1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * Copyright 2016-2023 HabanaLabs, Ltd. 4 * All Rights Reserved. 5 * 6 */ 7 8 #ifndef HABANALABSP_H_ 9 #define HABANALABSP_H_ 10 11 #include <linux/habanalabs/cpucp_if.h> 12 #include "../include/common/qman_if.h" 13 #include "../include/hw_ip/mmu/mmu_general.h" 14 #include <uapi/drm/habanalabs_accel.h> 15 16 #include <linux/cdev.h> 17 #include <linux/iopoll.h> 18 #include <linux/irqreturn.h> 19 #include <linux/dma-direction.h> 20 #include <linux/scatterlist.h> 21 #include <linux/hashtable.h> 22 #include <linux/debugfs.h> 23 #include <linux/rwsem.h> 24 #include <linux/eventfd.h> 25 #include <linux/bitfield.h> 26 #include <linux/genalloc.h> 27 #include <linux/sched/signal.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/coresight.h> 30 #include <linux/dma-buf.h> 31 32 #include <drm/drm_device.h> 33 #include <drm/drm_file.h> 34 35 #include "security.h" 36 37 #define HL_NAME "habanalabs" 38 39 struct hl_device; 40 struct hl_fpriv; 41 42 #define PCI_VENDOR_ID_HABANALABS 0x1da3 43 44 /* Use upper bits of mmap offset to store habana driver specific information. 45 * bits[63:59] - Encode mmap type 46 * bits[45:0] - mmap offset value 47 * 48 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 49 * defines are w.r.t to PAGE_SIZE 50 */ 51 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT) 52 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT) 53 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT) 54 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) 55 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) 56 57 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT) 58 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK) 59 60 #define HL_PENDING_RESET_PER_SEC 10 61 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */ 62 #define HL_PENDING_RESET_LONG_SEC 60 63 /* 64 * In device fini, wait 10 minutes for user processes to be terminated after we kill them. 65 * This is needed to prevent situation of clearing resources while user processes are still alive. 66 */ 67 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600 68 69 #define HL_HARD_RESET_MAX_TIMEOUT 120 70 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3) 71 72 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */ 73 74 #define HL_HEARTBEAT_PER_USEC 10000000 /* 10 s */ 75 76 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */ 77 78 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */ 79 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */ 80 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */ 81 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */ 82 83 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */ 84 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */ 85 86 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */ 87 88 #define HL_INVALID_QUEUE UINT_MAX 89 90 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF 91 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE 92 93 #define HL_STATE_DUMP_HIST_LEN 5 94 95 /* Default value for device reset trigger , an invalid value */ 96 #define HL_RESET_TRIGGER_DEFAULT 0xFF 97 98 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 99 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 100 101 /* Memory */ 102 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 103 104 /* MMU */ 105 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */ 106 107 #define TIMESTAMP_FREE_NODES_NUM 512 108 109 /** 110 * enum hl_mmu_page_table_location - mmu page table location 111 * @MMU_DR_PGT: page-table is located on device DRAM. 112 * @MMU_HR_PGT: page-table is located on host memory. 113 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported. 114 */ 115 enum hl_mmu_page_table_location { 116 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */ 117 MMU_HR_PGT, /* host resident MMU PGT */ 118 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */ 119 }; 120 121 /* 122 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream 123 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream 124 */ 125 #define HL_RSVD_SOBS 2 126 #define HL_RSVD_MONS 1 127 128 /* 129 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream 130 */ 131 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2 132 133 #define HL_MAX_SOB_VAL (1 << 15) 134 135 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0)) 136 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1)) 137 138 #define HL_PCI_NUM_BARS 6 139 140 /* Completion queue entry relates to completed job */ 141 #define HL_COMPLETION_MODE_JOB 0 142 /* Completion queue entry relates to completed command submission */ 143 #define HL_COMPLETION_MODE_CS 1 144 145 #define HL_MAX_DCORES 8 146 147 /* DMA alloc/free wrappers */ 148 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \ 149 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__) 150 151 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \ 152 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__) 153 154 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \ 155 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__) 156 157 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \ 158 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__) 159 160 #define hl_dma_map_sgtable(hdev, sgt, dir) \ 161 hl_dma_map_sgtable_caller(hdev, sgt, dir, __func__) 162 #define hl_dma_unmap_sgtable(hdev, sgt, dir) \ 163 hl_dma_unmap_sgtable_caller(hdev, sgt, dir, __func__) 164 165 /* 166 * Reset Flags 167 * 168 * - HL_DRV_RESET_HARD 169 * If set do hard reset to all engines. If not set reset just 170 * compute/DMA engines. 171 * 172 * - HL_DRV_RESET_FROM_RESET_THR 173 * Set if the caller is the hard-reset thread 174 * 175 * - HL_DRV_RESET_HEARTBEAT 176 * Set if reset is due to heartbeat 177 * 178 * - HL_DRV_RESET_TDR 179 * Set if reset is due to TDR 180 * 181 * - HL_DRV_RESET_DEV_RELEASE 182 * Set if reset is due to device release 183 * 184 * - HL_DRV_RESET_BYPASS_REQ_TO_FW 185 * F/W will perform the reset. No need to ask it to reset the device. This is relevant 186 * only when running with secured f/w 187 * 188 * - HL_DRV_RESET_FW_FATAL_ERR 189 * Set if reset is due to a fatal error from FW 190 * 191 * - HL_DRV_RESET_DELAY 192 * Set if a delay should be added before the reset 193 * 194 * - HL_DRV_RESET_FROM_WD_THR 195 * Set if the caller is the device release watchdog thread 196 */ 197 198 #define HL_DRV_RESET_HARD (1 << 0) 199 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1) 200 #define HL_DRV_RESET_HEARTBEAT (1 << 2) 201 #define HL_DRV_RESET_TDR (1 << 3) 202 #define HL_DRV_RESET_DEV_RELEASE (1 << 4) 203 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5) 204 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6) 205 #define HL_DRV_RESET_DELAY (1 << 7) 206 #define HL_DRV_RESET_FROM_WD_THR (1 << 8) 207 208 /* 209 * Security 210 */ 211 212 #define HL_PB_SHARED 1 213 #define HL_PB_NA 0 214 #define HL_PB_SINGLE_INSTANCE 1 215 #define HL_BLOCK_SIZE 0x1000 216 #define HL_BLOCK_GLBL_ERR_MASK 0xF40 217 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44 218 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48 219 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80 220 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS) 221 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32)) 222 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32))) 223 224 enum hl_protection_levels { 225 SECURED_LVL, 226 PRIVILEGED_LVL, 227 NON_SECURED_LVL 228 }; 229 230 /** 231 * struct iterate_module_ctx - HW module iterator 232 * @fn: function to apply to each HW module instance 233 * @data: optional internal data to the function iterator 234 * @rc: return code for optional use of iterator/iterator-caller 235 */ 236 struct iterate_module_ctx { 237 /* 238 * callback for the HW module iterator 239 * @hdev: pointer to the habanalabs device structure 240 * @block: block (ASIC specific definition can be dcore/hdcore) 241 * @inst: HW module instance within the block 242 * @offset: current HW module instance offset from the 1-st HW module instance 243 * in the 1-st block 244 * @ctx: the iterator context. 245 */ 246 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset, 247 struct iterate_module_ctx *ctx); 248 void *data; 249 int rc; 250 }; 251 252 struct hl_block_glbl_sec { 253 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN]; 254 }; 255 256 #define HL_MAX_SOBS_PER_MONITOR 8 257 258 /** 259 * struct hl_gen_wait_properties - properties for generating a wait CB 260 * @data: command buffer 261 * @q_idx: queue id is used to extract fence register address 262 * @size: offset in command buffer 263 * @sob_base: SOB base to use in this wait CB 264 * @sob_val: SOB value to wait for 265 * @mon_id: monitor to use in this wait CB 266 * @sob_mask: each bit represents a SOB offset from sob_base to be used 267 */ 268 struct hl_gen_wait_properties { 269 void *data; 270 u32 q_idx; 271 u32 size; 272 u16 sob_base; 273 u16 sob_val; 274 u16 mon_id; 275 u8 sob_mask; 276 }; 277 278 /** 279 * struct pgt_info - MMU hop page info. 280 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and 281 * actual pgts for host resident MMU). 282 * @phys_addr: physical address of the pgt. 283 * @virt_addr: host virtual address of the pgt (see above device/host resident). 284 * @shadow_addr: shadow hop in the host for device resident MMU. 285 * @ctx: pointer to the owner ctx. 286 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically 287 * allocated HOPs (all HOPs but HOP0) 288 * 289 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow 290 * pgts will be stored on host memory) or on host memory (in which case no shadow is required). 291 * 292 * When a new level (hop) is needed during mapping this structure will be used to describe 293 * the newly allocated hop as well as to track number of PTEs in it. 294 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is 295 * freed with its pgt_info structure. 296 */ 297 struct pgt_info { 298 struct hlist_node node; 299 u64 phys_addr; 300 u64 virt_addr; 301 u64 shadow_addr; 302 struct hl_ctx *ctx; 303 int num_of_ptes; 304 }; 305 306 /** 307 * enum hl_pci_match_mode - pci match mode per region 308 * @PCI_ADDRESS_MATCH_MODE: address match mode 309 * @PCI_BAR_MATCH_MODE: bar match mode 310 */ 311 enum hl_pci_match_mode { 312 PCI_ADDRESS_MATCH_MODE, 313 PCI_BAR_MATCH_MODE 314 }; 315 316 /** 317 * enum hl_fw_component - F/W components to read version through registers. 318 * @FW_COMP_BOOT_FIT: boot fit. 319 * @FW_COMP_PREBOOT: preboot. 320 * @FW_COMP_LINUX: linux. 321 */ 322 enum hl_fw_component { 323 FW_COMP_BOOT_FIT, 324 FW_COMP_PREBOOT, 325 FW_COMP_LINUX, 326 }; 327 328 /** 329 * enum hl_fw_types - F/W types present in the system 330 * @FW_TYPE_NONE: no FW component indication 331 * @FW_TYPE_LINUX: Linux image for device CPU 332 * @FW_TYPE_BOOT_CPU: Boot image for device CPU 333 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system 334 * (preboot, ppboot etc...) 335 * @FW_TYPE_ALL_TYPES: Mask for all types 336 */ 337 enum hl_fw_types { 338 FW_TYPE_NONE = 0x0, 339 FW_TYPE_LINUX = 0x1, 340 FW_TYPE_BOOT_CPU = 0x2, 341 FW_TYPE_PREBOOT_CPU = 0x4, 342 FW_TYPE_ALL_TYPES = 343 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU) 344 }; 345 346 /** 347 * enum hl_queue_type - Supported QUEUE types. 348 * @QUEUE_TYPE_NA: queue is not available. 349 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the 350 * host. 351 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's 352 * memories and/or operates the compute engines. 353 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU. 354 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion 355 * notifications are sent by H/W. 356 */ 357 enum hl_queue_type { 358 QUEUE_TYPE_NA, 359 QUEUE_TYPE_EXT, 360 QUEUE_TYPE_INT, 361 QUEUE_TYPE_CPU, 362 QUEUE_TYPE_HW 363 }; 364 365 enum hl_cs_type { 366 CS_TYPE_DEFAULT, 367 CS_TYPE_SIGNAL, 368 CS_TYPE_WAIT, 369 CS_TYPE_COLLECTIVE_WAIT, 370 CS_RESERVE_SIGNALS, 371 CS_UNRESERVE_SIGNALS, 372 CS_TYPE_ENGINE_CORE, 373 CS_TYPE_ENGINES, 374 CS_TYPE_FLUSH_PCI_HBW_WRITES, 375 }; 376 377 /* 378 * struct hl_inbound_pci_region - inbound region descriptor 379 * @mode: pci match mode for this region 380 * @addr: region target address 381 * @size: region size in bytes 382 * @offset_in_bar: offset within bar (address match mode) 383 * @bar: bar id 384 */ 385 struct hl_inbound_pci_region { 386 enum hl_pci_match_mode mode; 387 u64 addr; 388 u64 size; 389 u64 offset_in_bar; 390 u8 bar; 391 }; 392 393 /* 394 * struct hl_outbound_pci_region - outbound region descriptor 395 * @addr: region target address 396 * @size: region size in bytes 397 */ 398 struct hl_outbound_pci_region { 399 u64 addr; 400 u64 size; 401 }; 402 403 /* 404 * enum queue_cb_alloc_flags - Indicates queue support for CBs that 405 * allocated by Kernel or by User 406 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel 407 * @CB_ALLOC_USER: support only CBs that allocated by User 408 */ 409 enum queue_cb_alloc_flags { 410 CB_ALLOC_KERNEL = 0x1, 411 CB_ALLOC_USER = 0x2 412 }; 413 414 /* 415 * struct hl_hw_sob - H/W SOB info. 416 * @hdev: habanalabs device structure. 417 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero. 418 * @sob_id: id of this SOB. 419 * @sob_addr: the sob offset from the base address. 420 * @q_idx: the H/W queue that uses this SOB. 421 * @need_reset: reset indication set when switching to the other sob. 422 */ 423 struct hl_hw_sob { 424 struct hl_device *hdev; 425 struct kref kref; 426 u32 sob_id; 427 u32 sob_addr; 428 u32 q_idx; 429 bool need_reset; 430 }; 431 432 enum hl_collective_mode { 433 HL_COLLECTIVE_NOT_SUPPORTED = 0x0, 434 HL_COLLECTIVE_MASTER = 0x1, 435 HL_COLLECTIVE_SLAVE = 0x2 436 }; 437 438 /** 439 * struct hw_queue_properties - queue information. 440 * @type: queue type. 441 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB 442 * that allocated by the Kernel driver and therefore, 443 * a CB handle can be provided for jobs on this queue. 444 * Otherwise, a CB address must be provided. 445 * @collective_mode: collective mode of current queue 446 * @q_dram_bd_address: PQ dram address, used when PQ need to reside in DRAM. 447 * @driver_only: true if only the driver is allowed to send a job to this queue, 448 * false otherwise. 449 * @binned: True if the queue is binned out and should not be used 450 * @supports_sync_stream: True if queue supports sync stream 451 * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram 452 */ 453 struct hw_queue_properties { 454 enum hl_queue_type type; 455 enum queue_cb_alloc_flags cb_alloc_flags; 456 enum hl_collective_mode collective_mode; 457 u64 q_dram_bd_address; 458 u8 driver_only; 459 u8 binned; 460 u8 supports_sync_stream; 461 u8 dram_bd; 462 }; 463 464 /** 465 * enum vm_type - virtual memory mapping request information. 466 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address. 467 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address. 468 */ 469 enum vm_type { 470 VM_TYPE_USERPTR = 0x1, 471 VM_TYPE_PHYS_PACK = 0x2 472 }; 473 474 /** 475 * enum mmu_op_flags - mmu operation relevant information. 476 * @MMU_OP_USERPTR: operation on user memory (host resident). 477 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident). 478 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache. 479 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation. 480 */ 481 enum mmu_op_flags { 482 MMU_OP_USERPTR = 0x1, 483 MMU_OP_PHYS_PACK = 0x2, 484 MMU_OP_CLEAR_MEMCACHE = 0x4, 485 MMU_OP_SKIP_LOW_CACHE_INV = 0x8, 486 }; 487 488 489 /** 490 * enum hl_device_hw_state - H/W device state. use this to understand whether 491 * to do reset before hw_init or not 492 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset 493 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute 494 * hw_init 495 */ 496 enum hl_device_hw_state { 497 HL_DEVICE_HW_STATE_CLEAN = 0, 498 HL_DEVICE_HW_STATE_DIRTY 499 }; 500 501 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0 502 503 /** 504 * struct hl_mmu_properties - ASIC specific MMU address translation properties. 505 * @start_addr: virtual start address of the memory region. 506 * @end_addr: virtual end address of the memory region. 507 * @hop_shifts: array holds HOPs shifts. 508 * @hop_masks: array holds HOPs masks. 509 * @last_mask: mask to get the bit indicating this is the last hop. 510 * @pgt_size: size for page tables. 511 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs 512 * supporting multiple page size). 513 * @page_size: default page size used to allocate memory. 514 * @num_hops: The amount of hops supported by the translation table. 515 * @hop_table_size: HOP table size. 516 * @hop0_tables_total_size: total size for all HOP0 tables. 