct work_struct	finish_work;
2028 	struct delayed_work	work_tdr;
2029 	struct list_head	mirror_node;
2030 	struct list_head	staged_cs_node;
2031 	struct list_head	debugfs_list;
2032 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2033 	ktime_t			completion_timestamp;
2034 	u64			sequence;
2035 	u64			staged_sequence;
2036 	u64			timeout_jiffies;
2037 	u64			submission_time_jiffies;
2038 	enum hl_cs_type		type;
2039 	u32			jobs_cnt;
2040 	u32			encaps_sig_hdl_id;
2041 	u32			sob_addr_offset;
2042 	u16			initial_sob_count;
2043 	u8			submitted;
2044 	u8			completed;
2045 	u8			timedout;
2046 	u8			tdr_active;
2047 	u8			aborted;
2048 	u8			timestamp;
2049 	u8			staged_last;
2050 	u8			staged_first;
2051 	u8			staged_cs;
2052 	u8			skip_reset_on_timeout;
2053 	u8			encaps_signals;
2054 };
2055 
2056 /**
2057  * struct hl_cs_job - command submission job.
2058  * @cs_node: the node to hang on the CS jobs list.
2059  * @cs: the CS this job belongs to.
2060  * @user_cb: the CB we got from the user.
2061  * @patched_cb: in case of patching, this is internal CB which is submitted on
2062  *		the queue instead of the CB we got from the IOCTL.
2063  * @finish_work: workqueue object to run when job is completed.
2064  * @userptr_list: linked-list of userptr mappings that belong to this job and
2065  *			wait for completion.
2066  * @debugfs_list: node in debugfs list of command submission jobs.
2067  * @refcount: reference counter for usage of the CS job.
2068  * @queue_type: the type of the H/W queue this job is submitted to.
2069  * @timestamp: timestamp upon job completion
2070  * @id: the id of this job inside a CS.
2071  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2072  * @user_cb_size: the actual size of the CB we got from the user.
2073  * @job_cb_size: the actual size of the CB that we put on the queue.
2074  * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2075  *                          to wait on part of the reserved signals.
2076  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2077  *                          handle to a kernel-allocated CB object, false
2078  *                          otherwise (SRAM/DRAM/host address).
2079  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2080  *                    info is needed later, when adding the 2xMSG_PROT at the
2081  *                    end of the JOB, to know which barriers to put in the
2082  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2083  *                    have streams so the engine can't be busy by another
2084  *                    stream.
2085  */
2086 struct hl_cs_job {
2087 	struct list_head	cs_node;
2088 	struct hl_cs		*cs;
2089 	struct hl_cb		*user_cb;
2090 	struct hl_cb		*patched_cb;
2091 	struct work_struct	finish_work;
2092 	struct list_head	userptr_list;
2093 	struct list_head	debugfs_list;
2094 	struct kref		refcount;
2095 	enum hl_queue_type	queue_type;
2096 	ktime_t			timestamp;
2097 	u32			id;
2098 	u32			hw_queue_id;
2099 	u32			user_cb_size;
2100 	u32			job_cb_size;
2101 	u32			encaps_sig_wait_offset;
2102 	u8			is_kernel_allocated_cb;
2103 	u8			contains_dma_pkt;
2104 };
2105 
2106 /**
2107  * struct hl_cs_parser - command submission parser properties.
2108  * @user_cb: the CB we got from the user.
2109  * @patched_cb: in case of patching, this is internal CB which is submitted on
2110  *		the queue instead of the CB we got from the IOCTL.
2111  * @job_userptr_list: linked-list of userptr mappings that belong to the related
2112  *			job and wait for completion.
2113  * @cs_sequence: the sequence number of the related CS.
2114  * @queue_type: the type of the H/W queue this job is submitted to.
2115  * @ctx_id: the ID of the context the related CS belongs to.
2116  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2117  * @user_cb_size: the actual size of the CB we got from the user.
2118  * @patched_cb_size: the size of the CB after parsing.
2119  * @job_id: the id of the related job inside the related CS.
2120  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2121  *                          handle to a kernel-allocated CB object, false
2122  *                          otherwise (SRAM/DRAM/host address).
2123  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2124  *                    info is needed later, when adding the 2xMSG_PROT at the
2125  *                    end of the JOB, to know which barriers to put in the
2126  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2127  *                    have streams so the engine can't be busy by another
2128  *                    stream.
2129  * @completion: true if we need completion for this CS.
2130  */
2131 struct hl_cs_parser {
2132 	struct hl_cb		*user_cb;
2133 	struct hl_cb		*patched_cb;
2134 	struct list_head	*job_userptr_list;
2135 	u64			cs_sequence;
2136 	enum hl_queue_type	queue_type;
2137 	u32			ctx_id;
2138 	u32			hw_queue_id;
2139 	u32			user_cb_size;
2140 	u32			patched_cb_size;
2141 	u8			job_id;
2142 	u8			is_kernel_allocated_cb;
2143 	u8			contains_dma_pkt;
2144 	u8			completion;
2145 };
2146 
2147 /*
2148  * MEMORY STRUCTURE
2149  */
2150 
2151 /**
2152  * struct hl_vm_hash_node - hash element from virtual address to virtual
2153  *				memory area descriptor (hl_vm_phys_pg_list or
2154  *				hl_userptr).
2155  * @node: node to hang on the hash table in context object.
2156  * @vaddr: key virtual address.
2157  * @handle: memory handle for device memory allocation.
2158  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2159  * @export_cnt: number of exports from within the VA block.
2160  */
2161 struct hl_vm_hash_node {
2162 	struct hlist_node	node;
2163 	u64			vaddr;
2164 	u64			handle;
2165 	void			*ptr;
2166 	int			export_cnt;
2167 };
2168 
2169 /**
2170  * struct hl_vm_hw_block_list_node - list element from user virtual address to
2171  *				HW block id.
2172  * @node: node to hang on the list in context object.
2173  * @ctx: the context this node belongs to.
2174  * @vaddr: virtual address of the HW block.
2175  * @block_size: size of the block.
2176  * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2177  * @id: HW block id (handle).
2178  */
2179 struct hl_vm_hw_block_list_node {
2180 	struct list_head	node;
2181 	struct hl_ctx		*ctx;
2182 	unsigned long		vaddr;
2183 	u32			block_size;
2184 	u32			mapped_size;
2185 	u32			id;
2186 };
2187 
2188 /**
2189  * struct hl_vm_phys_pg_pack - physical page pack.
2190  * @vm_type: describes the type of the virtual area descriptor.
2191  * @pages: the physical page array.
2192  * @npages: num physical pages in the pack.
2193  * @total_size: total size of all the pages in this list.
2194  * @node: used to attach to deletion list that is used when all the allocations are cleared
2195  *        at the teardown of the context.
2196  * @mapping_cnt: number of shared mappings.
2197  * @asid: the context related to this list.
2198  * @page_size: size of each page in the pack.
2199  * @flags: HL_MEM_* flags related to this list.
2200  * @handle: the provided handle related to this list.
2201  * @offset: offset from the first page.
2202  * @contiguous: is contiguous physical memory.
2203  * @created_from_userptr: is product of host virtual address.
2204  */
2205 struct hl_vm_phys_pg_pack {
2206 	enum vm_type		vm_type; /* must be first */
2207 	u64			*pages;
2208 	u64			npages;
2209 	u64			total_size;
2210 	struct list_head	node;
2211 	atomic_t		mapping_cnt;
2212 	u32			asid;
2213 	u32			page_size;
2214 	u32			flags;
2215 	u32			handle;
2216 	u32			offset;
2217 	u8			contiguous;
2218 	u8			created_from_userptr;
2219 };
2220 
2221 /**
2222  * struct hl_vm_va_block - virtual range block information.
2223  * @node: node to hang on the virtual range list in context object.
2224  * @start: virtual range start address.
2225  * @end: virtual range end address.
2226  * @size: virtual range size.
2227  */
2228 struct hl_vm_va_block {
2229 	struct list_head	node;
2230 	u64			start;
2231 	u64			end;
2232 	u64			size;
2233 };
2234 
2235 /**
2236  * struct hl_vm - virtual memory manager for MMU.
2237  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2238  * @dram_pg_pool_refcount: reference counter for the pool usage.
2239  * @idr_lock: protects the phys_pg_list_handles.
2240  * @phys_pg_pack_handles: idr to hold all device allocations handles.
2241  * @init_done: whether initialization was done. We need this because VM
2242  *		initialization might be skipped during device initialization.
2243  */
2244 struct hl_vm {
2245 	struct gen_pool		*dram_pg_pool;
2246 	struct kref		dram_pg_pool_refcount;
2247 	spinlock_t		idr_lock;
2248 	struct idr		phys_pg_pack_handles;
2249 	u8			init_done;
2250 };
2251 
2252 
2253 /*
2254  * DEBUG, PROFILING STRUCTURE
2255  */
2256 
2257 /**
2258  * struct hl_debug_params - Coresight debug parameters.
2259  * @input: pointer to component specific input parameters.
2260  * @output: pointer to component specific output parameters.
2261  * @output_size: size of output buffer.
2262  * @reg_idx: relevant register ID.
2263  * @op: component operation to execute.
2264  * @enable: true if to enable component debugging, false otherwise.
