xref: /linux/drivers/accel/habanalabs/common/habanalabs.h (revision 3d613b0cb5ef349ce93ae7e28f74ef8a75dc10ac)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2023 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include <linux/habanalabs/cpucp_if.h>
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/drm/habanalabs_accel.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31 
32 #include <drm/drm_device.h>
33 #include <drm/drm_file.h>
34 
35 #include "security.h"
36 
37 #define HL_NAME				"habanalabs"
38 
39 struct hl_device;
40 struct hl_fpriv;
41 
42 #define PCI_VENDOR_ID_HABANALABS	0x1da3
43 
44 /* Use upper bits of mmap offset to store habana driver specific information.
45  * bits[63:59] - Encode mmap type
46  * bits[45:0]  - mmap offset value
47  *
48  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
49  *  defines are w.r.t to PAGE_SIZE
50  */
51 #define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
52 #define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
53 #define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
54 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
55 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
56 
57 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
58 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
59 
60 #define HL_PENDING_RESET_PER_SEC		10
61 #define HL_PENDING_RESET_MAX_TRIALS		60 /* 10 minutes */
62 #define HL_PENDING_RESET_LONG_SEC		60
63 /*
64  * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
65  * This is needed to prevent situation of clearing resources while user processes are still alive.
66  */
67 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI	600
68 
69 #define HL_HARD_RESET_MAX_TIMEOUT	120
70 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
71 
72 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
73 
74 #define HL_HEARTBEAT_PER_USEC		10000000 /* 10 s */
75 
76 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
77 
78 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
79 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
80 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
81 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
82 
83 #define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
84 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */
85 
86 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
87 
88 #define HL_INVALID_QUEUE		UINT_MAX
89 
90 #define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
91 #define HL_COMMON_DEC_INTERRUPT_ID	0xFFE
92 
93 #define HL_STATE_DUMP_HIST_LEN		5
94 
95 /* Default value for device reset trigger , an invalid value */
96 #define HL_RESET_TRIGGER_DEFAULT	0xFF
97 
98 #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
99 #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
100 
101 /* Memory */
102 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
103 
104 /* MMU */
105 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
106 
107 #define TIMESTAMP_FREE_NODES_NUM	512
108 
109 /**
110  * enum hl_mmu_page_table_location - mmu page table location
111  * @MMU_DR_PGT: page-table is located on device DRAM.
112  * @MMU_HR_PGT: page-table is located on host memory.
113  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
114  */
115 enum hl_mmu_page_table_location {
116 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
117 	MMU_HR_PGT,		/* host resident MMU PGT */
118 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
119 };
120 
121 /*
122  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
123  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
124  */
125 #define HL_RSVD_SOBS			2
126 #define HL_RSVD_MONS			1
127 
128 /*
129  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
130  */
131 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
132 
133 #define HL_MAX_SOB_VAL			(1 << 15)
134 
135 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
136 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
137 
138 #define HL_PCI_NUM_BARS			6
139 
140 /* Completion queue entry relates to completed job */
141 #define HL_COMPLETION_MODE_JOB		0
142 /* Completion queue entry relates to completed command submission */
143 #define HL_COMPLETION_MODE_CS		1
144 
145 #define HL_MAX_DCORES			8
146 
147 /* DMA alloc/free wrappers */
148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
149 	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
150 
151 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
152 	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
153 
154 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
155 	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
156 
157 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
158 	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
159 
160 #define hl_dma_map_sgtable(hdev, sgt, dir) \
161 	hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__)
162 #define hl_dma_unmap_sgtable(hdev, sgt, dir) \
163 	hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__)
164 
165 /*
166  * Reset Flags
167  *
168  * - HL_DRV_RESET_HARD
169  *       If set do hard reset to all engines. If not set reset just
170  *       compute/DMA engines.
171  *
172  * - HL_DRV_RESET_FROM_RESET_THR
173  *       Set if the caller is the hard-reset thread
174  *
175  * - HL_DRV_RESET_HEARTBEAT
176  *       Set if reset is due to heartbeat
177  *
178  * - HL_DRV_RESET_TDR
179  *       Set if reset is due to TDR
180  *
181  * - HL_DRV_RESET_DEV_RELEASE
182  *       Set if reset is due to device release
183  *
184  * - HL_DRV_RESET_BYPASS_REQ_TO_FW
185  *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
186  *       only when running with secured f/w
187  *
188  * - HL_DRV_RESET_FW_FATAL_ERR
189  *       Set if reset is due to a fatal error from FW
190  *
191  * - HL_DRV_RESET_DELAY
192  *       Set if a delay should be added before the reset
193  *
194  * - HL_DRV_RESET_FROM_WD_THR
195  *       Set if the caller is the device release watchdog thread
196  */
197 
198 #define HL_DRV_RESET_HARD		(1 << 0)
199 #define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
200 #define HL_DRV_RESET_HEARTBEAT		(1 << 2)
201 #define HL_DRV_RESET_TDR		(1 << 3)
202 #define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
204 #define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
205 #define HL_DRV_RESET_DELAY		(1 << 7)
206 #define HL_DRV_RESET_FROM_WD_THR	(1 << 8)
207 
208 /*
209  * Security
210  */
211 
212 #define HL_PB_SHARED		1
213 #define HL_PB_NA		0
214 #define HL_PB_SINGLE_INSTANCE	1
215 #define HL_BLOCK_SIZE		0x1000
216 #define HL_BLOCK_GLBL_ERR_MASK	0xF40
217 #define HL_BLOCK_GLBL_ERR_ADDR	0xF44
218 #define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
219 #define HL_BLOCK_GLBL_SEC_OFFS	0xF80
220 #define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
221 #define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
222 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
223 
224 enum hl_protection_levels {
225 	SECURED_LVL,
226 	PRIVILEGED_LVL,
227 	NON_SECURED_LVL
228 };
229 
230 /**
231  * struct iterate_module_ctx - HW module iterator
232  * @fn: function to apply to each HW module instance
233  * @data: optional internal data to the function iterator
234  * @rc: return code for optional use of iterator/iterator-caller
235  */
236 struct iterate_module_ctx {
237 	/*
238 	 * callback for the HW module iterator
239 	 * @hdev: pointer to the habanalabs device structure
240 	 * @block: block (ASIC specific definition can be dcore/hdcore)
241 	 * @inst: HW module instance within the block
242 	 * @offset: current HW module instance offset from the 1-st HW module instance
243 	 *          in the 1-st block
244 	 * @ctx: the iterator context.
245 	 */
246 	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
247 			struct iterate_module_ctx *ctx);
248 	void *data;
249 	int rc;
250 };
251 
252 struct hl_block_glbl_sec {
253 	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
254 };
255 
256 #define HL_MAX_SOBS_PER_MONITOR	8
257 
258 /**
259  * struct hl_gen_wait_properties - properties for generating a wait CB
260  * @data: command buffer
261  * @q_idx: queue id is used to extract fence register address
262  * @size: offset in command buffer
263  * @sob_base: SOB base to use in this wait CB
264  * @sob_val: SOB value to wait for
265  * @mon_id: monitor to use in this wait CB
266  * @sob_mask: each bit represents a SOB offset from sob_base to be used
267  */
268 struct hl_gen_wait_properties {
269 	void	*data;
270 	u32	q_idx;
271 	u32	size;
272 	u16	sob_base;
273 	u16	sob_val;
274 	u16	mon_id;
275 	u8	sob_mask;
276 };
277 
278 /**
279  * struct pgt_info - MMU hop page info.
280  * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
281  *        actual pgts for host resident MMU).
282  * @phys_addr: physical address of the pgt.
283  * @virt_addr: host virtual address of the pgt (see above device/host resident).
284  * @shadow_addr: shadow hop in the host for device resident MMU.
285  * @ctx: pointer to the owner ctx.
286  * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
287  *               allocated HOPs (all HOPs but HOP0)
288  *
289  * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
290  * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
291  *
292  * When a new level (hop) is needed during mapping this structure will be used to describe
293  * the newly allocated hop as well as to track number of PTEs in it.
294  * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
295  * freed with its pgt_info structure.
296  */
297 struct pgt_info {
298 	struct hlist_node	node;
299 	u64			phys_addr;
300 	u64			virt_addr;
301 	u64			shadow_addr;
302 	struct hl_ctx		*ctx;
303 	int			num_of_ptes;
304 };
305 
306 /**
307  * enum hl_pci_match_mode - pci match mode per region
308  * @PCI_ADDRESS_MATCH_MODE: address match mode
309  * @PCI_BAR_MATCH_MODE: bar match mode
310  */
311 enum hl_pci_match_mode {
312 	PCI_ADDRESS_MATCH_MODE,
313 	PCI_BAR_MATCH_MODE
314 };
315 
316 /**
317  * enum hl_fw_component - F/W components to read version through registers.
318  * @FW_COMP_BOOT_FIT: boot fit.
319  * @FW_COMP_PREBOOT: preboot.
320  * @FW_COMP_LINUX: linux.
321  */
322 enum hl_fw_component {
323 	FW_COMP_BOOT_FIT,
324 	FW_COMP_PREBOOT,
325 	FW_COMP_LINUX,
326 };
327 
328 /**
329  * enum hl_fw_types - F/W types present in the system
330  * @FW_TYPE_NONE: no FW component indication
331  * @FW_TYPE_LINUX: Linux image for device CPU
332  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
333  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
334  *                       (preboot, ppboot etc...)
335  * @FW_TYPE_ALL_TYPES: Mask for all types
336  */
337 enum hl_fw_types {
338 	FW_TYPE_NONE = 0x0,
339 	FW_TYPE_LINUX = 0x1,
340 	FW_TYPE_BOOT_CPU = 0x2,
341 	FW_TYPE_PREBOOT_CPU = 0x4,
342 	FW_TYPE_ALL_TYPES =
343 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
344 };
345 
346 /**
347  * enum hl_queue_type - Supported QUEUE types.
348  * @QUEUE_TYPE_NA: queue is not available.
349  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
350  *                  host.
351  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
352  *			memories and/or operates the compute engines.
353  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
354  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
355  *                 notifications are sent by H/W.
356  */
357 enum hl_queue_type {
358 	QUEUE_TYPE_NA,
359 	QUEUE_TYPE_EXT,
360 	QUEUE_TYPE_INT,
361 	QUEUE_TYPE_CPU,
362 	QUEUE_TYPE_HW
363 };
364 
365 enum hl_cs_type {
366 	CS_TYPE_DEFAULT,
367 	CS_TYPE_SIGNAL,
368 	CS_TYPE_WAIT,
369 	CS_TYPE_COLLECTIVE_WAIT,
370 	CS_RESERVE_SIGNALS,
371 	CS_UNRESERVE_SIGNALS,
372 	CS_TYPE_ENGINE_CORE,
373 	CS_TYPE_ENGINES,
374 	CS_TYPE_FLUSH_PCI_HBW_WRITES,
375 };
376 
377 /*
378  * struct hl_inbound_pci_region - inbound region descriptor
379  * @mode: pci match mode for this region
380  * @addr: region target address
381  * @size: region size in bytes
382  * @offset_in_bar: offset within bar (address match mode)
383  * @bar: bar id
384  */
385 struct hl_inbound_pci_region {
386 	enum hl_pci_match_mode	mode;
387 	u64			addr;
388 	u64			size;
389 	u64			offset_in_bar;
390 	u8			bar;
391 };
392 
393 /*
394  * struct hl_outbound_pci_region - outbound region descriptor
395  * @addr: region target address
396  * @size: region size in bytes
397  */
398 struct hl_outbound_pci_region {
399 	u64	addr;
400 	u64	size;
401 };
402 
403 /*
404  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
405  * allocated by Kernel or by User
406  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
407  * @CB_ALLOC_USER: support only CBs that allocated by User
408  */
409 enum queue_cb_alloc_flags {
410 	CB_ALLOC_KERNEL = 0x1,
411 	CB_ALLOC_USER   = 0x2
412 };
413 
414 /*
415  * struct hl_hw_sob - H/W SOB info.
416  * @hdev: habanalabs device structure.
417  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
418  * @sob_id: id of this SOB.
419  * @sob_addr: the sob offset from the base address.
420  * @q_idx: the H/W queue that uses this SOB.
421  * @need_reset: reset indication set when switching to the other sob.
422  */
423 struct hl_hw_sob {
424 	struct hl_device	*hdev;
425 	struct kref		kref;
426 	u32			sob_id;
427 	u32			sob_addr;
428 	u32			q_idx;
429 	bool			need_reset;
430 };
431 
432 enum hl_collective_mode {
433 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
434 	HL_COLLECTIVE_MASTER = 0x1,
435 	HL_COLLECTIVE_SLAVE = 0x2
436 };
437 
438 /**
439  * struct hw_queue_properties - queue information.
440  * @type: queue type.
441  * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
442  *                  that allocated by the Kernel driver and therefore,
443  *                  a CB handle can be provided for jobs on this queue.
444  *                  Otherwise, a CB address must be provided.
445  * @collective_mode: collective mode of current queue
446  * @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM.
447  * @driver_only: true if only the driver is allowed to send a job to this queue,
448  *               false otherwise.
449  * @binned: True if the queue is binned out and should not be used
450  * @supports_sync_stream: True if queue supports sync stream
451  * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
452  */
453 struct hw_queue_properties {
454 	enum hl_queue_type		type;
455 	enum queue_cb_alloc_flags	cb_alloc_flags;
456 	enum hl_collective_mode		collective_mode;
457 	u64				q_dram_bd_address;
458 	u8				driver_only;
459 	u8				binned;
460 	u8				supports_sync_stream;
461 	u8				dram_bd;
462 };
463 
464 /**
465  * enum vm_type - virtual memory mapping request information.
466  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
467  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
468  */
469 enum vm_type {
470 	VM_TYPE_USERPTR = 0x1,
471 	VM_TYPE_PHYS_PACK = 0x2
472 };
473 
474 /**
475  * enum mmu_op_flags - mmu operation relevant information.
476  * @MMU_OP_USERPTR: operation on user memory (host resident).
477  * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
478  * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
479  * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
480  */
481 enum mmu_op_flags {
482 	MMU_OP_USERPTR = 0x1,
483 	MMU_OP_PHYS_PACK = 0x2,
484 	MMU_OP_CLEAR_MEMCACHE = 0x4,
485 	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
486 };
487 
488 
489 /**
490  * enum hl_device_hw_state - H/W device state. use this to understand whether
491  *                           to do reset before hw_init or not
492  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
493  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
494  *                            hw_init
495  */
496 enum hl_device_hw_state {
497 	HL_DEVICE_HW_STATE_CLEAN = 0,
498 	HL_DEVICE_HW_STATE_DIRTY
499 };
500 
501 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
502 
503 /**
504  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
505  * @start_addr: virtual start address of the memory region.
506  * @end_addr: virtual end address of the memory region.
507  * @hop_shifts: array holds HOPs shifts.
508  * @hop_masks: array holds HOPs masks.
509  * @last_mask: mask to get the bit indicating this is the last hop.
510  * @pgt_size: size for page tables.
511  * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
512  *                        supporting multiple page size).
513  * @page_size: default page size used to allocate memory.
514  * @num_hops: The amount of hops supported by the translation table.
515  * @hop_table_size: HOP table size.
516  * @hop0_tables_total_size: total size for all HOP0 tables.
517  * @host_resident: Should the MMU page table reside in host memory or in the
518  *                 device DRAM.
519  */
520 struct hl_mmu_properties {
521 	u64	start_addr;
522 	u64	end_addr;
523 	u64	hop_shifts[MMU_HOP_MAX];
524 	u64	hop_masks[MMU_HOP_MAX];
525 	u64	last_mask;
526 	u64	pgt_size;
527 	u64	supported_pages_mask;
528 	u32	page_size;
529 	u32	num_hops;
530 	u32	hop_table_size;
531 	u32	hop0_tables_total_size;
532 	u8	host_resident;
533 };
534 
535 /**
536  * struct hl_hints_range - hint addresses reserved va range.
537  * @start_addr: start address of the va range.
538  * @end_addr: end address of the va range.
539  */
540 struct hl_hints_range {
541 	u64 start_addr;
542 	u64 end_addr;
543 };
544 
545 /**
546  * struct asic_fixed_properties - ASIC specific immutable properties.
547  * @hw_queues_props: H/W queues properties.
548  * @special_blocks: points to an array containing special blocks info.
549  * @skip_special_blocks_cfg: special blocks skip configs.
550  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
551  *		available sensors.
552  * @uboot_ver: F/W U-boot version.
553  * @preboot_ver: F/W Preboot version.
554  * @dmmu: DRAM MMU address translation properties.
555  * @pmmu: PCI (host) MMU address translation properties.
556  * @pmmu_huge: PCI (host) MMU address translation properties for memory
557  *              allocated with huge pages.
558  * @hints_dram_reserved_va_range: dram hint addresses reserved range.
559  * @hints_host_reserved_va_range: host hint addresses reserved range.
560  * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range.
561  * @sram_base_address: SRAM physical start address.
562  * @sram_end_address: SRAM physical end address.
563  * @sram_user_base_address - SRAM physical start address for user access.
564  * @dram_base_address: DRAM physical start address.
565  * @dram_end_address: DRAM physical end address.
566  * @dram_user_base_address: DRAM physical start address for user access.
567  * @dram_size: DRAM total size.
568  * @dram_pci_bar_size: size of PCI bar towards DRAM.
569  * @max_power_default: max power of the device after reset.
570  * @dc_power_default: power consumed by the device in mode idle.
571  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
572  *                                      fault.
573  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
574  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
575  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
576  * @mmu_dram_default_page_addr: DRAM default page physical address.
577  * @tpc_enabled_mask: which TPCs are enabled.
578  * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
579  * @dram_enabled_mask: which DRAMs are enabled.
580  * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
581  * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
582  *                  for hints validity check.
583  * @cfg_base_address: config space base address.
584  * @mmu_cache_mng_addr: address of the MMU cache.
585  * @mmu_cache_mng_size: size of the MMU cache.
586  * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
587  *                                     to enable the device to access them.
588  * @host_base_address: host physical start address for host DMA from device
589  * @host_end_address: host physical end address for host DMA from device
590  * @max_freq_value: current max clk frequency.
591  * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
592  *                                  in order to raise events toward FW.
593  * @clk_pll_index: clock PLL index that specify which PLL determines the clock
594  *                 we display to the user
595  * @mmu_pgt_size: MMU page tables total size.
596  * @mmu_pte_size: PTE size in MMU page tables.
597  * @dram_page_size: The DRAM physical page size.
598  * @cfg_size: configuration space size on SRAM.
599  * @sram_size: total size of SRAM.
600  * @max_asid: maximum number of open contexts (ASIDs).
601  * @num_of_events: number of possible internal H/W IRQs.
602  * @psoc_pci_pll_nr: PCI PLL NR value.
603  * @psoc_pci_pll_nf: PCI PLL NF value.
604  * @psoc_pci_pll_od: PCI PLL OD value.
605  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
606  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
607  * @high_pll: high PLL frequency used by the device.