517 * @host_resident: Should the MMU page table reside in host memory or in the 518 * device DRAM. 519 */ 520 struct hl_mmu_properties { 521 u64 start_addr; 522 u64 end_addr; 523 u64 hop_shifts[MMU_HOP_MAX]; 524 u64 hop_masks[MMU_HOP_MAX]; 525 u64 last_mask; 526 u64 pgt_size; 527 u64 supported_pages_mask; 528 u32 page_size; 529 u32 num_hops; 530 u32 hop_table_size; 531 u32 hop0_tables_total_size; 532 u8 host_resident; 533 }; 534 535 /** 536 * struct hl_hints_range - hint addresses reserved va range. 537 * @start_addr: start address of the va range. 538 * @end_addr: end address of the va range. 539 */ 540 struct hl_hints_range { 541 u64 start_addr; 542 u64 end_addr; 543 }; 544 545 /** 546 * struct asic_fixed_properties - ASIC specific immutable properties. 547 * @hw_queues_props: H/W queues properties. 548 * @special_blocks: points to an array containing special blocks info. 549 * @skip_special_blocks_cfg: special blocks skip configs. 550 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g. 551 * available sensors. 552 * @uboot_ver: F/W U-boot version. 553 * @preboot_ver: F/W Preboot version. 554 * @dmmu: DRAM MMU address translation properties. 555 * @pmmu: PCI (host) MMU address translation properties. 556 * @pmmu_huge: PCI (host) MMU address translation properties for memory 557 * allocated with huge pages. 558 * @hints_dram_reserved_va_range: dram hint addresses reserved range. 559 * @hints_host_reserved_va_range: host hint addresses reserved range. 560 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved range. 561 * @sram_base_address: SRAM physical start address. 562 * @sram_end_address: SRAM physical end address. 563 * @sram_user_base_address - SRAM physical start address for user access. 564 * @dram_base_address: DRAM physical start address. 565 * @dram_end_address: DRAM physical end address. 566 * @dram_user_base_address: DRAM physical start address for user access. 567 * @dram_size: DRAM total size. 568 * @dram_pci_bar_size: size of PCI bar towards DRAM. 569 * @max_power_default: max power of the device after reset. 570 * @dc_power_default: power consumed by the device in mode idle. 571 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page 572 * fault. 573 * @pcie_dbi_base_address: Base address of the PCIE_DBI block. 574 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register. 575 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables. 576 * @mmu_dram_default_page_addr: DRAM default page physical address. 577 * @tpc_enabled_mask: which TPCs are enabled. 578 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned. 579 * @dram_enabled_mask: which DRAMs are enabled. 580 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned. 581 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used 582 * for hints validity check. 583 * @cfg_base_address: config space base address. 584 * @mmu_cache_mng_addr: address of the MMU cache. 585 * @mmu_cache_mng_size: size of the MMU cache. 586 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses 587 * to enable the device to access them. 588 * @host_base_address: host physical start address for host DMA from device 589 * @host_end_address: host physical end address for host DMA from device 590 * @max_freq_value: current max clk frequency. 591 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use 592 * in order to raise events toward FW. 593 * @clk_pll_index: clock PLL index that specify which PLL determines the clock 594 * we display to the user 595 * @mmu_pgt_size: MMU page tables total size. 596 * @mmu_pte_size: PTE size in MMU page tables. 597 * @dram_page_size: The DRAM physical page size. 598 * @cfg_size: configuration space size on SRAM. 599 * @sram_size: total size of SRAM. 600 * @max_asid: maximum number of open contexts (ASIDs). 601 * @num_of_events: number of possible internal H/W IRQs. 602 * @psoc_pci_pll_nr: PCI PLL NR value. 603 * @psoc_pci_pll_nf: PCI PLL NF value. 604 * @psoc_pci_pll_od: PCI PLL OD value. 605 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value. 606 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock. 607 * @high_pll: high PLL frequency used by the device. 608 * @cb_pool_cb_cnt: number of CBs in the CB pool. 609 * @cb_pool_cb_size: size of each CB in the CB pool. 610 * @decoder_enabled_mask: which decoders are enabled. 611 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned. 612 * @rotator_enabled_mask: which rotators are enabled. 613 * @edma_enabled_mask: which EDMAs are enabled. 614 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means 615 * binned (at most one binned DMA). 616 * @max_pending_cs: maximum of concurrent pending command submissions 617 * @max_queues: maximum amount of queues in the system 618 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu 619 * capabilities reported by FW, bit description 620 * can be found in CPU_BOOT_DEV_STS0 621 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu 622 * capabilities reported by FW, bit description 623 * can be found in CPU_BOOT_DEV_STS1 624 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security 625 * status reported by FW, bit description can be 626 * found in CPU_BOOT_DEV_STS0 627 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security 628 * status reported by FW, bit description can be 629 * found in CPU_BOOT_DEV_STS1 630 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security 631 * status reported by FW, bit description can be 632 * found in CPU_BOOT_DEV_STS0 633 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security 634 * status reported by FW, bit description can be 635 * found in CPU_BOOT_DEV_STS1 636 * @max_dec: maximum number of decoders 637 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled) 638 * 1- enabled, 0- isolated. 639 * @faulty_dram_cluster_map: mask of faulty DRAM cluster. 640 * 1- faulty cluster, 0- good cluster. 641 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled) 642 * 1- enabled, 0- isolated. 643 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for 644 * which the property supports_user_set_page_size is true 645 * (i.e. the DRAM supports multiple page sizes), otherwise 646 * it will shall be equal to dram_page_size. 647 * @num_engine_cores: number of engine cpu cores. 648 * @max_num_of_engines: maximum number of all engines in the ASIC. 649 * @num_of_special_blocks: special_blocks array size. 650 * @glbl_err_max_cause_num: global err max cause number. 651 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is 652 * not supported. 653 * @reserved_fw_mem_size: size of dram memory reserved for FW. 654 * @fw_event_queue_size: queue size for events from CPU-CP. 655 * A value of 0 means using the default HL_EQ_SIZE_IN_BYTES value. 656 * @collective_first_sob: first sync object available for collective use 657 * @collective_first_mon: first monitor available for collective use 658 * @sync_stream_first_sob: first sync object available for sync stream use 659 * @sync_stream_first_mon: first monitor available for sync stream use 660 * @first_available_user_sob: first sob available for the user 661 * @first_available_user_mon: first monitor available for the user 662 * @first_available_user_interrupt: first available interrupt reserved for the user 663 * @first_available_cq: first available CQ for the user. 664 * @user_interrupt_count: number of user interrupts. 665 * @user_dec_intr_count: number of decoder interrupts exposed to user. 666 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host. 667 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset. 668 * @cache_line_size: device cache line size. 669 * @server_type: Server type that the ASIC is currently installed in. 670 * The value is according to enum hl_server_type in uapi file. 671 * @completion_queues_count: number of completion queues. 672 * @completion_mode: 0 - job based completion, 1 - cs based completion 673 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works 674 * in Master/Slave mode 675 * @fw_security_enabled: true if security measures are enabled in firmware, 676 * false otherwise 677 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from 678 * BOOT_DEV_STS0 679 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from 680 * BOOT_DEV_STS1 681 * @dram_supports_virtual_memory: is there an MMU towards the DRAM 682 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow 683 * @num_functional_hbms: number of functional HBMs in each DCORE. 684 * @hints_range_reservation: device support hint addresses range reservation. 685 * @iatu_done_by_fw: true if iATU configuration is being done by FW. 686 * @dynamic_fw_load: is dynamic FW load is supported. 687 * @gic_interrupts_enable: true if FW is not blocking GIC controller, 688 * false otherwise. 689 * @use_get_power_for_reset_history: To support backward compatibility for Goya 690 * and Gaudi 691 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic. 692 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is 693 * initiated by user or TDR. This is only true 694 * in inference ASICs, as there is no real-world 695 * use-case of doing soft-reset in training (due 696 * to the fact that training runs on multiple 697 * devices) 698 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs. 699 * @set_max_power_on_device_init: true if need to set max power in F/W on device init. 700 * @supports_user_set_page_size: true if user can set the allocation page size. 701 * @dma_mask: the dma mask to be set for this device. 702 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported. 703 * @supports_engine_modes: true if changing engines/engine_cores modes is supported. 704 * @support_dynamic_resereved_fw_size: true if we support dynamic reserved size for fw. 705 */ 706 struct asic_fixed_properties { 707 struct hw_queue_properties *hw_queues_props; 708 struct hl_special_block_info *special_blocks; 709 struct hl_skip_blocks_cfg skip_special_blocks_cfg; 710 struct cpucp_info cpucp_info; 711 char uboot_ver[VERSION_MAX_LEN]; 712 char preboot_ver[VERSION_MAX_LEN]; 713 struct hl_mmu_properties dmmu; 714 struct hl_mmu_properties pmmu; 715 struct hl_mmu_properties pmmu_huge; 716 struct hl_hints_range hints_dram_reserved_va_range; 717 struct hl_hints_range hints_host_reserved_va_range; 718 struct hl_hints_range hints_host_hpage_reserved_va_range; 719 u64 sram_base_address; 720 u64 sram_end_address; 721 u64 sram_user_base_address; 722 u64 dram_base_address; 723 u64 dram_end_address; 724 u64 dram_user_base_address; 725 u64 dram_size; 726 u64 dram_pci_bar_size; 727 u64 max_power_default; 728 u64 dc_power_default; 729 u64 dram_size_for_default_page_mapping; 730 u64 pcie_dbi_base_address; 731 u64 pcie_aux_dbi_reg_addr; 732 u64 mmu_pgt_addr; 733 u64 mmu_dram_default_page_addr; 734 u64 tpc_enabled_mask; 735 u64 tpc_binning_mask; 736 u64 dram_enabled_mask; 737 u64 dram_binning_mask; 738 u64 dram_hints_align_mask; 739 u64 cfg_base_address; 740 u64 mmu_cache_mng_addr; 741 u64 mmu_cache_mng_size; 742 u64 device_dma_offset_for_host_access; 743 u64 host_base_address; 744 u64 host_end_address; 745 u64 max_freq_value; 746 u64 engine_core_interrupt_reg_addr; 747 u32 clk_pll_index; 748 u32 mmu_pgt_size; 749 u32 mmu_pte_size; 750 u32 dram_page_size; 751 u32 cfg_size; 752 u32 sram_size; 753 u32 max_asid; 754 u32 num_of_events; 755 u32 psoc_pci_pll_nr; 756 u32 psoc_pci_pll_nf; 757 u32 psoc_pci_pll_od; 758 u32 psoc_pci_pll_div_factor; 759 u32 psoc_timestamp_frequency; 760 u32 high_pll; 761 u32 cb_pool_cb_cnt; 762 u32 cb_pool_cb_size; 763 u32 decoder_enabled_mask; 764 u32 decoder_binning_mask; 765 u32 rotator_enabled_mask; 766 u32 edma_enabled_mask; 767 u32 edma_binning_mask; 768 u32 max_pending_cs; 769 u32 max_queues; 770 u32 fw_preboot_cpu_boot_dev_sts0; 771 u32 fw_preboot_cpu_boot_dev_sts1; 772 u32 fw_bootfit_cpu_boot_dev_sts0; 773 u32 fw_bootfit_cpu_boot_dev_sts1; 774 u32 fw_app_cpu_boot_dev_sts0; 775 u32 fw_app_cpu_boot_dev_sts1; 776 u32 max_dec; 777 u32 hmmu_hif_enabled_mask; 778 u32 faulty_dram_cluster_map; 779 u32 xbar_edge_enabled_mask; 780 u32 device_mem_alloc_default_page_size; 781 u32 num_engine_cores; 782 u32 max_num_of_engines; 783 u32 num_of_special_blocks; 784 u32 glbl_err_max_cause_num; 785 u32 hbw_flush_reg; 786 u32 reserved_fw_mem_size; 787 u32 fw_event_queue_size; 788 u16 collective_first_sob; 789 u16 collective_first_mon; 790 u16 sync_stream_first_sob; 791 u16 sync_stream_first_mon; 792 u16 first_available_user_sob[HL_MAX_DCORES]; 793 u16 first_available_user_mon[HL_MAX_DCORES]; 794 u16 first_available_user_interrupt; 795 u16 first_available_cq[HL_MAX_DCORES]; 796 u16 user_interrupt_count; 797 u16 user_dec_intr_count; 798 u16 tpc_interrupt_id; 799 u16 eq_interrupt_id; 800 u16 cache_line_size; 801 u16 server_type; 802 u8 completion_queues_count; 803 u8 completion_mode; 804 u8 mme_master_slave_mode; 805 u8 fw_security_enabled; 806 u8 fw_cpu_boot_dev_sts0_valid; 807 u8 fw_cpu_boot_dev_sts1_valid; 808 u8 dram_supports_virtual_memory; 809 u8 hard_reset_done_by_fw; 810 u8 num_functional_hbms; 811 u8 hints_range_reservation; 812 u8 iatu_done_by_fw; 813 u8 dynamic_fw_load; 814 u8 gic_interrupts_enable; 815 u8 use_get_power_for_reset_history; 816 u8 supports_compute_reset; 817 u8 allow_inference_soft_reset; 818 u8 configurable_stop_on_err; 819 u8 set_max_power_on_device_init; 820 u8 supports_user_set_page_size; 821 u8 dma_mask; 822 u8 supports_advanced_cpucp_rc; 823 u8 supports_engine_modes; 824 u8 support_dynamic_resereved_fw_size; 825 }; 826 827 /** 828 * struct hl_fence - software synchronization primitive 829 * @completion: fence is implemented using completion 830 * @refcount: refcount for this fence 831 * @cs_sequence: sequence of the corresponding command submission 832 * @stream_master_qid_map: streams masters QID bitmap to represent all streams 833 * masters QIDs that multi cs is waiting on 834 * @error: mark this fence with error 835 * @timestamp: timestamp upon completion 836 * @mcs_handling_done: indicates that corresponding command submission has 837 * finished msc handling, this does not mean it was part 838 * of the mcs 839 */ 840 struct hl_fence { 841 struct completion completion; 842 struct kref refcount; 843 u64 cs_sequence; 844 u32 stream_master_qid_map; 845 int error; 846 ktime_t timestamp; 847 u8 mcs_handling_done; 848 }; 849 850 /** 851 * struct hl_cs_compl - command submission completion object. 852 * @base_fence: hl fence object. 853 * @lock: spinlock to protect fence. 854 * @hdev: habanalabs device structure. 855 * @hw_sob: the H/W SOB used in this signal/wait CS. 856 * @encaps_sig_hdl: encaps signals handler. 857 * @cs_seq: command submission sequence number. 858 * @type: type of the CS - signal/wait. 859 * @sob_val: the SOB value that is used in this signal/wait CS. 860 * @sob_group: the SOB group that is used in this collective wait CS. 861 * @encaps_signals: indication whether it's a completion object of cs with 862 * encaps signals or not. 863 */ 864 struct hl_cs_compl { 865 struct hl_fence base_fence; 866 spinlock_t lock; 867 struct hl_device *hdev; 868 struct hl_hw_sob *hw_sob; 869 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 870 u64 cs_seq; 871 enum hl_cs_type type; 872 u16 sob_val; 873 u16 sob_group; 874 bool encaps_signals; 875 }; 876 877 /* 878 * Command Buffers 879 */ 880 881 /** 882 * struct hl_ts_buff - describes a timestamp buffer. 883 * @kernel_buff_address: Holds the internal buffer's kernel virtual address. 884 * @user_buff_address: Holds the user buffer's kernel virtual address. 885 * @kernel_buff_size: Holds the internal kernel buffer size. 886 */ 887 struct hl_ts_buff { 888 void *kernel_buff_address; 889 void *user_buff_address; 890 u32 kernel_buff_size; 891 }; 892 893 struct hl_mmap_mem_buf; 894 895 /** 896 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks. 897 * @dev: back pointer to the owning device 898 * @lock: protects handles 899 * @handles: an idr holding all active handles to the memory buffers in the system. 900 */ 901 struct hl_mem_mgr { 902 struct device *dev; 903 spinlock_t lock; 904 struct idr handles; 905 }; 906 907 /** 908 * struct hl_mem_mgr_fini_stats - describes statistics returned during memory manager teardown. 909 * @n_busy_cb: the amount of CB handles that could not be removed 910 * @n_busy_ts: the amount of TS handles that could not be removed 911 * @n_busy_other: the amount of any other type of handles that could not be removed 912 */ 913 struct hl_mem_mgr_fini_stats { 914 u32 n_busy_cb; 915 u32 n_busy_ts; 916 u32 n_busy_other; 917 }; 918 919 /** 920 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior 921 * @topic: string identifier used for logging 922 * @mem_id: memory type identifier, embedded in the handle and used to identify 923 * the memory type by handle. 