2265  */
2266 struct hl_debug_params {
2267 	void *input;
2268 	void *output;
2269 	u32 output_size;
2270 	u32 reg_idx;
2271 	u32 op;
2272 	bool enable;
2273 };
2274 
2275 /**
2276  * struct hl_notifier_event - holds the notifier data structure
2277  * @eventfd: the event file descriptor to raise the notifications
2278  * @lock: mutex lock to protect the notifier data flows
2279  * @events_mask: indicates the bitmap events
2280  */
2281 struct hl_notifier_event {
2282 	struct eventfd_ctx	*eventfd;
2283 	struct mutex		lock;
2284 	u64			events_mask;
2285 };
2286 
2287 /*
2288  * FILE PRIVATE STRUCTURE
2289  */
2290 
2291 /**
2292  * struct hl_fpriv - process information stored in FD private data.
2293  * @hdev: habanalabs device structure.
2294  * @file_priv: pointer to the DRM file private data structure.
2295  * @taskpid: current process ID.
2296  * @ctx: current executing context. TODO: remove for multiple ctx per process
2297  * @ctx_mgr: context manager to handle multiple context for this FD.
2298  * @mem_mgr: manager descriptor for memory exportable via mmap
2299  * @notifier_event: notifier eventfd towards user process
2300  * @debugfs_list: list of relevant ASIC debugfs.
2301  * @dev_node: node in the device list of file private data
2302  * @refcount: number of related contexts.
2303  * @restore_phase_mutex: lock for context switch and restore phase.
2304  * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2305  *            ctx per process.
2306  */
2307 struct hl_fpriv {
2308 	struct hl_device		*hdev;
2309 	struct drm_file			*file_priv;
2310 	struct pid			*taskpid;
2311 	struct hl_ctx			*ctx;
2312 	struct hl_ctx_mgr		ctx_mgr;
2313 	struct hl_mem_mgr		mem_mgr;
2314 	struct hl_notifier_event	notifier_event;
2315 	struct list_head		debugfs_list;
2316 	struct list_head		dev_node;
2317 	struct kref			refcount;
2318 	struct mutex			restore_phase_mutex;
2319 	struct mutex			ctx_lock;
2320 };
2321 
2322 
2323 /*
2324  * DebugFS
2325  */
2326 
2327 /**
2328  * struct hl_info_list - debugfs file ops.
2329  * @name: file name.
2330  * @show: function to output information.
2331  * @write: function to write to the file.
2332  */
2333 struct hl_info_list {
2334 	const char	*name;
2335 	int		(*show)(struct seq_file *s, void *data);
2336 	ssize_t		(*write)(struct file *file, const char __user *buf,
2337 				size_t count, loff_t *f_pos);
2338 };
2339 
2340 /**
2341  * struct hl_debugfs_entry - debugfs dentry wrapper.
2342  * @info_ent: dentry related ops.
2343  * @dev_entry: ASIC specific debugfs manager.
2344  */
2345 struct hl_debugfs_entry {
2346 	const struct hl_info_list	*info_ent;
2347 	struct hl_dbg_device_entry	*dev_entry;
2348 };
2349 
2350 /**
2351  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2352  * @root: root dentry.
2353  * @hdev: habanalabs device structure.
2354  * @entry_arr: array of available hl_debugfs_entry.
2355  * @file_list: list of available debugfs files.
2356  * @file_mutex: protects file_list.
2357  * @cb_list: list of available CBs.
2358  * @cb_spinlock: protects cb_list.
2359  * @cs_list: list of available CSs.
2360  * @cs_spinlock: protects cs_list.
2361  * @cs_job_list: list of available CB jobs.
2362  * @cs_job_spinlock: protects cs_job_list.
2363  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2364  * @userptr_spinlock: protects userptr_list.
2365  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2366  * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2367  * @data_dma_blob_desc: data DMA descriptor of blob.
2368  * @mon_dump_blob_desc: monitor dump descriptor of blob.
2369  * @state_dump: data of the system states in case of a bad cs.
2370  * @state_dump_sem: protects state_dump.
2371  * @addr: next address to read/write from/to in read/write32.
2372  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2373  * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2374  * @userptr_lookup: the target user ptr to look up for on demand.
2375  * @mmu_asid: ASID to use while translating in mmu_show.
2376  * @state_dump_head: index of the latest state dump
2377  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2378  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2379  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2380  * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2381  */
2382 struct hl_dbg_device_entry {
2383 	struct dentry			*root;
2384 	struct hl_device		*hdev;
2385 	struct hl_debugfs_entry		*entry_arr;
2386 	struct list_head		file_list;
2387 	struct mutex			file_mutex;
2388 	struct list_head		cb_list;
2389 	spinlock_t			cb_spinlock;
2390 	struct list_head		cs_list;
2391 	spinlock_t			cs_spinlock;
2392 	struct list_head		cs_job_list;
2393 	spinlock_t			cs_job_spinlock;
2394 	struct list_head		userptr_list;
2395 	spinlock_t			userptr_spinlock;
2396 	struct list_head		ctx_mem_hash_list;
2397 	struct mutex			ctx_mem_hash_mutex;
2398 	struct debugfs_blob_wrapper	data_dma_blob_desc;
2399 	struct debugfs_blob_wrapper	mon_dump_blob_desc;
2400 	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
2401 	struct rw_semaphore		state_dump_sem;
2402 	u64				addr;
2403 	u64				mmu_addr;
2404 	u64				mmu_cap_mask;
2405 	u64				userptr_lookup;
2406 	u32				mmu_asid;
2407 	u32				state_dump_head;
2408 	u8				i2c_bus;
2409 	u8				i2c_addr;
2410 	u8				i2c_reg;
2411 	u8				i2c_len;
2412 };
2413 
2414 /**
2415  * struct hl_hw_obj_name_entry - single hw object name, member of
2416  * hl_state_dump_specs
2417  * @node: link to the containing hash table
2418  * @name: hw object name
2419  * @id: object identifier
2420  */
2421 struct hl_hw_obj_name_entry {
2422 	struct hlist_node	node;
2423 	const char		*name;
2424 	u32			id;
2425 };
2426 
2427 enum hl_state_dump_specs_props {
2428 	SP_SYNC_OBJ_BASE_ADDR,
2429 	SP_NEXT_SYNC_OBJ_ADDR,
2430 	SP_SYNC_OBJ_AMOUNT,
2431 	SP_MON_OBJ_WR_ADDR_LOW,
2432 	SP_MON_OBJ_WR_ADDR_HIGH,
2433 	SP_MON_OBJ_WR_DATA,
2434 	SP_MON_OBJ_ARM_DATA,
2435 	SP_MON_OBJ_STATUS,
2436 	SP_MONITORS_AMOUNT,
2437 	SP_TPC0_CMDQ,
2438 	SP_TPC0_CFG_SO,
2439 	SP_NEXT_TPC,
2440 	SP_MME_CMDQ,
2441 	SP_MME_CFG_SO,
2442 	SP_NEXT_MME,
2443 	SP_DMA_CMDQ,
2444 	SP_DMA_CFG_SO,
2445 	SP_DMA_QUEUES_OFFSET,
2446 	SP_NUM_OF_MME_ENGINES,
2447 	SP_SUB_MME_ENG_NUM,
2448 	SP_NUM_OF_DMA_ENGINES,
2449 	SP_NUM_OF_TPC_ENGINES,
2450 	SP_ENGINE_NUM_OF_QUEUES,
2451 	SP_ENGINE_NUM_OF_STREAMS,
2452 	SP_ENGINE_NUM_OF_FENCES,
2453 	SP_FENCE0_CNT_OFFSET,
2454 	SP_FENCE0_RDATA_OFFSET,
2455 	SP_CP_STS_OFFSET,
2456 	SP_NUM_CORES,
2457 
2458 	SP_MAX
2459 };
2460 
2461 enum hl_sync_engine_type {
2462 	ENGINE_TPC,
2463 	ENGINE_DMA,
2464 	ENGINE_MME,
2465 };
2466 
2467 /**
2468  * struct hl_mon_state_dump - represents a state dump of a single monitor
2469  * @id: monitor id
2470  * @wr_addr_low: address monitor will write to, low bits
2471  * @wr_addr_high: address monitor will write to, high bits
2472  * @wr_data: data monitor will write
2473  * @arm_data: register value containing monitor configuration
2474  * @status: monitor status
2475  */
2476 struct hl_mon_state_dump {
2477 	u32		id;
2478 	u32		wr_addr_low;
2479 	u32		wr_addr_high;
2480 	u32		wr_data;
2481 	u32		arm_data;
2482 	u32		status;
2483 };
2484 
2485 /**
2486  * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2487  * @engine_type: type of the engine
2488  * @engine_id: id of the engine
2489  * @sync_id: id of the sync object
2490  */
2491 struct hl_sync_to_engine_map_entry {
2492 	struct hlist_node		node;
2493 	enum hl_sync_engine_type	engine_type;
2494 	u32				engine_id;
2495 	u32				sync_id;
2496 };
2497 
2498 /**
2499  * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2500  * @tb: hash table containing the mapping, each element is of type
2501  *      struct hl_sync_to_engine_map_entry
2502  */
2503 struct hl_sync_to_engine_map {
2504 	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2505 };
2506 
2507 /**
2508  * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2509  * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2510  * @print_single_monitor: format monitor data as string
2511  * @monitor_valid: return true if given monitor dump is valid
2512  * @print_fences_single_engine: format fences data as string
2513  */
2514 struct hl_state_dump_specs_funcs {
2515 	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2516 				struct hl_sync_to_engine_map *map);
2517 	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2518 				    struct hl_device *hdev,
2519 				    struct hl_mon_state_dump *mon);
2520 	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2521 	int (*print_fences_single_engine)(struct hl_device *hdev,
2522 					u64 base_offset,
2523 					u64 status_base_offset,
2524 					enum hl_sync_engine_type engine_type,
2525 					u32 engine_id, char **buf,
2526 					size_t *size, size_t *offset);
2527 };
2528 
2529 /**
2530  * struct hl_state_dump_specs - defines ASIC known hw objects names
2531  * @so_id_to_str_tb: sync objects names index table
2532  * @monitor_id_to_str_tb: monitors names index table
2533  * @funcs: virtual functions used for state dump
2534  * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2535  * @props: pointer to a per asic const props array required for state dump
2536  */
2537 struct hl_state_dump_specs {
2538 	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2539 	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2540 	struct hl_state_dump_specs_funcs	funcs;
2541 	const char * const			*sync_namager_names;
2542 	s64					*props;
2543 };
2544 
2545 
2546 /*
2547  * DEVICES
2548  */
2549 
2550 #define HL_STR_MAX	32
2551 
2552 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2553 
2554 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2555  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2556  */
2557 #define HL_MAX_MINORS	256
2558 
2559 /*
2560  * Registers read & write functions.