608  * @cb_pool_cb_cnt: number of CBs in the CB pool.
609  * @cb_pool_cb_size: size of each CB in the CB pool.
610  * @decoder_enabled_mask: which decoders are enabled.
611  * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
612  * @rotator_enabled_mask: which rotators are enabled.
613  * @edma_enabled_mask: which EDMAs are enabled.
614  * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
615  *                     binned (at most one binned DMA).
616  * @max_pending_cs: maximum of concurrent pending command submissions
617  * @max_queues: maximum amount of queues in the system
618  * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
619  *                                capabilities reported by FW, bit description
620  *                                can be found in CPU_BOOT_DEV_STS0
621  * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
622  *                                capabilities reported by FW, bit description
623  *                                can be found in CPU_BOOT_DEV_STS1
624  * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
625  *                                status reported by FW, bit description can be
626  *                                found in CPU_BOOT_DEV_STS0
627  * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
628  *                                status reported by FW, bit description can be
629  *                                found in CPU_BOOT_DEV_STS1
630  * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
631  *                            status reported by FW, bit description can be
632  *                            found in CPU_BOOT_DEV_STS0
633  * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
634  *                            status reported by FW, bit description can be
635  *                            found in CPU_BOOT_DEV_STS1
636  * @max_dec: maximum number of decoders
637  * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
638  *                         1- enabled, 0- isolated.
639  * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
640  *                         1- faulty cluster, 0- good cluster.
641  * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
642  *                          1- enabled, 0- isolated.
643  * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
644  *                                      which the property supports_user_set_page_size is true
645  *                                      (i.e. the DRAM supports multiple page sizes), otherwise
646  *                                      it will shall  be equal to dram_page_size.
647  * @num_engine_cores: number of engine cpu cores.
648  * @max_num_of_engines: maximum number of all engines in the ASIC.
649  * @num_of_special_blocks: special_blocks array size.
650  * @glbl_err_max_cause_num: global err max cause number.
651  * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
652  *                 not supported.
653  * @reserved_fw_mem_size: size of dram memory reserved for FW.
654  * @fw_event_queue_size: queue size for events from CPU-CP.
655  *                       A value of 0 means using the default HL_EQ_SIZE_IN_BYTES value.
656  * @collective_first_sob: first sync object available for collective use
657  * @collective_first_mon: first monitor available for collective use
658  * @sync_stream_first_sob: first sync object available for sync stream use
659  * @sync_stream_first_mon: first monitor available for sync stream use
660  * @first_available_user_sob: first sob available for the user
661  * @first_available_user_mon: first monitor available for the user
662  * @first_available_user_interrupt: first available interrupt reserved for the user
663  * @first_available_cq: first available CQ for the user.
664  * @user_interrupt_count: number of user interrupts.
665  * @user_dec_intr_count: number of decoder interrupts exposed to user.
666  * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
667  * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
668  * @cache_line_size: device cache line size.
669  * @server_type: Server type that the ASIC is currently installed in.
670  *               The value is according to enum hl_server_type in uapi file.
671  * @completion_queues_count: number of completion queues.
672  * @completion_mode: 0 - job based completion, 1 - cs based completion
673  * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
674  *                         in Master/Slave mode
675  * @fw_security_enabled: true if security measures are enabled in firmware,
676  *                       false otherwise
677  * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
678  *                              BOOT_DEV_STS0
679  * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
680  *                              BOOT_DEV_STS1
681  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
682  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
683  * @num_functional_hbms: number of functional HBMs in each DCORE.
684  * @hints_range_reservation: device support hint addresses range reservation.
685  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
686  * @dynamic_fw_load: is dynamic FW load is supported.
687  * @gic_interrupts_enable: true if FW is not blocking GIC controller,
688  *                         false otherwise.
689  * @use_get_power_for_reset_history: To support backward compatibility for Goya
690  *                                   and Gaudi
691  * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
692  * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
693  *                              initiated by user or TDR. This is only true
694  *                              in inference ASICs, as there is no real-world
695  *                              use-case of doing soft-reset in training (due
696  *                              to the fact that training runs on multiple
697  *                              devices)
698  * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
699  * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
700  * @supports_user_set_page_size: true if user can set the allocation page size.
701  * @dma_mask: the dma mask to be set for this device.
702  * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
703  * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
704  * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw.
705  */
706 struct asic_fixed_properties {
707 	struct hw_queue_properties	*hw_queues_props;
708 	struct hl_special_block_info	*special_blocks;
709 	struct hl_skip_blocks_cfg	skip_special_blocks_cfg;
710 	struct cpucp_info		cpucp_info;
711 	char				uboot_ver[VERSION_MAX_LEN];
712 	char				preboot_ver[VERSION_MAX_LEN];
713 	struct hl_mmu_properties	dmmu;
714 	struct hl_mmu_properties	pmmu;
715 	struct hl_mmu_properties	pmmu_huge;
716 	struct hl_hints_range		hints_dram_reserved_va_range;
717 	struct hl_hints_range		hints_host_reserved_va_range;
718 	struct hl_hints_range		hints_host_hpage_reserved_va_range;
719 	u64				sram_base_address;
720 	u64				sram_end_address;
721 	u64				sram_user_base_address;
722 	u64				dram_base_address;
723 	u64				dram_end_address;
724 	u64				dram_user_base_address;
725 	u64				dram_size;
726 	u64				dram_pci_bar_size;
727 	u64				max_power_default;
728 	u64				dc_power_default;
729 	u64				dram_size_for_default_page_mapping;
730 	u64				pcie_dbi_base_address;
731 	u64				pcie_aux_dbi_reg_addr;
732 	u64				mmu_pgt_addr;
733 	u64				mmu_dram_default_page_addr;
734 	u64				tpc_enabled_mask;
735 	u64				tpc_binning_mask;
736 	u64				dram_enabled_mask;
737 	u64				dram_binning_mask;
738 	u64				dram_hints_align_mask;
739 	u64				cfg_base_address;
740 	u64				mmu_cache_mng_addr;
741 	u64				mmu_cache_mng_size;
742 	u64				device_dma_offset_for_host_access;
743 	u64				host_base_address;
744 	u64				host_end_address;
745 	u64				max_freq_value;
746 	u64				engine_core_interrupt_reg_addr;
747 	u32				clk_pll_index;
748 	u32				mmu_pgt_size;
749 	u32				mmu_pte_size;
750 	u32				dram_page_size;
751 	u32				cfg_size;
752 	u32				sram_size;
753 	u32				max_asid;
754 	u32				num_of_events;
755 	u32				psoc_pci_pll_nr;
756 	u32				psoc_pci_pll_nf;
757 	u32				psoc_pci_pll_od;
758 	u32				psoc_pci_pll_div_factor;
759 	u32				psoc_timestamp_frequency;
760 	u32				high_pll;
761 	u32				cb_pool_cb_cnt;
762 	u32				cb_pool_cb_size;
763 	u32				decoder_enabled_mask;
764 	u32				decoder_binning_mask;
765 	u32				rotator_enabled_mask;
766 	u32				edma_enabled_mask;
767 	u32				edma_binning_mask;
768 	u32				max_pending_cs;
769 	u32				max_queues;
770 	u32				fw_preboot_cpu_boot_dev_sts0;
771 	u32				fw_preboot_cpu_boot_dev_sts1;
772 	u32				fw_bootfit_cpu_boot_dev_sts0;
773 	u32				fw_bootfit_cpu_boot_dev_sts1;
774 	u32				fw_app_cpu_boot_dev_sts0;
775 	u32				fw_app_cpu_boot_dev_sts1;
776 	u32				max_dec;
777 	u32				hmmu_hif_enabled_mask;
778 	u32				faulty_dram_cluster_map;
779 	u32				xbar_edge_enabled_mask;
780 	u32				device_mem_alloc_default_page_size;
781 	u32				num_engine_cores;
782 	u32				max_num_of_engines;
783 	u32				num_of_special_blocks;
784 	u32				glbl_err_max_cause_num;
785 	u32				hbw_flush_reg;
786 	u32				reserved_fw_mem_size;
787 	u32				fw_event_queue_size;
788 	u16				collective_first_sob;
789 	u16				collective_first_mon;
790 	u16				sync_stream_first_sob;
791 	u16				sync_stream_first_mon;
792 	u16				first_available_user_sob[HL_MAX_DCORES];
793 	u16				first_available_user_mon[HL_MAX_DCORES];
794 	u16				first_available_user_interrupt;
795 	u16				first_available_cq[HL_MAX_DCORES];
796 	u16				user_interrupt_count;
797 	u16				user_dec_intr_count;
798 	u16				tpc_interrupt_id;
799 	u16				eq_interrupt_id;
800 	u16				cache_line_size;
801 	u16				server_type;
802 	u8				completion_queues_count;
803 	u8				completion_mode;
804 	u8				mme_master_slave_mode;
805 	u8				fw_security_enabled;
806 	u8				fw_cpu_boot_dev_sts0_valid;
807 	u8				fw_cpu_boot_dev_sts1_valid;
808 	u8				dram_supports_virtual_memory;
809 	u8				hard_reset_done_by_fw;
810 	u8				num_functional_hbms;
811 	u8				hints_range_reservation;
812 	u8				iatu_done_by_fw;
813 	u8				dynamic_fw_load;
814 	u8				gic_interrupts_enable;
815 	u8				use_get_power_for_reset_history;
816 	u8				supports_compute_reset;
817 	u8				allow_inference_soft_reset;
818 	u8				configurable_stop_on_err;
819 	u8				set_max_power_on_device_init;
820 	u8				supports_user_set_page_size;
821 	u8				dma_mask;
822 	u8				supports_advanced_cpucp_rc;
823 	u8				supports_engine_modes;
824 	u8				support_dynamic_resereved_fw_size;
825 };
826 
827 /**
828  * struct hl_fence - software synchronization primitive
829  * @completion: fence is implemented using completion
830  * @refcount: refcount for this fence
831  * @cs_sequence: sequence of the corresponding command submission
832  * @stream_master_qid_map: streams masters QID bitmap to represent all streams
833  *                         masters QIDs that multi cs is waiting on
834  * @error: mark this fence with error
835  * @timestamp: timestamp upon completion
836  * @mcs_handling_done: indicates that corresponding command submission has
837  *                     finished msc handling, this does not mean it was part
838  *                     of the mcs
839  */
840 struct hl_fence {
841 	struct completion	completion;
842 	struct kref		refcount;
843 	u64			cs_sequence;
844 	u32			stream_master_qid_map;
845 	int			error;
846 	ktime_t			timestamp;
847 	u8			mcs_handling_done;
848 };
849 
850 /**
851  * struct hl_cs_compl - command submission completion object.
852  * @base_fence: hl fence object.
853  * @lock: spinlock to protect fence.
854  * @hdev: habanalabs device structure.
855  * @hw_sob: the H/W SOB used in this signal/wait CS.
856  * @encaps_sig_hdl: encaps signals handler.
857  * @cs_seq: command submission sequence number.
858  * @type: type of the CS - signal/wait.
859  * @sob_val: the SOB value that is used in this signal/wait CS.
860  * @sob_group: the SOB group that is used in this collective wait CS.
861  * @encaps_signals: indication whether it's a completion object of cs with
862  * encaps signals or not.
863  */
864 struct hl_cs_compl {
865 	struct hl_fence		base_fence;
866 	spinlock_t		lock;
867 	struct hl_device	*hdev;
868 	struct hl_hw_sob	*hw_sob;
869 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
870 	u64			cs_seq;
871 	enum hl_cs_type		type;
872 	u16			sob_val;
873 	u16			sob_group;
874 	bool			encaps_signals;
875 };
876 
877 /*
878  * Command Buffers
879  */
880 
881 /**
882  * struct hl_ts_buff - describes a timestamp buffer.
883  * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
884  * @user_buff_address: Holds the user buffer's kernel virtual address.
885  * @kernel_buff_size: Holds the internal kernel buffer size.
886  */
887 struct hl_ts_buff {
888 	void			*kernel_buff_address;
889 	void			*user_buff_address;
890 	u32			kernel_buff_size;
891 };
892 
893 struct hl_mmap_mem_buf;
894 
895 /**
896  * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
897  * @dev: back pointer to the owning device
898  * @lock: protects handles
899  * @handles: an idr holding all active handles to the memory buffers in the system.
900  */
901 struct hl_mem_mgr {
902 	struct device *dev;
903 	spinlock_t lock;
904 	struct idr handles;
905 };
906 
907 /**
908  * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
909  * @topic: string identifier used for logging
910  * @mem_id: memory type identifier, embedded in the handle and used to identify
911  *          the memory type by handle.
912  * @alloc: callback executed on buffer allocation, shall allocate the memory,
913  *         set it under buffer private, and set mappable size.
914  * @mmap: callback executed on mmap, must map the buffer to vma
915  * @release: callback executed on release, must free the resources used by the buffer
916  */
917 struct hl_mmap_mem_buf_behavior {
918 	const char *topic;
919 	u64 mem_id;
920 
921 	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
922 	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
923 	void (*release)(struct hl_mmap_mem_buf *buf);
924 };
925 
926 /**
927  * struct hl_mmap_mem_buf - describes a single unified memory buffer
928  * @behavior: buffer behavior
929  * @mmg: back pointer to the unified memory manager
930  * @refcount: reference counter for buffer users
931  * @private: pointer to buffer behavior private data
932  * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
933  * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
934  *                   may change at runtime.
935  * @mappable_size: the original mappable size of the buffer, does not change after
936  *                 the allocation.
937  * @handle: the buffer id in mmg handles store
938  */
939 struct hl_mmap_mem_buf {
940 	struct hl_mmap_mem_buf_behavior *behavior;
941 	struct hl_mem_mgr *mmg;
942 	struct kref refcount;
943 	void *private;
944 	atomic_t mmap;
945 	u64 real_mapped_size;
946 	u64 mappable_size;
947 	u64 handle;
948 };
949 
950 /**
951  * struct hl_cb - describes a Command Buffer.
952  * @hdev: pointer to device this CB belongs to.
953  * @ctx: pointer to the CB owner's context.
954  * @buf: back pointer to the parent mappable memory buffer
955  * @debugfs_list: node in debugfs list of command buffers.
956  * @pool_list: node in pool list of command buffers.
957  * @kernel_address: Holds the CB's kernel virtual address.
958  * @virtual_addr: Holds the CB's virtual address.
959  * @bus_address: Holds the CB's DMA address.
960  * @size: holds the CB's size.
961  * @roundup_size: holds the cb size after roundup to page size.
962  * @cs_cnt: holds number of CS that this CB participates in.
963  * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
964  * @is_pool: true if CB was acquired from the pool, false otherwise.
965  * @is_internal: internally allocated
966  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
967  */
968 struct hl_cb {
969 	struct hl_device	*hdev;
970 	struct hl_ctx		*ctx;
971 	struct hl_mmap_mem_buf	*buf;
972 	struct list_head	debugfs_list;
973 	struct list_head	pool_list;
974 	void			*kernel_address;
975 	u64			virtual_addr;
976 	dma_addr_t		bus_address;
977 	u32			size;
978 	u32			roundup_size;
979 	atomic_t		cs_cnt;
980 	atomic_t		is_handle_destroyed;
981 	u8			is_pool;
982 	u8			is_internal;
983 	u8			is_mmu_mapped;
984 };
985 
986 
987 /*
988  * QUEUES
989  */
990 
991 struct hl_cs_job;
992 
993 /* Queue length of external and HW queues */
994 #define HL_QUEUE_LENGTH			4096
995 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
996 
997 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
998 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
999 #endif
1000 
1001 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
1002 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
1003 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
1004 
1005 /* Must be power of 2 */
1006 #define HL_EQ_LENGTH			64
1007 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
1008 
1009 /* Host <-> CPU-CP shared memory size */
1010 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
1011 
1012 /**
1013  * struct hl_sync_stream_properties -
1014  *     describes a H/W queue sync stream properties
1015  * @hw_sob: array of the used H/W SOBs by this H/W queue.
1016  * @next_sob_val: the next value to use for the currently used SOB.
1017  * @base_sob_id: the base SOB id of the SOBs used by this queue.
1018  * @base_mon_id: the base MON id of the MONs used by this queue.
1019  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1020  *                          in order to sync with all slave queues.
1021  * @collective_slave_mon_id: the MON id used by this slave queue in order to
1022  *                           sync with its master queue.
1023  * @collective_sob_id: current SOB id used by this collective slave queue
1024  *                     to signal its collective master queue upon completion.
1025  * @curr_sob_offset: the id offset to the currently used SOB from the
1026  *                   HL_RSVD_SOBS that are being used by this queue.
1027  */
1028 struct hl_sync_stream_properties {
1029 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1030 	u16		next_sob_val;
1031 	u16		base_sob_id;
1032 	u16		base_mon_id;
1033 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1034 	u16		collective_slave_mon_id;
1035 	u16		collective_sob_id;
1036 	u8		curr_sob_offset;
1037 };
1038 
1039 /**
1040  * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1041  * handlers manager
1042  * @lock: protects handles.
1043  * @handles: an idr to hold all encapsulated signals handles.
1044  */
1045 struct hl_encaps_signals_mgr {
1046 	spinlock_t		lock;
1047 	struct idr		handles;
1048 };
1049 
1050 /**
1051  * struct hl_hw_queue - describes a H/W transport queue.
1052  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1053  * @sync_stream_prop: sync stream queue properties
1054  * @queue_type: type of queue.
1055  * @collective_mode: collective mode of current queue
1056  * @kernel_address: holds the queue's kernel virtual address.
1057  * @bus_address: holds the queue's DMA address.
1058  * @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in
1059  *                   queue properites.
1060  * @pi: holds the queue's pi value.
1061  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1062  * @hw_queue_id: the id of the H/W queue.
1063  * @cq_id: the id for the corresponding CQ for this H/W queue.
1064  * @msi_vec: the IRQ number of the H/W queue.
1065  * @int_queue_len: length of internal queue (number of entries).
1066  * @valid: is the queue valid (we have array of 32 queues, not all of them
1067  *         exist).