924 * @alloc: callback executed on buffer allocation, shall allocate the memory, 925 * set it under buffer private, and set mappable size. 926 * @mmap: callback executed on mmap, must map the buffer to vma 927 * @release: callback executed on release, must free the resources used by the buffer 928 */ 929 struct hl_mmap_mem_buf_behavior { 930 const char *topic; 931 u64 mem_id; 932 933 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args); 934 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args); 935 void (*release)(struct hl_mmap_mem_buf *buf); 936 }; 937 938 /** 939 * struct hl_mmap_mem_buf - describes a single unified memory buffer 940 * @behavior: buffer behavior 941 * @mmg: back pointer to the unified memory manager 942 * @refcount: reference counter for buffer users 943 * @private: pointer to buffer behavior private data 944 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now 945 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released, 946 * may change at runtime. 947 * @mappable_size: the original mappable size of the buffer, does not change after 948 * the allocation. 949 * @handle: the buffer id in mmg handles store 950 */ 951 struct hl_mmap_mem_buf { 952 struct hl_mmap_mem_buf_behavior *behavior; 953 struct hl_mem_mgr *mmg; 954 struct kref refcount; 955 void *private; 956 atomic_t mmap; 957 u64 real_mapped_size; 958 u64 mappable_size; 959 u64 handle; 960 }; 961 962 /** 963 * struct hl_cb - describes a Command Buffer. 964 * @hdev: pointer to device this CB belongs to. 965 * @ctx: pointer to the CB owner's context. 966 * @buf: back pointer to the parent mappable memory buffer 967 * @debugfs_list: node in debugfs list of command buffers. 968 * @pool_list: node in pool list of command buffers. 969 * @kernel_address: Holds the CB's kernel virtual address. 970 * @virtual_addr: Holds the CB's virtual address. 971 * @bus_address: Holds the CB's DMA address. 972 * @size: holds the CB's size. 973 * @roundup_size: holds the cb size after roundup to page size. 974 * @cs_cnt: holds number of CS that this CB participates in. 975 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed. 976 * @is_pool: true if CB was acquired from the pool, false otherwise. 977 * @is_internal: internally allocated 978 * @is_mmu_mapped: true if the CB is mapped to the device's MMU. 979 */ 980 struct hl_cb { 981 struct hl_device *hdev; 982 struct hl_ctx *ctx; 983 struct hl_mmap_mem_buf *buf; 984 struct list_head debugfs_list; 985 struct list_head pool_list; 986 void *kernel_address; 987 u64 virtual_addr; 988 dma_addr_t bus_address; 989 u32 size; 990 u32 roundup_size; 991 atomic_t cs_cnt; 992 atomic_t is_handle_destroyed; 993 u8 is_pool; 994 u8 is_internal; 995 u8 is_mmu_mapped; 996 }; 997 998 999 /* 1000 * QUEUES 1001 */ 1002 1003 struct hl_cs_job; 1004 1005 /* Queue length of external and HW queues */ 1006 #define HL_QUEUE_LENGTH 4096 1007 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE) 1008 1009 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH) 1010 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS" 1011 #endif 1012 1013 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */ 1014 #define HL_CQ_LENGTH HL_QUEUE_LENGTH 1015 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE) 1016 1017 /* Must be power of 2 */ 1018 #define HL_EQ_LENGTH 64 1019 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE) 1020 1021 /* Host <-> CPU-CP shared memory size */ 1022 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M 1023 1024 /** 1025 * struct hl_sync_stream_properties - 1026 * describes a H/W queue sync stream properties 1027 * @hw_sob: array of the used H/W SOBs by this H/W queue. 1028 * @next_sob_val: the next value to use for the currently used SOB. 1029 * @base_sob_id: the base SOB id of the SOBs used by this queue. 1030 * @base_mon_id: the base MON id of the MONs used by this queue. 1031 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue 1032 * in order to sync with all slave queues. 1033 * @collective_slave_mon_id: the MON id used by this slave queue in order to 1034 * sync with its master queue. 1035 * @collective_sob_id: current SOB id used by this collective slave queue 1036 * to signal its collective master queue upon completion. 1037 * @curr_sob_offset: the id offset to the currently used SOB from the 1038 * HL_RSVD_SOBS that are being used by this queue. 1039 */ 1040 struct hl_sync_stream_properties { 1041 struct hl_hw_sob hw_sob[HL_RSVD_SOBS]; 1042 u16 next_sob_val; 1043 u16 base_sob_id; 1044 u16 base_mon_id; 1045 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS]; 1046 u16 collective_slave_mon_id; 1047 u16 collective_sob_id; 1048 u8 curr_sob_offset; 1049 }; 1050 1051 /** 1052 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals 1053 * handlers manager 1054 * @lock: protects handles. 1055 * @handles: an idr to hold all encapsulated signals handles. 1056 */ 1057 struct hl_encaps_signals_mgr { 1058 spinlock_t lock; 1059 struct idr handles; 1060 }; 1061 1062 /** 1063 * struct hl_hw_queue - describes a H/W transport queue. 1064 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs. 1065 * @sync_stream_prop: sync stream queue properties 1066 * @queue_type: type of queue. 1067 * @collective_mode: collective mode of current queue 1068 * @kernel_address: holds the queue's kernel virtual address. 1069 * @bus_address: holds the queue's DMA address. 1070 * @pq_dram_address: hold the dram address when the PQ is allocated, used when dram_bd is true in 1071 * queue properites. 1072 * @pi: holds the queue's pi value. 1073 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci). 1074 * @hw_queue_id: the id of the H/W queue. 1075 * @cq_id: the id for the corresponding CQ for this H/W queue. 1076 * @msi_vec: the IRQ number of the H/W queue. 1077 * @int_queue_len: length of internal queue (number of entries). 1078 * @valid: is the queue valid (we have array of 32 queues, not all of them 1079 * exist). 1080 * @supports_sync_stream: True if queue supports sync stream 1081 * @dram_bd: True if the bd should be copied to dram, needed for PQ which has been allocated on dram 1082 */ 1083 struct hl_hw_queue { 1084 struct hl_cs_job **shadow_queue; 1085 struct hl_sync_stream_properties sync_stream_prop; 1086 enum hl_queue_type queue_type; 1087 enum hl_collective_mode collective_mode; 1088 void *kernel_address; 1089 dma_addr_t bus_address; 1090 u64 pq_dram_address; 1091 u32 pi; 1092 atomic_t ci; 1093 u32 hw_queue_id; 1094 u32 cq_id; 1095 u32 msi_vec; 1096 u16 int_queue_len; 1097 u8 valid; 1098 u8 supports_sync_stream; 1099 u8 dram_bd; 1100 }; 1101 1102 /** 1103 * struct hl_cq - describes a completion queue 1104 * @hdev: pointer to the device structure 1105 * @kernel_address: holds the queue's kernel virtual address 1106 * @bus_address: holds the queue's DMA address 1107 * @cq_idx: completion queue index in array 1108 * @hw_queue_id: the id of the matching H/W queue 1109 * @ci: ci inside the queue 1110 * @pi: pi inside the queue 1111 * @free_slots_cnt: counter of free slots in queue 1112 */ 1113 struct hl_cq { 1114 struct hl_device *hdev; 1115 void *kernel_address; 1116 dma_addr_t bus_address; 1117 u32 cq_idx; 1118 u32 hw_queue_id; 1119 u32 ci; 1120 u32 pi; 1121 atomic_t free_slots_cnt; 1122 }; 1123 1124 enum hl_user_interrupt_type { 1125 HL_USR_INTERRUPT_CQ = 0, 1126 HL_USR_INTERRUPT_DECODER, 1127 HL_USR_INTERRUPT_TPC, 1128 HL_USR_INTERRUPT_UNEXPECTED 1129 }; 1130 1131 /** 1132 * struct hl_ts_free_jobs - holds user interrupt ts free nodes related data 1133 * @free_nodes_pool: pool of nodes to be used for free timestamp jobs 1134 * @free_nodes_length: number of nodes in free_nodes_pool 1135 * @next_avail_free_node_idx: index of the next free node in the pool 1136 * 1137 * the free nodes pool must be protected by the user interrupt lock 1138 * to avoid race between different interrupts which are using the same 1139 * ts buffer with different offsets. 1140 */ 1141 struct hl_ts_free_jobs { 1142 struct timestamp_reg_free_node *free_nodes_pool; 1143 u32 free_nodes_length; 1144 u32 next_avail_free_node_idx; 1145 }; 1146 1147 /** 1148 * struct hl_user_interrupt - holds user interrupt information 1149 * @hdev: pointer to the device structure 1150 * @ts_free_jobs_data: timestamp free jobs related data 1151 * @type: user interrupt type 1152 * @wait_list_head: head to the list of user threads pending on this interrupt 1153 * @ts_list_head: head to the list of timestamp records 1154 * @wait_list_lock: protects wait_list_head 1155 * @ts_list_lock: protects ts_list_head 1156 * @timestamp: last timestamp taken upon interrupt 1157 * @interrupt_id: msix interrupt id 1158 */ 1159 struct hl_user_interrupt { 1160 struct hl_device *hdev; 1161 struct hl_ts_free_jobs ts_free_jobs_data; 1162 enum hl_user_interrupt_type type; 1163 struct list_head wait_list_head; 1164 struct list_head ts_list_head; 1165 spinlock_t wait_list_lock; 1166 spinlock_t ts_list_lock; 1167 ktime_t timestamp; 1168 u32 interrupt_id; 1169 }; 1170 1171 /** 1172 * struct timestamp_reg_free_node - holds the timestamp registration free objects node 1173 * @free_objects_node: node in the list free_obj_jobs 1174 * @cq_cb: pointer to cq command buffer to be freed 1175 * @buf: pointer to timestamp buffer to be freed 1176 * @in_use: indicates whether the node still in use in workqueue thread. 1177 * @dynamic_alloc: indicates whether the node was allocated dynamically in the interrupt handler 1178 */ 1179 struct timestamp_reg_free_node { 1180 struct list_head free_objects_node; 1181 struct hl_cb *cq_cb; 1182 struct hl_mmap_mem_buf *buf; 1183 atomic_t in_use; 1184 u8 dynamic_alloc; 1185 }; 1186 1187 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job 1188 * the job will be to pass over the free_obj_jobs list and put refcount to objects 1189 * in each node of the list 1190 * @free_obj: workqueue object to free timestamp registration node objects 1191 * @hdev: pointer to the device structure 1192 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node) 1193 * @dynamic_alloc_free_obj_head: list of free jobs nodes which were dynamically allocated in the 1194 * interrupt handler. 1195 */ 1196 struct timestamp_reg_work_obj { 1197 struct work_struct free_obj; 1198 struct hl_device *hdev; 1199 struct list_head *free_obj_head; 1200 struct list_head *dynamic_alloc_free_obj_head; 1201 }; 1202 1203 /* struct timestamp_reg_info - holds the timestamp registration related data. 1204 * @buf: pointer to the timestamp buffer which include both user/kernel buffers. 1205 * relevant only when doing timestamps records registration. 1206 * @cq_cb: pointer to CQ counter CB. 1207 * @interrupt: interrupt that the node hanged on it's wait list. 1208 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp 1209 * relevant only when doing timestamps records 1210 * registration. 1211 * @in_use: indicates if the node already in use. relevant only when doing 1212 * timestamps records registration, since in this case the driver 1213 * will have it's own buffer which serve as a records pool instead of 1214 * allocating records dynamically. 1215 */ 1216 struct timestamp_reg_info { 1217 struct hl_mmap_mem_buf *buf; 1218 struct hl_cb *cq_cb; 1219 struct hl_user_interrupt *interrupt; 1220 u64 *timestamp_kernel_addr; 1221 bool in_use; 1222 }; 1223 1224 /** 1225 * struct hl_user_pending_interrupt - holds a context to a user thread 1226 * pending on an interrupt 1227 * @ts_reg_info: holds the timestamps registration nodes info 1228 * @list_node: node in the list of user threads pending on an interrupt or timestamp 1229 * @fence: hl fence object for interrupt completion 1230 * @cq_target_value: CQ target value 1231 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt 1232 * handler for target value comparison 1233 */ 1234 struct hl_user_pending_interrupt { 1235 struct timestamp_reg_info ts_reg_info; 1236 struct list_head list_node; 1237 struct hl_fence fence; 1238 u64 cq_target_value; 1239 u64 *cq_kernel_addr; 1240 }; 1241 1242 /** 1243 * struct hl_eq - describes the event queue (single one per device) 1244 * @hdev: pointer to the device structure 1245 * @kernel_address: holds the queue's kernel virtual address 1246 * @bus_address: holds the queue's DMA address 1247 * @size: the event queue size 1248 * @ci: ci inside the queue 1249 * @prev_eqe_index: the index of the previous event queue entry. The index of 1250 * the current entry's index must be +1 of the previous one. 1251 * @check_eqe_index: do we need to check the index of the current entry vs. the 1252 * previous one. This is for backward compatibility with older 1253 * firmwares 1254 */ 1255 struct hl_eq { 1256 struct hl_device *hdev; 1257 void *kernel_address; 1258 dma_addr_t bus_address; 1259 u32 size; 1260 u32 ci; 1261 u32 prev_eqe_index; 1262 bool check_eqe_index; 1263 }; 1264 1265 /** 1266 * struct hl_dec - describes a decoder sw instance. 1267 * @hdev: pointer to the device structure. 1268 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt. 1269 * @core_id: ID of the decoder. 1270 * @base_addr: base address of the decoder. 1271 */ 1272 struct hl_dec { 1273 struct hl_device *hdev; 1274 struct work_struct abnrm_intr_work; 1275 u32 core_id; 1276 u32 base_addr; 1277 }; 1278 1279 /** 1280 * enum hl_asic_type - supported ASIC types. 1281 * @ASIC_INVALID: Invalid ASIC type. 1282 * @ASIC_GOYA: Goya device (HL-1000). 1283 * @ASIC_GAUDI: Gaudi device (HL-2000). 1284 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000). 1285 * @ASIC_GAUDI2: Gaudi2 device. 1286 * @ASIC_GAUDI2B: Gaudi2B device. 1287 * @ASIC_GAUDI2C: Gaudi2C device. 1288 * @ASIC_GAUDI2D: Gaudi2D device. 1289 */ 1290 enum hl_asic_type { 1291 ASIC_INVALID, 1292 1293 ASIC_GOYA, 1294 ASIC_GAUDI, 1295 ASIC_GAUDI_SEC, 1296 ASIC_GAUDI2, 1297 ASIC_GAUDI2B, 1298 ASIC_GAUDI2C, 1299 ASIC_GAUDI2D, 1300 }; 1301 1302 struct hl_cs_parser; 1303 1304 /** 1305 * enum hl_pm_mng_profile - power management profile. 1306 * @PM_AUTO: internal clock is set by the Linux driver. 1307 * @PM_MANUAL: internal clock is set by the user. 1308 * @PM_LAST: last power management type. 1309 */ 1310 enum hl_pm_mng_profile { 1311 PM_AUTO = 1, 1312 PM_MANUAL, 1313 PM_LAST 1314 }; 1315 1316 /** 1317 * enum hl_pll_frequency - PLL frequency. 1318 * @PLL_HIGH: high frequency. 1319 * @PLL_LOW: low frequency. 