2561  */
2562 
2563 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2564 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2565 
2566 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2567 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2568 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2569 			hdev->asic_funcs->rreg(hdev, (reg)))
2570 
2571 #define WREG32_P(reg, val, mask)				\
2572 	do {							\
2573 		u32 tmp_ = RREG32(reg);				\
2574 		tmp_ &= (mask);					\
2575 		tmp_ |= ((val) & ~(mask));			\
2576 		WREG32(reg, tmp_);				\
2577 	} while (0)
2578 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2579 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2580 
2581 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2582 
2583 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2584 
2585 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2586 
2587 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2588 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2589 #define WREG32_FIELD(reg, offset, field, val)	\
2590 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2591 				~REG_FIELD_MASK(reg, field)) | \
2592 				(val) << REG_FIELD_SHIFT(reg, field))
2593 
2594 /* Timeout should be longer when working with simulator but cap the
2595  * increased timeout to some maximum
2596  */
2597 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2598 ({ \
2599 	ktime_t __timeout; \
2600 	u32 __elbi_read; \
2601 	int __rc = 0; \
2602 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2603 	might_sleep_if(sleep_us); \
2604 	for (;;) { \
2605 		if (elbi) { \
2606 			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2607 			if (__rc) \
2608 				break; \
2609 			(val) = __elbi_read; \
2610 		} else {\
2611 			(val) = RREG32(lower_32_bits(addr)); \
2612 		} \
2613 		if (cond) \
2614 			break; \
2615 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2616 			if (elbi) { \
2617 				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2618 				if (__rc) \
2619 					break; \
2620 				(val) = __elbi_read; \
2621 			} else {\
2622 				(val) = RREG32(lower_32_bits(addr)); \
2623 			} \
2624 			break; \
2625 		} \
2626 		if (sleep_us) \
2627 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2628 	} \
2629 	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2630 })
2631 
2632 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2633 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2634 
2635 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2636 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2637 
2638 /*
2639  * poll array of register addresses.
2640  * condition is satisfied if all registers values match the expected value.
2641  * once some register in the array satisfies the condition it will not be polled again,
2642  * this is done both for efficiency and due to some registers are "clear on read".
2643  * TODO: use read from PCI bar in other places in the code (SW-91406)
2644  */
2645 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2646 						timeout_us, elbi) \
2647 ({ \
2648 	ktime_t __timeout; \
2649 	u64 __elem_bitmask; \
2650 	u32 __read_val;	\
2651 	u8 __arr_idx;	\
2652 	int __rc = 0; \
2653 	\
2654 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2655 	might_sleep_if(sleep_us); \
2656 	if (arr_size >= 64) \
2657 		__rc = -EINVAL; \
2658 	else \
2659 		__elem_bitmask = BIT_ULL(arr_size) - 1; \
2660 	for (;;) { \
2661 		if (__rc) \
2662 			break; \
2663 		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
2664 			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
2665 				continue;	\
2666 			if (elbi) { \
2667 				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2668 				if (__rc) \
2669 					break; \
2670 			} else { \
2671 				__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2672 			} \
2673 			if (__read_val == (expected_val))	\
2674 				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
2675 		}	\
2676 		if (__rc || (__elem_bitmask == 0)) \
2677 			break; \
2678 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2679 			break; \
2680 		if (sleep_us) \
2681 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2682 	} \
2683 	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2684 })
2685 
2686 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2687 					timeout_us) \
2688 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2689 						timeout_us, false)
2690 
2691 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2692 					timeout_us) \
2693 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2694 						timeout_us, true)
2695 
2696 /*
2697  * address in this macro points always to a memory location in the
2698  * host's (server's) memory. That location is updated asynchronously
2699  * either by the direct access of the device or by another core.
2700  *
2701  * To work both in LE and BE architectures, we need to distinguish between the
2702  * two states (device or another core updates the memory location). Therefore,
2703  * if mem_written_by_device is true, the host memory being polled will be
2704  * updated directly by the device. If false, the host memory being polled will
2705  * be updated by host CPU. Required so host knows whether or not the memory
2706  * might need to be byte-swapped before returning value to caller.
2707  */
2708 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2709 				mem_written_by_device) \
2710 ({ \
2711 	ktime_t __timeout; \
2712 	\
2713 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2714 	might_sleep_if(sleep_us); \
2715 	for (;;) { \
2716 		/* Verify we read updates done by other cores or by device */ \
2717 		mb(); \
2718 		(val) = *((u32 *)(addr)); \
2719 		if (mem_written_by_device) \
2720 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2721 		if (cond) \
2722 			break; \
2723 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2724 			(val) = *((u32 *)(addr)); \
2725 			if (mem_written_by_device) \
2726 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2727 			break; \
2728 		} \
2729 		if (sleep_us) \
2730 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2731 	} \
2732 	(cond) ? 0 : -ETIMEDOUT; \
2733 })
2734 
2735 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2736 ({ \
2737 	struct user_mapped_block *p = blk; \
2738 \
2739 	p->address = base; \
2740 	p->size = sz; \
2741 })
2742 
2743 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2744 ({ \
2745 	usr_intr.hdev = hdev; \
2746 	usr_intr.interrupt_id = intr_id; \
2747 	usr_intr.type = intr_type; \
2748 	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2749 	spin_lock_init(&usr_intr.wait_list_lock); \
2750 	INIT_LIST_HEAD(&usr_intr.ts_list_head); \
2751 	spin_lock_init(&usr_intr.ts_list_lock); \
2752 })
2753 
2754 struct hwmon_chip_info;
2755 
2756 /**
2757  * struct hl_device_reset_work - reset work wrapper.
2758  * @reset_work: reset work to be done.
2759  * @hdev: habanalabs device structure.
2760  * @flags: reset flags.
2761  */
2762 struct hl_device_reset_work {
2763 	struct delayed_work	reset_work;
2764 	struct hl_device	*hdev;
2765 	u32			flags;
2766 };
2767 
2768 /**
2769  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2770  * page-table internal information.
2771  * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2772  *                allocating hops.
2773  * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2774  */
2775 struct hl_mmu_hr_priv {
2776 	struct gen_pool	*mmu_pgt_pool;
2777 	struct pgt_info	*mmu_asid_hop0;
2778 };
2779 
2780 /**
2781  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2782  * page-table internal information.
2783  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2784  * @mmu_shadow_hop0: shadow array of hop0 tables.
2785  */
2786 struct hl_mmu_dr_priv {
2787 	struct gen_pool *mmu_pgt_pool;
2788 	void *mmu_shadow_hop0;
2789 };
2790 
2791 /**
2792  * struct hl_mmu_priv - used for holding per-device mmu internal information.
2793  * @dr: information on the device-resident MMU, when exists.
2794  * @hr: information on the host-resident MMU, when exists.
2795  */
2796 struct hl_mmu_priv {
2797 	struct hl_mmu_dr_priv dr;
2798 	struct hl_mmu_hr_priv hr;
2799 };
2800 
2801 /**
2802  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2803  *                that was created in order to translate a virtual address to a
2804  *                physical one.
2805  * @hop_addr: The address of the hop.
2806  * @hop_pte_addr: The address of the hop entry.
2807  * @hop_pte_val: The value in the hop entry.
2808  */
2809 struct hl_mmu_per_hop_info {
2810 	u64 hop_addr;
2811 	u64 hop_pte_addr;
2812 	u64 hop_pte_val;
2813 };
2814 
2815 /**
2816  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2817  * hop-entries that were created in order to translate a virtual address to a
2818  * physical one.
2819  * @scrambled_vaddr: The value of the virtual address after scrambling. This
2820  *                   address replaces the original virtual-address when mapped
2821  *                   in the MMU tables.
2822  * @unscrambled_paddr: The un-scrambled physical address.
2823  * @hop_info: Array holding the per-hop information used for the translation.
2824  * @used_hops: The number of hops used for the translation.
2825  * @range_type: virtual address range type.
2826  */
2827 struct hl_mmu_hop_info {
2828 	u64 scrambled_vaddr;
2829 	u64 unscrambled_paddr;
2830 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2831 	u32 used_hops;
2832 	enum hl_va_range_type range_type;
2833 };
2834 
2835 /**
2836  * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2837  * @get_hop0_pgt_info: get page table info structure for HOP0.
2838  * @get_pgt_info: get page table info structure for HOP other than HOP0.
2839  * @add_pgt_info: add page table info structure to hash.