1068  * @supports_sync_stream: True if queue supports sync stream
1069  * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram
1070  */
1071 struct hl_hw_queue {
1072 	struct hl_cs_job			**shadow_queue;
1073 	struct hl_sync_stream_properties	sync_stream_prop;
1074 	enum hl_queue_type			queue_type;
1075 	enum hl_collective_mode			collective_mode;
1076 	void					*kernel_address;
1077 	dma_addr_t				bus_address;
1078 	u64					pq_dram_address;
1079 	u32					pi;
1080 	atomic_t				ci;
1081 	u32					hw_queue_id;
1082 	u32					cq_id;
1083 	u32					msi_vec;
1084 	u16					int_queue_len;
1085 	u8					valid;
1086 	u8					supports_sync_stream;
1087 	u8					dram_bd;
1088 };
1089 
1090 /**
1091  * struct hl_cq - describes a completion queue
1092  * @hdev: pointer to the device structure
1093  * @kernel_address: holds the queue's kernel virtual address
1094  * @bus_address: holds the queue's DMA address
1095  * @cq_idx: completion queue index in array
1096  * @hw_queue_id: the id of the matching H/W queue
1097  * @ci: ci inside the queue
1098  * @pi: pi inside the queue
1099  * @free_slots_cnt: counter of free slots in queue
1100  */
1101 struct hl_cq {
1102 	struct hl_device	*hdev;
1103 	void			*kernel_address;
1104 	dma_addr_t		bus_address;
1105 	u32			cq_idx;
1106 	u32			hw_queue_id;
1107 	u32			ci;
1108 	u32			pi;
1109 	atomic_t		free_slots_cnt;
1110 };
1111 
1112 enum hl_user_interrupt_type {
1113 	HL_USR_INTERRUPT_CQ = 0,
1114 	HL_USR_INTERRUPT_DECODER,
1115 	HL_USR_INTERRUPT_TPC,
1116 	HL_USR_INTERRUPT_UNEXPECTED
1117 };
1118 
1119 /**
1120  * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data
1121  * @free_nodes_pool: pool of nodes to be used for free timestamp jobs
1122  * @free_nodes_length: number of nodes in free_nodes_pool
1123  * @next_avail_free_node_idx: index of the next free node in the pool
1124  *
1125  * the free nodes pool must be protected by the user interrupt lock
1126  * to avoid race between different interrupts which are using the same
1127  * ts buffer with different offsets.
1128  */
1129 struct hl_ts_free_jobs {
1130 	struct timestamp_reg_free_node *free_nodes_pool;
1131 	u32				free_nodes_length;
1132 	u32				next_avail_free_node_idx;
1133 };
1134 
1135 /**
1136  * struct hl_user_interrupt - holds user interrupt information
1137  * @hdev: pointer to the device structure
1138  * @ts_free_jobs_data: timestamp free jobs related data
1139  * @type: user interrupt type
1140  * @wait_list_head: head to the list of user threads pending on this interrupt
1141  * @ts_list_head: head to the list of timestamp records
1142  * @wait_list_lock: protects wait_list_head
1143  * @ts_list_lock: protects ts_list_head
1144  * @timestamp: last timestamp taken upon interrupt
1145  * @interrupt_id: msix interrupt id
1146  */
1147 struct hl_user_interrupt {
1148 	struct hl_device		*hdev;
1149 	struct hl_ts_free_jobs		ts_free_jobs_data;
1150 	enum hl_user_interrupt_type	type;
1151 	struct list_head		wait_list_head;
1152 	struct list_head		ts_list_head;
1153 	spinlock_t			wait_list_lock;
1154 	spinlock_t			ts_list_lock;
1155 	ktime_t				timestamp;
1156 	u32				interrupt_id;
1157 };
1158 
1159 /**
1160  * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1161  * @free_objects_node: node in the list free_obj_jobs
1162  * @cq_cb: pointer to cq command buffer to be freed
1163  * @buf: pointer to timestamp buffer to be freed
1164  * @in_use: indicates whether the node still in use in workqueue thread.
1165  * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler
1166  */
1167 struct timestamp_reg_free_node {
1168 	struct list_head	free_objects_node;
1169 	struct hl_cb		*cq_cb;
1170 	struct hl_mmap_mem_buf	*buf;
1171 	atomic_t		in_use;
1172 	u8			dynamic_alloc;
1173 };
1174 
1175 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1176  * the job will be to pass over the free_obj_jobs list and put refcount to objects
1177  * in each node of the list
1178  * @free_obj: workqueue object to free timestamp registration node objects
1179  * @hdev: pointer to the device structure
1180  * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1181  * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the
1182  *                               interrupt handler.
1183  */
1184 struct timestamp_reg_work_obj {
1185 	struct work_struct	free_obj;
1186 	struct hl_device	*hdev;
1187 	struct list_head	*free_obj_head;
1188 	struct list_head	*dynamic_alloc_free_obj_head;
1189 };
1190 
1191 /* struct timestamp_reg_info - holds the timestamp registration related data.
1192  * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1193  *       relevant only when doing timestamps records registration.
1194  * @cq_cb: pointer to CQ counter CB.
1195  * @interrupt: interrupt that the node hanged on it's wait list.
1196  * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1197  *                         relevant only when doing timestamps records
1198  *                         registration.
1199  * @in_use: indicates if the node already in use. relevant only when doing
1200  *          timestamps records registration, since in this case the driver
1201  *          will have it's own buffer which serve as a records pool instead of
1202  *          allocating records dynamically.
1203  */
1204 struct timestamp_reg_info {
1205 	struct hl_mmap_mem_buf		*buf;
1206 	struct hl_cb			*cq_cb;
1207 	struct hl_user_interrupt	*interrupt;
1208 	u64				*timestamp_kernel_addr;
1209 	bool				in_use;
1210 };
1211 
1212 /**
1213  * struct hl_user_pending_interrupt - holds a context to a user thread
1214  *                                    pending on an interrupt
1215  * @ts_reg_info: holds the timestamps registration nodes info
1216  * @list_node: node in the list of user threads pending on an interrupt or timestamp
1217  * @fence: hl fence object for interrupt completion
1218  * @cq_target_value: CQ target value
1219  * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1220  *                  handler for target value comparison
1221  */
1222 struct hl_user_pending_interrupt {
1223 	struct timestamp_reg_info	ts_reg_info;
1224 	struct list_head		list_node;
1225 	struct hl_fence			fence;
1226 	u64				cq_target_value;
1227 	u64				*cq_kernel_addr;
1228 };
1229 
1230 /**
1231  * struct hl_eq - describes the event queue (single one per device)
1232  * @hdev: pointer to the device structure
1233  * @kernel_address: holds the queue's kernel virtual address
1234  * @bus_address: holds the queue's DMA address
1235  * @size: the event queue size
1236  * @ci: ci inside the queue
1237  * @prev_eqe_index: the index of the previous event queue entry. The index of
1238  *                  the current entry's index must be +1 of the previous one.
1239  * @check_eqe_index: do we need to check the index of the current entry vs. the
1240  *                   previous one. This is for backward compatibility with older
1241  *                   firmwares
1242  */
1243 struct hl_eq {
1244 	struct hl_device	*hdev;
1245 	void			*kernel_address;
1246 	dma_addr_t		bus_address;
1247 	u32			size;
1248 	u32			ci;
1249 	u32			prev_eqe_index;
1250 	bool			check_eqe_index;
1251 };
1252 
1253 /**
1254  * struct hl_dec - describes a decoder sw instance.
1255  * @hdev: pointer to the device structure.
1256  * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1257  * @core_id: ID of the decoder.
1258  * @base_addr: base address of the decoder.
1259  */
1260 struct hl_dec {
1261 	struct hl_device	*hdev;
1262 	struct work_struct	abnrm_intr_work;
1263 	u32			core_id;
1264 	u32			base_addr;
1265 };
1266 
1267 /**
1268  * enum hl_asic_type - supported ASIC types.
1269  * @ASIC_INVALID: Invalid ASIC type.
1270  * @ASIC_GOYA: Goya device (HL-1000).
1271  * @ASIC_GAUDI: Gaudi device (HL-2000).
1272  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1273  * @ASIC_GAUDI2: Gaudi2 device.
1274  * @ASIC_GAUDI2B: Gaudi2B device.
1275  * @ASIC_GAUDI2C: Gaudi2C device.
1276  * @ASIC_GAUDI2D: Gaudi2D device.
1277  */
1278 enum hl_asic_type {
1279 	ASIC_INVALID,
1280 
1281 	ASIC_GOYA,
1282 	ASIC_GAUDI,
1283 	ASIC_GAUDI_SEC,
1284 	ASIC_GAUDI2,
1285 	ASIC_GAUDI2B,
1286 	ASIC_GAUDI2C,
1287 	ASIC_GAUDI2D,
1288 };
1289 
1290 struct hl_cs_parser;
1291 
1292 /**
1293  * enum hl_pm_mng_profile - power management profile.
1294  * @PM_AUTO: internal clock is set by the Linux driver.
1295  * @PM_MANUAL: internal clock is set by the user.
1296  * @PM_LAST: last power management type.
1297  */
1298 enum hl_pm_mng_profile {
1299 	PM_AUTO = 1,
1300 	PM_MANUAL,
1301 	PM_LAST
1302 };
1303 
1304 /**
1305  * enum hl_pll_frequency - PLL frequency.
1306  * @PLL_HIGH: high frequency.
1307  * @PLL_LOW: low frequency.
1308  * @PLL_LAST: last frequency values that were configured by the user.
1309  */
1310 enum hl_pll_frequency {
1311 	PLL_HIGH = 1,
1312 	PLL_LOW,
1313 	PLL_LAST
1314 };
1315 
1316 #define PLL_REF_CLK 50
1317 
1318 enum div_select_defs {
1319 	DIV_SEL_REF_CLK = 0,
1320 	DIV_SEL_PLL_CLK = 1,
1321 	DIV_SEL_DIVIDED_REF = 2,
1322 	DIV_SEL_DIVIDED_PLL = 3,
1323 };
1324 
1325 enum debugfs_access_type {
1326 	DEBUGFS_READ8,
1327 	DEBUGFS_WRITE8,
1328 	DEBUGFS_READ32,
1329 	DEBUGFS_WRITE32,
1330 	DEBUGFS_READ64,
1331 	DEBUGFS_WRITE64,
1332 };
1333 
1334 enum pci_region {
1335 	PCI_REGION_CFG,
1336 	PCI_REGION_SRAM,
1337 	PCI_REGION_DRAM,
1338 	PCI_REGION_SP_SRAM,
1339 	PCI_REGION_NUMBER,
1340 };
1341 
1342 /**
1343  * struct pci_mem_region - describe memory region in a PCI bar
1344  * @region_base: region base address
1345  * @region_size: region size
1346  * @bar_size: size of the BAR
1347  * @offset_in_bar: region offset into the bar
1348  * @bar_id: bar ID of the region
1349  * @used: if used 1, otherwise 0
1350  */
1351 struct pci_mem_region {
1352 	u64 region_base;
1353 	u64 region_size;
1354 	u64 bar_size;
1355 	u64 offset_in_bar;
1356 	u8 bar_id;
1357 	u8 used;
1358 };
1359 
1360 /**
1361  * struct static_fw_load_mgr - static FW load manager
1362  * @preboot_version_max_off: max offset to preboot version
1363  * @boot_fit_version_max_off: max offset to boot fit version
1364  * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1365  * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1366  * @cpu_boot_status_reg: boot status register
1367  * @cpu_boot_dev_status0_reg: boot device status register 0
1368  * @cpu_boot_dev_status1_reg: boot device status register 1
1369  * @boot_err0_reg: boot error register 0
1370  * @boot_err1_reg: boot error register 1
1371  * @preboot_version_offset_reg: SRAM offset to preboot version register
1372  * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1373  * @sram_offset_mask: mask for getting offset into the SRAM
1374  * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1375  */
1376 struct static_fw_load_mgr {
1377 	u64 preboot_version_max_off;
1378 	u64 boot_fit_version_max_off;
1379 	u32 kmd_msg_to_cpu_reg;
1380 	u32 cpu_cmd_status_to_host_reg;
1381 	u32 cpu_boot_status_reg;
1382 	u32 cpu_boot_dev_status0_reg;
1383 	u32 cpu_boot_dev_status1_reg;
1384 	u32 boot_err0_reg;
1385 	u32 boot_err1_reg;
1386 	u32 preboot_version_offset_reg;
1387 	u32 boot_fit_version_offset_reg;
1388 	u32 sram_offset_mask;
1389 	u32 cpu_reset_wait_msec;
1390 };
1391 
1392 /**
1393  * struct fw_response - FW response to LKD command
1394  * @ram_offset: descriptor offset into the RAM
1395  * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1396  * @status: command status
1397  */
1398 struct fw_response {
1399 	u32 ram_offset;
1400 	u8 ram_type;
1401 	u8 status;
1402 };
1403 
1404 /**
1405  * struct dynamic_fw_load_mgr - dynamic FW load manager
1406  * @response: FW to LKD response
1407  * @comm_desc: the communication descriptor with FW
1408  * @image_region: region to copy the FW image to
1409  * @fw_image_size: size of FW image to load
1410  * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1411  * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1412  */
1413 struct dynamic_fw_load_mgr {
1414 	struct fw_response response;
1415 	struct lkd_fw_comms_desc comm_desc;
1416 	struct pci_mem_region *image_region;
1417 	size_t fw_image_size;
1418 	u32 wait_for_bl_timeout;
1419 	bool fw_desc_valid;
1420 };
1421 
1422 /**
1423  * struct pre_fw_load_props - needed properties for pre-FW load
1424  * @cpu_boot_status_reg: cpu_boot_status register address
1425  * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1426  * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1427  * @boot_err0_reg: boot_err0 register address
1428  * @boot_err1_reg: boot_err1 register address
1429  * @wait_for_preboot_timeout: timeout to poll for preboot ready
1430  * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know
1431  *		preboot needs longer time.
1432  */
1433 struct pre_fw_load_props {
1434 	u32 cpu_boot_status_reg;
1435 	u32 sts_boot_dev_sts0_reg;
1436 	u32 sts_boot_dev_sts1_reg;
1437 	u32 boot_err0_reg;
1438 	u32 boot_err1_reg;
1439 	u32 wait_for_preboot_timeout;
1440 	u32 wait_for_preboot_extended_timeout;
1441 };
1442 
1443 /**
1444  * struct fw_image_props - properties of FW image
1445  * @image_name: name of the image
1446  * @src_off: offset in src FW to copy from
1447  * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1448  */
1449 struct fw_image_props {
1450 	char *image_name;
1451 	u32 src_off;
1452 	u32 copy_size;
1453 };
1454 
1455 /**
1456  * struct fw_load_mgr - manager FW loading process
1457  * @dynamic_loader: specific structure for dynamic load
1458  * @static_loader: specific structure for static load
1459  * @pre_fw_load_props: parameter for pre FW load
1460  * @boot_fit_img: boot fit image properties
1461  * @linux_img: linux image properties
1462  * @cpu_timeout: CPU response timeout in usec
1463  * @boot_fit_timeout: Boot fit load timeout in usec
1464  * @skip_bmc: should BMC be skipped
1465  * @sram_bar_id: SRAM bar ID
1466  * @dram_bar_id: DRAM bar ID
1467  * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1468  *                  component. values are set according to enum hl_fw_types.
1469  */
1470 struct fw_load_mgr {
1471 	union {
1472 		struct dynamic_fw_load_mgr dynamic_loader;
1473 		struct static_fw_load_mgr static_loader;
1474 	};
1475 	struct pre_fw_load_props pre_fw_load;
1476 	struct fw_image_props boot_fit_img;
1477 	struct fw_image_props linux_img;
1478 	u32 cpu_timeout;
1479 	u32 boot_fit_timeout;
1480 	u8 skip_bmc;
1481 	u8 sram_bar_id;
1482 	u8 dram_bar_id;
1483 	u8 fw_comp_loaded;
1484 };
1485 
1486 struct hl_cs;
1487 
1488 /**
1489  * struct engines_data - asic engines data
1490  * @buf: buffer for engines data in ascii
1491  * @actual_size: actual size of data that was written by the driver to the allocated buffer
1492  * @allocated_buf_size: total size of allocated buffer
1493  */
1494 struct engines_data {
1495 	char *buf;
1496 	int actual_size;
1497 	u32 allocated_buf_size;
1498 };
1499 
1500 /**
1501  * struct hl_asic_funcs - ASIC specific functions that are can be called from
1502  *                        common code.
1503  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1504  * @early_fini: tears down what was done in early_init.
1505  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1506  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1507  * @sw_init: sets up driver state, does not configure H/W.
1508  * @sw_fini: tears down driver state, does not configure H/W.
1509  * @hw_init: sets up the H/W state.
1510  * @hw_fini: tears down the H/W state.
1511  * @halt_engines: halt engines, needed for reset sequence. This also disables
1512  *                interrupts from the device. Should be called before
1513  *                hw_fini and before CS rollback.
1514  * @suspend: handles IP specific H/W or SW changes for suspend.
1515  * @resume: handles IP specific H/W or SW changes for resume.
1516  * @mmap: maps a memory.
1517  * @ring_doorbell: increment PI on a given QMAN.
1518  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1519  *             function because the PQs are located in different memory areas
1520  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1521  *             writing the PQE must match the destination memory area
1522  *             properties.
1523  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1524  *                           dma_alloc_coherent(). This is ASIC function because
1525  *                           its implementation is not trivial when the driver
1526  *                           is loaded in simulation mode (not upstreamed).
1527  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1528  *                           dma_free_coherent(). This is ASIC function because
1529  *                           its implementation is not trivial when the driver
1530  *                           is loaded in simulation mode (not upstreamed).
1531  * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1532  * @scrub_device_dram: Scrub the dram memory of the device.
1533  * @get_int_queue_base: get the internal queue base address.
1534  * @test_queues: run simple test on all queues for sanity check.
1535  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1536  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1537  * @asic_dma_pool_free: free small DMA allocation from pool.
1538  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1539  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1540  * @dma_unmap_sgtable: DMA unmap scatter-gather table.
1541  * @dma_map_sgtable: DMA map scatter-gather table.
1542  * @cs_parser: parse Command Submission.
1543  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1544  * @update_eq_ci: update event queue CI.
1545  * @context_switch: called upon ASID context switch.
1546  * @restore_phase_topology: clear all SOBs amd MONs.
1547  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1548  *                    internal memory via DMA engine.
1549  * @add_device_attr: add ASIC specific device attributes.
1550  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1551  * @get_events_stat: retrieve event queue entries histogram.
1552  * @read_pte: read MMU page table entry from DRAM.
1553  * @write_pte: write MMU page table entry to DRAM.
1554  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1555  *                        (L1 only) or hard (L0 & L1) flush.
1556  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1557  * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1558  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1559  * @debug_coresight: perform certain actions on Coresight for debugging.
1560  * @is_device_idle: return true if device is idle, false otherwise.
1561  * @compute_reset_late_init: perform certain actions needed after a compute reset
1562  * @hw_queues_lock: acquire H/W queues lock.
1563  * @hw_queues_unlock: release H/W queues lock.
1564  * @get_pci_id: retrieve PCI ID.
1565  * @get_eeprom_data: retrieve EEPROM data from F/W.
1566  * @get_monitor_dump: retrieve monitor registers dump from F/W.
1567  * @send_cpu_message: send message to F/W. If the message is timedout, the
1568  *                    driver will eventually reset the device. The timeout can
1569  *                    be determined by the calling function or it can be 0 and
1570  *                    then the timeout is the default timeout for the specific
1571  *                    ASIC
1572  * @get_hw_state: retrieve the H/W state
1573  * @pci_bars_map: Map PCI BARs.
1574  * @init_iatu: Initialize the iATU unit inside the PCI controller.
1575  * @rreg: Read a register. Needed for simulator support.