1320 * @PLL_LAST: last frequency values that were configured by the user. 1321 */ 1322 enum hl_pll_frequency { 1323 PLL_HIGH = 1, 1324 PLL_LOW, 1325 PLL_LAST 1326 }; 1327 1328 #define PLL_REF_CLK 50 1329 1330 enum div_select_defs { 1331 DIV_SEL_REF_CLK = 0, 1332 DIV_SEL_PLL_CLK = 1, 1333 DIV_SEL_DIVIDED_REF = 2, 1334 DIV_SEL_DIVIDED_PLL = 3, 1335 }; 1336 1337 enum debugfs_access_type { 1338 DEBUGFS_READ8, 1339 DEBUGFS_WRITE8, 1340 DEBUGFS_READ32, 1341 DEBUGFS_WRITE32, 1342 DEBUGFS_READ64, 1343 DEBUGFS_WRITE64, 1344 }; 1345 1346 enum pci_region { 1347 PCI_REGION_CFG, 1348 PCI_REGION_SRAM, 1349 PCI_REGION_DRAM, 1350 PCI_REGION_SP_SRAM, 1351 PCI_REGION_NUMBER, 1352 }; 1353 1354 /** 1355 * struct pci_mem_region - describe memory region in a PCI bar 1356 * @region_base: region base address 1357 * @region_size: region size 1358 * @bar_size: size of the BAR 1359 * @offset_in_bar: region offset into the bar 1360 * @bar_id: bar ID of the region 1361 * @used: if used 1, otherwise 0 1362 */ 1363 struct pci_mem_region { 1364 u64 region_base; 1365 u64 region_size; 1366 u64 bar_size; 1367 u64 offset_in_bar; 1368 u8 bar_id; 1369 u8 used; 1370 }; 1371 1372 /** 1373 * struct static_fw_load_mgr - static FW load manager 1374 * @preboot_version_max_off: max offset to preboot version 1375 * @boot_fit_version_max_off: max offset to boot fit version 1376 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages 1377 * @cpu_cmd_status_to_host_reg: register address for CPU command status response 1378 * @cpu_boot_status_reg: boot status register 1379 * @cpu_boot_dev_status0_reg: boot device status register 0 1380 * @cpu_boot_dev_status1_reg: boot device status register 1 1381 * @boot_err0_reg: boot error register 0 1382 * @boot_err1_reg: boot error register 1 1383 * @preboot_version_offset_reg: SRAM offset to preboot version register 1384 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register 1385 * @sram_offset_mask: mask for getting offset into the SRAM 1386 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg 1387 */ 1388 struct static_fw_load_mgr { 1389 u64 preboot_version_max_off; 1390 u64 boot_fit_version_max_off; 1391 u32 kmd_msg_to_cpu_reg; 1392 u32 cpu_cmd_status_to_host_reg; 1393 u32 cpu_boot_status_reg; 1394 u32 cpu_boot_dev_status0_reg; 1395 u32 cpu_boot_dev_status1_reg; 1396 u32 boot_err0_reg; 1397 u32 boot_err1_reg; 1398 u32 preboot_version_offset_reg; 1399 u32 boot_fit_version_offset_reg; 1400 u32 sram_offset_mask; 1401 u32 cpu_reset_wait_msec; 1402 }; 1403 1404 /** 1405 * struct fw_response - FW response to LKD command 1406 * @ram_offset: descriptor offset into the RAM 1407 * @ram_type: RAM type containing the descriptor (SRAM/DRAM) 1408 * @status: command status 1409 */ 1410 struct fw_response { 1411 u32 ram_offset; 1412 u8 ram_type; 1413 u8 status; 1414 }; 1415 1416 /** 1417 * struct dynamic_fw_load_mgr - dynamic FW load manager 1418 * @response: FW to LKD response 1419 * @comm_desc: the communication descriptor with FW 1420 * @image_region: region to copy the FW image to 1421 * @fw_image_size: size of FW image to load 1422 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond 1423 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used 1424 */ 1425 struct dynamic_fw_load_mgr { 1426 struct fw_response response; 1427 struct lkd_fw_comms_desc comm_desc; 1428 struct pci_mem_region *image_region; 1429 size_t fw_image_size; 1430 u32 wait_for_bl_timeout; 1431 bool fw_desc_valid; 1432 }; 1433 1434 /** 1435 * struct pre_fw_load_props - needed properties for pre-FW load 1436 * @cpu_boot_status_reg: cpu_boot_status register address 1437 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address 1438 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address 1439 * @boot_err0_reg: boot_err0 register address 1440 * @boot_err1_reg: boot_err1 register address 1441 * @wait_for_preboot_timeout: timeout to poll for preboot ready 1442 * @wait_for_preboot_extended_timeout: timeout to pull for preboot ready in case where we know 1443 * preboot needs longer time. 1444 */ 1445 struct pre_fw_load_props { 1446 u32 cpu_boot_status_reg; 1447 u32 sts_boot_dev_sts0_reg; 1448 u32 sts_boot_dev_sts1_reg; 1449 u32 boot_err0_reg; 1450 u32 boot_err1_reg; 1451 u32 wait_for_preboot_timeout; 1452 u32 wait_for_preboot_extended_timeout; 1453 }; 1454 1455 /** 1456 * struct fw_image_props - properties of FW image 1457 * @image_name: name of the image 1458 * @src_off: offset in src FW to copy from 1459 * @copy_size: amount of bytes to copy (0 to copy the whole binary) 1460 */ 1461 struct fw_image_props { 1462 char *image_name; 1463 u32 src_off; 1464 u32 copy_size; 1465 }; 1466 1467 /** 1468 * struct fw_load_mgr - manager FW loading process 1469 * @dynamic_loader: specific structure for dynamic load 1470 * @static_loader: specific structure for static load 1471 * @pre_fw_load_props: parameter for pre FW load 1472 * @boot_fit_img: boot fit image properties 1473 * @linux_img: linux image properties 1474 * @cpu_timeout: CPU response timeout in usec 1475 * @boot_fit_timeout: Boot fit load timeout in usec 1476 * @skip_bmc: should BMC be skipped 1477 * @sram_bar_id: SRAM bar ID 1478 * @dram_bar_id: DRAM bar ID 1479 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded 1480 * component. values are set according to enum hl_fw_types. 1481 */ 1482 struct fw_load_mgr { 1483 union { 1484 struct dynamic_fw_load_mgr dynamic_loader; 1485 struct static_fw_load_mgr static_loader; 1486 }; 1487 struct pre_fw_load_props pre_fw_load; 1488 struct fw_image_props boot_fit_img; 1489 struct fw_image_props linux_img; 1490 u32 cpu_timeout; 1491 u32 boot_fit_timeout; 1492 u8 skip_bmc; 1493 u8 sram_bar_id; 1494 u8 dram_bar_id; 1495 u8 fw_comp_loaded; 1496 }; 1497 1498 struct hl_cs; 1499 1500 /** 1501 * struct engines_data - asic engines data 1502 * @buf: buffer for engines data in ascii 1503 * @actual_size: actual size of data that was written by the driver to the allocated buffer 1504 * @allocated_buf_size: total size of allocated buffer 1505 */ 1506 struct engines_data { 1507 char *buf; 1508 int actual_size; 1509 u32 allocated_buf_size; 1510 }; 1511 1512 /** 1513 * struct hl_asic_funcs - ASIC specific functions that are can be called from 1514 * common code. 1515 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W. 1516 * @early_fini: tears down what was done in early_init. 1517 * @late_init: sets up late driver/hw state (post hw_init) - Optional. 1518 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional. 1519 * @sw_init: sets up driver state, does not configure H/W. 1520 * @sw_fini: tears down driver state, does not configure H/W. 1521 * @hw_init: sets up the H/W state. 1522 * @hw_fini: tears down the H/W state. 1523 * @halt_engines: halt engines, needed for reset sequence. This also disables 1524 * interrupts from the device. Should be called before 1525 * hw_fini and before CS rollback. 1526 * @suspend: handles IP specific H/W or SW changes for suspend. 1527 * @resume: handles IP specific H/W or SW changes for resume. 1528 * @mmap: maps a memory. 1529 * @ring_doorbell: increment PI on a given QMAN. 1530 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific 1531 * function because the PQs are located in different memory areas 1532 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of 1533 * writing the PQE must match the destination memory area 1534 * properties. 1535 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling 1536 * dma_alloc_coherent(). This is ASIC function because 1537 * its implementation is not trivial when the driver 1538 * is loaded in simulation mode (not upstreamed). 1539 * @asic_dma_free_coherent: Free coherent DMA memory by calling 1540 * dma_free_coherent(). This is ASIC function because 1541 * its implementation is not trivial when the driver 1542 * is loaded in simulation mode (not upstreamed). 1543 * @scrub_device_mem: Scrub the entire SRAM and DRAM. 1544 * @scrub_device_dram: Scrub the dram memory of the device. 1545 * @get_int_queue_base: get the internal queue base address. 1546 * @test_queues: run simple test on all queues for sanity check. 1547 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool. 1548 * size of allocation is HL_DMA_POOL_BLK_SIZE. 1549 * @asic_dma_pool_free: free small DMA allocation from pool. 1550 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool. 1551 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool. 1552 * @dma_unmap_sgtable: DMA unmap scatter-gather table. 1553 * @dma_map_sgtable: DMA map scatter-gather table. 1554 * @cs_parser: parse Command Submission. 1555 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it. 1556 * @update_eq_ci: update event queue CI. 1557 * @context_switch: called upon ASID context switch. 1558 * @restore_phase_topology: clear all SOBs amd MONs. 1559 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's 1560 * internal memory via DMA engine. 1561 * @add_device_attr: add ASIC specific device attributes. 1562 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP. 1563 * @get_events_stat: retrieve event queue entries histogram. 1564 * @read_pte: read MMU page table entry from DRAM. 1565 * @write_pte: write MMU page table entry to DRAM. 1566 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft 1567 * (L1 only) or hard (L0 & L1) flush. 1568 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask. 1569 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask. 1570 * @send_heartbeat: send is-alive packet to CPU-CP and verify response. 1571 * @debug_coresight: perform certain actions on Coresight for debugging. 1572 * @is_device_idle: return true if device is idle, false otherwise. 1573 * @compute_reset_late_init: perform certain actions needed after a compute reset 1574 * @hw_queues_lock: acquire H/W queues lock. 1575 * @hw_queues_unlock: release H/W queues lock. 1576 * @get_pci_id: retrieve PCI ID. 1577 * @get_eeprom_data: retrieve EEPROM data from F/W. 1578 * @get_monitor_dump: retrieve monitor registers dump from F/W. 1579 * @send_cpu_message: send message to F/W. If the message is timedout, the 1580 * driver will eventually reset the device. The timeout can 1581 * be determined by the calling function or it can be 0 and 1582 * then the timeout is the default timeout for the specific 1583 * ASIC 1584 * @get_hw_state: retrieve the H/W state 1585 * @pci_bars_map: Map PCI BARs. 1586 * @init_iatu: Initialize the iATU unit inside the PCI controller. 1587 * @rreg: Read a register. Needed for simulator support. 1588 * @wreg: Write a register. Needed for simulator support. 1589 * @halt_coresight: stop the ETF and ETR traces. 1590 * @ctx_init: context dependent initialization. 1591 * @ctx_fini: context dependent cleanup. 1592 * @pre_schedule_cs: Perform pre-CS-scheduling operations. 1593 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index. 1594 * @load_firmware_to_device: load the firmware to the device's memory 1595 * @load_boot_fit_to_device: load boot fit to device's memory 1596 * @get_signal_cb_size: Get signal CB size. 1597 * @get_wait_cb_size: Get wait CB size. 1598 * @gen_signal_cb: Generate a signal CB. 1599 * @gen_wait_cb: Generate a wait CB. 1600 * @reset_sob: Reset a SOB. 1601 * @reset_sob_group: Reset SOB group 1602 * @get_device_time: Get the device time. 1603 * @pb_print_security_errors: print security errors according block and cause 1604 * @collective_wait_init_cs: Generate collective master/slave packets 1605 * and place them in the relevant cs jobs 1606 * @collective_wait_create_jobs: allocate collective wait cs jobs 1607 * @get_dec_base_addr: get the base address of a given decoder. 1608 * @scramble_addr: Routine to scramble the address prior of mapping it 1609 * in the MMU. 1610 * @descramble_addr: Routine to de-scramble the address prior of 1611 * showing it to users. 1612 * @ack_protection_bits_errors: ack and dump all security violations 1613 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it. 1614 * also returns the size of the block if caller supplies 1615 * a valid pointer for it 1616 * @hw_block_mmap: mmap a HW block with a given id. 1617 * @enable_events_from_fw: send interrupt to firmware to notify them the 1618 * driver is ready to receive asynchronous events. This 1619 * function should be called during the first init and 1620 * after every hard-reset of the device 1621 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation. 1622 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event 1623 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to 1624 * generic f/w compatible PLL Indexes 1625 * @init_firmware_preload_params: initialize pre FW-load parameters. 1626 * @init_firmware_loader: initialize data for FW loader. 1627 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling 1628 * @state_dump_init: initialize constants required for state dump 1629 * @get_sob_addr: get SOB base address offset. 1630 * @set_pci_memory_regions: setting properties of PCI memory regions 1631 * @get_stream_master_qid_arr: get pointer to stream masters QID array 1632 * @check_if_razwi_happened: check if there was a razwi due to RR violation. 1633 * @access_dev_mem: access device memory 1634 * @set_dram_bar_base: set the base of the DRAM BAR 1635 * @set_engine_cores: set a config command to engine cores 1636 * @set_engines: set a config command to user engines 1637 * @send_device_activity: indication to FW about device availability 1638 * @set_dram_properties: set DRAM related properties. 1639 * @set_binning_masks: set binning/enable masks for all relevant components. 1640 */ 1641 struct hl_asic_funcs { 1642 int (*early_init)(struct hl_device *hdev); 1643 int (*early_fini)(struct hl_device *hdev); 1644 int (*late_init)(struct hl_device *hdev); 1645 void (*late_fini)(struct hl_device *hdev); 1646 int (*sw_init)(struct hl_device *hdev); 1647 int (*sw_fini)(struct hl_device *hdev); 1648 int (*hw_init)(struct hl_device *hdev); 1649 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1650 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset); 1651 int (*suspend)(struct hl_device *hdev); 1652 int (*resume)(struct hl_device *hdev); 1653 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1654 void *cpu_addr, dma_addr_t dma_addr, size_t size); 1655 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi); 1656 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe, 1657 struct hl_bd *bd); 1658 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size, 1659 dma_addr_t *dma_handle, gfp_t flag); 1660 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size, 1661 void *cpu_addr, dma_addr_t dma_handle); 1662 int (*scrub_device_mem)(struct hl_device *hdev); 1663 int (*scrub_device_dram)(struct hl_device *hdev, u64 val); 1664 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id, 1665 dma_addr_t *dma_handle, u16 *queue_len); 1666 int (*test_queues)(struct hl_device *hdev); 1667 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size, 1668 gfp_t mem_flags, dma_addr_t *dma_handle); 1669 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr, 1670 dma_addr_t dma_addr); 1671 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev, 1672 size_t size, dma_addr_t *dma_handle); 1673 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev, 1674 size_t size, void *vaddr); 1675 void (*dma_unmap_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1676 enum dma_data_direction dir); 1677 int (*dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt, 1678 enum dma_data_direction dir); 1679 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser); 1680 void (*add_end_of_cb_packets)(struct hl_device *hdev, 1681 void *kernel_address, u32 len, 1682 u32 original_len, 1683 u64 cq_addr, u32 cq_val, u32 msix_num, 1684 bool eb); 1685 void (*update_eq_ci)(struct hl_device *hdev, u32 val); 1686 int (*context_switch)(struct hl_device *hdev, u32 asid); 1687 void (*restore_phase_topology)(struct hl_device *hdev); 1688 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size, 1689 void *blob_addr); 1690 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp, 1691 struct attribute_group *dev_vrm_attr_grp); 1692 void (*handle_eqe)(struct hl_device *hdev, 1693 struct hl_eq_entry *eq_entry); 1694 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate, 1695 u32 *size); 1696 u64 (*read_pte)(struct hl_device *hdev, u64 addr); 1697 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val); 1698 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard, 1699 u32 flags); 1700 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard, 1701 u32 flags, u32 asid, u64 va, u64 size); 1702 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 1703 int (*send_heartbeat)(struct hl_device *hdev); 1704 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data); 1705 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len, 1706 struct engines_data *e); 1707 int (*compute_reset_late_init)(struct hl_device *hdev); 1708 void (*hw_queues_lock)(struct hl_device *hdev); 1709 void (*hw_queues_unlock)(struct hl_device *hdev); 1710 u32 (*get_pci_id)(struct hl_device *hdev); 1711 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size); 1712 int (*get_monitor_dump)(struct hl_device *hdev, void *data); 1713 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg, 1714 u16 len, u32 timeout, u64 *result); 1715 int (*pci_bars_map)(struct hl_device *hdev); 1716 int (*init_iatu)(struct hl_device *hdev); 1717 u32 (*rreg)(struct hl_device *hdev, u32 reg); 1718 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val); 1719 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx); 1720 int (*ctx_init)(struct hl_ctx *ctx); 1721 void (*ctx_fini)(struct hl_ctx *ctx); 1722 int (*pre_schedule_cs)(struct hl_cs *cs); 1723 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx); 1724 int (*load_firmware_to_device)(struct hl_device *hdev); 1725 int (*load_boot_fit_to_device)(struct hl_device *hdev); 1726 u32 (*get_signal_cb_size)(struct hl_device *hdev); 1727 u32 (*get_wait_cb_size)(struct hl_device *hdev); 1728 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id, 1729 u32 size, bool eb); 1730 u32 (*gen_wait_cb)(struct hl_device *hdev, 1731 struct hl_gen_wait_properties *prop); 1732 void (*reset_sob)(struct hl_device *hdev, void *data); 1733 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group); 1734 u64 (*get_device_time)(struct hl_device *hdev); 1735 void (*pb_print_security_errors)(struct hl_device *hdev, 1736 u32 block_addr, u32 cause, u32 offended_addr); 1737 int (*collective_wait_init_cs)(struct hl_cs *cs); 1738 int (*collective_wait_create_jobs)(struct hl_device *hdev, 1739 struct hl_ctx *ctx, struct hl_cs *cs, 1740 u32 wait_queue_id, u32 collective_engine_id, 1741 u32 encaps_signal_offset); 1742 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id); 1743 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr); 1744 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr); 1745 void (*ack_protection_bits_errors)(struct hl_device *hdev); 1746 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr, 1747 u32 *block_size, u32 *block_id); 1748 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma, 1749 u32 block_id, u32 block_size); 1750 void (*enable_events_from_fw)(struct hl_device *hdev); 1751 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask); 1752 void (*get_msi_info)(__le32 *table); 1753 int (*map_pll_idx_to_fw_idx)(u32 pll_idx); 1754 void (*init_firmware_preload_params)(struct hl_device *hdev); 1755 void (*init_firmware_loader)(struct hl_device *hdev); 1756 void (*init_cpu_scrambler_dram)(struct hl_device *hdev); 1757 void (*state_dump_init)(struct hl_device *hdev); 1758 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id); 1759 void (*set_pci_memory_regions)(struct hl_device *hdev); 1760 u32* (*get_stream_master_qid_arr)(void); 1761 void (*check_if_razwi_happened)(struct hl_device *hdev); 1762 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 1763 u32 page_size, u32 *real_page_size, bool is_dram_addr); 1764 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type, 1765 u64 addr, u64 *val, enum debugfs_access_type acc_type); 1766 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr); 1767 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids, 1768 u32 num_cores, u32 core_command); 1769 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids, 1770 u32 num_engines, u32 engine_command); 1771 int (*send_device_activity)(struct hl_device *hdev, bool open); 1772 int (*set_dram_properties)(struct hl_device *hdev); 1773 int (*set_binning_masks)(struct hl_device *hdev); 1774 }; 1775 1776 1777 /* 1778 * CONTEXTS 1779 */ 1780 1781 #define HL_KERNEL_ASID_ID 0 1782 1783 /** 1784 * enum hl_va_range_type - virtual address range type. 1785 * @HL_VA_RANGE_TYPE_HOST: range type of host pages 1786 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages 1787 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages 1788 */ 1789 enum hl_va_range_type { 1790 HL_VA_RANGE_TYPE_HOST, 1791 HL_VA_RANGE_TYPE_HOST_HUGE, 1792 HL_VA_RANGE_TYPE_DRAM, 1793 HL_VA_RANGE_TYPE_MAX 1794 }; 1795 1796 /** 1797 * struct hl_va_range - virtual addresses range. 