2840  * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2841  */
2842 struct hl_hr_mmu_funcs {
2843 	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2844 	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2845 	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2846 	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2847 								struct hl_mmu_hop_info *hops,
2848 								u64 virt_addr, bool *is_huge);
2849 };
2850 
2851 /**
2852  * struct hl_mmu_funcs - Device related MMU functions.
2853  * @init: initialize the MMU module.
2854  * @fini: release the MMU module.
2855  * @ctx_init: Initialize a context for using the MMU module.
2856  * @ctx_fini: disable a ctx from using the mmu module.
2857  * @map: maps a virtual address to physical address for a context.
2858  * @unmap: unmap a virtual address of a context.
2859  * @flush: flush all writes from all cores to reach device MMU.
2860  * @swap_out: marks all mapping of the given context as swapped out.
2861  * @swap_in: marks all mapping of the given context as swapped in.
2862  * @get_tlb_info: returns the list of hops and hop-entries used that were
2863  *                created in order to translate the giver virtual address to a
2864  *                physical one.
2865  * @hr_funcs: functions specific to host resident MMU.
2866  */
2867 struct hl_mmu_funcs {
2868 	int (*init)(struct hl_device *hdev);
2869 	void (*fini)(struct hl_device *hdev);
2870 	int (*ctx_init)(struct hl_ctx *ctx);
2871 	void (*ctx_fini)(struct hl_ctx *ctx);
2872 	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2873 				bool is_dram_addr);
2874 	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2875 	void (*flush)(struct hl_ctx *ctx);
2876 	void (*swap_out)(struct hl_ctx *ctx);
2877 	void (*swap_in)(struct hl_ctx *ctx);
2878 	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2879 	struct hl_hr_mmu_funcs hr_funcs;
2880 };
2881 
2882 /**
2883  * struct hl_prefetch_work - prefetch work structure handler
2884  * @prefetch_work: actual work struct.
2885  * @ctx: compute context.
2886  * @va: virtual address to pre-fetch.
2887  * @size: pre-fetch size.
2888  * @flags: operation flags.
2889  * @asid: ASID for maintenance operation.
2890  */
2891 struct hl_prefetch_work {
2892 	struct work_struct	prefetch_work;
2893 	struct hl_ctx		*ctx;
2894 	u64			va;
2895 	u64			size;
2896 	u32			flags;
2897 	u32			asid;
2898 };
2899 
2900 /*
2901  * number of user contexts allowed to call wait_for_multi_cs ioctl in
2902  * parallel
2903  */
2904 #define MULTI_CS_MAX_USER_CTX	2
2905 
2906 /**
2907  * struct multi_cs_completion - multi CS wait completion.
2908  * @completion: completion of any of the CS in the list
2909  * @lock: spinlock for the completion structure
2910  * @timestamp: timestamp for the multi-CS completion
2911  * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2912  *                        is waiting
2913  * @used: 1 if in use, otherwise 0
2914  */
2915 struct multi_cs_completion {
2916 	struct completion	completion;
2917 	spinlock_t		lock;
2918 	s64			timestamp;
2919 	u32			stream_master_qid_map;
2920 	u8			used;
2921 };
2922 
2923 /**
2924  * struct multi_cs_data - internal data for multi CS call
2925  * @ctx: pointer to the context structure
2926  * @fence_arr: array of fences of all CSs
2927  * @seq_arr: array of CS sequence numbers
2928  * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2929  * @timestamp: timestamp of first completed CS
2930  * @wait_status: wait for CS status
2931  * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2932  * @arr_len: fence_arr and seq_arr array length
2933  * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2934  * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2935  */
2936 struct multi_cs_data {
2937 	struct hl_ctx	*ctx;
2938 	struct hl_fence	**fence_arr;
2939 	u64		*seq_arr;
2940 	s64		timeout_jiffies;
2941 	s64		timestamp;
2942 	long		wait_status;
2943 	u32		completion_bitmap;
2944 	u8		arr_len;
2945 	u8		gone_cs;
2946 	u8		update_ts;
2947 };
2948 
2949 /**
2950  * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2951  * @start: timestamp taken when 'start' event is received in driver
2952  * @end: timestamp taken when 'end' event is received in driver
2953  */
2954 struct hl_clk_throttle_timestamp {
2955 	ktime_t		start;
2956 	ktime_t		end;
2957 };
2958 
2959 /**
2960  * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2961  * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2962  *             index 1 refers to THERMAL
2963  * @lock: protects this structure as it can be accessed from both event queue
2964  *        context and info_ioctl context
2965  * @current_reason: bitmask represents the current clk throttling reasons
2966  * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2967  */
2968 struct hl_clk_throttle {
2969 	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2970 	struct mutex	lock;
2971 	u32		current_reason;
2972 	u32		aggregated_reason;
2973 };
2974 
2975 /**
2976  * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2977  * @address: physical HW block address
2978  * @size: allowed size for mmap
2979  */
2980 struct user_mapped_block {
2981 	u32 address;
2982 	u32 size;
2983 };
2984 
2985 /**
2986  * struct cs_timeout_info - info of last CS timeout occurred.
2987  * @timestamp: CS timeout timestamp.
2988  * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2989  *                so the first (root cause) CS timeout will not be overwritten.
2990  * @seq: CS timeout sequence number.
2991  */
2992 struct cs_timeout_info {
2993 	ktime_t		timestamp;
2994 	atomic_t	write_enable;
2995 	u64		seq;
2996 };
2997 
2998 #define MAX_QMAN_STREAMS_INFO		4
2999 #define OPCODE_INFO_MAX_ADDR_SIZE	8
3000 /**
3001  * struct undefined_opcode_info - info about last undefined opcode error
3002  * @timestamp: timestamp of the undefined opcode error
3003  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
3004  *                   entries. In case all streams array entries are
3005  *                   filled with values, it means the execution was in Lower-CP.
3006  * @cq_addr: the address of the current handled command buffer
3007  * @cq_size: the size of the current handled command buffer
3008  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
3009  *                       should be equal to 1 in case of undefined opcode
3010  *                       in Upper-CP (specific stream) and equal to 4 in case
3011  *                       of undefined opcode in Lower-CP.
3012  * @engine_id: engine-id that the error occurred on
3013  * @stream_id: the stream id the error occurred on. In case the stream equals to
3014  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
3015  * @write_enable: if set, writing to undefined opcode parameters in the structure
3016  *                 is enable so the first (root cause) undefined opcode will not be
3017  *                 overwritten.
3018  */
3019 struct undefined_opcode_info {
3020 	ktime_t timestamp;
3021 	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
3022 	u64 cq_addr;
3023 	u32 cq_size;
3024 	u32 cb_addr_streams_len;
3025 	u32 engine_id;
3026 	u32 stream_id;
3027 	bool write_enable;
3028 };
3029 
3030 /**
3031  * struct page_fault_info - page fault information.
3032  * @page_fault: holds information collected during a page fault.
3033  * @user_mappings: buffer containing user mappings.
3034  * @num_of_user_mappings: number of user mappings.
3035  * @page_fault_detected: if set as 1, then a page-fault was discovered for the
3036  *                       first time after the driver has finished booting-up.
3037  *                       Since we're looking for the page-fault's root cause,
3038  *                       we don't care of the others that might follow it-
3039  *                       so once changed to 1, it will remain that way.
3040  * @page_fault_info_available: indicates that a page fault info is now available.
3041  */
3042 struct page_fault_info {
3043 	struct hl_page_fault_info	page_fault;
3044 	struct hl_user_mapping		*user_mappings;
3045 	u64				num_of_user_mappings;
3046 	atomic_t			page_fault_detected;
3047 	bool				page_fault_info_available;
3048 };
3049 
3050 /**
3051  * struct razwi_info - RAZWI information.
3052  * @razwi: holds information collected during a RAZWI
3053  * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3054  *                  first time after the driver has finished booting-up.
3055  *                  Since we're looking for the RAZWI's root cause,
3056  *                  we don't care of the others that might follow it-
3057  *                  so once changed to 1, it will remain that way.
3058  * @razwi_info_available: indicates that a RAZWI info is now available.
3059  */
3060 struct razwi_info {
3061 	struct hl_info_razwi_event	razwi;
3062 	atomic_t			razwi_detected;
3063 	bool				razwi_info_available;
3064 };
3065 
3066 /**
3067  * struct hw_err_info - HW error information.
3068  * @event: holds information on the event.
3069  * @event_detected: if set as 1, then a HW event was discovered for the
3070  *                  first time after the driver has finished booting-up.
3071  *                  currently we assume that only fatal events (that require hard-reset) are
3072  *                  reported so we don't care of the others that might follow it.
3073  *                  so once changed to 1, it will remain that way.
3074  *                  TODO: support multiple events.
3075  * @event_info_available: indicates that a HW event info is now available.
3076  */
3077 struct hw_err_info {
3078 	struct hl_info_hw_err_event	event;
3079 	atomic_t			event_detected;
3080 	bool				event_info_available;
3081 };
3082 
3083 /**
3084  * struct fw_err_info - FW error information.
3085  * @event: holds information on the event.
3086  * @event_detected: if set as 1, then a FW event was discovered for the
3087  *                  first time after the driver has finished booting-up.
3088  *                  currently we assume that only fatal events (that require hard-reset) are
3089  *                  reported so we don't care of the others that might follow it.
3090  *                  so once changed to 1, it will remain that way.
3091  *                  TODO: support multiple events.
3092  * @event_info_available: indicates that a HW event info is now available.
3093  */
3094 struct fw_err_info {
3095 	struct hl_info_fw_err_event	event;
3096 	atomic_t			event_detected;
3097 	bool				event_info_available;
3098 };
3099 
3100 /**
3101  * struct engine_err_info - engine error information.