1576  * @wreg: Write a register. Needed for simulator support.
1577  * @halt_coresight: stop the ETF and ETR traces.
1578  * @ctx_init: context dependent initialization.
1579  * @ctx_fini: context dependent cleanup.
1580  * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1581  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1582  * @load_firmware_to_device: load the firmware to the device's memory
1583  * @load_boot_fit_to_device: load boot fit to device's memory
1584  * @get_signal_cb_size: Get signal CB size.
1585  * @get_wait_cb_size: Get wait CB size.
1586  * @gen_signal_cb: Generate a signal CB.
1587  * @gen_wait_cb: Generate a wait CB.
1588  * @reset_sob: Reset a SOB.
1589  * @reset_sob_group: Reset SOB group
1590  * @get_device_time: Get the device time.
1591  * @pb_print_security_errors: print security errors according block and cause
1592  * @collective_wait_init_cs: Generate collective master/slave packets
1593  *                           and place them in the relevant cs jobs
1594  * @collective_wait_create_jobs: allocate collective wait cs jobs
1595  * @get_dec_base_addr: get the base address of a given decoder.
1596  * @scramble_addr: Routine to scramble the address prior of mapping it
1597  *                 in the MMU.
1598  * @descramble_addr: Routine to de-scramble the address prior of
1599  *                   showing it to users.
1600  * @ack_protection_bits_errors: ack and dump all security violations
1601  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1602  *                   also returns the size of the block if caller supplies
1603  *                   a valid pointer for it
1604  * @hw_block_mmap: mmap a HW block with a given id.
1605  * @enable_events_from_fw: send interrupt to firmware to notify them the
1606  *                         driver is ready to receive asynchronous events. This
1607  *                         function should be called during the first init and
1608  *                         after every hard-reset of the device
1609  * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1610  * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1611  * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1612  *                         generic f/w compatible PLL Indexes
1613  * @init_firmware_preload_params: initialize pre FW-load parameters.
1614  * @init_firmware_loader: initialize data for FW loader.
1615  * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1616  * @state_dump_init: initialize constants required for state dump
1617  * @get_sob_addr: get SOB base address offset.
1618  * @set_pci_memory_regions: setting properties of PCI memory regions
1619  * @get_stream_master_qid_arr: get pointer to stream masters QID array
1620  * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1621  * @access_dev_mem: access device memory
1622  * @set_dram_bar_base: set the base of the DRAM BAR
1623  * @set_engine_cores: set a config command to engine cores
1624  * @set_engines: set a config command to user engines
1625  * @send_device_activity: indication to FW about device availability
1626  * @set_dram_properties: set DRAM related properties.
1627  * @set_binning_masks: set binning/enable masks for all relevant components.
1628  */
1629 struct hl_asic_funcs {
1630 	int (*early_init)(struct hl_device *hdev);
1631 	int (*early_fini)(struct hl_device *hdev);
1632 	int (*late_init)(struct hl_device *hdev);
1633 	void (*late_fini)(struct hl_device *hdev);
1634 	int (*sw_init)(struct hl_device *hdev);
1635 	int (*sw_fini)(struct hl_device *hdev);
1636 	int (*hw_init)(struct hl_device *hdev);
1637 	int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1638 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1639 	int (*suspend)(struct hl_device *hdev);
1640 	int (*resume)(struct hl_device *hdev);
1641 	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1642 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1643 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1644 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1645 			struct hl_bd *bd);
1646 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1647 					dma_addr_t *dma_handle, gfp_t flag);
1648 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1649 					void *cpu_addr, dma_addr_t dma_handle);
1650 	int (*scrub_device_mem)(struct hl_device *hdev);
1651 	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1652 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1653 				dma_addr_t *dma_handle, u16 *queue_len);
1654 	int (*test_queues)(struct hl_device *hdev);
1655 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1656 				gfp_t mem_flags, dma_addr_t *dma_handle);
1657 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1658 				dma_addr_t dma_addr);
1659 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1660 				size_t size, dma_addr_t *dma_handle);
1661 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1662 				size_t size, void *vaddr);
1663 	void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1664 				enum dma_data_direction dir);
1665 	int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1666 				enum dma_data_direction dir);
1667 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1668 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1669 					void *kernel_address, u32 len,
1670 					u32 original_len,
1671 					u64 cq_addr, u32 cq_val, u32 msix_num,
1672 					bool eb);
1673 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1674 	int (*context_switch)(struct hl_device *hdev, u32 asid);
1675 	void (*restore_phase_topology)(struct hl_device *hdev);
1676 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1677 				void *blob_addr);
1678 	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1679 				struct attribute_group *dev_vrm_attr_grp);
1680 	void (*handle_eqe)(struct hl_device *hdev,
1681 				struct hl_eq_entry *eq_entry);
1682 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1683 				u32 *size);
1684 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1685 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1686 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1687 					u32 flags);
1688 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1689 				u32 flags, u32 asid, u64 va, u64 size);
1690 	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1691 	int (*send_heartbeat)(struct hl_device *hdev);
1692 	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1693 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1694 				struct engines_data *e);
1695 	int (*compute_reset_late_init)(struct hl_device *hdev);
1696 	void (*hw_queues_lock)(struct hl_device *hdev);
1697 	void (*hw_queues_unlock)(struct hl_device *hdev);
1698 	u32 (*get_pci_id)(struct hl_device *hdev);
1699 	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1700 	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1701 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1702 				u16 len, u32 timeout, u64 *result);
1703 	int (*pci_bars_map)(struct hl_device *hdev);
1704 	int (*init_iatu)(struct hl_device *hdev);
1705 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1706 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1707 	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1708 	int (*ctx_init)(struct hl_ctx *ctx);
1709 	void (*ctx_fini)(struct hl_ctx *ctx);
1710 	int (*pre_schedule_cs)(struct hl_cs *cs);
1711 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1712 	int (*load_firmware_to_device)(struct hl_device *hdev);
1713 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1714 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1715 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1716 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1717 			u32 size, bool eb);
1718 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1719 			struct hl_gen_wait_properties *prop);
1720 	void (*reset_sob)(struct hl_device *hdev, void *data);
1721 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1722 	u64 (*get_device_time)(struct hl_device *hdev);
1723 	void (*pb_print_security_errors)(struct hl_device *hdev,
1724 			u32 block_addr, u32 cause, u32 offended_addr);
1725 	int (*collective_wait_init_cs)(struct hl_cs *cs);
1726 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1727 			struct hl_ctx *ctx, struct hl_cs *cs,
1728 			u32 wait_queue_id, u32 collective_engine_id,
1729 			u32 encaps_signal_offset);
1730 	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1731 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1732 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1733 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1734 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1735 				u32 *block_size, u32 *block_id);
1736 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1737 			u32 block_id, u32 block_size);
1738 	void (*enable_events_from_fw)(struct hl_device *hdev);
1739 	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1740 	void (*get_msi_info)(__le32 *table);
1741 	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1742 	void (*init_firmware_preload_params)(struct hl_device *hdev);
1743 	void (*init_firmware_loader)(struct hl_device *hdev);
1744 	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1745 	void (*state_dump_init)(struct hl_device *hdev);
1746 	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1747 	void (*set_pci_memory_regions)(struct hl_device *hdev);
1748 	u32* (*get_stream_master_qid_arr)(void);
1749 	void (*check_if_razwi_happened)(struct hl_device *hdev);
1750 	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1751 					u32 page_size, u32 *real_page_size, bool is_dram_addr);
1752 	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1753 				u64 addr, u64 *val, enum debugfs_access_type acc_type);
1754 	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1755 	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1756 					u32 num_cores, u32 core_command);
1757 	int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1758 					u32 num_engines, u32 engine_command);
1759 	int (*send_device_activity)(struct hl_device *hdev, bool open);
1760 	int (*set_dram_properties)(struct hl_device *hdev);
1761 	int (*set_binning_masks)(struct hl_device *hdev);
1762 };
1763 
1764 
1765 /*
1766  * CONTEXTS
1767  */
1768 
1769 #define HL_KERNEL_ASID_ID	0
1770 
1771 /**
1772  * enum hl_va_range_type - virtual address range type.
1773  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1774  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1775  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1776  */
1777 enum hl_va_range_type {
1778 	HL_VA_RANGE_TYPE_HOST,
1779 	HL_VA_RANGE_TYPE_HOST_HUGE,
1780 	HL_VA_RANGE_TYPE_DRAM,
1781 	HL_VA_RANGE_TYPE_MAX
1782 };
1783 
1784 /**
1785  * struct hl_va_range - virtual addresses range.
1786  * @lock: protects the virtual addresses list.
1787  * @list: list of virtual addresses blocks available for mappings.
1788  * @start_addr: range start address.
1789  * @end_addr: range end address.
1790  * @page_size: page size of this va range.
1791  */
1792 struct hl_va_range {
1793 	struct mutex		lock;
1794 	struct list_head	list;
1795 	u64			start_addr;
1796 	u64			end_addr;
1797 	u32			page_size;
1798 };
1799 
1800 /**
1801  * struct hl_cs_counters_atomic - command submission counters
1802  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1803  * @parsing_drop_cnt: dropped due to error in packet parsing
1804  * @queue_full_drop_cnt: dropped due to queue full
1805  * @device_in_reset_drop_cnt: dropped due to device in reset
1806  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1807  * @validation_drop_cnt: dropped due to error in validation
1808  */
1809 struct hl_cs_counters_atomic {
1810 	atomic64_t out_of_mem_drop_cnt;
1811 	atomic64_t parsing_drop_cnt;
1812 	atomic64_t queue_full_drop_cnt;
1813 	atomic64_t device_in_reset_drop_cnt;
1814 	atomic64_t max_cs_in_flight_drop_cnt;
1815 	atomic64_t validation_drop_cnt;
1816 };
1817 
1818 /**
1819  * struct hl_dmabuf_priv - a dma-buf private object.
1820  * @dmabuf: pointer to dma-buf object.
1821  * @ctx: pointer to the dma-buf owner's context.
1822  * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1823  *                where virtual memory is supported.
1824  * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1825  * @offset: the offset into the buffer from which the memory is exported.
1826  *          Relevant only if virtual memory is supported and phys_pg_pack is being used.
1827  * device_phys_addr: physical address of the device's memory. Relevant only
1828  *                   if phys_pg_pack is NULL (dma-buf was exported from address).
1829  *                   The total size can be taken from the dmabuf object.
1830  */
1831 struct hl_dmabuf_priv {
1832 	struct dma_buf			*dmabuf;
1833 	struct hl_ctx			*ctx;
1834 	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1835 	struct hl_vm_hash_node		*memhash_hnode;
1836 	u64				offset;
1837 	u64				device_phys_addr;
1838 };
1839 
1840 #define HL_CS_OUTCOME_HISTORY_LEN 256
1841 
1842 /**
1843  * struct hl_cs_outcome - represents a single completed CS outcome
1844  * @list_link: link to either container's used list or free list
1845  * @map_link: list to the container hash map
1846  * @ts: completion ts
1847  * @seq: the original cs sequence
1848  * @error: error code cs completed with, if any
1849  */
1850 struct hl_cs_outcome {
1851 	struct list_head list_link;
1852 	struct hlist_node map_link;
1853 	ktime_t ts;
1854 	u64 seq;
1855 	int error;
1856 };
1857 
1858 /**
1859  * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1860  * @outcome_map: index of completed CS searchable by sequence number
1861  * @used_list: list of outcome objects currently in use
1862  * @free_list: list of outcome objects currently not in use
1863  * @nodes_pool: a static pool of pre-allocated outcome objects
1864  * @db_lock: any operation on the store must take this lock
1865  */
1866 struct hl_cs_outcome_store {
1867 	DECLARE_HASHTABLE(outcome_map, 8);
1868 	struct list_head used_list;
1869 	struct list_head free_list;
1870 	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1871 	spinlock_t db_lock;
1872 };
1873 
1874 /**
1875  * struct hl_ctx - user/kernel context.
1876  * @mem_hash: holds mapping from virtual address to virtual memory area
1877  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1878  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1879  * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1880  *                    MMU-hop-page physical address to its host-resident
1881  *                    pgt_info structure.
1882  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1883  * @hdev: pointer to the device structure.
1884  * @refcount: reference counter for the context. Context is released only when
1885  *		this hits 0. It is incremented on CS and CS_WAIT.
1886  * @cs_pending: array of hl fence objects representing pending CS.
1887  * @outcome_store: storage data structure used to remember outcomes of completed
1888  *                 command submissions for a long time after CS id wraparound.
1889  * @va_range: holds available virtual addresses for host and dram mappings.
1890  * @mem_hash_lock: protects the mem_hash.
1891  * @hw_block_list_lock: protects the HW block memory list.
1892  * @ts_reg_lock: timestamp registration ioctls lock.
1893  * @debugfs_list: node in debugfs list of contexts.
1894  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1895  * @cs_counters: context command submission counters.
1896  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1897  *              device's MMU.
1898  * @sig_mgr: encaps signals handle manager.
1899  * @cb_va_pool_base: the base address for the device VA pool
1900  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1901  *			to user so user could inquire about CS. It is used as
1902  *			index to cs_pending array.
1903  * @dram_default_hops: array that holds all hops addresses needed for default
1904  *                     DRAM mapping.
1905  * @cs_lock: spinlock to protect cs_sequence.
1906  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1907  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1908  *				context	from running the context switch phase.
1909  *				Only a single thread should run it.
1910  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1911  *				the context switch phase from moving to their
1912  *				execution phase before the context switch phase
1913  *				has finished.
1914  * @asid: context's unique address space ID in the device's MMU.
1915  * @handle: context's opaque handle for user
1916  */
1917 struct hl_ctx {
1918 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1919 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1920 	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1921 	struct hl_fpriv			*hpriv;
1922 	struct hl_device		*hdev;
1923 	struct kref			refcount;
1924 	struct hl_fence			**cs_pending;
1925 	struct hl_cs_outcome_store	outcome_store;
1926 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1927 	struct mutex			mem_hash_lock;
1928 	struct mutex			hw_block_list_lock;
1929 	struct mutex			ts_reg_lock;
1930 	struct list_head		debugfs_list;
1931 	struct list_head		hw_block_mem_list;
1932 	struct hl_cs_counters_atomic	cs_counters;
1933 	struct gen_pool			*cb_va_pool;
1934 	struct hl_encaps_signals_mgr	sig_mgr;
1935 	u64				cb_va_pool_base;
1936 	u64				cs_sequence;
1937 	u64				*dram_default_hops;
1938 	spinlock_t			cs_lock;
1939 	atomic64_t			dram_phys_mem;
1940 	atomic_t			thread_ctx_switch_token;
1941 	u32				thread_ctx_switch_wait_token;
1942 	u32				asid;
1943 	u32				handle;
1944 };
1945 
1946 /**
1947  * struct hl_ctx_mgr - for handling multiple contexts.
1948  * @lock: protects ctx_handles.
1949  * @handles: idr to hold all ctx handles.
1950  */
1951 struct hl_ctx_mgr {
1952 	struct mutex	lock;
1953 	struct idr	handles;
1954 };
1955 
1956 
1957 /*
1958  * COMMAND SUBMISSIONS
1959  */
1960 
1961 /**
1962  * struct hl_userptr - memory mapping chunk information
1963  * @vm_type: type of the VM.
1964  * @job_node: linked-list node for hanging the object on the Job's list.
1965  * @pages: pointer to struct page array
1966  * @npages: size of @pages array
1967  * @sgt: pointer to the scatter-gather table that holds the pages.
1968  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1969  * @debugfs_list: node in debugfs list of command submissions.
1970  * @pid: the pid of the user process owning the memory
1971  * @addr: user-space virtual address of the start of the memory area.
1972  * @size: size of the memory area to pin & map.
1973  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1974  */
1975 struct hl_userptr {
1976 	enum vm_type			vm_type; /* must be first */
1977 	struct list_head		job_node;
1978 	struct page			**pages;
1979 	unsigned int			npages;
1980 	struct sg_table			*sgt;
1981 	enum dma_data_direction		dir;
1982 	struct list_head		debugfs_list;
1983 	pid_t				pid;
1984 	u64				addr;
1985 	u64				size;
1986 	u8				dma_mapped;
1987 };
1988 
1989 /**
1990  * struct hl_cs - command submission.
1991  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1992  * @ctx: the context this CS belongs to.
1993  * @job_list: list of the CS's jobs in the various queues.
1994  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1995  * @refcount: reference counter for usage of the CS.
1996  * @fence: pointer to the fence object of this CS.
1997  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1998  *                CS only).
1999  * @finish_work: workqueue object to run when CS is completed by H/W.
2000  * @work_tdr: delayed work node for TDR.
2001  * @mirror_node : node in device mirror list of command submissions.
2002  * @staged_cs_node: node in the staged cs list.
2003  * @debugfs_list: node in debugfs list of command submissions.
2004  * @encaps_sig_hdl: holds the encaps signals handle.
2005  * @sequence: the sequence number of this CS.
2006  * @staged_sequence: the sequence of the staged submission this CS is part of,
2007  *                   relevant only if staged_cs is set.
2008  * @timeout_jiffies: cs timeout in jiffies.
2009  * @submission_time_jiffies: submission time of the cs
2010  * @type: CS_TYPE_*.
2011  * @jobs_cnt: counter of submitted jobs on all queues.
2012  * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
2013  * @completion_timestamp: timestamp of the last completed cs job.
2014  * @sob_addr_offset: sob offset from the configuration base address.
2015  * @initial_sob_count: count of completed signals in SOB before current submission of signal or
2016  *                     cs with encaps signals.
2017  * @submitted: true if CS was submitted to H/W.
2018  * @completed: true if CS was completed by device.
2019  * @timedout : true if CS was timedout.
2020  * @tdr_active: true if TDR was activated for this CS (to prevent
2021  *		double TDR activation).
2022  * @aborted: true if CS was aborted due to some device error.
2023  * @timestamp: true if a timestamp must be captured upon completion.
2024  * @staged_last: true if this is the last staged CS and needs completion.
2025  * @staged_first: true if this is the first staged CS and we need to receive
2026  *                timeout for this CS.
2027  * @staged_cs: true if this CS is part of a staged submission.
2028  * @skip_reset_on_timeout: true if we shall not reset the device in case
2029  *                         timeout occurs (debug scenario).
2030  * @encaps_signals: true if this CS has encaps reserved signals.