1798 * @lock: protects the virtual addresses list. 1799 * @list: list of virtual addresses blocks available for mappings. 1800 * @start_addr: range start address. 1801 * @end_addr: range end address. 1802 * @page_size: page size of this va range. 1803 */ 1804 struct hl_va_range { 1805 struct mutex lock; 1806 struct list_head list; 1807 u64 start_addr; 1808 u64 end_addr; 1809 u32 page_size; 1810 }; 1811 1812 /** 1813 * struct hl_cs_counters_atomic - command submission counters 1814 * @out_of_mem_drop_cnt: dropped due to memory allocation issue 1815 * @parsing_drop_cnt: dropped due to error in packet parsing 1816 * @queue_full_drop_cnt: dropped due to queue full 1817 * @device_in_reset_drop_cnt: dropped due to device in reset 1818 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight 1819 * @validation_drop_cnt: dropped due to error in validation 1820 */ 1821 struct hl_cs_counters_atomic { 1822 atomic64_t out_of_mem_drop_cnt; 1823 atomic64_t parsing_drop_cnt; 1824 atomic64_t queue_full_drop_cnt; 1825 atomic64_t device_in_reset_drop_cnt; 1826 atomic64_t max_cs_in_flight_drop_cnt; 1827 atomic64_t validation_drop_cnt; 1828 }; 1829 1830 /** 1831 * struct hl_dmabuf_priv - a dma-buf private object. 1832 * @dmabuf: pointer to dma-buf object. 1833 * @ctx: pointer to the dma-buf owner's context. 1834 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported 1835 * where virtual memory is supported. 1836 * @memhash_hnode: pointer to the memhash node. this object holds the export count. 1837 * @offset: the offset into the buffer from which the memory is exported. 1838 * Relevant only if virtual memory is supported and phys_pg_pack is being used. 1839 * device_phys_addr: physical address of the device's memory. Relevant only 1840 * if phys_pg_pack is NULL (dma-buf was exported from address). 1841 * The total size can be taken from the dmabuf object. 1842 */ 1843 struct hl_dmabuf_priv { 1844 struct dma_buf *dmabuf; 1845 struct hl_ctx *ctx; 1846 struct hl_vm_phys_pg_pack *phys_pg_pack; 1847 struct hl_vm_hash_node *memhash_hnode; 1848 u64 offset; 1849 u64 device_phys_addr; 1850 }; 1851 1852 #define HL_CS_OUTCOME_HISTORY_LEN 256 1853 1854 /** 1855 * struct hl_cs_outcome - represents a single completed CS outcome 1856 * @list_link: link to either container's used list or free list 1857 * @map_link: list to the container hash map 1858 * @ts: completion ts 1859 * @seq: the original cs sequence 1860 * @error: error code cs completed with, if any 1861 */ 1862 struct hl_cs_outcome { 1863 struct list_head list_link; 1864 struct hlist_node map_link; 1865 ktime_t ts; 1866 u64 seq; 1867 int error; 1868 }; 1869 1870 /** 1871 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes 1872 * @outcome_map: index of completed CS searchable by sequence number 1873 * @used_list: list of outcome objects currently in use 1874 * @free_list: list of outcome objects currently not in use 1875 * @nodes_pool: a static pool of pre-allocated outcome objects 1876 * @db_lock: any operation on the store must take this lock 1877 */ 1878 struct hl_cs_outcome_store { 1879 DECLARE_HASHTABLE(outcome_map, 8); 1880 struct list_head used_list; 1881 struct list_head free_list; 1882 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN]; 1883 spinlock_t db_lock; 1884 }; 1885 1886 /** 1887 * struct hl_ctx - user/kernel context. 1888 * @mem_hash: holds mapping from virtual address to virtual memory area 1889 * descriptor (hl_vm_phys_pg_list or hl_userptr). 1890 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure. 1891 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from 1892 * MMU-hop-page physical address to its host-resident 1893 * pgt_info structure. 1894 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd). 1895 * @hdev: pointer to the device structure. 1896 * @refcount: reference counter for the context. Context is released only when 1897 * this hits 0. It is incremented on CS and CS_WAIT. 1898 * @cs_pending: array of hl fence objects representing pending CS. 1899 * @outcome_store: storage data structure used to remember outcomes of completed 1900 * command submissions for a long time after CS id wraparound. 1901 * @va_range: holds available virtual addresses for host and dram mappings. 1902 * @mem_hash_lock: protects the mem_hash. 1903 * @hw_block_list_lock: protects the HW block memory list. 1904 * @ts_reg_lock: timestamp registration ioctls lock. 1905 * @debugfs_list: node in debugfs list of contexts. 1906 * @hw_block_mem_list: list of HW block virtual mapped addresses. 1907 * @cs_counters: context command submission counters. 1908 * @cb_va_pool: device VA pool for command buffers which are mapped to the 1909 * device's MMU. 1910 * @sig_mgr: encaps signals handle manager. 1911 * @cb_va_pool_base: the base address for the device VA pool 1912 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed 1913 * to user so user could inquire about CS. It is used as 1914 * index to cs_pending array. 1915 * @dram_default_hops: array that holds all hops addresses needed for default 1916 * DRAM mapping. 1917 * @cs_lock: spinlock to protect cs_sequence. 1918 * @dram_phys_mem: amount of used physical DRAM memory by this context. 1919 * @thread_ctx_switch_token: token to prevent multiple threads of the same 1920 * context from running the context switch phase. 1921 * Only a single thread should run it. 1922 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run 1923 * the context switch phase from moving to their 1924 * execution phase before the context switch phase 1925 * has finished. 1926 * @asid: context's unique address space ID in the device's MMU. 1927 * @handle: context's opaque handle for user 1928 */ 1929 struct hl_ctx { 1930 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS); 1931 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS); 1932 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS); 1933 struct hl_fpriv *hpriv; 1934 struct hl_device *hdev; 1935 struct kref refcount; 1936 struct hl_fence **cs_pending; 1937 struct hl_cs_outcome_store outcome_store; 1938 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX]; 1939 struct mutex mem_hash_lock; 1940 struct mutex hw_block_list_lock; 1941 struct mutex ts_reg_lock; 1942 struct list_head debugfs_list; 1943 struct list_head hw_block_mem_list; 1944 struct hl_cs_counters_atomic cs_counters; 1945 struct gen_pool *cb_va_pool; 1946 struct hl_encaps_signals_mgr sig_mgr; 1947 u64 cb_va_pool_base; 1948 u64 cs_sequence; 1949 u64 *dram_default_hops; 1950 spinlock_t cs_lock; 1951 atomic64_t dram_phys_mem; 1952 atomic_t thread_ctx_switch_token; 1953 u32 thread_ctx_switch_wait_token; 1954 u32 asid; 1955 u32 handle; 1956 }; 1957 1958 /** 1959 * struct hl_ctx_mgr - for handling multiple contexts. 1960 * @lock: protects ctx_handles. 1961 * @handles: idr to hold all ctx handles. 1962 */ 1963 struct hl_ctx_mgr { 1964 struct mutex lock; 1965 struct idr handles; 1966 }; 1967 1968 1969 /* 1970 * COMMAND SUBMISSIONS 1971 */ 1972 1973 /** 1974 * struct hl_userptr - memory mapping chunk information 1975 * @vm_type: type of the VM. 1976 * @job_node: linked-list node for hanging the object on the Job's list. 1977 * @pages: pointer to struct page array 1978 * @npages: size of @pages array 1979 * @sgt: pointer to the scatter-gather table that holds the pages. 1980 * @dir: for DMA unmapping, the direction must be supplied, so save it. 1981 * @debugfs_list: node in debugfs list of command submissions. 1982 * @pid: the pid of the user process owning the memory 1983 * @addr: user-space virtual address of the start of the memory area. 1984 * @size: size of the memory area to pin & map. 1985 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise. 1986 */ 1987 struct hl_userptr { 1988 enum vm_type vm_type; /* must be first */ 1989 struct list_head job_node; 1990 struct page **pages; 1991 unsigned int npages; 1992 struct sg_table *sgt; 1993 enum dma_data_direction dir; 1994 struct list_head debugfs_list; 1995 pid_t pid; 1996 u64 addr; 1997 u64 size; 1998 u8 dma_mapped; 1999 }; 2000 2001 /** 2002 * struct hl_cs - command submission. 2003 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs. 2004 * @ctx: the context this CS belongs to. 2005 * @job_list: list of the CS's jobs in the various queues. 2006 * @job_lock: spinlock for the CS's jobs list. Needed for free_job. 2007 * @refcount: reference counter for usage of the CS. 2008 * @fence: pointer to the fence object of this CS. 2009 * @signal_fence: pointer to the fence object of the signal CS (used by wait 2010 * CS only). 2011 * @finish_work: workqueue object to run when CS is completed by H/W. 2012 * @work_tdr: delayed work node for TDR. 2013 * @mirror_node : node in device mirror list of command submissions. 2014 * @staged_cs_node: node in the staged cs list. 2015 * @debugfs_list: node in debugfs list of command submissions. 2016 * @encaps_sig_hdl: holds the encaps signals handle. 2017 * @sequence: the sequence number of this CS. 2018 * @staged_sequence: the sequence of the staged submission this CS is part of, 2019 * relevant only if staged_cs is set. 2020 * @timeout_jiffies: cs timeout in jiffies. 2021 * @submission_time_jiffies: submission time of the cs 2022 * @type: CS_TYPE_*. 2023 * @jobs_cnt: counter of submitted jobs on all queues. 2024 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs. 2025 * @completion_timestamp: timestamp of the last completed cs job. 2026 * @sob_addr_offset: sob offset from the configuration base address. 2027 * @initial_sob_count: count of completed signals in SOB before current submission of signal or 2028 * cs with encaps signals. 2029 * @submitted: true if CS was submitted to H/W. 2030 * @completed: true if CS was completed by device. 2031 * @timedout : true if CS was timedout. 2032 * @tdr_active: true if TDR was activated for this CS (to prevent 2033 * double TDR activation). 2034 * @aborted: true if CS was aborted due to some device error. 2035 * @timestamp: true if a timestamp must be captured upon completion. 2036 * @staged_last: true if this is the last staged CS and needs completion. 2037 * @staged_first: true if this is the first staged CS and we need to receive 2038 * timeout for this CS. 2039 * @staged_cs: true if this CS is part of a staged submission. 2040 * @skip_reset_on_timeout: true if we shall not reset the device in case 2041 * timeout occurs (debug scenario). 2042 * @encaps_signals: true if this CS has encaps reserved signals. 2043 */ 2044 struct hl_cs { 2045 u16 *jobs_in_queue_cnt; 2046 struct hl_ctx *ctx; 2047 struct list_head job_list; 2048 spinlock_t job_lock; 2049 struct kref refcount; 2050 struct hl_fence *fence; 2051 struct hl_fence *signal_fence; 2052 struct work_struct finish_work; 2053 struct delayed_work work_tdr; 2054 struct list_head mirror_node; 2055 struct list_head staged_cs_node; 2056 struct list_head debugfs_list; 2057 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2058 ktime_t completion_timestamp; 2059 u64 sequence; 2060 u64 staged_sequence; 2061 u64 timeout_jiffies; 2062 u64 submission_time_jiffies; 2063 enum hl_cs_type type; 2064 u32 jobs_cnt; 2065 u32 encaps_sig_hdl_id; 2066 u32 sob_addr_offset; 2067 u16 initial_sob_count; 2068 u8 submitted; 2069 u8 completed; 2070 u8 timedout; 2071 u8 tdr_active; 2072 u8 aborted; 2073 u8 timestamp; 2074 u8 staged_last; 2075 u8 staged_first; 2076 u8 staged_cs; 2077 u8 skip_reset_on_timeout; 2078 u8 encaps_signals; 2079 }; 2080 2081 /** 2082 * struct hl_cs_job - command submission job. 2083 * @cs_node: the node to hang on the CS jobs list. 2084 * @cs: the CS this job belongs to. 2085 * @user_cb: the CB we got from the user. 2086 * @patched_cb: in case of patching, this is internal CB which is submitted on 2087 * the queue instead of the CB we got from the IOCTL. 2088 * @finish_work: workqueue object to run when job is completed. 2089 * @userptr_list: linked-list of userptr mappings that belong to this job and 2090 * wait for completion. 2091 * @debugfs_list: node in debugfs list of command submission jobs. 2092 * @refcount: reference counter for usage of the CS job. 2093 * @queue_type: the type of the H/W queue this job is submitted to. 2094 * @timestamp: timestamp upon job completion 2095 * @id: the id of this job inside a CS. 2096 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2097 * @user_cb_size: the actual size of the CB we got from the user. 2098 * @job_cb_size: the actual size of the CB that we put on the queue. 2099 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user 2100 * to wait on part of the reserved signals. 2101 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2102 * handle to a kernel-allocated CB object, false 2103 * otherwise (SRAM/DRAM/host address). 2104 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2105 * info is needed later, when adding the 2xMSG_PROT at the 2106 * end of the JOB, to know which barriers to put in the 2107 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2108 * have streams so the engine can't be busy by another 2109 * stream. 2110 */ 2111 struct hl_cs_job { 2112 struct list_head cs_node; 2113 struct hl_cs *cs; 2114 struct hl_cb *user_cb; 2115 struct hl_cb *patched_cb; 2116 struct work_struct finish_work; 2117 struct list_head userptr_list; 2118 struct list_head debugfs_list; 2119 struct kref refcount; 2120 enum hl_queue_type queue_type; 2121 ktime_t timestamp; 2122 u32 id; 2123 u32 hw_queue_id; 2124 u32 user_cb_size; 2125 u32 job_cb_size; 2126 u32 encaps_sig_wait_offset; 2127 u8 is_kernel_allocated_cb; 2128 u8 contains_dma_pkt; 2129 }; 2130 2131 /** 2132 * struct hl_cs_parser - command submission parser properties. 2133 * @user_cb: the CB we got from the user. 2134 * @patched_cb: in case of patching, this is internal CB which is submitted on 2135 * the queue instead of the CB we got from the IOCTL. 2136 * @job_userptr_list: linked-list of userptr mappings that belong to the related 2137 * job and wait for completion. 2138 * @cs_sequence: the sequence number of the related CS. 2139 * @queue_type: the type of the H/W queue this job is submitted to. 2140 * @ctx_id: the ID of the context the related CS belongs to. 2141 * @hw_queue_id: the id of the H/W queue this job is submitted to. 2142 * @user_cb_size: the actual size of the CB we got from the user. 2143 * @patched_cb_size: the size of the CB after parsing. 2144 * @job_id: the id of the related job inside the related CS. 2145 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a 2146 * handle to a kernel-allocated CB object, false 2147 * otherwise (SRAM/DRAM/host address). 