3102  * @event: holds information on the event.
3103  * @event_detected: if set as 1, then an engine event was discovered for the
3104  *                  first time after the driver has finished booting-up.
3105  * @event_info_available: indicates that an engine event info is now available.
3106  */
3107 struct engine_err_info {
3108 	struct hl_info_engine_err_event	event;
3109 	atomic_t			event_detected;
3110 	bool				event_info_available;
3111 };
3112 
3113 
3114 /**
3115  * struct hl_error_info - holds information collected during an error.
3116  * @cs_timeout: CS timeout error information.
3117  * @razwi_info: RAZWI information.
3118  * @undef_opcode: undefined opcode information.
3119  * @page_fault_info: page fault information.
3120  * @hw_err: (fatal) hardware error information.
3121  * @fw_err: firmware error information.
3122  * @engine_err: engine error information.
3123  */
3124 struct hl_error_info {
3125 	struct cs_timeout_info		cs_timeout;
3126 	struct razwi_info		razwi_info;
3127 	struct undefined_opcode_info	undef_opcode;
3128 	struct page_fault_info		page_fault_info;
3129 	struct hw_err_info		hw_err;
3130 	struct fw_err_info		fw_err;
3131 	struct engine_err_info		engine_err;
3132 };
3133 
3134 /**
3135  * struct hl_reset_info - holds current device reset information.
3136  * @lock: lock to protect critical reset flows.
3137  * @compute_reset_cnt: number of compute resets since the driver was loaded.
3138  * @hard_reset_cnt: number of hard resets since the driver was loaded.
3139  * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3140  *                             here we hold the hard reset flags.
3141  * @in_reset: is device in reset flow.
3142  * @in_compute_reset: Device is currently in reset but not in hard-reset.
3143  * @needs_reset: true if reset_on_lockup is false and device should be reset
3144  *               due to lockup.
3145  * @hard_reset_pending: is there a hard reset work pending.
3146  * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3147  *                    triggered, and cleared after it is shared with preboot.
3148  * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3149  *                      with a new value on next reset
3150  * @reset_trigger_repeated: set if device reset is triggered more than once with
3151  *                          same cause.
3152  * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3153  *                         complete instead.
3154  * @watchdog_active: true if a device release watchdog work is scheduled.
3155  */
3156 struct hl_reset_info {
3157 	spinlock_t	lock;
3158 	u32		compute_reset_cnt;
3159 	u32		hard_reset_cnt;
3160 	u32		hard_reset_schedule_flags;
3161 	u8		in_reset;
3162 	u8		in_compute_reset;
3163 	u8		needs_reset;
3164 	u8		hard_reset_pending;
3165 	u8		curr_reset_cause;
3166 	u8		prev_reset_trigger;
3167 	u8		reset_trigger_repeated;
3168 	u8		skip_reset_on_timeout;
3169 	u8		watchdog_active;
3170 };
3171 
3172 /**
3173  * struct hl_device - habanalabs device structure.
3174  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3175  * @pcie_bar_phys: array of available PCIe bars physical addresses.
3176  *		   (required only for PCI address match mode)
3177  * @pcie_bar: array of available PCIe bars virtual addresses.
3178  * @rmmio: configuration area address on SRAM.
3179  * @drm: related DRM device.
3180  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3181  * @dev: related kernel basic device structure.
3182  * @dev_ctrl: related kernel device structure for the control device
3183  * @work_heartbeat: delayed work for CPU-CP is-alive check.
3184  * @device_reset_work: delayed work which performs hard reset
3185  * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3186  *                                device upon certain error cases.
3187  * @asic_name: ASIC specific name.
3188  * @asic_type: ASIC specific type.
3189  * @completion_queue: array of hl_cq.
3190  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3191  *                  interrupt, driver will monitor the list of fences
3192  *                  registered to this interrupt.
3193  * @tpc_interrupt: single TPC interrupt for all TPCs.
3194  * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3195  * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3196  *                         upon any user CQ interrupt, driver will monitor the
3197  *                         list of fences registered to this common structure.
3198  * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3199  * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3200  *                   outstanding command submissions.
3201  * @cq_wq: work queues of completion queues for executing work in process
3202  *         context.
3203  * @eq_wq: work queue of event queue for executing work in process context.
3204  * @cs_cmplt_wq: work queue of CS completions for executing work in process
3205  *               context.
3206  * @ts_free_obj_wq: work queue for timestamp registration objects release.
3207  * @prefetch_wq: work queue for MMU pre-fetch operations.
3208  * @reset_wq: work queue for device reset procedure.
3209  * @kernel_ctx: Kernel driver context structure.
3210  * @kernel_queues: array of hl_hw_queue.
3211  * @cs_mirror_list: CS mirror list for TDR.
3212  * @cs_mirror_lock: protects cs_mirror_list.
3213  * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3214  * @event_queue: event queue for IRQ from CPU-CP.
3215  * @dma_pool: DMA pool for small allocations.
3216  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3217  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3218  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3219  * @asid_bitmap: holds used/available ASIDs.
3220  * @asid_mutex: protects asid_bitmap.
3221  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3222  * @debug_lock: protects critical section of setting debug mode for device
3223  * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3224  *            page tables are per context, the invalidation h/w is per MMU.
3225  *            Therefore, we can't allow multiple contexts (we only have two,
3226  *            user and kernel) to access the invalidation h/w at the same time.
3227  *            In addition, any change to the PGT, modifying the MMU hash or
3228  *            walking the PGT requires talking this lock.
3229  * @asic_prop: ASIC specific immutable properties.
3230  * @asic_funcs: ASIC specific functions.
3231  * @asic_specific: ASIC specific information to use only from ASIC files.
3232  * @vm: virtual memory manager for MMU.
3233  * @hwmon_dev: H/W monitor device.
3234  * @hl_chip_info: ASIC's sensors information.
3235  * @device_status_description: device status description.
3236  * @hl_debugfs: device's debugfs manager.
3237  * @cb_pool: list of pre allocated CBs.
3238  * @cb_pool_lock: protects the CB pool.
3239  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3240  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3241  * @internal_cb_pool: internal command buffer memory pool.
3242  * @internal_cb_va_base: internal cb pool mmu virtual address base
3243  * @fpriv_list: list of file private data structures. Each structure is created
3244  *              when a user opens the device
3245  * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3246  *              when a user opens the control device
3247  * @fpriv_list_lock: protects the fpriv_list
3248  * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3249  * @aggregated_cs_counters: aggregated cs counters among all contexts
3250  * @mmu_priv: device-specific MMU data.
3251  * @mmu_func: device-related MMU functions.
3252  * @dec: list of decoder sw instance
3253  * @fw_loader: FW loader manager.
3254  * @pci_mem_region: array of memory regions in the PCI
3255  * @state_dump_specs: constants and dictionaries needed to dump system state.
3256  * @multi_cs_completion: array of multi-CS completion.
3257  * @clk_throttling: holds information about current/previous clock throttling events
3258  * @captured_err_info: holds information about errors.
3259  * @reset_info: holds current device reset information.
3260  * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3261  * @fw_inner_major_ver: the major of current loaded preboot inner version.
3262  * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3263  * @fw_sw_major_ver: the major of current loaded preboot SW version.
3264  * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3265  * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3266  * @dram_used_mem: current DRAM memory consumption.
3267  * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3268  * @timeout_jiffies: device CS timeout value.
3269  * @max_power: the max power of the device, as configured by the sysadmin. This
3270  *             value is saved so in case of hard-reset, the driver will restore
3271  *             this value and update the F/W after the re-initialization
3272  * @boot_error_status_mask: contains a mask of the device boot error status.
3273  *                          Each bit represents a different error, according to
3274  *                          the defines in hl_boot_if.h. If the bit is cleared,
3275  *                          the error will be ignored by the driver during
3276  *                          device initialization. Mainly used to debug and
3277  *                          workaround firmware bugs
3278  * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3279  * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3280  * @last_successful_open_jif: timestamp (jiffies) of the last successful
3281  *                            device open.
3282  * @last_open_session_duration_jif: duration (jiffies) of the last device open
3283  *                                  session.
3284  * @open_counter: number of successful device open operations.
3285  * @fw_poll_interval_usec: FW status poll interval in usec.
3286  *                         used for CPU boot status
3287  * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3288  *                                  used for COMMs protocols cmds(COMMS_STS_*)
3289  * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3290  *                drams are binned-out
3291  * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3292  *               tpc engines are binned-out
3293  * @dmabuf_export_cnt: number of dma-buf exporting.
3294  * @card_type: Various ASICs have several card types. This indicates the card
3295  *             type of the current device.
3296  * @major: habanalabs kernel driver major.
3297  * @high_pll: high PLL profile frequency.
3298  * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3299  *                   indicates which decoder engines are binned-out
3300  * @edma_binning: contains mask of edma engines that is received from the f/w which
3301  *                   indicates which edma engines are binned-out
3302  * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3303  * @rotator_binning: contains mask of rotators engines that is received from the f/w
3304  *			which indicates which rotator engines are binned-out(Gaudi3 and above).
3305  * @id: device minor.
3306  * @cdev_idx: char device index.
3307  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3308  *                    addresses.
3309  * @is_in_dram_scrub: true if dram scrub operation is on going.
3310  * @disabled: is device disabled.
3311  * @late_init_done: is late init stage was done during initialization.
3312  * @hwmon_initialized: is H/W monitor sensors was initialized.
3313  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3314  *                   otherwise.