2031  */
2032 struct hl_cs {
2033 	u16			*jobs_in_queue_cnt;
2034 	struct hl_ctx		*ctx;
2035 	struct list_head	job_list;
2036 	spinlock_t		job_lock;
2037 	struct kref		refcount;
2038 	struct hl_fence		*fence;
2039 	struct hl_fence		*signal_fence;
2040 	struct work_struct	finish_work;
2041 	struct delayed_work	work_tdr;
2042 	struct list_head	mirror_node;
2043 	struct list_head	staged_cs_node;
2044 	struct list_head	debugfs_list;
2045 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2046 	ktime_t			completion_timestamp;
2047 	u64			sequence;
2048 	u64			staged_sequence;
2049 	u64			timeout_jiffies;
2050 	u64			submission_time_jiffies;
2051 	enum hl_cs_type		type;
2052 	u32			jobs_cnt;
2053 	u32			encaps_sig_hdl_id;
2054 	u32			sob_addr_offset;
2055 	u16			initial_sob_count;
2056 	u8			submitted;
2057 	u8			completed;
2058 	u8			timedout;
2059 	u8			tdr_active;
2060 	u8			aborted;
2061 	u8			timestamp;
2062 	u8			staged_last;
2063 	u8			staged_first;
2064 	u8			staged_cs;
2065 	u8			skip_reset_on_timeout;
2066 	u8			encaps_signals;
2067 };
2068 
2069 /**
2070  * struct hl_cs_job - command submission job.
2071  * @cs_node: the node to hang on the CS jobs list.
2072  * @cs: the CS this job belongs to.
2073  * @user_cb: the CB we got from the user.
2074  * @patched_cb: in case of patching, this is internal CB which is submitted on
2075  *		the queue instead of the CB we got from the IOCTL.
2076  * @finish_work: workqueue object to run when job is completed.
2077  * @userptr_list: linked-list of userptr mappings that belong to this job and
2078  *			wait for completion.
2079  * @debugfs_list: node in debugfs list of command submission jobs.
2080  * @refcount: reference counter for usage of the CS job.
2081  * @queue_type: the type of the H/W queue this job is submitted to.
2082  * @timestamp: timestamp upon job completion
2083  * @id: the id of this job inside a CS.
2084  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2085  * @user_cb_size: the actual size of the CB we got from the user.
2086  * @job_cb_size: the actual size of the CB that we put on the queue.
2087  * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2088  *                          to wait on part of the reserved signals.
2089  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2090  *                          handle to a kernel-allocated CB object, false
2091  *                          otherwise (SRAM/DRAM/host address).
2092  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2093  *                    info is needed later, when adding the 2xMSG_PROT at the
2094  *                    end of the JOB, to know which barriers to put in the
2095  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2096  *                    have streams so the engine can't be busy by another
2097  *                    stream.
2098  */
2099 struct hl_cs_job {
2100 	struct list_head	cs_node;
2101 	struct hl_cs		*cs;
2102 	struct hl_cb		*user_cb;
2103 	struct hl_cb		*patched_cb;
2104 	struct work_struct	finish_work;
2105 	struct list_head	userptr_list;
2106 	struct list_head	debugfs_list;
2107 	struct kref		refcount;
2108 	enum hl_queue_type	queue_type;
2109 	ktime_t			timestamp;
2110 	u32			id;
2111 	u32			hw_queue_id;
2112 	u32			user_cb_size;
2113 	u32			job_cb_size;
2114 	u32			encaps_sig_wait_offset;
2115 	u8			is_kernel_allocated_cb;
2116 	u8			contains_dma_pkt;
2117 };
2118 
2119 /**
2120  * struct hl_cs_parser - command submission parser properties.
2121  * @user_cb: the CB we got from the user.
2122  * @patched_cb: in case of patching, this is internal CB which is submitted on
2123  *		the queue instead of the CB we got from the IOCTL.
2124  * @job_userptr_list: linked-list of userptr mappings that belong to the related
2125  *			job and wait for completion.
2126  * @cs_sequence: the sequence number of the related CS.
2127  * @queue_type: the type of the H/W queue this job is submitted to.
2128  * @ctx_id: the ID of the context the related CS belongs to.
2129  * @hw_queue_id: the id of the H/W queue this job is submitted to.
2130  * @user_cb_size: the actual size of the CB we got from the user.
2131  * @patched_cb_size: the size of the CB after parsing.
2132  * @job_id: the id of the related job inside the related CS.
2133  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2134  *                          handle to a kernel-allocated CB object, false
2135  *                          otherwise (SRAM/DRAM/host address).
2136  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2137  *                    info is needed later, when adding the 2xMSG_PROT at the
2138  *                    end of the JOB, to know which barriers to put in the
2139  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2140  *                    have streams so the engine can't be busy by another
2141  *                    stream.
2142  * @completion: true if we need completion for this CS.
2143  */
2144 struct hl_cs_parser {
2145 	struct hl_cb		*user_cb;
2146 	struct hl_cb		*patched_cb;
2147 	struct list_head	*job_userptr_list;
2148 	u64			cs_sequence;
2149 	enum hl_queue_type	queue_type;
2150 	u32			ctx_id;
2151 	u32			hw_queue_id;
2152 	u32			user_cb_size;
2153 	u32			patched_cb_size;
2154 	u8			job_id;
2155 	u8			is_kernel_allocated_cb;
2156 	u8			contains_dma_pkt;
2157 	u8			completion;
2158 };
2159 
2160 /*
2161  * MEMORY STRUCTURE
2162  */
2163 
2164 /**
2165  * struct hl_vm_hash_node - hash element from virtual address to virtual
2166  *				memory area descriptor (hl_vm_phys_pg_list or
2167  *				hl_userptr).
2168  * @node: node to hang on the hash table in context object.
2169  * @vaddr: key virtual address.
2170  * @handle: memory handle for device memory allocation.
2171  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2172  * @export_cnt: number of exports from within the VA block.
2173  */
2174 struct hl_vm_hash_node {
2175 	struct hlist_node	node;
2176 	u64			vaddr;
2177 	u64			handle;
2178 	void			*ptr;
2179 	int			export_cnt;
2180 };
2181 
2182 /**
2183  * struct hl_vm_hw_block_list_node - list element from user virtual address to
2184  *				HW block id.
2185  * @node: node to hang on the list in context object.
2186  * @ctx: the context this node belongs to.
2187  * @vaddr: virtual address of the HW block.
2188  * @block_size: size of the block.
2189  * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2190  * @id: HW block id (handle).
2191  */
2192 struct hl_vm_hw_block_list_node {
2193 	struct list_head	node;
2194 	struct hl_ctx		*ctx;
2195 	unsigned long		vaddr;
2196 	u32			block_size;
2197 	u32			mapped_size;
2198 	u32			id;
2199 };
2200 
2201 /**
2202  * struct hl_vm_phys_pg_pack - physical page pack.
2203  * @vm_type: describes the type of the virtual area descriptor.
2204  * @pages: the physical page array.
2205  * @npages: num physical pages in the pack.
2206  * @total_size: total size of all the pages in this list.
2207  * @node: used to attach to deletion list that is used when all the allocations are cleared
2208  *        at the teardown of the context.
2209  * @mapping_cnt: number of shared mappings.
2210  * @asid: the context related to this list.
2211  * @page_size: size of each page in the pack.
2212  * @flags: HL_MEM_* flags related to this list.
2213  * @handle: the provided handle related to this list.
2214  * @offset: offset from the first page.
2215  * @contiguous: is contiguous physical memory.
2216  * @created_from_userptr: is product of host virtual address.
2217  */
2218 struct hl_vm_phys_pg_pack {
2219 	enum vm_type		vm_type; /* must be first */
2220 	u64			*pages;
2221 	u64			npages;
2222 	u64			total_size;
2223 	struct list_head	node;
2224 	atomic_t		mapping_cnt;
2225 	u32			asid;
2226 	u32			page_size;
2227 	u32			flags;
2228 	u32			handle;
2229 	u32			offset;
2230 	u8			contiguous;
2231 	u8			created_from_userptr;
2232 };
2233 
2234 /**
2235  * struct hl_vm_va_block - virtual range block information.
2236  * @node: node to hang on the virtual range list in context object.
2237  * @start: virtual range start address.
2238  * @end: virtual range end address.
2239  * @size: virtual range size.
2240  */
2241 struct hl_vm_va_block {
2242 	struct list_head	node;
2243 	u64			start;
2244 	u64			end;
2245 	u64			size;
2246 };
2247 
2248 /**
2249  * struct hl_vm - virtual memory manager for MMU.
2250  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2251  * @dram_pg_pool_refcount: reference counter for the pool usage.
2252  * @idr_lock: protects the phys_pg_list_handles.
2253  * @phys_pg_pack_handles: idr to hold all device allocations handles.
2254  * @init_done: whether initialization was done. We need this because VM
2255  *		initialization might be skipped during device initialization.
2256  */
2257 struct hl_vm {
2258 	struct gen_pool		*dram_pg_pool;
2259 	struct kref		dram_pg_pool_refcount;
2260 	spinlock_t		idr_lock;
2261 	struct idr		phys_pg_pack_handles;
2262 	u8			init_done;
2263 };
2264 
2265 
2266 /*
2267  * DEBUG, PROFILING STRUCTURE
2268  */
2269 
2270 /**
2271  * struct hl_debug_params - Coresight debug parameters.
2272  * @input: pointer to component specific input parameters.
2273  * @output: pointer to component specific output parameters.
2274  * @output_size: size of output buffer.
2275  * @reg_idx: relevant register ID.
2276  * @op: component operation to execute.
2277  * @enable: true if to enable component debugging, false otherwise.
2278  */
2279 struct hl_debug_params {
2280 	void *input;
2281 	void *output;
2282 	u32 output_size;
2283 	u32 reg_idx;
2284 	u32 op;
2285 	bool enable;
2286 };
2287 
2288 /**
2289  * struct hl_notifier_event - holds the notifier data structure
2290  * @eventfd: the event file descriptor to raise the notifications
2291  * @lock: mutex lock to protect the notifier data flows
2292  * @events_mask: indicates the bitmap events
2293  */
2294 struct hl_notifier_event {
2295 	struct eventfd_ctx	*eventfd;
2296 	struct mutex		lock;
2297 	u64			events_mask;
2298 };
2299 
2300 /*
2301  * FILE PRIVATE STRUCTURE
2302  */
2303 
2304 /**
2305  * struct hl_fpriv - process information stored in FD private data.
2306  * @hdev: habanalabs device structure.
2307  * @file_priv: pointer to the DRM file private data structure.
2308  * @taskpid: current process ID.
2309  * @ctx: current executing context. TODO: remove for multiple ctx per process
2310  * @ctx_mgr: context manager to handle multiple context for this FD.
2311  * @mem_mgr: manager descriptor for memory exportable via mmap
2312  * @notifier_event: notifier eventfd towards user process
2313  * @debugfs_list: list of relevant ASIC debugfs.
2314  * @dev_node: node in the device list of file private data
2315  * @refcount: number of related contexts.
2316  * @restore_phase_mutex: lock for context switch and restore phase.
2317  * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2318  *            ctx per process.
2319  */
2320 struct hl_fpriv {
2321 	struct hl_device		*hdev;
2322 	struct drm_file			*file_priv;
2323 	struct pid			*taskpid;
2324 	struct hl_ctx			*ctx;
2325 	struct hl_ctx_mgr		ctx_mgr;
2326 	struct hl_mem_mgr		mem_mgr;
2327 	struct hl_notifier_event	notifier_event;
2328 	struct list_head		debugfs_list;
2329 	struct list_head		dev_node;
2330 	struct kref			refcount;
2331 	struct mutex			restore_phase_mutex;
2332 	struct mutex			ctx_lock;
2333 };
2334 
2335 
2336 /*
2337  * DebugFS
2338  */
2339 
2340 /**
2341  * struct hl_info_list - debugfs file ops.
2342  * @name: file name.
2343  * @show: function to output information.
2344  * @write: function to write to the file.
2345  */
2346 struct hl_info_list {
2347 	const char	*name;
2348 	int		(*show)(struct seq_file *s, void *data);
2349 	ssize_t		(*write)(struct file *file, const char __user *buf,
2350 				size_t count, loff_t *f_pos);
2351 };
2352 
2353 /**
2354  * struct hl_debugfs_entry - debugfs dentry wrapper.
2355  * @info_ent: dentry related ops.
2356  * @dev_entry: ASIC specific debugfs manager.
2357  */
2358 struct hl_debugfs_entry {
2359 	const struct hl_info_list	*info_ent;
2360 	struct hl_dbg_device_entry	*dev_entry;
2361 };
2362 
2363 /**
2364  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2365  * @root: root dentry.
2366  * @hdev: habanalabs device structure.
2367  * @entry_arr: array of available hl_debugfs_entry.
2368  * @file_list: list of available debugfs files.
2369  * @file_mutex: protects file_list.
2370  * @cb_list: list of available CBs.
2371  * @cb_spinlock: protects cb_list.
2372  * @cs_list: list of available CSs.
2373  * @cs_spinlock: protects cs_list.
2374  * @cs_job_list: list of available CB jobs.
2375  * @cs_job_spinlock: protects cs_job_list.
2376  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2377  * @userptr_spinlock: protects userptr_list.
2378  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2379  * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2380  * @data_dma_blob_desc: data DMA descriptor of blob.
2381  * @mon_dump_blob_desc: monitor dump descriptor of blob.
2382  * @state_dump: data of the system states in case of a bad cs.
2383  * @state_dump_sem: protects state_dump.
2384  * @addr: next address to read/write from/to in read/write32.
2385  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2386  * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2387  * @userptr_lookup: the target user ptr to look up for on demand.
2388  * @mmu_asid: ASID to use while translating in mmu_show.
2389  * @state_dump_head: index of the latest state dump
2390  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2391  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2392  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2393  * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2394  */
2395 struct hl_dbg_device_entry {
2396 	struct dentry			*root;
2397 	struct hl_device		*hdev;
2398 	struct hl_debugfs_entry		*entry_arr;
2399 	struct list_head		file_list;
2400 	struct mutex			file_mutex;
2401 	struct list_head		cb_list;
2402 	spinlock_t			cb_spinlock;
2403 	struct list_head		cs_list;
2404 	spinlock_t			cs_spinlock;
2405 	struct list_head		cs_job_list;
2406 	spinlock_t			cs_job_spinlock;
2407 	struct list_head		userptr_list;
2408 	spinlock_t			userptr_spinlock;
2409 	struct list_head		ctx_mem_hash_list;
2410 	struct mutex			ctx_mem_hash_mutex;
2411 	struct debugfs_blob_wrapper	data_dma_blob_desc;
2412 	struct debugfs_blob_wrapper	mon_dump_blob_desc;
2413 	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
2414 	struct rw_semaphore		state_dump_sem;
2415 	u64				addr;
2416 	u64				mmu_addr;
2417 	u64				mmu_cap_mask;
2418 	u64				userptr_lookup;
2419 	u32				mmu_asid;
2420 	u32				state_dump_head;
2421 	u8				i2c_bus;
2422 	u8				i2c_addr;
2423 	u8				i2c_reg;
2424 	u8				i2c_len;
2425 };
2426 
2427 /**
2428  * struct hl_hw_obj_name_entry - single hw object name, member of
2429  * hl_state_dump_specs
2430  * @node: link to the containing hash table
2431  * @name: hw object name
2432  * @id: object identifier
2433  */
2434 struct hl_hw_obj_name_entry {
2435 	struct hlist_node	node;
2436 	const char		*name;
2437 	u32			id;
2438 };
2439 
2440 enum hl_state_dump_specs_props {
2441 	SP_SYNC_OBJ_BASE_ADDR,
2442 	SP_NEXT_SYNC_OBJ_ADDR,
2443 	SP_SYNC_OBJ_AMOUNT,
2444 	SP_MON_OBJ_WR_ADDR_LOW,
2445 	SP_MON_OBJ_WR_ADDR_HIGH,
2446 	SP_MON_OBJ_WR_DATA,
2447 	SP_MON_OBJ_ARM_DATA,
2448 	SP_MON_OBJ_STATUS,
2449 	SP_MONITORS_AMOUNT,
2450 	SP_TPC0_CMDQ,
2451 	SP_TPC0_CFG_SO,
2452 	SP_NEXT_TPC,
2453 	SP_MME_CMDQ,
2454 	SP_MME_CFG_SO,
2455 	SP_NEXT_MME,
2456 	SP_DMA_CMDQ,
2457 	SP_DMA_CFG_SO,
2458 	SP_DMA_QUEUES_OFFSET,
2459 	SP_NUM_OF_MME_ENGINES,
2460 	SP_SUB_MME_ENG_NUM,
2461 	SP_NUM_OF_DMA_ENGINES,
2462 	SP_NUM_OF_TPC_ENGINES,
2463 	SP_ENGINE_NUM_OF_QUEUES,
2464 	SP_ENGINE_NUM_OF_STREAMS,
2465 	SP_ENGINE_NUM_OF_FENCES,
2466 	SP_FENCE0_CNT_OFFSET,
2467 	SP_FENCE0_RDATA_OFFSET,
2468 	SP_CP_STS_OFFSET,
2469 	SP_NUM_CORES,
2470 
2471 	SP_MAX
2472 };
2473 
2474 enum hl_sync_engine_type {
2475 	ENGINE_TPC,
2476 	ENGINE_DMA,
2477 	ENGINE_MME,
2478 };
2479 
2480 /**
2481  * struct hl_mon_state_dump - represents a state dump of a single monitor
2482  * @id: monitor id
2483  * @wr_addr_low: address monitor will write to, low bits
2484  * @wr_addr_high: address monitor will write to, high bits
2485  * @wr_data: data monitor will write
2486  * @arm_data: register value containing monitor configuration
2487  * @status: monitor status
2488  */
2489 struct hl_mon_state_dump {
2490 	u32		id;
2491 	u32		wr_addr_low;
2492 	u32		wr_addr_high;
2493 	u32		wr_data;
2494 	u32		arm_data;
2495 	u32		status;
2496 };
2497 
2498 /**
2499  * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2500  * @engine_type: type of the engine
2501  * @engine_id: id of the engine
2502  * @sync_id: id of the sync object
2503  */
2504 struct hl_sync_to_engine_map_entry {
2505 	struct hlist_node		node;
2506 	enum hl_sync_engine_type	engine_type;
2507 	u32				engine_id;
2508 	u32				sync_id;
2509 };
2510 
2511 /**
2512  * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2513  * @tb: hash table containing the mapping, each element is of type
2514  *      struct hl_sync_to_engine_map_entry
2515  */
2516 struct hl_sync_to_engine_map {
2517 	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2518 };
2519 
2520 /**
2521  * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2522  * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2523  * @print_single_monitor: format monitor data as string
2524  * @monitor_valid: return true if given monitor dump is valid
2525  * @print_fences_single_engine: format fences data as string
2526  */
2527 struct hl_state_dump_specs_funcs {
2528 	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2529 				struct hl_sync_to_engine_map *map);
2530 	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2531 				    struct hl_device *hdev,
2532 				    struct hl_mon_state_dump *mon);
2533 	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2534 	int (*print_fences_single_engine)(struct hl_device *hdev,
2535 					u64 base_offset,
2536 					u64 status_base_offset,
2537 					enum hl_sync_engine_type engine_type,
2538 					u32 engine_id, char **buf,
2539 					size_t *size, size_t *offset);
2540 };
2541 
2542 /**
2543  * struct hl_state_dump_specs - defines ASIC known hw objects names
2544  * @so_id_to_str_tb: sync objects names index table
2545  * @monitor_id_to_str_tb: monitors names index table
2546  * @funcs: virtual functions used for state dump
2547  * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2548  * @props: pointer to a per asic const props array required for state dump
2549  */
2550 struct hl_state_dump_specs {
2551 	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2552 	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2553 	struct hl_state_dump_specs_funcs	funcs;
2554 	const char * const			*sync_namager_names;
2555 	s64					*props;
2556 };
2557 
2558 
2559 /*
2560  * DEVICES
2561  */
2562 
2563 #define HL_STR_MAX	64
2564 
2565 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2566 
2567 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2568  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2569  */
2570 #define HL_MAX_MINORS	256
2571 
2572 /*
2573  * Registers read & write functions.