2148 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This 2149 * info is needed later, when adding the 2xMSG_PROT at the 2150 * end of the JOB, to know which barriers to put in the 2151 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't 2152 * have streams so the engine can't be busy by another 2153 * stream. 2154 * @completion: true if we need completion for this CS. 2155 */ 2156 struct hl_cs_parser { 2157 struct hl_cb *user_cb; 2158 struct hl_cb *patched_cb; 2159 struct list_head *job_userptr_list; 2160 u64 cs_sequence; 2161 enum hl_queue_type queue_type; 2162 u32 ctx_id; 2163 u32 hw_queue_id; 2164 u32 user_cb_size; 2165 u32 patched_cb_size; 2166 u8 job_id; 2167 u8 is_kernel_allocated_cb; 2168 u8 contains_dma_pkt; 2169 u8 completion; 2170 }; 2171 2172 /* 2173 * MEMORY STRUCTURE 2174 */ 2175 2176 /** 2177 * struct hl_vm_hash_node - hash element from virtual address to virtual 2178 * memory area descriptor (hl_vm_phys_pg_list or 2179 * hl_userptr). 2180 * @node: node to hang on the hash table in context object. 2181 * @vaddr: key virtual address. 2182 * @handle: memory handle for device memory allocation. 2183 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr). 2184 * @export_cnt: number of exports from within the VA block. 2185 */ 2186 struct hl_vm_hash_node { 2187 struct hlist_node node; 2188 u64 vaddr; 2189 u64 handle; 2190 void *ptr; 2191 int export_cnt; 2192 }; 2193 2194 /** 2195 * struct hl_vm_hw_block_list_node - list element from user virtual address to 2196 * HW block id. 2197 * @node: node to hang on the list in context object. 2198 * @ctx: the context this node belongs to. 2199 * @vaddr: virtual address of the HW block. 2200 * @block_size: size of the block. 2201 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done. 2202 * @id: HW block id (handle). 2203 */ 2204 struct hl_vm_hw_block_list_node { 2205 struct list_head node; 2206 struct hl_ctx *ctx; 2207 unsigned long vaddr; 2208 u32 block_size; 2209 u32 mapped_size; 2210 u32 id; 2211 }; 2212 2213 /** 2214 * struct hl_vm_phys_pg_pack - physical page pack. 2215 * @vm_type: describes the type of the virtual area descriptor. 2216 * @pages: the physical page array. 2217 * @npages: num physical pages in the pack. 2218 * @total_size: total size of all the pages in this list. 2219 * @node: used to attach to deletion list that is used when all the allocations are cleared 2220 * at the teardown of the context. 2221 * @mapping_cnt: number of shared mappings. 2222 * @asid: the context related to this list. 2223 * @page_size: size of each page in the pack. 2224 * @flags: HL_MEM_* flags related to this list. 2225 * @handle: the provided handle related to this list. 2226 * @offset: offset from the first page. 2227 * @contiguous: is contiguous physical memory. 2228 * @created_from_userptr: is product of host virtual address. 2229 */ 2230 struct hl_vm_phys_pg_pack { 2231 enum vm_type vm_type; /* must be first */ 2232 u64 *pages; 2233 u64 npages; 2234 u64 total_size; 2235 struct list_head node; 2236 atomic_t mapping_cnt; 2237 u32 asid; 2238 u32 page_size; 2239 u32 flags; 2240 u32 handle; 2241 u32 offset; 2242 u8 contiguous; 2243 u8 created_from_userptr; 2244 }; 2245 2246 /** 2247 * struct hl_vm_va_block - virtual range block information. 2248 * @node: node to hang on the virtual range list in context object. 2249 * @start: virtual range start address. 2250 * @end: virtual range end address. 2251 * @size: virtual range size. 2252 */ 2253 struct hl_vm_va_block { 2254 struct list_head node; 2255 u64 start; 2256 u64 end; 2257 u64 size; 2258 }; 2259 2260 /** 2261 * struct hl_vm - virtual memory manager for MMU. 2262 * @dram_pg_pool: pool for DRAM physical pages of 2MB. 2263 * @dram_pg_pool_refcount: reference counter for the pool usage. 2264 * @idr_lock: protects the phys_pg_list_handles. 2265 * @phys_pg_pack_handles: idr to hold all device allocations handles. 2266 * @init_done: whether initialization was done. We need this because VM 2267 * initialization might be skipped during device initialization. 2268 */ 2269 struct hl_vm { 2270 struct gen_pool *dram_pg_pool; 2271 struct kref dram_pg_pool_refcount; 2272 spinlock_t idr_lock; 2273 struct idr phys_pg_pack_handles; 2274 u8 init_done; 2275 }; 2276 2277 2278 /* 2279 * DEBUG, PROFILING STRUCTURE 2280 */ 2281 2282 /** 2283 * struct hl_debug_params - Coresight debug parameters. 2284 * @input: pointer to component specific input parameters. 2285 * @output: pointer to component specific output parameters. 2286 * @output_size: size of output buffer. 2287 * @reg_idx: relevant register ID. 2288 * @op: component operation to execute. 2289 * @enable: true if to enable component debugging, false otherwise. 2290 */ 2291 struct hl_debug_params { 2292 void *input; 2293 void *output; 2294 u32 output_size; 2295 u32 reg_idx; 2296 u32 op; 2297 bool enable; 2298 }; 2299 2300 /** 2301 * struct hl_notifier_event - holds the notifier data structure 2302 * @eventfd: the event file descriptor to raise the notifications 2303 * @lock: mutex lock to protect the notifier data flows 2304 * @events_mask: indicates the bitmap events 2305 */ 2306 struct hl_notifier_event { 2307 struct eventfd_ctx *eventfd; 2308 struct mutex lock; 2309 u64 events_mask; 2310 }; 2311 2312 /* 2313 * FILE PRIVATE STRUCTURE 2314 */ 2315 2316 /** 2317 * struct hl_fpriv - process information stored in FD private data. 2318 * @hdev: habanalabs device structure. 2319 * @file_priv: pointer to the DRM file private data structure. 2320 * @taskpid: current process ID. 2321 * @ctx: current executing context. TODO: remove for multiple ctx per process 2322 * @ctx_mgr: context manager to handle multiple context for this FD. 2323 * @mem_mgr: manager descriptor for memory exportable via mmap 2324 * @notifier_event: notifier eventfd towards user process 2325 * @debugfs_list: list of relevant ASIC debugfs. 2326 * @dev_node: node in the device list of file private data 2327 * @refcount: number of related contexts. 2328 * @restore_phase_mutex: lock for context switch and restore phase. 2329 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple 2330 * ctx per process. 2331 */ 2332 struct hl_fpriv { 2333 struct hl_device *hdev; 2334 struct drm_file *file_priv; 2335 struct pid *taskpid; 2336 struct hl_ctx *ctx; 2337 struct hl_ctx_mgr ctx_mgr; 2338 struct hl_mem_mgr mem_mgr; 2339 struct hl_notifier_event notifier_event; 2340 struct list_head debugfs_list; 2341 struct list_head dev_node; 2342 struct kref refcount; 2343 struct mutex restore_phase_mutex; 2344 struct mutex ctx_lock; 2345 }; 2346 2347 2348 /* 2349 * DebugFS 2350 */ 2351 2352 /** 2353 * struct hl_info_list - debugfs file ops. 2354 * @name: file name. 2355 * @show: function to output information. 2356 * @write: function to write to the file. 2357 */ 2358 struct hl_info_list { 2359 const char *name; 2360 int (*show)(struct seq_file *s, void *data); 2361 ssize_t (*write)(struct file *file, const char __user *buf, 2362 size_t count, loff_t *f_pos); 2363 }; 2364 2365 /** 2366 * struct hl_debugfs_entry - debugfs dentry wrapper. 2367 * @info_ent: dentry related ops. 2368 * @dev_entry: ASIC specific debugfs manager. 2369 */ 2370 struct hl_debugfs_entry { 2371 const struct hl_info_list *info_ent; 2372 struct hl_dbg_device_entry *dev_entry; 2373 }; 2374 2375 /** 2376 * struct hl_dbg_device_entry - ASIC specific debugfs manager. 2377 * @root: root dentry. 2378 * @hdev: habanalabs device structure. 2379 * @entry_arr: array of available hl_debugfs_entry. 2380 * @file_list: list of available debugfs files. 2381 * @file_mutex: protects file_list. 2382 * @cb_list: list of available CBs. 2383 * @cb_spinlock: protects cb_list. 2384 * @cs_list: list of available CSs. 2385 * @cs_spinlock: protects cs_list. 2386 * @cs_job_list: list of available CB jobs. 2387 * @cs_job_spinlock: protects cs_job_list. 2388 * @userptr_list: list of available userptrs (virtual memory chunk descriptor). 2389 * @userptr_spinlock: protects userptr_list. 2390 * @ctx_mem_hash_list: list of available contexts with MMU mappings. 2391 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings. 2392 * @data_dma_blob_desc: data DMA descriptor of blob. 2393 * @mon_dump_blob_desc: monitor dump descriptor of blob. 2394 * @state_dump: data of the system states in case of a bad cs. 2395 * @state_dump_sem: protects state_dump. 2396 * @addr: next address to read/write from/to in read/write32. 2397 * @mmu_addr: next virtual address to translate to physical address in mmu_show. 2398 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error. 2399 * @userptr_lookup: the target user ptr to look up for on demand. 2400 * @mmu_asid: ASID to use while translating in mmu_show. 2401 * @state_dump_head: index of the latest state dump 2402 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read. 2403 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read. 2404 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read. 2405 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read. 2406 */ 2407 struct hl_dbg_device_entry { 2408 struct dentry *root; 2409 struct hl_device *hdev; 2410 struct hl_debugfs_entry *entry_arr; 2411 struct list_head file_list; 2412 struct mutex file_mutex; 2413 struct list_head cb_list; 2414 spinlock_t cb_spinlock; 2415 struct list_head cs_list; 2416 spinlock_t cs_spinlock; 2417 struct list_head cs_job_list; 2418 spinlock_t cs_job_spinlock; 2419 struct list_head userptr_list; 2420 spinlock_t userptr_spinlock; 2421 struct list_head ctx_mem_hash_list; 2422 struct mutex ctx_mem_hash_mutex; 2423 struct debugfs_blob_wrapper data_dma_blob_desc; 2424 struct debugfs_blob_wrapper mon_dump_blob_desc; 2425 char *state_dump[HL_STATE_DUMP_HIST_LEN]; 2426 struct rw_semaphore state_dump_sem; 2427 u64 addr; 2428 u64 mmu_addr; 2429 u64 mmu_cap_mask; 2430 u64 userptr_lookup; 2431 u32 mmu_asid; 2432 u32 state_dump_head; 2433 u8 i2c_bus; 2434 u8 i2c_addr; 2435 u8 i2c_reg; 2436 u8 i2c_len; 2437 }; 2438 2439 /** 2440 * struct hl_hw_obj_name_entry - single hw object name, member of 2441 * hl_state_dump_specs 2442 * @node: link to the containing hash table 2443 * @name: hw object name 2444 * @id: object identifier 2445 */ 2446 struct hl_hw_obj_name_entry { 2447 struct hlist_node node; 2448 const char *name; 2449 u32 id; 2450 }; 2451 2452 enum hl_state_dump_specs_props { 2453 SP_SYNC_OBJ_BASE_ADDR, 2454 SP_NEXT_SYNC_OBJ_ADDR, 2455 SP_SYNC_OBJ_AMOUNT, 2456 SP_MON_OBJ_WR_ADDR_LOW, 2457 SP_MON_OBJ_WR_ADDR_HIGH, 2458 SP_MON_OBJ_WR_DATA, 2459 SP_MON_OBJ_ARM_DATA, 2460 SP_MON_OBJ_STATUS, 2461 SP_MONITORS_AMOUNT, 2462 SP_TPC0_CMDQ, 2463 SP_TPC0_CFG_SO, 2464 SP_NEXT_TPC, 2465 SP_MME_CMDQ, 2466 SP_MME_CFG_SO, 2467 SP_NEXT_MME, 2468 SP_DMA_CMDQ, 2469 SP_DMA_CFG_SO, 2470 SP_DMA_QUEUES_OFFSET, 2471 SP_NUM_OF_MME_ENGINES, 2472 SP_SUB_MME_ENG_NUM, 2473 SP_NUM_OF_DMA_ENGINES, 2474 SP_NUM_OF_TPC_ENGINES, 2475 SP_ENGINE_NUM_OF_QUEUES, 2476 SP_ENGINE_NUM_OF_STREAMS, 2477 SP_ENGINE_NUM_OF_FENCES, 2478 SP_FENCE0_CNT_OFFSET, 2479 SP_FENCE0_RDATA_OFFSET, 2480 SP_CP_STS_OFFSET, 2481 SP_NUM_CORES, 2482 2483 SP_MAX 2484 }; 2485 2486 enum hl_sync_engine_type { 2487 ENGINE_TPC, 2488 ENGINE_DMA, 2489 ENGINE_MME, 2490 }; 2491 2492 /** 2493 * struct hl_mon_state_dump - represents a state dump of a single monitor 2494 * @id: monitor id 2495 * @wr_addr_low: address monitor will write to, low bits 2496 * @wr_addr_high: address monitor will write to, high bits 2497 * @wr_data: data monitor will write 2498 * @arm_data: register value containing monitor configuration 2499 * @status: monitor status 2500 */ 2501 struct hl_mon_state_dump { 2502 u32 id; 2503 u32 wr_addr_low; 2504 u32 wr_addr_high; 2505 u32 wr_data; 2506 u32 arm_data; 2507 u32 status; 2508 }; 2509 2510 /** 2511 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry 2512 * @engine_type: type of the engine 2513 * @engine_id: id of the engine 2514 * @sync_id: id of the sync object 2515 */ 2516 struct hl_sync_to_engine_map_entry { 2517 struct hlist_node node; 2518 enum hl_sync_engine_type engine_type; 2519 u32 engine_id; 2520 u32 sync_id; 2521 }; 2522 2523 /** 2524 * struct hl_sync_to_engine_map - maps sync object id to associated engine id 2525 * @tb: hash table containing the mapping, each element is of type 2526 * struct hl_sync_to_engine_map_entry 2527 */ 2528 struct hl_sync_to_engine_map { 2529 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS); 2530 }; 2531 2532 /** 2533 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump 2534 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine 2535 * @print_single_monitor: format monitor data as string 2536 * @monitor_valid: return true if given monitor dump is valid 2537 * @print_fences_single_engine: format fences data as string 2538 */ 2539 struct hl_state_dump_specs_funcs { 2540 int (*gen_sync_to_engine_map)(struct hl_device *hdev, 2541 struct hl_sync_to_engine_map *map); 2542 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset, 2543 struct hl_device *hdev, 2544 struct hl_mon_state_dump *mon); 2545 int (*monitor_valid)(struct hl_mon_state_dump *mon); 2546 int (*print_fences_single_engine)(struct hl_device *hdev, 2547 u64 base_offset, 2548 u64 status_base_offset, 2549 enum hl_sync_engine_type engine_type, 2550 u32 engine_id, char **buf, 2551 size_t *size, size_t *offset); 2552 }; 2553 2554 /** 2555 * struct hl_state_dump_specs - defines ASIC known hw objects names 2556 * @so_id_to_str_tb: sync objects names index table 2557 * @monitor_id_to_str_tb: monitors names index table 2558 * @funcs: virtual functions used for state dump 2559 * @sync_namager_names: readable names for sync manager if available (ex: N_E) 2560 * @props: pointer to a per asic const props array required for state dump 2561 */ 2562 struct hl_state_dump_specs { 2563 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2564 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS); 2565 struct hl_state_dump_specs_funcs funcs; 2566 const char * const *sync_namager_names; 2567 s64 *props; 2568 }; 2569 2570 2571 /* 2572 * DEVICES 2573 */ 2574 2575 #define HL_STR_MAX 64 2576 2577 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1) 2578 2579 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe 2580 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards. 2581 */ 2582 #define HL_MAX_MINORS 256 2583 2584 /* 2585 * Registers read & write functions. 2586 */ 2587 2588 u32 hl_rreg(struct hl_device *hdev, u32 reg); 2589 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val); 2590 2591 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg)) 2592 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v)) 2593 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \ 2594 hdev->asic_funcs->rreg(hdev, (reg))) 2595 2596 #define WREG32_P(reg, val, mask) \ 2597 do { \ 2598 u32 tmp_ = RREG32(reg); \ 2599 tmp_ &= (mask); \ 2600 tmp_ |= ((val) & ~(mask)); \ 2601 WREG32(reg, tmp_); \ 2602 } while (0) 2603 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and) 2604 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or)) 2605 2606 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask)) 2607 2608 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask) 2609 2610 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask)) 2611 2612 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT 2613 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK 2614 #define WREG32_FIELD(reg, offset, field, val) \ 2615 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \ 2616 ~REG_FIELD_MASK(reg, field)) | \ 2617 (val) << REG_FIELD_SHIFT(reg, field)) 2618 2619 /* Timeout should be longer when working with simulator but cap the 2620 * increased timeout to some maximum 2621 */ 2622 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \ 2623 ({ \ 2624 ktime_t __timeout; \ 2625 u32 __elbi_read; \ 2626 int __rc = 0; \ 2627 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2628 might_sleep_if(sleep_us); \ 2629 for (;;) { \ 2630 if (elbi) { \ 2631 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2632 if (__rc) \ 2633 break; \ 2634 (val) = __elbi_read; \ 2635 } else {\ 2636 (val) = RREG32(lower_32_bits(addr)); \ 2637 } \ 2638 if (cond) \ 2639 break; \ 2640 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2641 if (elbi) { \ 2642 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \ 2643 if (__rc) \ 2644 break; \ 2645 (val) = __elbi_read; \ 2646 } else {\ 2647 (val) = RREG32(lower_32_bits(addr)); \ 2648 } \ 2649 break; \ 2650 } \ 2651 if (sleep_us) \ 2652 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2653 } \ 2654 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \ 2655 }) 2656 2657 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \ 2658 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false) 2659 2660 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \ 2661 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true) 2662 2663 /* 2664 * poll array of register addresses. 