3315  * @dram_default_page_mapping: is DRAM default page mapping enabled.
3316  * @memory_scrub: true to perform device memory scrub in various locations,
3317  *                such as context-switch, context close, page free, etc.
3318  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3319  *                   huge pages.
3320  * @init_done: is the initialization of the device done.
3321  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3322  * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3323  *            can be used. This indication is needed because in some ASICs we need to do
3324  *            specific operations to enable that infrastructure.
3325  * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3326  * @stop_on_err: true if engines should stop on error.
3327  * @supports_sync_stream: is sync stream supported.
3328  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3329  * @collective_mon_idx: helper index for collective initialization
3330  * @supports_coresight: is CoreSight supported.
3331  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3332  * @process_kill_trial_cnt: number of trials reset thread tried killing
3333  *                          user processes
3334  * @device_fini_pending: true if device_fini was called and might be
3335  *                       waiting for the reset thread to finish
3336  * @supports_staged_submission: true if staged submissions are supported
3337  * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3338  *                        halted. We can't halt it again because the COMMS
3339  *                        protocol will throw an error. Relevant only for
3340  *                        cases where Linux was not loaded to device CPU
3341  * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3342  * @is_compute_ctx_active: Whether there is an active compute context executing.
3343  * @compute_ctx_in_release: true if the current compute context is being released.
3344  * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3345  * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3346  *                             device.
3347  * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3348  * @support_preboot_binning: true if we support read binning info from preboot.
3349  * @eq_heartbeat_received: indication that eq heartbeat event has received from FW.
3350  * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3351  * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3352  *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
3353  * @mmu_disable: Disable the device MMU(s). Used only for testing.
3354  * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3355  * @pldm: Whether we are running in Palladium environment. Used only for testing.
3356  * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3357  *                           the f/w. Used only for testing.
3358  * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3359  * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3360  *                         Used only for testing.
3361  * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3362  *             that the f/w is always alive. Used only for testing.
3363  */
3364 struct hl_device {
3365 	struct pci_dev			*pdev;
3366 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
3367 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
3368 	void __iomem			*rmmio;
3369 	struct drm_device		drm;
3370 	struct cdev			cdev_ctrl;
3371 	struct device			*dev;
3372 	struct device			*dev_ctrl;
3373 	struct delayed_work		work_heartbeat;
3374 	struct hl_device_reset_work	device_reset_work;
3375 	struct hl_device_reset_work	device_release_watchdog_work;
3376 	char				asic_name[HL_STR_MAX];
3377 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
3378 	enum hl_asic_type		asic_type;
3379 	struct hl_cq			*completion_queue;
3380 	struct hl_user_interrupt	*user_interrupt;
3381 	struct hl_user_interrupt	tpc_interrupt;
3382 	struct hl_user_interrupt	unexpected_error_interrupt;
3383 	struct hl_user_interrupt	common_user_cq_interrupt;
3384 	struct hl_user_interrupt	common_decoder_interrupt;
3385 	struct hl_cs			**shadow_cs_queue;
3386 	struct workqueue_struct		**cq_wq;
3387 	struct workqueue_struct		*eq_wq;
3388 	struct workqueue_struct		*cs_cmplt_wq;
3389 	struct workqueue_struct		*ts_free_obj_wq;
3390 	struct workqueue_struct		*prefetch_wq;
3391 	struct workqueue_struct		*reset_wq;
3392 	struct hl_ctx			*kernel_ctx;
3393 	struct hl_hw_queue		*kernel_queues;
3394 	struct list_head		cs_mirror_list;
3395 	spinlock_t			cs_mirror_lock;
3396 	struct hl_mem_mgr		kernel_mem_mgr;
3397 	struct hl_eq			event_queue;
3398 	struct dma_pool			*dma_pool;
3399 	void				*cpu_accessible_dma_mem;
3400 	dma_addr_t			cpu_accessible_dma_address;
3401 	struct gen_pool			*cpu_accessible_dma_pool;
3402 	unsigned long			*asid_bitmap;
3403 	struct mutex			asid_mutex;
3404 	struct mutex			send_cpu_message_lock;
3405 	struct mutex			debug_lock;
3406 	struct mutex			mmu_lock;
3407 	struct asic_fixed_properties	asic_prop;
3408 	const struct hl_asic_funcs	*asic_funcs;
3409 	void				*asic_specific;
3410 	struct hl_vm			vm;
3411 	struct device			*hwmon_dev;
3412 	struct hwmon_chip_info		*hl_chip_info;
3413 
3414 	struct hl_dbg_device_entry	hl_debugfs;
3415 
3416 	struct list_head		cb_pool;
3417 	spinlock_t			cb_pool_lock;
3418 
3419 	void				*internal_cb_pool_virt_addr;
3420 	dma_addr_t			internal_cb_pool_dma_addr;
3421 	struct gen_pool			*internal_cb_pool;
3422 	u64				internal_cb_va_base;
3423 
3424 	struct list_head		fpriv_list;
3425 	struct list_head		fpriv_ctrl_list;
3426 	struct mutex			fpriv_list_lock;
3427 	struct mutex			fpriv_ctrl_list_lock;
3428 
3429 	struct hl_cs_counters_atomic	aggregated_cs_counters;
3430 
3431 	struct hl_mmu_priv		mmu_priv;
3432 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
3433 
3434 	struct hl_dec			*dec;
3435 
3436 	struct fw_load_mgr		fw_loader;
3437 
3438 	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
3439 
3440 	struct hl_state_dump_specs	state_dump_specs;
3441 
3442 	struct multi_cs_completion	multi_cs_completion[
3443 							MULTI_CS_MAX_USER_CTX];
3444 	struct hl_clk_throttle		clk_throttling;
3445 	struct hl_error_info		captured_err_info;
3446 
3447 	struct hl_reset_info		reset_info;
3448 
3449 	u32				*stream_master_qid_arr;
3450 	u32				fw_inner_major_ver;
3451 	u32				fw_inner_minor_ver;
3452 	u32				fw_sw_major_ver;
3453 	u32				fw_sw_minor_ver;
3454 	u32				fw_sw_sub_minor_ver;
3455 	atomic64_t			dram_used_mem;
3456 	u64				memory_scrub_val;
3457 	u64				timeout_jiffies;
3458 	u64				max_power;
3459 	u64				boot_error_status_mask;
3460 	u64				dram_pci_bar_start;
3461 	u64				last_successful_open_jif;
3462 	u64				last_open_session_duration_jif;
3463 	u64				open_counter;
3464 	u64				fw_poll_interval_usec;
3465 	ktime_t				last_successful_open_ktime;
3466 	u64				fw_comms_poll_interval_usec;
3467 	u64				dram_binning;
3468 	u64				tpc_binning;
3469 	atomic_t			dmabuf_export_cnt;
3470 	enum cpucp_card_types		card_type;
3471 	u32				major;
3472 	u32				high_pll;
3473 	u32				decoder_binning;
3474 	u32				edma_binning;
3475 	u32				device_release_watchdog_timeout_sec;
3476 	u32				rotator_binning;
3477 	u16				id;
3478 	u16				cdev_idx;
3479 	u16				cpu_pci_msb_addr;
3480 	u8				is_in_dram_scrub;
3481 	u8				disabled;
3482 	u8				late_init_done;
3483 	u8				hwmon_initialized;
3484 	u8				reset_on_lockup;
3485 	u8				dram_default_page_mapping;
3486 	u8				memory_scrub;
3487 	u8				pmmu_huge_range;
3488 	u8				init_done;
3489 	u8				device_cpu_disabled;
3490 	u8				in_debug;
3491 	u8				cdev_sysfs_debugfs_created;
3492 	u8				stop_on_err;
3493 	u8				supports_sync_stream;
3494 	u8				sync_stream_queue_idx;
3495 	u8				collective_mon_idx;
3496 	u8				supports_coresight;
3497 	u8				supports_cb_mapping;
3498 	u8				process_kill_trial_cnt;
3499 	u8				device_fini_pending;
3500 	u8				supports_staged_submission;
3501 	u8				device_cpu_is_halted;
3502 	u8				supports_wait_for_multi_cs;
3503 	u8				stream_master_qid_arr_size;
3504 	u8				is_compute_ctx_active;
3505 	u8				compute_ctx_in_release;
3506 	u8				supports_mmu_prefetch;
3507 	u8				reset_upon_device_release;
3508 	u8				supports_ctx_switch;
3509 	u8				support_preboot_binning;
3510 	u8				eq_heartbeat_received;
3511 
3512 	/* Parameters for bring-up to be upstreamed */
3513 	u64				nic_ports_mask;
3514 	u64				fw_components;
3515 	u8				mmu_disable;
3516 	u8				cpu_queues_enable;
3517 	u8				pldm;
3518 	u8				hard_reset_on_fw_events;
3519 	u8				bmc_enable;
3520 	u8				reset_on_preboot_fail;
3521 	u8				heartbeat;
3522 };
3523 
3524 /* Retrieve PCI device name in case of a PCI device or dev name in simulator */
3525 #define HL_DEV_NAME(hdev)	\
3526 		((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE")
3527 
3528 /**
3529  * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3530  * @refcount: refcount used to protect removing this id when several
3531  *            wait cs are used to wait of the reserved encaps signals.
3532  * @hdev: pointer to habanalabs device structure.
3533  * @hw_sob: pointer to  H/W SOB used in the reservation.