2574  */
2575 
2576 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2577 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2578 
2579 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2580 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2581 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2582 			hdev->asic_funcs->rreg(hdev, (reg)))
2583 
2584 #define WREG32_P(reg, val, mask)				\
2585 	do {							\
2586 		u32 tmp_ = RREG32(reg);				\
2587 		tmp_ &= (mask);					\
2588 		tmp_ |= ((val) & ~(mask));			\
2589 		WREG32(reg, tmp_);				\
2590 	} while (0)
2591 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2592 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2593 
2594 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2595 
2596 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2597 
2598 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2599 
2600 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2601 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2602 #define WREG32_FIELD(reg, offset, field, val)	\
2603 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2604 				~REG_FIELD_MASK(reg, field)) | \
2605 				(val) << REG_FIELD_SHIFT(reg, field))
2606 
2607 /* Timeout should be longer when working with simulator but cap the
2608  * increased timeout to some maximum
2609  */
2610 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2611 ({ \
2612 	ktime_t __timeout; \
2613 	u32 __elbi_read; \
2614 	int __rc = 0; \
2615 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2616 	might_sleep_if(sleep_us); \
2617 	for (;;) { \
2618 		if (elbi) { \
2619 			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2620 			if (__rc) \
2621 				break; \
2622 			(val) = __elbi_read; \
2623 		} else {\
2624 			(val) = RREG32(lower_32_bits(addr)); \
2625 		} \
2626 		if (cond) \
2627 			break; \
2628 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2629 			if (elbi) { \
2630 				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2631 				if (__rc) \
2632 					break; \
2633 				(val) = __elbi_read; \
2634 			} else {\
2635 				(val) = RREG32(lower_32_bits(addr)); \
2636 			} \
2637 			break; \
2638 		} \
2639 		if (sleep_us) \
2640 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2641 	} \
2642 	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2643 })
2644 
2645 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2646 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2647 
2648 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2649 		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2650 
2651 /*
2652  * poll array of register addresses.
2653  * condition is satisfied if all registers values match the expected value.
2654  * once some register in the array satisfies the condition it will not be polled again,
2655  * this is done both for efficiency and due to some registers are "clear on read".
2656  * TODO: use read from PCI bar in other places in the code (SW-91406)
2657  */
2658 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2659 						timeout_us, elbi) \
2660 ({ \
2661 	ktime_t __timeout; \
2662 	u64 __elem_bitmask; \
2663 	u32 __read_val;	\
2664 	u8 __arr_idx;	\
2665 	int __rc = 0; \
2666 	\
2667 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2668 	might_sleep_if(sleep_us); \
2669 	if (arr_size >= 64) \
2670 		__rc = -EINVAL; \
2671 	else \
2672 		__elem_bitmask = BIT_ULL(arr_size) - 1; \
2673 	for (;;) { \
2674 		if (__rc) \
2675 			break; \
2676 		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
2677 			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
2678 				continue;	\
2679 			if (elbi) { \
2680 				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2681 				if (__rc) \
2682 					break; \
2683 			} else { \
2684 				__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2685 			} \
2686 			if (__read_val == (expected_val))	\
2687 				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
2688 		}	\
2689 		if (__rc || (__elem_bitmask == 0)) \
2690 			break; \
2691 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2692 			break; \
2693 		if (sleep_us) \
2694 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2695 	} \
2696 	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2697 })
2698 
2699 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2700 					timeout_us) \
2701 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2702 						timeout_us, false)
2703 
2704 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2705 					timeout_us) \
2706 	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2707 						timeout_us, true)
2708 
2709 /*
2710  * address in this macro points always to a memory location in the
2711  * host's (server's) memory. That location is updated asynchronously
2712  * either by the direct access of the device or by another core.
2713  *
2714  * To work both in LE and BE architectures, we need to distinguish between the
2715  * two states (device or another core updates the memory location). Therefore,
2716  * if mem_written_by_device is true, the host memory being polled will be
2717  * updated directly by the device. If false, the host memory being polled will
2718  * be updated by host CPU. Required so host knows whether or not the memory
2719  * might need to be byte-swapped before returning value to caller.
2720  */
2721 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2722 				mem_written_by_device) \
2723 ({ \
2724 	ktime_t __timeout; \
2725 	\
2726 	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2727 	might_sleep_if(sleep_us); \
2728 	for (;;) { \
2729 		/* Verify we read updates done by other cores or by device */ \
2730 		mb(); \
2731 		(val) = *((u32 *)(addr)); \
2732 		if (mem_written_by_device) \
2733 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2734 		if (cond) \
2735 			break; \
2736 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2737 			(val) = *((u32 *)(addr)); \
2738 			if (mem_written_by_device) \
2739 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2740 			break; \
2741 		} \
2742 		if (sleep_us) \
2743 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2744 	} \
2745 	(cond) ? 0 : -ETIMEDOUT; \
2746 })
2747 
2748 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2749 ({ \
2750 	struct user_mapped_block *p = blk; \
2751 \
2752 	p->address = base; \
2753 	p->size = sz; \
2754 })
2755 
2756 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2757 ({ \
2758 	usr_intr.hdev = hdev; \
2759 	usr_intr.interrupt_id = intr_id; \
2760 	usr_intr.type = intr_type; \
2761 	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2762 	spin_lock_init(&usr_intr.wait_list_lock); \
2763 	INIT_LIST_HEAD(&usr_intr.ts_list_head); \
2764 	spin_lock_init(&usr_intr.ts_list_lock); \
2765 })
2766 
2767 struct hwmon_chip_info;
2768 
2769 /**
2770  * struct hl_device_reset_work - reset work wrapper.
2771  * @reset_work: reset work to be done.
2772  * @hdev: habanalabs device structure.
2773  * @flags: reset flags.
2774  */
2775 struct hl_device_reset_work {
2776 	struct delayed_work	reset_work;
2777 	struct hl_device	*hdev;
2778 	u32			flags;
2779 };
2780 
2781 /**
2782  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2783  * page-table internal information.
2784  * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2785  *                allocating hops.
2786  * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2787  */
2788 struct hl_mmu_hr_priv {
2789 	struct gen_pool	*mmu_pgt_pool;
2790 	struct pgt_info	*mmu_asid_hop0;
2791 };
2792 
2793 /**
2794  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2795  * page-table internal information.
2796  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2797  * @mmu_shadow_hop0: shadow array of hop0 tables.
2798  */
2799 struct hl_mmu_dr_priv {
2800 	struct gen_pool *mmu_pgt_pool;
2801 	void *mmu_shadow_hop0;
2802 };
2803 
2804 /**
2805  * struct hl_mmu_priv - used for holding per-device mmu internal information.
2806  * @dr: information on the device-resident MMU, when exists.
2807  * @hr: information on the host-resident MMU, when exists.
2808  */
2809 struct hl_mmu_priv {
2810 	struct hl_mmu_dr_priv dr;
2811 	struct hl_mmu_hr_priv hr;
2812 };
2813 
2814 /**
2815  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2816  *                that was created in order to translate a virtual address to a
2817  *                physical one.
2818  * @hop_addr: The address of the hop.
2819  * @hop_pte_addr: The address of the hop entry.
2820  * @hop_pte_val: The value in the hop entry.
2821  */
2822 struct hl_mmu_per_hop_info {
2823 	u64 hop_addr;
2824 	u64 hop_pte_addr;
2825 	u64 hop_pte_val;
2826 };
2827 
2828 /**
2829  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2830  * hop-entries that were created in order to translate a virtual address to a
2831  * physical one.
2832  * @scrambled_vaddr: The value of the virtual address after scrambling. This
2833  *                   address replaces the original virtual-address when mapped
2834  *                   in the MMU tables.
2835  * @unscrambled_paddr: The un-scrambled physical address.
2836  * @hop_info: Array holding the per-hop information used for the translation.
2837  * @used_hops: The number of hops used for the translation.
2838  * @range_type: virtual address range type.
2839  */
2840 struct hl_mmu_hop_info {
2841 	u64 scrambled_vaddr;
2842 	u64 unscrambled_paddr;
2843 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2844 	u32 used_hops;
2845 	enum hl_va_range_type range_type;
2846 };
2847 
2848 /**
2849  * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2850  * @get_hop0_pgt_info: get page table info structure for HOP0.
2851  * @get_pgt_info: get page table info structure for HOP other than HOP0.
2852  * @add_pgt_info: add page table info structure to hash.
2853  * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2854  */
2855 struct hl_hr_mmu_funcs {
2856 	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2857 	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2858 	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2859 	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2860 								struct hl_mmu_hop_info *hops,
2861 								u64 virt_addr, bool *is_huge);
2862 };
2863 
2864 /**
2865  * struct hl_mmu_funcs - Device related MMU functions.
2866  * @init: initialize the MMU module.
2867  * @fini: release the MMU module.
2868  * @ctx_init: Initialize a context for using the MMU module.
2869  * @ctx_fini: disable a ctx from using the mmu module.
2870  * @map: maps a virtual address to physical address for a context.
2871  * @unmap: unmap a virtual address of a context.
2872  * @flush: flush all writes from all cores to reach device MMU.
2873  * @swap_out: marks all mapping of the given context as swapped out.
2874  * @swap_in: marks all mapping of the given context as swapped in.
2875  * @get_tlb_info: returns the list of hops and hop-entries used that were
2876  *                created in order to translate the giver virtual address to a
2877  *                physical one.
2878  * @hr_funcs: functions specific to host resident MMU.
2879  */
2880 struct hl_mmu_funcs {
2881 	int (*init)(struct hl_device *hdev);
2882 	void (*fini)(struct hl_device *hdev);
2883 	int (*ctx_init)(struct hl_ctx *ctx);
2884 	void (*ctx_fini)(struct hl_ctx *ctx);
2885 	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2886 				bool is_dram_addr);
2887 	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2888 	void (*flush)(struct hl_ctx *ctx);
2889 	void (*swap_out)(struct hl_ctx *ctx);
2890 	void (*swap_in)(struct hl_ctx *ctx);
2891 	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2892 	struct hl_hr_mmu_funcs hr_funcs;
2893 };
2894 
2895 /**
2896  * struct hl_prefetch_work - prefetch work structure handler
2897  * @prefetch_work: actual work struct.
2898  * @ctx: compute context.
2899  * @va: virtual address to pre-fetch.
2900  * @size: pre-fetch size.
2901  * @flags: operation flags.
2902  * @asid: ASID for maintenance operation.
2903  */
2904 struct hl_prefetch_work {
2905 	struct work_struct	prefetch_work;
2906 	struct hl_ctx		*ctx;
2907 	u64			va;
2908 	u64			size;
2909 	u32			flags;
2910 	u32			asid;
2911 };
2912 
2913 /*
2914  * number of user contexts allowed to call wait_for_multi_cs ioctl in
2915  * parallel
2916  */
2917 #define MULTI_CS_MAX_USER_CTX	2
2918 
2919 /**
2920  * struct multi_cs_completion - multi CS wait completion.
2921  * @completion: completion of any of the CS in the list
2922  * @lock: spinlock for the completion structure
2923  * @timestamp: timestamp for the multi-CS completion
2924  * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2925  *                        is waiting
2926  * @used: 1 if in use, otherwise 0
2927  */
2928 struct multi_cs_completion {
2929 	struct completion	completion;
2930 	spinlock_t		lock;
2931 	s64			timestamp;
2932 	u32			stream_master_qid_map;
2933 	u8			used;
2934 };
2935 
2936 /**
2937  * struct multi_cs_data - internal data for multi CS call
2938  * @ctx: pointer to the context structure
2939  * @fence_arr: array of fences of all CSs
2940  * @seq_arr: array of CS sequence numbers
2941  * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2942  * @timestamp: timestamp of first completed CS
2943  * @wait_status: wait for CS status
2944  * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2945  * @arr_len: fence_arr and seq_arr array length
2946  * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2947  * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2948  */
2949 struct multi_cs_data {
2950 	struct hl_ctx	*ctx;
2951 	struct hl_fence	**fence_arr;
2952 	u64		*seq_arr;
2953 	s64		timeout_jiffies;
2954 	s64		timestamp;
2955 	long		wait_status;
2956 	u32		completion_bitmap;
2957 	u8		arr_len;
2958 	u8		gone_cs;
2959 	u8		update_ts;
2960 };
2961 
2962 /**
2963  * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2964  * @start: timestamp taken when 'start' event is received in driver
2965  * @end: timestamp taken when 'end' event is received in driver
2966  */
2967 struct hl_clk_throttle_timestamp {
2968 	ktime_t		start;
2969 	ktime_t		end;
2970 };
2971 
2972 /**
2973  * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2974  * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2975  *             index 1 refers to THERMAL
2976  * @lock: protects this structure as it can be accessed from both event queue
2977  *        context and info_ioctl context
2978  * @current_reason: bitmask represents the current clk throttling reasons
2979  * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2980  */
2981 struct hl_clk_throttle {
2982 	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2983 	struct mutex	lock;
2984 	u32		current_reason;
2985 	u32		aggregated_reason;
2986 };
2987 
2988 /**
2989  * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2990  * @address: physical HW block address
2991  * @size: allowed size for mmap
2992  */
2993 struct user_mapped_block {
2994 	u32 address;
2995 	u32 size;
2996 };
2997 
2998 /**
2999  * struct cs_timeout_info - info of last CS timeout occurred.
3000  * @timestamp: CS timeout timestamp.
3001  * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
3002  *                so the first (root cause) CS timeout will not be overwritten.
3003  * @seq: CS timeout sequence number.
3004  */
3005 struct cs_timeout_info {
3006 	ktime_t		timestamp;
3007 	atomic_t	write_enable;
3008 	u64		seq;
3009 };
3010 
3011 #define MAX_QMAN_STREAMS_INFO		4
3012 #define OPCODE_INFO_MAX_ADDR_SIZE	8
3013 /**
3014  * struct undefined_opcode_info - info about last undefined opcode error
3015  * @timestamp: timestamp of the undefined opcode error
3016  * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
3017  *                   entries. In case all streams array entries are
3018  *                   filled with values, it means the execution was in Lower-CP.
3019  * @cq_addr: the address of the current handled command buffer
3020  * @cq_size: the size of the current handled command buffer
3021  * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
3022  *                       should be equal to 1 in case of undefined opcode
3023  *                       in Upper-CP (specific stream) and equal to 4 in case
3024  *                       of undefined opcode in Lower-CP.
3025  * @engine_id: engine-id that the error occurred on
3026  * @stream_id: the stream id the error occurred on. In case the stream equals to
3027  *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
3028  * @write_enable: if set, writing to undefined opcode parameters in the structure
3029  *                 is enable so the first (root cause) undefined opcode will not be
3030  *                 overwritten.
3031  */
3032 struct undefined_opcode_info {
3033 	ktime_t timestamp;
3034 	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
3035 	u64 cq_addr;
3036 	u32 cq_size;
3037 	u32 cb_addr_streams_len;
3038 	u32 engine_id;
3039 	u32 stream_id;
3040 	bool write_enable;
3041 };
3042 
3043 /**
3044  * struct page_fault_info - page fault information.
3045  * @page_fault: holds information collected during a page fault.
3046  * @user_mappings: buffer containing user mappings.
3047  * @num_of_user_mappings: number of user mappings.
3048  * @page_fault_detected: if set as 1, then a page-fault was discovered for the
3049  *                       first time after the driver has finished booting-up.
3050  *                       Since we're looking for the page-fault's root cause,
3051  *                       we don't care of the others that might follow it-
3052  *                       so once changed to 1, it will remain that way.
3053  * @page_fault_info_available: indicates that a page fault info is now available.
3054  */
3055 struct page_fault_info {
3056 	struct hl_page_fault_info	page_fault;
3057 	struct hl_user_mapping		*user_mappings;
3058 	u64				num_of_user_mappings;
3059 	atomic_t			page_fault_detected;
3060 	bool				page_fault_info_available;
3061 };
3062 
3063 /**
3064  * struct razwi_info - RAZWI information.
3065  * @razwi: holds information collected during a RAZWI
3066  * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3067  *                  first time after the driver has finished booting-up.
3068  *                  Since we're looking for the RAZWI's root cause,
3069  *                  we don't care of the others that might follow it-
3070  *                  so once changed to 1, it will remain that way.
3071  * @razwi_info_available: indicates that a RAZWI info is now available.
3072  */
3073 struct razwi_info {
3074 	struct hl_info_razwi_event	razwi;
3075 	atomic_t			razwi_detected;
3076 	bool				razwi_info_available;
3077 };
3078 
3079 /**
3080  * struct hw_err_info - HW error information.
3081  * @event: holds information on the event.
3082  * @event_detected: if set as 1, then a HW event was discovered for the
3083  *                  first time after the driver has finished booting-up.
3084  *                  currently we assume that only fatal events (that require hard-reset) are
3085  *                  reported so we don't care of the others that might follow it.
3086  *                  so once changed to 1, it will remain that way.
3087  *                  TODO: support multiple events.
3088  * @event_info_available: indicates that a HW event info is now available.
3089  */
3090 struct hw_err_info {
3091 	struct hl_info_hw_err_event	event;
3092 	atomic_t			event_detected;
3093 	bool				event_info_available;
3094 };
3095 
3096 /**
3097  * struct fw_err_info - FW error information.
3098  * @event: holds information on the event.
3099  * @event_detected: if set as 1, then a FW event was discovered for the
3100  *                  first time after the driver has finished booting-up.
3101  *                  currently we assume that only fatal events (that require hard-reset) are
3102  *                  reported so we don't care of the others that might follow it.
3103  *                  so once changed to 1, it will remain that way.
3104  *                  TODO: support multiple events.
3105  * @event_info_available: indicates that a HW event info is now available.
3106  */
3107 struct fw_err_info {
3108 	struct hl_info_fw_err_event	event;
3109 	atomic_t			event_detected;
3110 	bool				event_info_available;
3111 };
3112 
3113 /**
3114  * struct engine_err_info - engine error information.
3115  * @event: holds information on the event.
3116  * @event_detected: if set as 1, then an engine event was discovered for the
3117  *                  first time after the driver has finished booting-up.
3118  * @event_info_available: indicates that an engine event info is now available.
3119  */
3120 struct engine_err_info {
3121 	struct hl_info_engine_err_event	event;
3122 	atomic_t			event_detected;
3123 	bool				event_info_available;
3124 };
3125 
3126 
3127 /**
3128  * struct hl_error_info - holds information collected during an error.