2665 * condition is satisfied if all registers values match the expected value. 2666 * once some register in the array satisfies the condition it will not be polled again, 2667 * this is done both for efficiency and due to some registers are "clear on read". 2668 * TODO: use read from PCI bar in other places in the code (SW-91406) 2669 */ 2670 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2671 timeout_us, elbi) \ 2672 ({ \ 2673 ktime_t __timeout; \ 2674 u64 __elem_bitmask; \ 2675 u32 __read_val; \ 2676 u8 __arr_idx; \ 2677 int __rc = 0; \ 2678 \ 2679 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2680 might_sleep_if(sleep_us); \ 2681 if (arr_size >= 64) \ 2682 __rc = -EINVAL; \ 2683 else \ 2684 __elem_bitmask = BIT_ULL(arr_size) - 1; \ 2685 for (;;) { \ 2686 if (__rc) \ 2687 break; \ 2688 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \ 2689 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \ 2690 continue; \ 2691 if (elbi) { \ 2692 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \ 2693 if (__rc) \ 2694 break; \ 2695 } else { \ 2696 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \ 2697 } \ 2698 if (__read_val == (expected_val)) \ 2699 __elem_bitmask &= ~BIT_ULL(__arr_idx); \ 2700 } \ 2701 if (__rc || (__elem_bitmask == 0)) \ 2702 break; \ 2703 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \ 2704 break; \ 2705 if (sleep_us) \ 2706 usleep_range((sleep_us >> 2) + 1, sleep_us); \ 2707 } \ 2708 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \ 2709 }) 2710 2711 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2712 timeout_us) \ 2713 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2714 timeout_us, false) 2715 2716 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2717 timeout_us) \ 2718 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \ 2719 timeout_us, true) 2720 2721 /* 2722 * address in this macro points always to a memory location in the 2723 * host's (server's) memory. That location is updated asynchronously 2724 * either by the direct access of the device or by another core. 2725 * 2726 * To work both in LE and BE architectures, we need to distinguish between the 2727 * two states (device or another core updates the memory location). Therefore, 2728 * if mem_written_by_device is true, the host memory being polled will be 2729 * updated directly by the device. If false, the host memory being polled will 2730 * be updated by host CPU. Required so host knows whether or not the memory 2731 * might need to be byte-swapped before returning value to caller. 2732 * 2733 * On the first 4 polling iterations the macro goes to sleep for short period of 2734 * time that gradually increases and reaches sleep_us on the fifth iteration. 2735 */ 2736 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \ 2737 mem_written_by_device) \ 2738 ({ \ 2739 u64 __sleep_step_us; \ 2740 ktime_t __timeout; \ 2741 u8 __step = 8; \ 2742 \ 2743 __timeout = ktime_add_us(ktime_get(), timeout_us); \ 2744 might_sleep_if(sleep_us); \ 2745 for (;;) { \ 2746 /* Verify we read updates done by other cores or by device */ \ 2747 mb(); \ 2748 (val) = *((u32 *)(addr)); \ 2749 if (mem_written_by_device) \ 2750 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2751 if (cond) \ 2752 break; \ 2753 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \ 2754 (val) = *((u32 *)(addr)); \ 2755 if (mem_written_by_device) \ 2756 (val) = le32_to_cpu(*(__le32 *) &(val)); \ 2757 break; \ 2758 } \ 2759 __sleep_step_us = sleep_us >> __step; \ 2760 if (__sleep_step_us) \ 2761 usleep_range((__sleep_step_us >> 2) + 1, __sleep_step_us); \ 2762 __step >>= 1; \ 2763 } \ 2764 (cond) ? 0 : -ETIMEDOUT; \ 2765 }) 2766 2767 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \ 2768 ({ \ 2769 struct user_mapped_block *p = blk; \ 2770 \ 2771 p->address = base; \ 2772 p->size = sz; \ 2773 }) 2774 2775 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \ 2776 ({ \ 2777 usr_intr.hdev = hdev; \ 2778 usr_intr.interrupt_id = intr_id; \ 2779 usr_intr.type = intr_type; \ 2780 INIT_LIST_HEAD(&usr_intr.wait_list_head); \ 2781 spin_lock_init(&usr_intr.wait_list_lock); \ 2782 INIT_LIST_HEAD(&usr_intr.ts_list_head); \ 2783 spin_lock_init(&usr_intr.ts_list_lock); \ 2784 }) 2785 2786 struct hwmon_chip_info; 2787 2788 /** 2789 * struct hl_device_reset_work - reset work wrapper. 2790 * @reset_work: reset work to be done. 2791 * @hdev: habanalabs device structure. 2792 * @flags: reset flags. 2793 */ 2794 struct hl_device_reset_work { 2795 struct delayed_work reset_work; 2796 struct hl_device *hdev; 2797 u32 flags; 2798 }; 2799 2800 /** 2801 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident 2802 * page-table internal information. 2803 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for 2804 * allocating hops. 2805 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables. 2806 */ 2807 struct hl_mmu_hr_priv { 2808 struct gen_pool *mmu_pgt_pool; 2809 struct pgt_info *mmu_asid_hop0; 2810 }; 2811 2812 /** 2813 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident 2814 * page-table internal information. 2815 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops. 2816 * @mmu_shadow_hop0: shadow array of hop0 tables. 2817 */ 2818 struct hl_mmu_dr_priv { 2819 struct gen_pool *mmu_pgt_pool; 2820 void *mmu_shadow_hop0; 2821 }; 2822 2823 /** 2824 * struct hl_mmu_priv - used for holding per-device mmu internal information. 2825 * @dr: information on the device-resident MMU, when exists. 2826 * @hr: information on the host-resident MMU, when exists. 2827 */ 2828 struct hl_mmu_priv { 2829 struct hl_mmu_dr_priv dr; 2830 struct hl_mmu_hr_priv hr; 2831 }; 2832 2833 /** 2834 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry 2835 * that was created in order to translate a virtual address to a 2836 * physical one. 2837 * @hop_addr: The address of the hop. 2838 * @hop_pte_addr: The address of the hop entry. 2839 * @hop_pte_val: The value in the hop entry. 2840 */ 2841 struct hl_mmu_per_hop_info { 2842 u64 hop_addr; 2843 u64 hop_pte_addr; 2844 u64 hop_pte_val; 2845 }; 2846 2847 /** 2848 * struct hl_mmu_hop_info - A structure describing the TLB hops and their 2849 * hop-entries that were created in order to translate a virtual address to a 2850 * physical one. 2851 * @scrambled_vaddr: The value of the virtual address after scrambling. This 2852 * address replaces the original virtual-address when mapped 2853 * in the MMU tables. 2854 * @unscrambled_paddr: The un-scrambled physical address. 2855 * @hop_info: Array holding the per-hop information used for the translation. 2856 * @used_hops: The number of hops used for the translation. 2857 * @range_type: virtual address range type. 2858 */ 2859 struct hl_mmu_hop_info { 2860 u64 scrambled_vaddr; 2861 u64 unscrambled_paddr; 2862 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS]; 2863 u32 used_hops; 2864 enum hl_va_range_type range_type; 2865 }; 2866 2867 /** 2868 * struct hl_hr_mmu_funcs - Device related host resident MMU functions. 2869 * @get_hop0_pgt_info: get page table info structure for HOP0. 2870 * @get_pgt_info: get page table info structure for HOP other than HOP0. 2871 * @add_pgt_info: add page table info structure to hash. 2872 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping. 2873 */ 2874 struct hl_hr_mmu_funcs { 2875 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx); 2876 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr); 2877 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr); 2878 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop, 2879 struct hl_mmu_hop_info *hops, 2880 u64 virt_addr, bool *is_huge); 2881 }; 2882 2883 /** 2884 * struct hl_mmu_funcs - Device related MMU functions. 2885 * @init: initialize the MMU module. 2886 * @fini: release the MMU module. 2887 * @ctx_init: Initialize a context for using the MMU module. 2888 * @ctx_fini: disable a ctx from using the mmu module. 2889 * @map: maps a virtual address to physical address for a context. 2890 * @unmap: unmap a virtual address of a context. 2891 * @flush: flush all writes from all cores to reach device MMU. 2892 * @swap_out: marks all mapping of the given context as swapped out. 2893 * @swap_in: marks all mapping of the given context as swapped in. 2894 * @get_tlb_info: returns the list of hops and hop-entries used that were 2895 * created in order to translate the giver virtual address to a 2896 * physical one. 2897 * @hr_funcs: functions specific to host resident MMU. 2898 */ 2899 struct hl_mmu_funcs { 2900 int (*init)(struct hl_device *hdev); 2901 void (*fini)(struct hl_device *hdev); 2902 int (*ctx_init)(struct hl_ctx *ctx); 2903 void (*ctx_fini)(struct hl_ctx *ctx); 2904 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, 2905 bool is_dram_addr); 2906 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr); 2907 void (*flush)(struct hl_ctx *ctx); 2908 void (*swap_out)(struct hl_ctx *ctx); 2909 void (*swap_in)(struct hl_ctx *ctx); 2910 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops); 2911 struct hl_hr_mmu_funcs hr_funcs; 2912 }; 2913 2914 /** 2915 * struct hl_prefetch_work - prefetch work structure handler 2916 * @prefetch_work: actual work struct. 2917 * @ctx: compute context. 2918 * @va: virtual address to pre-fetch. 2919 * @size: pre-fetch size. 2920 * @flags: operation flags. 2921 * @asid: ASID for maintenance operation. 2922 */ 2923 struct hl_prefetch_work { 2924 struct work_struct prefetch_work; 2925 struct hl_ctx *ctx; 2926 u64 va; 2927 u64 size; 2928 u32 flags; 2929 u32 asid; 2930 }; 2931 2932 /* 2933 * number of user contexts allowed to call wait_for_multi_cs ioctl in 2934 * parallel 2935 */ 2936 #define MULTI_CS_MAX_USER_CTX 2 2937 2938 /** 2939 * struct multi_cs_completion - multi CS wait completion. 2940 * @completion: completion of any of the CS in the list 2941 * @lock: spinlock for the completion structure 2942 * @timestamp: timestamp for the multi-CS completion 2943 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS 2944 * is waiting 2945 * @used: 1 if in use, otherwise 0 2946 */ 2947 struct multi_cs_completion { 2948 struct completion completion; 2949 spinlock_t lock; 2950 s64 timestamp; 2951 u32 stream_master_qid_map; 2952 u8 used; 2953 }; 2954 2955 /** 2956 * struct multi_cs_data - internal data for multi CS call 2957 * @ctx: pointer to the context structure 2958 * @fence_arr: array of fences of all CSs 2959 * @seq_arr: array of CS sequence numbers 2960 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete 2961 * @timestamp: timestamp of first completed CS 2962 * @wait_status: wait for CS status 2963 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0) 2964 * @arr_len: fence_arr and seq_arr array length 2965 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0) 2966 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0. 2967 */ 2968 struct multi_cs_data { 2969 struct hl_ctx *ctx; 2970 struct hl_fence **fence_arr; 2971 u64 *seq_arr; 2972 s64 timeout_jiffies; 2973 s64 timestamp; 2974 long wait_status; 2975 u32 completion_bitmap; 2976 u8 arr_len; 2977 u8 gone_cs; 2978 u8 update_ts; 2979 }; 2980 2981 /** 2982 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp 2983 * @start: timestamp taken when 'start' event is received in driver 2984 * @end: timestamp taken when 'end' event is received in driver 2985 */ 2986 struct hl_clk_throttle_timestamp { 2987 ktime_t start; 2988 ktime_t end; 2989 }; 2990 2991 /** 2992 * struct hl_clk_throttle - keeps current/last clock throttling timestamps 2993 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER 2994 * index 1 refers to THERMAL 2995 * @lock: protects this structure as it can be accessed from both event queue 2996 * context and info_ioctl context 2997 * @current_reason: bitmask represents the current clk throttling reasons 2998 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load 2999 */ 3000 struct hl_clk_throttle { 3001 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX]; 3002 struct mutex lock; 3003 u32 current_reason; 3004 u32 aggregated_reason; 3005 }; 3006 3007 /** 3008 * struct user_mapped_block - describes a hw block allowed to be mmapped by user 3009 * @address: physical HW block address 3010 * @size: allowed size for mmap 3011 */ 3012 struct user_mapped_block { 3013 u32 address; 3014 u32 size; 3015 }; 3016 3017 /** 3018 * struct cs_timeout_info - info of last CS timeout occurred. 3019 * @timestamp: CS timeout timestamp. 3020 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled, 3021 * so the first (root cause) CS timeout will not be overwritten. 3022 * @seq: CS timeout sequence number. 3023 */ 3024 struct cs_timeout_info { 3025 ktime_t timestamp; 3026 atomic_t write_enable; 3027 u64 seq; 3028 }; 3029 3030 #define MAX_QMAN_STREAMS_INFO 4 3031 #define OPCODE_INFO_MAX_ADDR_SIZE 8 3032 /** 3033 * struct undefined_opcode_info - info about last undefined opcode error 3034 * @timestamp: timestamp of the undefined opcode error 3035 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ 3036 * entries. In case all streams array entries are 3037 * filled with values, it means the execution was in Lower-CP. 3038 * @cq_addr: the address of the current handled command buffer 3039 * @cq_size: the size of the current handled command buffer 3040 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. 3041 * should be equal to 1 in case of undefined opcode 3042 * in Upper-CP (specific stream) and equal to 4 in case 3043 * of undefined opcode in Lower-CP. 3044 * @engine_id: engine-id that the error occurred on 3045 * @stream_id: the stream id the error occurred on. In case the stream equals to 3046 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. 3047 * @write_enable: if set, writing to undefined opcode parameters in the structure 3048 * is enable so the first (root cause) undefined opcode will not be 3049 * overwritten. 3050 */ 3051 struct undefined_opcode_info { 3052 ktime_t timestamp; 3053 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; 3054 u64 cq_addr; 3055 u32 cq_size; 3056 u32 cb_addr_streams_len; 3057 u32 engine_id; 3058 u32 stream_id; 3059 bool write_enable; 3060 }; 3061 3062 /** 3063 * struct page_fault_info - page fault information. 3064 * @page_fault: holds information collected during a page fault. 3065 * @user_mappings: buffer containing user mappings. 3066 * @num_of_user_mappings: number of user mappings. 3067 * @page_fault_detected: if set as 1, then a page-fault was discovered for the 3068 * first time after the driver has finished booting-up. 3069 * Since we're looking for the page-fault's root cause, 3070 * we don't care of the others that might follow it- 3071 * so once changed to 1, it will remain that way. 3072 * @page_fault_info_available: indicates that a page fault info is now available. 3073 */ 3074 struct page_fault_info { 3075 struct hl_page_fault_info page_fault; 3076 struct hl_user_mapping *user_mappings; 3077 u64 num_of_user_mappings; 3078 atomic_t page_fault_detected; 3079 bool page_fault_info_available; 3080 }; 3081 3082 /** 3083 * struct razwi_info - RAZWI information. 3084 * @razwi: holds information collected during a RAZWI 3085 * @razwi_detected: if set as 1, then a RAZWI was discovered for the 3086 * first time after the driver has finished booting-up. 3087 * Since we're looking for the RAZWI's root cause, 3088 * we don't care of the others that might follow it- 3089 * so once changed to 1, it will remain that way. 3090 * @razwi_info_available: indicates that a RAZWI info is now available. 3091 */ 3092 struct razwi_info { 3093 struct hl_info_razwi_event razwi; 3094 atomic_t razwi_detected; 3095 bool razwi_info_available; 3096 }; 3097 3098 /** 3099 * struct hw_err_info - HW error information. 3100 * @event: holds information on the event. 3101 * @event_detected: if set as 1, then a HW event was discovered for the 3102 * first time after the driver has finished booting-up. 3103 * currently we assume that only fatal events (that require hard-reset) are 3104 * reported so we don't care of the others that might follow it. 3105 * so once changed to 1, it will remain that way. 3106 * TODO: support multiple events. 3107 * @event_info_available: indicates that a HW event info is now available. 3108 */ 3109 struct hw_err_info { 3110 struct hl_info_hw_err_event event; 3111 atomic_t event_detected; 3112 bool event_info_available; 3113 }; 3114 3115 /** 3116 * struct fw_err_info - FW error information. 3117 * @event: holds information on the event. 3118 * @event_detected: if set as 1, then a FW event was discovered for the 3119 * first time after the driver has finished booting-up. 3120 * currently we assume that only fatal events (that require hard-reset) are 3121 * reported so we don't care of the others that might follow it. 3122 * so once changed to 1, it will remain that way. 3123 * TODO: support multiple events. 