3534  * @ctx: pointer to the user's context data structure
3535  * @cs_seq: staged cs sequence which contains encapsulated signals
3536  * @id: idr handler id to be used to fetch the handler info
3537  * @q_idx: stream queue index
3538  * @pre_sob_val: current SOB value before reservation
3539  * @count: signals number
3540  */
3541 struct hl_cs_encaps_sig_handle {
3542 	struct kref refcount;
3543 	struct hl_device *hdev;
3544 	struct hl_hw_sob *hw_sob;
3545 	struct hl_ctx *ctx;
3546 	u64  cs_seq;
3547 	u32  id;
3548 	u32  q_idx;
3549 	u32  pre_sob_val;
3550 	u32  count;
3551 };
3552 
3553 /**
3554  * struct hl_info_fw_err_info - firmware error information structure
3555  * @err_type: The type of error detected (or reported).
3556  * @event_mask: Pointer to the event mask to be modified with the detected error flag
3557  *              (can be NULL)
3558  * @event_id: The id of the event that reported the error
3559  *            (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3560  */
3561 struct hl_info_fw_err_info {
3562 	enum hl_info_fw_err_type err_type;
3563 	u64 *event_mask;
3564 	u16 event_id;
3565 };
3566 
3567 /*
3568  * IOCTLs
3569  */
3570 
3571 /**
3572  * typedef hl_ioctl_t - typedef for ioctl function in the driver
3573  * @hpriv: pointer to the FD's private data, which contains state of
3574  *		user process
3575  * @data: pointer to the input/output arguments structure of the IOCTL
3576  *
3577  * Return: 0 for success, negative value for error
3578  */
3579 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3580 
3581 /**
3582  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3583  * @cmd: the IOCTL code as created by the kernel macros.
3584  * @func: pointer to the driver's function that should be called for this IOCTL.
3585  */
3586 struct hl_ioctl_desc {
3587 	unsigned int cmd;
3588 	hl_ioctl_t *func;
3589 };
3590 
3591 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor)
3592 {
3593 	if (hdev->fw_sw_major_ver < fw_sw_major)
3594 		return true;
3595 	if (hdev->fw_sw_major_ver > fw_sw_major)
3596 		return false;
3597 	if (hdev->fw_sw_minor_ver < fw_sw_minor)
3598 		return true;
3599 	return false;
3600 }
3601 
3602 static inline bool hl_is_fw_sw_ver_equal_or_greater(struct hl_device *hdev, u32 fw_sw_major,
3603 							u32 fw_sw_minor)
3604 {
3605 	return (hdev->fw_sw_major_ver > fw_sw_major ||
3606 			(hdev->fw_sw_major_ver == fw_sw_major &&
3607 					hdev->fw_sw_minor_ver >= fw_sw_minor));
3608 }
3609 
3610 /*
3611  * Kernel module functions that can be accessed by entire module
3612  */
3613 
3614 /**
3615  * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3616  * @sg: the SG list.
3617  * @dma_addr: pointer to DMA address to return.
3618  *
3619  * Calculate the number of consecutive pages described by the SG list. Take the
3620  * offset of the address in the first page, add to it the length and round it up
3621  * to the number of needed pages.
3622  */
3623 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3624 {
3625 	*dma_addr = sg_dma_address(sg);
3626 
3627 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3628 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3629 }
3630 
3631 /**
3632  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3633  * @address: The start address of the area we want to validate.
3634  * @size: The size in bytes of the area we want to validate.
3635  * @range_start_address: The start address of the valid range.
3636  * @range_end_address: The end address of the valid range.
3637  *
3638  * Return: true if the area is inside the valid range, false otherwise.
3639  */
3640 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3641 				u64 range_start_address, u64 range_end_address)
3642 {
3643 	u64 end_address = address + size;
3644 
3645 	if ((address >= range_start_address) &&
3646 			(end_address <= range_end_address) &&
3647 			(end_address > address))
3648 		return true;
3649 
3650 	return false;
3651 }
3652 
3653 static inline struct hl_device *to_hl_device(struct drm_device *ddev)
3654 {
3655 	return container_of(ddev, struct hl_device, drm);
3656 }
3657 
3658 /**
3659  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3660  * @address: The start address of the area we want to validate.
3661  * @size: The size in bytes of the area we want to validate.
3662  * @range_start_address: The start address of the valid range.
3663  * @range_end_address: The end address of the valid range.
3664  *
3665  * Return: true if the area overlaps part or all of the valid range,
3666  *		false otherwise.
3667  */
3668 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3669 				u64 range_start_address, u64 range_end_address)
3670 {
3671 	u64 end_address = address + size - 1;
3672 
3673 	return ((address <= range_end_address) && (range_start_address <= end_address));
3674 }
3675 
3676 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3677 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3678 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3679 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3680 					gfp_t flag, const char *caller);
3681 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3682 					dma_addr_t dma_handle, const char *caller);
3683 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3684 					dma_addr_t *dma_handle, const char *caller);
3685 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3686 					const char *caller);
3687 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3688 				enum dma_data_direction dir, const char *caller);
3689 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3690 					enum dma_data_direction dir, const char *caller);
3691 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3692 				enum dma_data_direction dir);
3693 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3694 				enum dma_data_direction dir);
3695 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3696 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3697 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3698 	enum debugfs_access_type acc_type);
3699 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3700 			u64 addr, u64 *val, enum debugfs_access_type acc_type);
3701 
3702 int hl_mmap(struct file *filp, struct vm_area_struct *vma);
3703 
3704 int hl_device_open(struct drm_device *drm, struct drm_file *file_priv);
3705 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv);
3706 
3707 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3708 bool hl_device_operational(struct hl_device *hdev,
3709 		enum hl_device_status *status);
3710 bool hl_ctrl_device_operational(struct hl_device *hdev,
3711 		enum hl_device_status *status);
3712 enum hl_device_status hl_device_status(struct hl_device *hdev);
3713 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3714 int hl_hw_queues_create(struct hl_device *hdev);
3715 void hl_hw_queues_destroy(struct hl_device *hdev);
3716 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3717 		u32 cb_size, u64 cb_ptr);
3718 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3719 		u32 ctl, u32 len, u64 ptr);
3720 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3721 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3722 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3723 void hl_hw_queue_update_ci(struct hl_cs *cs);
3724 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3725 
3726 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
3727 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
3728 
3729 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3730 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3731 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3732 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3733 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3734 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3735 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3736 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3737 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3738 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg);
3739 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3740 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg);
3741 u32 hl_cq_inc_ptr(u32 ptr);
3742 
3743 int hl_asid_init(struct hl_device *hdev);
3744 void hl_asid_fini(struct hl_device *hdev);
3745 unsigned long hl_asid_alloc(struct hl_device *hdev);
3746 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3747 
3748 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3749 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3750 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3751 void hl_ctx_do_release(struct kref *ref);
3752 void hl_ctx_get(struct hl_ctx *ctx);
3753 int hl_ctx_put(struct hl_ctx *ctx);
3754 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3755 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3756 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3757 				struct hl_fence **fence, u32 arr_len);
3758 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3759 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3760 
3761 int hl_device_init(struct hl_device *hdev);
3762 void hl_device_fini(struct hl_device *hdev);
3763 int hl_device_suspend(struct hl_device *hdev);
3764 int hl_device_resume(struct hl_device *hdev);
3765 int hl_device_reset(struct hl_device *hdev, u32 flags);
3766 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3767 void hl_hpriv_get(struct hl_fpriv *hpriv);
3768 int hl_hpriv_put(struct hl_fpriv *hpriv);
3769 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3770 
3771 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3772 		struct cpucp_sensor *sensors_arr);
3773 
3774 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3775 
3776 int hl_sysfs_init(struct hl_device *hdev);
3777 void hl_sysfs_fini(struct hl_device *hdev);
3778 
3779 int hl_hwmon_init(struct hl_device *hdev);
3780 void hl_hwmon_fini(struct hl_device *hdev);
3781 void hl_hwmon_release_resources(struct hl_device *hdev);
3782 
3783 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3784 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3785 			bool map_cb, u64 *handle);
3786 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3787 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3788 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3789 void hl_cb_put(struct hl_cb *cb);
3790 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3791 					bool internal_cb);
3792 int hl_cb_pool_init(struct hl_device *hdev);
3793 int hl_cb_pool_fini(struct hl_device *hdev);
3794 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3795 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3796 
3797 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3798 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3799 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3800 void hl_sob_reset_error(struct kref *ref);
3801 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3802 void hl_fence_put(struct hl_fence *fence);
3803 void hl_fences_put(struct hl_fence **fence, int len);
3804 void hl_fence_get(struct hl_fence *fence);
3805 void cs_get(struct hl_cs *cs);
3806 bool cs_needs_completion(struct hl_cs *cs);
3807 bool cs_needs_timeout(struct hl_cs *cs);
3808 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3809 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3810 void hl_multi_cs_completion_init(struct hl_device *hdev);
3811 u32 hl_get_active_cs_num(struct hl_device *hdev);
3812 
3813 void goya_set_asic_funcs(struct hl_device *hdev);
3814 void gaudi_set_asic_funcs(struct hl_device *hdev);
3815 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3816 
3817 int hl_vm_ctx_init(struct hl_ctx *ctx);
3818 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3819 
3820 int hl_vm_init(struct hl_device *hdev);
3821 void hl_vm_fini(struct hl_device *hdev);
3822 
3823 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3824 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3825 
3826 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3827 		enum hl_va_range_type type, u64 size, u32 alignment);
3828 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3829 		u64 start_addr, u64 size);
3830 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3831 			struct hl_userptr *userptr);
3832 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3833 void hl_userptr_delete_list(struct hl_device *hdev,
3834 				struct list_head *userptr_list);
3835 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3836 				struct list_head *userptr_list,
3837 				struct hl_userptr **userptr);
3838 
3839 int hl_mmu_init(struct hl_device *hdev);
3840 void hl_mmu_fini(struct hl_device *hdev);
3841 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3842 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3843 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3844 		u32 page_size, bool flush_pte);
3845 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3846 				u32 page_size, u32 *real_page_size, bool is_dram_addr);
3847 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3848 		bool flush_pte);
3849 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3850 					u64 phys_addr, u32 size);
3851 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3852 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3853 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3854 					u32 flags, u32 asid, u64 va, u64 size);
3855 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3856 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3857 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3858 					u8 hop_idx, u64 hop_addr, u64 virt_addr);
3859 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3860 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3861 			u64 pgt_size);
3862 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3863 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3864 				u32 hop_table_size);