3129  * @cs_timeout: CS timeout error information.
3130  * @razwi_info: RAZWI information.
3131  * @undef_opcode: undefined opcode information.
3132  * @page_fault_info: page fault information.
3133  * @hw_err: (fatal) hardware error information.
3134  * @fw_err: firmware error information.
3135  * @engine_err: engine error information.
3136  */
3137 struct hl_error_info {
3138 	struct cs_timeout_info		cs_timeout;
3139 	struct razwi_info		razwi_info;
3140 	struct undefined_opcode_info	undef_opcode;
3141 	struct page_fault_info		page_fault_info;
3142 	struct hw_err_info		hw_err;
3143 	struct fw_err_info		fw_err;
3144 	struct engine_err_info		engine_err;
3145 };
3146 
3147 /**
3148  * struct hl_reset_info - holds current device reset information.
3149  * @lock: lock to protect critical reset flows.
3150  * @compute_reset_cnt: number of compute resets since the driver was loaded.
3151  * @hard_reset_cnt: number of hard resets since the driver was loaded.
3152  * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3153  *                             here we hold the hard reset flags.
3154  * @in_reset: is device in reset flow.
3155  * @in_compute_reset: Device is currently in reset but not in hard-reset.
3156  * @needs_reset: true if reset_on_lockup is false and device should be reset
3157  *               due to lockup.
3158  * @hard_reset_pending: is there a hard reset work pending.
3159  * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3160  *                    triggered, and cleared after it is shared with preboot.
3161  * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3162  *                      with a new value on next reset
3163  * @reset_trigger_repeated: set if device reset is triggered more than once with
3164  *                          same cause.
3165  * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3166  *                         complete instead.
3167  * @watchdog_active: true if a device release watchdog work is scheduled.
3168  */
3169 struct hl_reset_info {
3170 	spinlock_t	lock;
3171 	u32		compute_reset_cnt;
3172 	u32		hard_reset_cnt;
3173 	u32		hard_reset_schedule_flags;
3174 	u8		in_reset;
3175 	u8		in_compute_reset;
3176 	u8		needs_reset;
3177 	u8		hard_reset_pending;
3178 	u8		curr_reset_cause;
3179 	u8		prev_reset_trigger;
3180 	u8		reset_trigger_repeated;
3181 	u8		skip_reset_on_timeout;
3182 	u8		watchdog_active;
3183 };
3184 
3185 /**
3186  * struct eq_heartbeat_debug_info - stores debug info to be used upon heartbeat failure.
3187  * @heartbeat_event_counter: number of heartbeat events received.
3188  * @cpu_queue_id: used to read the queue pi/ci
3189  */
3190 struct eq_heartbeat_debug_info {
3191 	u32 heartbeat_event_counter;
3192 	u32 cpu_queue_id;
3193 };
3194 
3195 /**
3196  * struct hl_device - habanalabs device structure.
3197  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3198  * @pcie_bar_phys: array of available PCIe bars physical addresses.
3199  *		   (required only for PCI address match mode)
3200  * @pcie_bar: array of available PCIe bars virtual addresses.
3201  * @rmmio: configuration area address on SRAM.
3202  * @drm: related DRM device.
3203  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3204  * @dev: related kernel basic device structure.
3205  * @dev_ctrl: related kernel device structure for the control device
3206  * @work_heartbeat: delayed work for CPU-CP is-alive check.
3207  * @device_reset_work: delayed work which performs hard reset
3208  * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3209  *                                device upon certain error cases.
3210  * @asic_name: ASIC specific name.
3211  * @asic_type: ASIC specific type.
3212  * @completion_queue: array of hl_cq.
3213  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3214  *                  interrupt, driver will monitor the list of fences
3215  *                  registered to this interrupt.
3216  * @tpc_interrupt: single TPC interrupt for all TPCs.
3217  * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3218  * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3219  *                         upon any user CQ interrupt, driver will monitor the
3220  *                         list of fences registered to this common structure.
3221  * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3222  * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3223  *                   outstanding command submissions.
3224  * @cq_wq: work queues of completion queues for executing work in process
3225  *         context.
3226  * @eq_wq: work queue of event queue for executing work in process context.
3227  * @cs_cmplt_wq: work queue of CS completions for executing work in process
3228  *               context.
3229  * @ts_free_obj_wq: work queue for timestamp registration objects release.
3230  * @prefetch_wq: work queue for MMU pre-fetch operations.
3231  * @reset_wq: work queue for device reset procedure.
3232  * @kernel_ctx: Kernel driver context structure.
3233  * @kernel_queues: array of hl_hw_queue.
3234  * @cs_mirror_list: CS mirror list for TDR.
3235  * @cs_mirror_lock: protects cs_mirror_list.
3236  * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3237  * @event_queue: event queue for IRQ from CPU-CP.
3238  * @dma_pool: DMA pool for small allocations.
3239  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3240  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3241  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3242  * @asid_bitmap: holds used/available ASIDs.
3243  * @asid_mutex: protects asid_bitmap.
3244  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3245  * @debug_lock: protects critical section of setting debug mode for device
3246  * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3247  *            page tables are per context, the invalidation h/w is per MMU.
3248  *            Therefore, we can't allow multiple contexts (we only have two,
3249  *            user and kernel) to access the invalidation h/w at the same time.
3250  *            In addition, any change to the PGT, modifying the MMU hash or
3251  *            walking the PGT requires talking this lock.
3252  * @asic_prop: ASIC specific immutable properties.
3253  * @asic_funcs: ASIC specific functions.
3254  * @asic_specific: ASIC specific information to use only from ASIC files.
3255  * @vm: virtual memory manager for MMU.
3256  * @hwmon_dev: H/W monitor device.
3257  * @hl_chip_info: ASIC's sensors information.
3258  * @device_status_description: device status description.
3259  * @hl_debugfs: device's debugfs manager.
3260  * @cb_pool: list of pre allocated CBs.
3261  * @cb_pool_lock: protects the CB pool.
3262  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3263  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3264  * @internal_cb_pool: internal command buffer memory pool.
3265  * @internal_cb_va_base: internal cb pool mmu virtual address base
3266  * @fpriv_list: list of file private data structures. Each structure is created
3267  *              when a user opens the device
3268  * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3269  *              when a user opens the control device
3270  * @fpriv_list_lock: protects the fpriv_list
3271  * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3272  * @aggregated_cs_counters: aggregated cs counters among all contexts
3273  * @mmu_priv: device-specific MMU data.
3274  * @mmu_func: device-related MMU functions.
3275  * @dec: list of decoder sw instance
3276  * @fw_loader: FW loader manager.
3277  * @pci_mem_region: array of memory regions in the PCI
3278  * @state_dump_specs: constants and dictionaries needed to dump system state.
3279  * @multi_cs_completion: array of multi-CS completion.
3280  * @clk_throttling: holds information about current/previous clock throttling events
3281  * @captured_err_info: holds information about errors.
3282  * @reset_info: holds current device reset information.
3283  * @heartbeat_debug_info: counters used to debug heartbeat failures.
3284  * @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling.
3285  * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3286  * @fw_inner_major_ver: the major of current loaded preboot inner version.
3287  * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3288  * @fw_sw_major_ver: the major of current loaded preboot SW version.
3289  * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3290  * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3291  * @dram_used_mem: current DRAM memory consumption.
3292  * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3293  * @timeout_jiffies: device CS timeout value.
3294  * @max_power: the max power of the device, as configured by the sysadmin. This
3295  *             value is saved so in case of hard-reset, the driver will restore
3296  *             this value and update the F/W after the re-initialization
3297  * @boot_error_status_mask: contains a mask of the device boot error status.
3298  *                          Each bit represents a different error, according to
3299  *                          the defines in hl_boot_if.h. If the bit is cleared,
3300  *                          the error will be ignored by the driver during
3301  *                          device initialization. Mainly used to debug and
3302  *                          workaround firmware bugs
3303  * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3304  * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3305  * @last_successful_open_jif: timestamp (jiffies) of the last successful
3306  *                            device open.
3307  * @last_open_session_duration_jif: duration (jiffies) of the last device open
3308  *                                  session.
3309  * @open_counter: number of successful device open operations.
3310  * @fw_poll_interval_usec: FW status poll interval in usec.
3311  *                         used for CPU boot status
3312  * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3313  *                                  used for COMMs protocols cmds(COMMS_STS_*)
3314  * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3315  *                drams are binned-out
3316  * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3317  *               tpc engines are binned-out
3318  * @dmabuf_export_cnt: number of dma-buf exporting.
3319  * @card_type: Various ASICs have several card types. This indicates the card
3320  *             type of the current device.
3321  * @major: habanalabs kernel driver major.
3322  * @high_pll: high PLL profile frequency.
3323  * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3324  *                   indicates which decoder engines are binned-out
3325  * @edma_binning: contains mask of edma engines that is received from the f/w which
3326  *                   indicates which edma engines are binned-out
3327  * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3328  * @rotator_binning: contains mask of rotators engines that is received from the f/w
3329  *			which indicates which rotator engines are binned-out(Gaudi3 and above).
3330  * @id: device minor.
3331  * @cdev_idx: char device index.
3332  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3333  *                    addresses.
3334  * @is_in_dram_scrub: true if dram scrub operation is on going.
3335  * @disabled: is device disabled.
3336  * @late_init_done: is late init stage was done during initialization.
3337  * @hwmon_initialized: is H/W monitor sensors was initialized.
3338  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3339  *                   otherwise.
3340  * @dram_default_page_mapping: is DRAM default page mapping enabled.
3341  * @memory_scrub: true to perform device memory scrub in various locations,
3342  *                such as context-switch, context close, page free, etc.
3343  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3344  *                   huge pages.
3345  * @init_done: is the initialization of the device done.
3346  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3347  * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3348  *            can be used. This indication is needed because in some ASICs we need to do
3349  *            specific operations to enable that infrastructure.
3350  * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3351  * @stop_on_err: true if engines should stop on error.
3352  * @supports_sync_stream: is sync stream supported.
3353  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3354  * @collective_mon_idx: helper index for collective initialization
3355  * @supports_coresight: is CoreSight supported.
3356  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3357  * @process_kill_trial_cnt: number of trials reset thread tried killing
3358  *                          user processes
3359  * @device_fini_pending: true if device_fini was called and might be
3360  *                       waiting for the reset thread to finish
3361  * @supports_staged_submission: true if staged submissions are supported
3362  * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3363  *                        halted. We can't halt it again because the COMMS
3364  *                        protocol will throw an error. Relevant only for
3365  *                        cases where Linux was not loaded to device CPU
3366  * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3367  * @is_compute_ctx_active: Whether there is an active compute context executing.
3368  * @compute_ctx_in_release: true if the current compute context is being released.
3369  * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3370  * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3371  *                             device.
3372  * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3373  * @support_preboot_binning: true if we support read binning info from preboot.
3374  * @eq_heartbeat_received: indication that eq heartbeat event has received from FW.
3375  * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3376  * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3377  *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
3378  * @mmu_disable: Disable the device MMU(s). Used only for testing.
3379  * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3380  * @pldm: Whether we are running in Palladium environment. Used only for testing.
3381  * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3382  *                           the f/w. Used only for testing.
3383  * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3384  * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3385  *                         Used only for testing.
3386  * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3387  *             that the f/w is always alive. Used only for testing.
3388  */
3389 struct hl_device {
3390 	struct pci_dev			*pdev;
3391 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
3392 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
3393 	void __iomem			*rmmio;
3394 	struct drm_device		drm;
3395 	struct cdev			cdev_ctrl;
3396 	struct device			*dev;
3397 	struct device			*dev_ctrl;
3398 	struct delayed_work		work_heartbeat;
3399 	struct hl_device_reset_work	device_reset_work;
3400 	struct hl_device_reset_work	device_release_watchdog_work;
3401 	char				asic_name[HL_STR_MAX];
3402 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
3403 	enum hl_asic_type		asic_type;
3404 	struct hl_cq			*completion_queue;
3405 	struct hl_user_interrupt	*user_interrupt;
3406 	struct hl_user_interrupt	tpc_interrupt;
3407 	struct hl_user_interrupt	unexpected_error_interrupt;
3408 	struct hl_user_interrupt	common_user_cq_interrupt;
3409 	struct hl_user_interrupt	common_decoder_interrupt;
3410 	struct hl_cs			**shadow_cs_queue;
3411 	struct workqueue_struct		**cq_wq;
3412 	struct workqueue_struct		*eq_wq;
3413 	struct workqueue_struct		*cs_cmplt_wq;
3414 	struct workqueue_struct		*ts_free_obj_wq;
3415 	struct workqueue_struct		*prefetch_wq;
3416 	struct workqueue_struct		*reset_wq;
3417 	struct hl_ctx			*kernel_ctx;
3418 	struct hl_hw_queue		*kernel_queues;
3419 	struct list_head		cs_mirror_list;
3420 	spinlock_t			cs_mirror_lock;
3421 	struct hl_mem_mgr		kernel_mem_mgr;
3422 	struct hl_eq			event_queue;
3423 	struct dma_pool			*dma_pool;
3424 	void				*cpu_accessible_dma_mem;
3425 	dma_addr_t			cpu_accessible_dma_address;
3426 	struct gen_pool			*cpu_accessible_dma_pool;
3427 	unsigned long			*asid_bitmap;
3428 	struct mutex			asid_mutex;
3429 	struct mutex			send_cpu_message_lock;
3430 	struct mutex			debug_lock;
3431 	struct mutex			mmu_lock;
3432 	struct asic_fixed_properties	asic_prop;
3433 	const struct hl_asic_funcs	*asic_funcs;
3434 	void				*asic_specific;
3435 	struct hl_vm			vm;
3436 	struct device			*hwmon_dev;
3437 	struct hwmon_chip_info		*hl_chip_info;
3438 
3439 	struct hl_dbg_device_entry	hl_debugfs;
3440 
3441 	struct list_head		cb_pool;
3442 	spinlock_t			cb_pool_lock;
3443 
3444 	void				*internal_cb_pool_virt_addr;
3445 	dma_addr_t			internal_cb_pool_dma_addr;
3446 	struct gen_pool			*internal_cb_pool;
3447 	u64				internal_cb_va_base;
3448 
3449 	struct list_head		fpriv_list;
3450 	struct list_head		fpriv_ctrl_list;
3451 	struct mutex			fpriv_list_lock;
3452 	struct mutex			fpriv_ctrl_list_lock;
3453 
3454 	struct hl_cs_counters_atomic	aggregated_cs_counters;
3455 
3456 	struct hl_mmu_priv		mmu_priv;
3457 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
3458 
3459 	struct hl_dec			*dec;
3460 
3461 	struct fw_load_mgr		fw_loader;
3462 
3463 	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
3464 
3465 	struct hl_state_dump_specs	state_dump_specs;
3466 
3467 	struct multi_cs_completion	multi_cs_completion[
3468 							MULTI_CS_MAX_USER_CTX];
3469 	struct hl_clk_throttle		clk_throttling;
3470 	struct hl_error_info		captured_err_info;
3471 
3472 	struct hl_reset_info		reset_info;
3473 
3474 	struct eq_heartbeat_debug_info	heartbeat_debug_info;
3475 
3476 	cpumask_t			irq_affinity_mask;
3477 
3478 	u32				*stream_master_qid_arr;
3479 	u32				fw_inner_major_ver;
3480 	u32				fw_inner_minor_ver;
3481 	u32				fw_sw_major_ver;
3482 	u32				fw_sw_minor_ver;
3483 	u32				fw_sw_sub_minor_ver;
3484 	atomic64_t			dram_used_mem;
3485 	u64				memory_scrub_val;
3486 	u64				timeout_jiffies;
3487 	u64				max_power;
3488 	u64				boot_error_status_mask;
3489 	u64				dram_pci_bar_start;
3490 	u64				last_successful_open_jif;
3491 	u64				last_open_session_duration_jif;
3492 	u64				open_counter;
3493 	u64				fw_poll_interval_usec;
3494 	ktime_t				last_successful_open_ktime;
3495 	u64				fw_comms_poll_interval_usec;
3496 	u64				dram_binning;
3497 	u64				tpc_binning;
3498 	atomic_t			dmabuf_export_cnt;
3499 	enum cpucp_card_types		card_type;
3500 	u32				major;
3501 	u32				high_pll;
3502 	u32				decoder_binning;
3503 	u32				edma_binning;
3504 	u32				device_release_watchdog_timeout_sec;
3505 	u32				rotator_binning;
3506 	u16				id;
3507 	u16				cdev_idx;
3508 	u16				cpu_pci_msb_addr;
3509 	u8				is_in_dram_scrub;
3510 	u8				disabled;
3511 	u8				late_init_done;
3512 	u8				hwmon_initialized;
3513 	u8				reset_on_lockup;
3514 	u8				dram_default_page_mapping;
3515 	u8				memory_scrub;
3516 	u8				pmmu_huge_range;
3517 	u8				init_done;
3518 	u8				device_cpu_disabled;
3519 	u8				in_debug;
3520 	u8				cdev_sysfs_debugfs_created;
3521 	u8				stop_on_err;
3522 	u8				supports_sync_stream;
3523 	u8				sync_stream_queue_idx;
3524 	u8				collective_mon_idx;
3525 	u8				supports_coresight;
3526 	u8				supports_cb_mapping;
3527 	u8				process_kill_trial_cnt;
3528 	u8				device_fini_pending;
3529 	u8				supports_staged_submission;
3530 	u8				device_cpu_is_halted;
3531 	u8				supports_wait_for_multi_cs;
3532 	u8				stream_master_qid_arr_size;
3533 	u8				is_compute_ctx_active;
3534 	u8				compute_ctx_in_release;
3535 	u8				supports_mmu_prefetch;
3536 	u8				reset_upon_device_release;
3537 	u8				supports_ctx_switch;
3538 	u8				support_preboot_binning;
3539 	u8				eq_heartbeat_received;
3540 
3541 	/* Parameters for bring-up to be upstreamed */
3542 	u64				nic_ports_mask;
3543 	u64				fw_components;
3544 	u8				mmu_disable;
3545 	u8				cpu_queues_enable;
3546 	u8				pldm;
3547 	u8				hard_reset_on_fw_events;
3548 	u8				bmc_enable;
3549 	u8				reset_on_preboot_fail;
3550 	u8				heartbeat;
3551 };
3552 
3553 /* Retrieve PCI device name in case of a PCI device or dev name in simulator */
3554 #define HL_DEV_NAME(hdev)	\
3555 		((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE")
3556 
3557 /**
3558  * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3559  * @refcount: refcount used to protect removing this id when several
3560  *            wait cs are used to wait of the reserved encaps signals.
3561  * @hdev: pointer to habanalabs device structure.
3562  * @hw_sob: pointer to  H/W SOB used in the reservation.
3563  * @ctx: pointer to the user's context data structure
3564  * @cs_seq: staged cs sequence which contains encapsulated signals
3565  * @id: idr handler id to be used to fetch the handler info
3566  * @q_idx: stream queue index
3567  * @pre_sob_val: current SOB value before reservation
3568  * @count: signals number
3569  */
3570 struct hl_cs_encaps_sig_handle {
3571 	struct kref refcount;
3572 	struct hl_device *hdev;
3573 	struct hl_hw_sob *hw_sob;
3574 	struct hl_ctx *ctx;
3575 	u64  cs_seq;
3576 	u32  id;
3577 	u32  q_idx;
3578 	u32  pre_sob_val;
3579 	u32  count;
3580 };
3581 
3582 /**
3583  * struct hl_info_fw_err_info - firmware error information structure
3584  * @err_type: The type of error detected (or reported).
3585  * @event_mask: Pointer to the event mask to be modified with the detected error flag
3586  *              (can be NULL)
3587  * @event_id: The id of the event that reported the error
3588  *            (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3589  */
3590 struct hl_info_fw_err_info {
3591 	enum hl_info_fw_err_type err_type;
3592 	u64 *event_mask;
3593 	u16 event_id;
3594 };
3595 
3596 /*
3597  * IOCTLs
3598  */
3599 
3600 /**
3601  * typedef hl_ioctl_t - typedef for ioctl function in the driver
3602  * @hpriv: pointer to the FD's private data, which contains state of
3603  *		user process
3604  * @data: pointer to the input/output arguments structure of the IOCTL
3605  *
3606  * Return: 0 for success, negative value for error
3607  */
3608 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3609 
3610 /**
3611  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3612  * @cmd: the IOCTL code as created by the kernel macros.
3613  * @func: pointer to the driver's function that should be called for this IOCTL.
3614  */
3615 struct hl_ioctl_desc {
3616 	unsigned int cmd;
3617 	hl_ioctl_t *func;
3618 };
3619 
3620 /*
3621  * Kernel module functions that can be accessed by entire module
3622  */
3623 
3624 /**
3625  * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3626  * @sg: the SG list.
3627  * @dma_addr: pointer to DMA address to return.
3628  *
3629  * Calculate the number of consecutive pages described by the SG list. Take the
3630  * offset of the address in the first page, add to it the length and round it up
3631  * to the number of needed pages.
3632  */
3633 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3634 {
3635 	*dma_addr = sg_dma_address(sg);
3636 
3637 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3638 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3639 }
3640 
3641 /**
3642  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3643  * @address: The start address of the area we want to validate.
3644  * @size: The size in bytes of the area we want to validate.
3645  * @range_start_address: The start address of the valid range.
3646  * @range_end_address: The end address of the valid range.
3647  *
3648  * Return: true if the area is inside the valid range, false otherwise.
3649  */
3650 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3651 				u64 range_start_address, u64 range_end_address)
3652 {
3653 	u64 end_address = address + size;
3654 
3655 	if ((address >= range_start_address) &&
3656 			(end_address <= range_end_address) &&
3657 			(end_address > address))
3658 		return true;
3659 
3660 	return false;
3661 }
3662 
3663 static inline struct hl_device *to_hl_device(struct drm_device *ddev)
3664 {
3665 	return container_of(ddev, struct hl_device, drm);
3666 }
3667 
3668 /**
3669  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3670  * @address: The start address of the area we want to validate.
3671  * @size: The size in bytes of the area we want to validate.
3672  * @range_start_address: The start address of the valid range.
3673  * @range_end_address: The end address of the valid range.
3674  *
3675  * Return: true if the area overlaps part or all of the valid range,
3676  *		false otherwise.
3677  */
3678 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3679 				u64 range_start_address, u64 range_end_address)
3680 {
3681 	u64 end_address = address + size - 1;
3682 
3683 	return ((address <= range_end_address) && (range_start_address <= end_address));
3684 }
3685 
3686 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3687 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3688 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3689 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3690 					gfp_t flag, const char *caller);
3691 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3692 					dma_addr_t dma_handle, const char *caller);
3693 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3694 					dma_addr_t *dma_handle, const char *caller);
3695 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3696 					const char *caller);
3697 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3698 				enum dma_data_direction dir, const char *caller);
3699 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
3700 					enum dma_data_direction dir, const char *caller);
3701 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3702 				enum dma_data_direction dir);
3703 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3704 				enum dma_data_direction dir);
3705 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3706 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3707 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3708 	enum debugfs_access_type acc_type);
3709 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3710 			u64 addr, u64 *val, enum debugfs_access_type acc_type);
3711 
3712 int hl_mmap(struct file *filp, struct vm_area_struct *vma);
3713 
3714 int hl_device_open(struct drm_device *drm, struct drm_file *file_priv);
3715 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv);
3716 
3717 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3718 bool hl_device_operational(struct hl_device *hdev,
3719 		enum hl_device_status *status);
3720 bool hl_ctrl_device_operational(struct hl_device *hdev,
3721 		enum hl_device_status *status);
3722 enum hl_device_status hl_device_status(struct hl_device *hdev);
3723 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3724 int hl_hw_queues_create(struct hl_device *hdev);
3725 void hl_hw_queues_destroy(struct hl_device *hdev);
3726 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3727 		u32 cb_size, u64 cb_ptr);
3728 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3729 		u32 ctl, u32 len, u64 ptr);
3730 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3731 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3732 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3733 void hl_hw_queue_update_ci(struct hl_cs *cs);
3734 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3735 
3736 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
3737 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
3738 
3739 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3740 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3741 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3742 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3743 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3744 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3745 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3746 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3747 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3748 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg);
3749 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3750 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg);
3751 u32 hl_cq_inc_ptr(u32 ptr);
3752 
3753 int hl_asid_init(struct hl_device *hdev);
3754 void hl_asid_fini(struct hl_device *hdev);
3755 unsigned long hl_asid_alloc(struct hl_device *hdev);
3756 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3757 
3758 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3759 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3760 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3761 void hl_ctx_do_release(struct kref *ref);
3762 void hl_ctx_get(struct hl_ctx *ctx);
3763 int hl_ctx_put(struct hl_ctx *ctx);
3764 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3765 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3766 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3767 				struct hl_fence **fence, u32 arr_len);
3768 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3769 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3770 
3771 int hl_device_init(struct hl_device *hdev);
3772 void hl_device_fini(struct hl_device *hdev);
3773 int hl_device_suspend(struct hl_device *hdev);
3774 int hl_device_resume(struct hl_device *hdev);
3775 int hl_device_reset(struct hl_device *hdev, u32 flags);
3776 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3777 void hl_hpriv_get(struct hl_fpriv *hpriv);
3778 int hl_hpriv_put(struct hl_fpriv *hpriv);
3779 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3780 
3781 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3782 		struct cpucp_sensor *sensors_arr);
3783 
3784 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3785 
3786 int hl_sysfs_init(struct hl_device *hdev);
3787 void hl_sysfs_fini(struct hl_device *hdev);
3788 
3789 int hl_hwmon_init(struct hl_device *hdev);
3790 void hl_hwmon_fini(struct hl_device *hdev);
3791 void hl_hwmon_release_resources(struct hl_device *hdev);
3792 
3793 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3794 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3795 			bool map_cb, u64 *handle);
3796 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3797 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3798 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3799 void hl_cb_put(struct hl_cb *cb);
3800 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3801 					bool internal_cb);
3802 int hl_cb_pool_init(struct hl_device *hdev);
3803 int hl_cb_pool_fini(struct hl_device *hdev);
3804 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3805 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3806 
3807 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3808 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3809 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3810 void hl_sob_reset_error(struct kref *ref);
3811 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3812 void hl_fence_put(struct hl_fence *fence);
3813 void hl_fences_put(struct hl_fence **fence, int len);
3814 void hl_fence_get(struct hl_fence *fence);
3815 void cs_get(struct hl_cs *cs);
3816 bool cs_needs_completion(struct hl_cs *cs);
3817 bool cs_needs_timeout(struct hl_cs *cs);
3818 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3819 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3820 void hl_multi_cs_completion_init(struct hl_device *hdev);
3821 u32 hl_get_active_cs_num(struct hl_device *hdev);
3822 
3823 void goya_set_asic_funcs(struct hl_device *hdev);
3824 void gaudi_set_asic_funcs(struct hl_device *hdev);
3825 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3826 
3827 int hl_vm_ctx_init(struct hl_ctx *ctx);
3828 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3829 
3830 int hl_vm_init(struct hl_device *hdev);
3831 void hl_vm_fini(struct hl_device *hdev);
3832 
3833 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3834 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3835 
3836 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3837 		enum hl_va_range_type type, u64 size, u32 alignment);
3838 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3839 		u64 start_addr, u64 size);
3840 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3841 			struct hl_userptr *userptr);
3842 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3843 void hl_userptr_delete_list(struct hl_device *hdev,
3844 				struct list_head *userptr_list);
3845 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3846 				struct list_head *userptr_list,
3847 				struct hl_userptr **userptr);
3848 
3849 int hl_mmu_init(struct hl_device *hdev);
3850 void hl_mmu_fini(struct hl_device *hdev);
3851 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3852 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3853 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3854 		u32 page_size, bool flush_pte);
3855 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3856 				u32 page_size, u32 *real_page_size, bool is_dram_addr);
3857 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3858 		bool flush_pte);
3859 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3860 					u64 phys_addr, u32 size);
3861 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3862 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3863 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3864 					u32 flags, u32 asid, u64 va, u64 size);
3865 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3866 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3867 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3868 					u8 hop_idx, u64 hop_addr, u64 virt_addr);
3869 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3870 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3871 			u64 pgt_size);
3872 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3873 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3874 				u32 hop_table_size);
3875 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3876 							u32 hop_table_size);
3877 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3878 							u64 val, u32 hop_table_size);
3879 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3880 							u32 hop_table_size);
3881 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3882 							u32 hop_table_size);
3883 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3884 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3885 							struct hl_hr_mmu_funcs *hr_func,
3886 							u64 curr_pte);
3887 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3888 							struct hl_hr_mmu_funcs *hr_func,
3889 							struct hl_mmu_properties *mmu_prop);
3890 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3891 							struct hl_mmu_hr_priv *hr_priv,
3892 							struct hl_hr_mmu_funcs *hr_func,
3893 							struct hl_mmu_properties *mmu_prop,
3894 							u64 curr_pte, bool *is_new_hop);
3895 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3896 							struct hl_hr_mmu_funcs *hr_func);
3897 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3898 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3899 void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3900 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3901 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3902 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3903 			struct hl_mmu_hop_info *hops);
3904 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3905 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3906 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3907 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr);
3908 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr);
3909 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info);
3910 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx);
3911 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx);
3912 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3913 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val);
3914 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr);
3915 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
3916 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr);
3917 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr);
3918 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop);
3919 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx);
3920 void hl_mmu_dr_flush(struct hl_ctx *ctx);
3921 int hl_mmu_dr_init(struct hl_device *hdev);
3922 void hl_mmu_dr_fini(struct hl_device *hdev);
3923 
3924 int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor);
3925 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3926 				void __iomem *dst, u32 src_offset, u32 size);
3927 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3928 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3929 				u16 len, u32 timeout, u64 *result);
3930 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3931 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3932 		size_t irq_arr_size);
3933 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3934 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3935 						dma_addr_t *dma_handle);
3936 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3937 					void *vaddr);
3938 int hl_fw_send_heartbeat(struct hl_device *hdev);
3939 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3940 				u32 sts_boot_dev_sts0_reg,
3941 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3942 				u32 boot_err1_reg);
3943 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3944 				u32 sts_boot_dev_sts0_reg,
3945 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3946 				u32 boot_err1_reg);
3947 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3948 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3949 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3950 		struct hl_info_pci_counters *counters);
3951 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3952 			u64 *total_energy);
3953 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3954 						enum pll_index *pll_index);
3955 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3956 		u16 *pll_freq_arr);
3957 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3958 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3959 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3960 int hl_fw_init_cpu(struct hl_device *hdev);
3961 int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3962 int hl_fw_read_preboot_status(struct hl_device *hdev);
3963 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3964 				struct fw_load_mgr *fw_loader,
3965 				enum comms_cmd cmd, unsigned int size,
3966 				bool wait_ok, u32 timeout);
3967 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3968 				struct cpucp_hbm_row_info *info);
3969 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3970 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3971 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3972 int hl_fw_send_soft_reset(struct hl_device *hdev);
3973 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3974 			bool is_wc[3]);
3975 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3976 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3977 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3978 		struct hl_inbound_pci_region *pci_region);
3979 int hl_pci_set_outbound_region(struct hl_device *hdev,
3980 		struct hl_outbound_pci_region *pci_region);
3981 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3982 int hl_pci_init(struct hl_device *hdev);
3983 void hl_pci_fini(struct hl_device *hdev);
3984 
3985 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3986 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3987 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3988 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3989 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3990 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3991 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3992 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3993 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3994 long hl_fw_get_max_power(struct hl_device *hdev);
3995 void hl_fw_set_max_power(struct hl_device *hdev);
3996 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3997 				u32 nonce);
3998 int hl_fw_get_dev_info_signed(struct hl_device *hdev,
3999 			      struct cpucp_dev_info_signed *dev_info_signed, u32 nonce);
4000 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4001 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4002 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
4003 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
4004 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
4005 void hl_fw_set_pll_profile(struct hl_device *hdev);
4006 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
4007 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
4008 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
4009 						dma_addr_t buff, u32 *size);
4010 
4011 void hw_sob_get(struct hl_hw_sob *hw_sob);
4012 void hw_sob_put(struct hl_hw_sob *hw_sob);
4013 void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
4014 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
4015 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
4016 			struct hl_cs *cs, struct hl_cs_job *job,
4017 			struct hl_cs_compl *cs_cmpl);
4018 
4019 int hl_dec_init(struct hl_device *hdev);
4020 void hl_dec_fini(struct hl_device *hdev);
4021 void hl_dec_ctx_fini(struct hl_ctx *ctx);
4022 
4023 void hl_release_pending_user_interrupts(struct hl_device *hdev);
4024 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
4025 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
4026 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
4027 
4028 int hl_state_dump(struct hl_device *hdev);
4029 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
4030 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
4031 					struct hl_mon_state_dump *mon);
4032 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
4033 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
4034 					const char *format, ...);
4035 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
4036 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
4037 
4038 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
4039 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
4040 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
4041 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
4042 		    void *args);
4043 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
4044 						   u64 handle);
4045 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
4046 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
4047 struct hl_mmap_mem_buf *
4048 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
4049 		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
4050 		      void *args);
4051 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
4052 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4053 			u8 flags);
4054 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
4055 			u8 flags, u64 *event_mask);
4056 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
4057 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
4058 				u64 *event_mask);
4059 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
4060 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
4061 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count);
4062 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
4063 void hl_init_cpu_for_irq(struct hl_device *hdev);
4064 void hl_set_irq_affinity(struct hl_device *hdev, int irq);
4065 void hl_eq_heartbeat_event_handle(struct hl_device *hdev);
4066 void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask);
4067 
4068 #ifdef CONFIG_DEBUG_FS
4069 
4070 int hl_debugfs_device_init(struct hl_device *hdev);
4071 void hl_debugfs_device_fini(struct hl_device *hdev);
4072 void hl_debugfs_add_device(struct hl_device *hdev);
4073 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
4074 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
4075 void hl_debugfs_add_cb(struct hl_cb *cb);
4076 void hl_debugfs_remove_cb(struct hl_cb *cb);
4077 void hl_debugfs_add_cs(struct hl_cs *cs);
4078 void hl_debugfs_remove_cs(struct hl_cs *cs);
4079 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
4080 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
4081 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
4082 void hl_debugfs_remove_userptr(struct hl_device *hdev,
4083 				struct hl_userptr *userptr);
4084 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4085 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
4086 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
4087 					unsigned long length);
4088 
4089 #else
4090 
4091 static inline int hl_debugfs_device_init(struct hl_device *hdev)
4092 {
4093 	return 0;
4094 }
4095 
4096 static inline void hl_debugfs_device_fini(struct hl_device *hdev)
4097 {
4098 }
4099 
4100 static inline void hl_debugfs_add_device(struct hl_device *hdev)
4101 {
4102 }
4103 
4104 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4105 {
4106 }
4107 
4108 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4109 {
4110 }
4111 
4112 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4113 {
4114 }
4115 
4116 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4117 {
4118 }
4119 
4120 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4121 {
4122 }
4123 
4124 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4125 {
4126 }
4127 
4128 static inline void hl_debugfs_add_job(struct hl_device *hdev,
4129 					struct hl_cs_job *job)
4130 {
4131 }
4132 
4133 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4134 					struct hl_cs_job *job)
4135 {
4136 }
4137 
4138 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4139 					struct hl_userptr *userptr)
4140 {
4141 }
4142 
4143 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4144 					struct hl_userptr *userptr)
4145 {
4146 }
4147 
4148 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4149 					struct hl_ctx *ctx)
4150 {
4151 }
4152 
4153 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4154 					struct hl_ctx *ctx)
4155 {
4156 }
4157 
4158 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4159 					char *data, unsigned long length)
4160 {
4161 }
4162 
4163 #endif
4164 
4165 /* Security */
4166 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4167 		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4168 		int array_size);
4169 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4170 		int mm_array_size, int offset, const u32 pb_blocks[],
4171 		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4172 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4173 		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4174 		int array_size);
4175 void hl_secure_block(struct hl_device *hdev,
4176 		struct hl_block_glbl_sec sgs_array[], int array_size);
4177 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4178 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4179 		const u32 pb_blocks[], u32 blocks_array_size,
4180 		const u32 *regs_array, u32 regs_array_size, u64 mask);
4181 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4182 		u32 num_instances, u32 instance_offset,
4183 		const u32 pb_blocks[], u32 blocks_array_size,
4184 		const u32 *regs_array, u32 regs_array_size);
4185 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4186 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4187 		const u32 pb_blocks[], u32 blocks_array_size,
4188 		const struct range *regs_range_array, u32 regs_range_array_size,
4189 		u64 mask);
4190 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4191 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4192 		const u32 pb_blocks[], u32 blocks_array_size,
4193 		const struct range *regs_range_array,
4194 		u32 regs_range_array_size);
4195 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4196 		u32 num_instances, u32 instance_offset,
4197 		const u32 pb_blocks[], u32 blocks_array_size,
4198 		const u32 *regs_array, u32 regs_array_size);
4199 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4200 		u32 num_instances, u32 instance_offset,
4201 		const u32 pb_blocks[], u32 blocks_array_size,
4202 		const struct range *regs_range_array,
4203 		u32 regs_range_array_size);
4204 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4205 		u32 num_instances, u32 instance_offset,
4206 		const u32 pb_blocks[], u32 blocks_array_size);
4207 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4208 		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4209 		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4210 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4211 		u32 num_instances, u32 instance_offset,
4212 		const u32 pb_blocks[], u32 blocks_array_size);
4213 
4214 /* IOCTLs */
4215 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4216 int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4217 int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4218 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4219 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4220 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4221 int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv);
4222 
4223 #endif /* HABANALABSP_H_ */
4224