3865 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3866 							u32 hop_table_size);
3867 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3868 							u64 val, u32 hop_table_size);
3869 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3870 							u32 hop_table_size);
3871 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3872 							u32 hop_table_size);
3873 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3874 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3875 							struct hl_hr_mmu_funcs *hr_func,
3876 							u64 curr_pte);
3877 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3878 							struct hl_hr_mmu_funcs *hr_func,
3879 							struct hl_mmu_properties *mmu_prop);
3880 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3881 							struct hl_mmu_hr_priv *hr_priv,
3882 							struct hl_hr_mmu_funcs *hr_func,
3883 							struct hl_mmu_properties *mmu_prop,
3884 							u64 curr_pte, bool *is_new_hop);
3885 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3886 							struct hl_hr_mmu_funcs *hr_func);
3887 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3888 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3889 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3890 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3891 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3892 			struct hl_mmu_hop_info *hops);
3893 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3894 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3895 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3896 
3897 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3898 				void __iomem *dst, u32 src_offset, u32 size);
3899 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3900 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3901 				u16 len, u32 timeout, u64 *result);
3902 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3903 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3904 		size_t irq_arr_size);
3905 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3906 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3907 						dma_addr_t *dma_handle);
3908 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3909 					void *vaddr);
3910 int hl_fw_send_heartbeat(struct hl_device *hdev);
3911 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3912 				u32 sts_boot_dev_sts0_reg,
3913 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3914 				u32 boot_err1_reg);
3915 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3916 				u32 sts_boot_dev_sts0_reg,
3917 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3918 				u32 boot_err1_reg);
3919 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3920 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3921 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3922 		struct hl_info_pci_counters *counters);
3923 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3924 			u64 *total_energy);
3925 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3926 						enum pll_index *pll_index);
3927 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3928 		u16 *pll_freq_arr);
3929 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3930 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3931 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3932 int hl_fw_init_cpu(struct hl_device *hdev);
3933 int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3934 int hl_fw_read_preboot_status(struct hl_device *hdev);
3935 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3936 				struct fw_load_mgr *fw_loader,
3937 				enum comms_cmd cmd, unsigned int size,
3938 				bool wait_ok, u32 timeout);
3939 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3940 				struct cpucp_hbm_row_info *info);
3941 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3942 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3943 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3944 int hl_fw_send_soft_reset(struct hl_device *hdev);
3945 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3946 			bool is_wc[3]);
3947 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3948 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3949 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3950 		struct hl_inbound_pci_region *pci_region);
3951 int hl_pci_set_outbound_region(struct hl_device *hdev,
3952 		struct hl_outbound_pci_region *pci_region);
3953 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3954 int hl_pci_init(struct hl_device *hdev);
3955 void hl_pci_fini(struct hl_device *hdev);
3956 
3957 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3958 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3959 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3960 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3961 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3962 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3963 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3964 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3965 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3966 long hl_fw_get_max_power(struct hl_device *hdev);
3967 void hl_fw_set_max_power(struct hl_device *hdev);
3968 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3969 				u32 nonce);
3970 int hl_fw_get_dev_info_signed(struct hl_device *hdev,
3971 			      struct cpucp_dev_info_signed *dev_info_signed, u32 nonce);
3972 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3973 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3974 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3975 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3976 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3977 void hl_fw_set_pll_profile(struct hl_device *hdev);
3978 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3979 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3980 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3981 						dma_addr_t buff, u32 *size);
3982 
3983 void hw_sob_get(struct hl_hw_sob *hw_sob);
3984 void hw_sob_put(struct hl_hw_sob *hw_sob);
3985 void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
3986 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
3987 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3988 			struct hl_cs *cs, struct hl_cs_job *job,
3989 			struct hl_cs_compl *cs_cmpl);
3990 
3991 int hl_dec_init(struct hl_device *hdev);
3992 void hl_dec_fini(struct hl_device *hdev);
3993 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3994 
3995 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3996 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
3997 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3998 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3999 
4000 int hl_state_dump(struct hl_device *hdev);
4001 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
4002 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
4003 					struct hl_mon_state_dump *mon);
4004 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
4005 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
4006 					const char *format, ...);
4007 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
4008 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
4009 
4010 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
4011 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
4012 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
4013 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
4014 		    void *args);
4015 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
4016 						   u64 handle);
4017 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
4018 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
4019 struct hl_mmap_mem_buf *
4020 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
4021 		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
4022 		      void *args);
4023 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
4024 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4025 			u8 flags);
4026 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4027 			u8 flags, u64 *event_mask);
4028 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
4029 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
4030 				u64 *event_mask);
4031 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
4032 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
4033 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count);
4034 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
4035 
4036 #ifdef CONFIG_DEBUG_FS
4037 
4038 int hl_debugfs_device_init(struct hl_device *hdev);
4039 void hl_debugfs_device_fini(struct hl_device *hdev);
4040 void hl_debugfs_add_device(struct hl_device *hdev);
4041 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
4042 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
4043 void hl_debugfs_add_cb(struct hl_cb *cb);
4044 void hl_debugfs_remove_cb(struct hl_cb *cb);
4045 void hl_debugfs_add_cs(struct hl_cs *cs);
4046 void hl_debugfs_remove_cs(struct hl_cs *cs);
4047 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
4048 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
4049 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
4050 void hl_debugfs_remove_userptr(struct hl_device *hdev,
4051 				struct hl_userptr *userptr);
4052 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4053 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4054 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
4055 					unsigned long length);
4056 
4057 #else
4058 
4059 static inline int hl_debugfs_device_init(struct hl_device *hdev)
4060 {
4061 	return 0;
4062 }
4063 
4064 static inline void hl_debugfs_device_fini(struct hl_device *hdev)
4065 {
4066 }
4067 
4068 static inline void hl_debugfs_add_device(struct hl_device *hdev)
4069 {
4070 }
4071 
4072 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4073 {
4074 }
4075 
4076 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4077 {
4078 }
4079 
4080 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4081 {
4082 }
4083 
4084 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4085 {
4086 }
4087 
4088 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4089 {
4090 }
4091 
4092 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4093 {
4094 }
4095 
4096 static inline void hl_debugfs_add_job(struct hl_device *hdev,
4097 					struct hl_cs_job *job)
4098 {
4099 }
4100 
4101 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4102 					struct hl_cs_job *job)
4103 {
4104 }
4105 
4106 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4107 					struct hl_userptr *userptr)
4108 {
4109 }
4110 
4111 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4112 					struct hl_userptr *userptr)
4113 {
4114 }
4115 
4116 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4117 					struct hl_ctx *ctx)
4118 {
4119 }
4120 
4121 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4122 					struct hl_ctx *ctx)
4123 {
4124 }
4125 
4126 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4127 					char *data, unsigned long length)
4128 {
4129 }
4130 
4131 #endif
4132 
4133 /* Security */
4134 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4135 		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4136 		int array_size);
4137 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4138 		int mm_array_size, int offset, const u32 pb_blocks[],
4139 		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4140 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4141 		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4142 		int array_size);
4143 void hl_secure_block(struct hl_device *hdev,
4144 		struct hl_block_glbl_sec sgs_array[], int array_size);
4145 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4146 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4147 		const u32 pb_blocks[], u32 blocks_array_size,
4148 		const u32 *regs_array, u32 regs_array_size, u64 mask);
4149 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4150 		u32 num_instances, u32 instance_offset,
4151 		const u32 pb_blocks[], u32 blocks_array_size,
4152 		const u32 *regs_array, u32 regs_array_size);
4153 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4154 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4155 		const u32 pb_blocks[], u32 blocks_array_size,
4156 		const struct range *regs_range_array, u32 regs_range_array_size,
4157 		u64 mask);
4158 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4159 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4160 		const u32 pb_blocks[], u32 blocks_array_size,
4161 		const struct range *regs_range_array,
4162 		u32 regs_range_array_size);
4163 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4164 		u32 num_instances, u32 instance_offset,
4165 		const u32 pb_blocks[], u32 blocks_array_size,
4166 		const u32 *regs_array, u32 regs_array_size);
4167 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4168 		u32 num_instances, u32 instance_offset,
4169 		const u32 pb_blocks[], u32 blocks_array_size,
4170 		const struct range *regs_range_array,
4171 		u32 regs_range_array_size);
4172 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4173 		u32 num_instances, u32 instance_offset,
4174 		const u32 pb_blocks[], u32 blocks_array_size);
4175 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4176 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4177 		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4178 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4179 		u32 num_instances, u32 instance_offset,
4180 		const u32 pb_blocks[], u32 blocks_array_size);
4181 
4182 /* IOCTLs */
4183 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4184 int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4185 int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4186 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4187 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4188 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4189 int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4190 
4191 #endif /* HABANALABSP_H_ */
4192