3124 * @event_info_available: indicates that a HW event info is now available. 3125 */ 3126 struct fw_err_info { 3127 struct hl_info_fw_err_event event; 3128 atomic_t event_detected; 3129 bool event_info_available; 3130 }; 3131 3132 /** 3133 * struct engine_err_info - engine error information. 3134 * @event: holds information on the event. 3135 * @event_detected: if set as 1, then an engine event was discovered for the 3136 * first time after the driver has finished booting-up. 3137 * @event_info_available: indicates that an engine event info is now available. 3138 */ 3139 struct engine_err_info { 3140 struct hl_info_engine_err_event event; 3141 atomic_t event_detected; 3142 bool event_info_available; 3143 }; 3144 3145 3146 /** 3147 * struct hl_error_info - holds information collected during an error. 3148 * @cs_timeout: CS timeout error information. 3149 * @razwi_info: RAZWI information. 3150 * @undef_opcode: undefined opcode information. 3151 * @page_fault_info: page fault information. 3152 * @hw_err: (fatal) hardware error information. 3153 * @fw_err: firmware error information. 3154 * @engine_err: engine error information. 3155 */ 3156 struct hl_error_info { 3157 struct cs_timeout_info cs_timeout; 3158 struct razwi_info razwi_info; 3159 struct undefined_opcode_info undef_opcode; 3160 struct page_fault_info page_fault_info; 3161 struct hw_err_info hw_err; 3162 struct fw_err_info fw_err; 3163 struct engine_err_info engine_err; 3164 }; 3165 3166 /** 3167 * struct hl_reset_info - holds current device reset information. 3168 * @lock: lock to protect critical reset flows. 3169 * @compute_reset_cnt: number of compute resets since the driver was loaded. 3170 * @hard_reset_cnt: number of hard resets since the driver was loaded. 3171 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset, 3172 * here we hold the hard reset flags. 3173 * @in_reset: is device in reset flow. 3174 * @in_compute_reset: Device is currently in reset but not in hard-reset. 3175 * @needs_reset: true if reset_on_lockup is false and device should be reset 3176 * due to lockup. 3177 * @hard_reset_pending: is there a hard reset work pending. 3178 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is 3179 * triggered, and cleared after it is shared with preboot. 3180 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden 3181 * with a new value on next reset 3182 * @reset_trigger_repeated: set if device reset is triggered more than once with 3183 * same cause. 3184 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to 3185 * complete instead. 3186 * @watchdog_active: true if a device release watchdog work is scheduled. 3187 */ 3188 struct hl_reset_info { 3189 spinlock_t lock; 3190 u32 compute_reset_cnt; 3191 u32 hard_reset_cnt; 3192 u32 hard_reset_schedule_flags; 3193 u8 in_reset; 3194 u8 in_compute_reset; 3195 u8 needs_reset; 3196 u8 hard_reset_pending; 3197 u8 curr_reset_cause; 3198 u8 prev_reset_trigger; 3199 u8 reset_trigger_repeated; 3200 u8 skip_reset_on_timeout; 3201 u8 watchdog_active; 3202 }; 3203 3204 /** 3205 * struct eq_heartbeat_debug_info - stores debug info to be used upon heartbeat failure. 3206 * @last_pq_heartbeat_ts: timestamp of the last test packet that was sent to FW. 3207 * This packet is the trigger in FW to send the EQ heartbeat event. 3208 * @last_eq_heartbeat_ts: timestamp of the last EQ heartbeat event that was received from FW. 3209 * @heartbeat_event_counter: number of heartbeat events received. 3210 * @cpu_queue_id: used to read the queue pi/ci 3211 */ 3212 struct eq_heartbeat_debug_info { 3213 time64_t last_pq_heartbeat_ts; 3214 time64_t last_eq_heartbeat_ts; 3215 u32 heartbeat_event_counter; 3216 u32 cpu_queue_id; 3217 }; 3218 3219 /** 3220 * struct hl_device - habanalabs device structure. 3221 * @pdev: pointer to PCI device, can be NULL in case of simulator device. 3222 * @pcie_bar_phys: array of available PCIe bars physical addresses. 3223 * (required only for PCI address match mode) 3224 * @pcie_bar: array of available PCIe bars virtual addresses. 3225 * @rmmio: configuration area address on SRAM. 3226 * @drm: related DRM device. 3227 * @cdev_ctrl: char device for control operations only (INFO IOCTL) 3228 * @dev: related kernel basic device structure. 3229 * @dev_ctrl: related kernel device structure for the control device 3230 * @work_heartbeat: delayed work for CPU-CP is-alive check. 3231 * @device_reset_work: delayed work which performs hard reset 3232 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release 3233 * device upon certain error cases. 3234 * @asic_name: ASIC specific name. 3235 * @asic_type: ASIC specific type. 3236 * @completion_queue: array of hl_cq. 3237 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user 3238 * interrupt, driver will monitor the list of fences 3239 * registered to this interrupt. 3240 * @tpc_interrupt: single TPC interrupt for all TPCs. 3241 * @unexpected_error_interrupt: single interrupt for unexpected user error indication. 3242 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts. 3243 * upon any user CQ interrupt, driver will monitor the 3244 * list of fences registered to this common structure. 3245 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts. 3246 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to 3247 * outstanding command submissions. 3248 * @cq_wq: work queues of completion queues for executing work in process 3249 * context. 3250 * @eq_wq: work queue of event queue for executing work in process context. 3251 * @cs_cmplt_wq: work queue of CS completions for executing work in process 3252 * context. 3253 * @ts_free_obj_wq: work queue for timestamp registration objects release. 3254 * @prefetch_wq: work queue for MMU pre-fetch operations. 3255 * @reset_wq: work queue for device reset procedure. 3256 * @kernel_ctx: Kernel driver context structure. 3257 * @kernel_queues: array of hl_hw_queue. 3258 * @cs_mirror_list: CS mirror list for TDR. 3259 * @cs_mirror_lock: protects cs_mirror_list. 3260 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver. 3261 * @event_queue: event queue for IRQ from CPU-CP. 3262 * @dma_pool: DMA pool for small allocations. 3263 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address. 3264 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address. 3265 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool. 3266 * @asid_bitmap: holds used/available ASIDs. 3267 * @asid_mutex: protects asid_bitmap. 3268 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue. 3269 * @debug_lock: protects critical section of setting debug mode for device 3270 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the 3271 * page tables are per context, the invalidation h/w is per MMU. 3272 * Therefore, we can't allow multiple contexts (we only have two, 3273 * user and kernel) to access the invalidation h/w at the same time. 3274 * In addition, any change to the PGT, modifying the MMU hash or 3275 * walking the PGT requires talking this lock. 3276 * @asic_prop: ASIC specific immutable properties. 3277 * @asic_funcs: ASIC specific functions. 3278 * @asic_specific: ASIC specific information to use only from ASIC files. 3279 * @vm: virtual memory manager for MMU. 3280 * @hwmon_dev: H/W monitor device. 3281 * @hl_chip_info: ASIC's sensors information. 3282 * @device_status_description: device status description. 3283 * @hl_debugfs: device's debugfs manager. 3284 * @cb_pool: list of pre allocated CBs. 3285 * @cb_pool_lock: protects the CB pool. 3286 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address. 3287 * @internal_cb_pool_dma_addr: internal command buffer pool dma address. 3288 * @internal_cb_pool: internal command buffer memory pool. 3289 * @internal_cb_va_base: internal cb pool mmu virtual address base 3290 * @fpriv_list: list of file private data structures. Each structure is created 3291 * when a user opens the device 3292 * @fpriv_ctrl_list: list of file private data structures. Each structure is created 3293 * when a user opens the control device 3294 * @fpriv_list_lock: protects the fpriv_list 3295 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list 3296 * @aggregated_cs_counters: aggregated cs counters among all contexts 3297 * @mmu_priv: device-specific MMU data. 3298 * @mmu_func: device-related MMU functions. 3299 * @dec: list of decoder sw instance 3300 * @fw_loader: FW loader manager. 3301 * @pci_mem_region: array of memory regions in the PCI 3302 * @state_dump_specs: constants and dictionaries needed to dump system state. 3303 * @multi_cs_completion: array of multi-CS completion. 3304 * @clk_throttling: holds information about current/previous clock throttling events 3305 * @captured_err_info: holds information about errors. 3306 * @reset_info: holds current device reset information. 3307 * @heartbeat_debug_info: counters used to debug heartbeat failures. 3308 * @irq_affinity_mask: mask of available CPU cores for user and decoder interrupt handling. 3309 * @stream_master_qid_arr: pointer to array with QIDs of master streams. 3310 * @fw_inner_major_ver: the major of current loaded preboot inner version. 3311 * @fw_inner_minor_ver: the minor of current loaded preboot inner version. 3312 * @fw_sw_major_ver: the major of current loaded preboot SW version. 3313 * @fw_sw_minor_ver: the minor of current loaded preboot SW version. 3314 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version. 3315 * @dram_used_mem: current DRAM memory consumption. 3316 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram 3317 * @timeout_jiffies: device CS timeout value. 3318 * @max_power: the max power of the device, as configured by the sysadmin. This 3319 * value is saved so in case of hard-reset, the driver will restore 3320 * this value and update the F/W after the re-initialization 3321 * @boot_error_status_mask: contains a mask of the device boot error status. 3322 * Each bit represents a different error, according to 3323 * the defines in hl_boot_if.h. If the bit is cleared, 3324 * the error will be ignored by the driver during 3325 * device initialization. Mainly used to debug and 3326 * workaround firmware bugs 3327 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM. 3328 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open. 3329 * @last_successful_open_jif: timestamp (jiffies) of the last successful 3330 * device open. 3331 * @last_open_session_duration_jif: duration (jiffies) of the last device open 3332 * session. 3333 * @open_counter: number of successful device open operations. 3334 * @fw_poll_interval_usec: FW status poll interval in usec. 3335 * used for CPU boot status 3336 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec. 3337 * used for COMMs protocols cmds(COMMS_STS_*) 3338 * @dram_binning: contains mask of drams that is received from the f/w which indicates which 3339 * drams are binned-out 3340 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which 3341 * tpc engines are binned-out 3342 * @dmabuf_export_cnt: number of dma-buf exporting. 3343 * @card_type: Various ASICs have several card types. This indicates the card 3344 * type of the current device. 3345 * @major: habanalabs kernel driver major. 3346 * @high_pll: high PLL profile frequency. 3347 * @decoder_binning: contains mask of decoder engines that is received from the f/w which 3348 * indicates which decoder engines are binned-out 3349 * @edma_binning: contains mask of edma engines that is received from the f/w which 3350 * indicates which edma engines are binned-out 3351 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds. 3352 * @rotator_binning: contains mask of rotators engines that is received from the f/w 3353 * which indicates which rotator engines are binned-out(Gaudi3 and above). 3354 * @id: device minor. 3355 * @cdev_idx: char device index. 3356 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit 3357 * addresses. 3358 * @is_in_dram_scrub: true if dram scrub operation is on going. 3359 * @disabled: is device disabled. 3360 * @late_init_done: is late init stage was done during initialization. 3361 * @hwmon_initialized: is H/W monitor sensors was initialized. 3362 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false 3363 * otherwise. 3364 * @dram_default_page_mapping: is DRAM default page mapping enabled. 3365 * @memory_scrub: true to perform device memory scrub in various locations, 3366 * such as context-switch, context close, page free, etc. 3367 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with 3368 * huge pages. 3369 * @init_done: is the initialization of the device done. 3370 * @device_cpu_disabled: is the device CPU disabled (due to timeouts) 3371 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure 3372 * can be used. This indication is needed because in some ASICs we need to do 3373 * specific operations to enable that infrastructure. 3374 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created. 3375 * @stop_on_err: true if engines should stop on error. 3376 * @supports_sync_stream: is sync stream supported. 3377 * @sync_stream_queue_idx: helper index for sync stream queues initialization. 3378 * @collective_mon_idx: helper index for collective initialization 3379 * @supports_coresight: is CoreSight supported. 3380 * @supports_cb_mapping: is mapping a CB to the device's MMU supported. 3381 * @process_kill_trial_cnt: number of trials reset thread tried killing 3382 * user processes 3383 * @device_fini_pending: true if device_fini was called and might be 3384 * waiting for the reset thread to finish 3385 * @supports_staged_submission: true if staged submissions are supported 3386 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already 3387 * halted. We can't halt it again because the COMMS 3388 * protocol will throw an error. Relevant only for 3389 * cases where Linux was not loaded to device CPU 3390 * @supports_wait_for_multi_cs: true if wait for multi CS is supported 3391 * @is_compute_ctx_active: Whether there is an active compute context executing. 3392 * @compute_ctx_in_release: true if the current compute context is being released. 3393 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false. 3394 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the 3395 * device. 3396 * @supports_ctx_switch: true if a ctx switch is required upon first submission. 3397 * @support_preboot_binning: true if we support read binning info from preboot. 3398 * @eq_heartbeat_received: indication that eq heartbeat event has received from FW. 3399 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing. 3400 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w 3401 * stages and sometimes we want to stop at a certain stage. Used only for testing. 3402 * @mmu_disable: Disable the device MMU(s). Used only for testing. 3403 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing. 3404 * @pldm: Whether we are running in Palladium environment. Used only for testing. 3405 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from 3406 * the f/w. Used only for testing. 3407 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing. 3408 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load. 3409 * Used only for testing. 3410 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies 3411 * that the f/w is always alive. Used only for testing. 3412 */ 3413 struct hl_device { 3414 struct pci_dev *pdev; 3415 u64 pcie_bar_phys[HL_PCI_NUM_BARS]; 3416 void __iomem *pcie_bar[HL_PCI_NUM_BARS]; 3417 void __iomem *rmmio; 3418 struct drm_device drm; 3419 struct cdev cdev_ctrl; 3420 struct device *dev; 3421 struct device *dev_ctrl; 3422 struct delayed_work work_heartbeat; 3423 struct hl_device_reset_work device_reset_work; 3424 struct hl_device_reset_work device_release_watchdog_work; 3425 char asic_name[HL_STR_MAX]; 3426 char status[HL_DEV_STS_MAX][HL_STR_MAX]; 3427 enum hl_asic_type asic_type; 3428 struct hl_cq *completion_queue; 3429 struct hl_user_interrupt *user_interrupt; 3430 struct hl_user_interrupt tpc_interrupt; 3431 struct hl_user_interrupt unexpected_error_interrupt; 3432 struct hl_user_interrupt common_user_cq_interrupt; 3433 struct hl_user_interrupt common_decoder_interrupt; 3434 struct hl_cs **shadow_cs_queue; 3435 struct workqueue_struct **cq_wq; 3436 struct workqueue_struct *eq_wq; 3437 struct workqueue_struct *cs_cmplt_wq; 3438 struct workqueue_struct *ts_free_obj_wq; 3439 struct workqueue_struct *prefetch_wq; 3440 struct workqueue_struct *reset_wq; 3441 struct hl_ctx *kernel_ctx; 3442 struct hl_hw_queue *kernel_queues; 3443 struct list_head cs_mirror_list; 3444 spinlock_t cs_mirror_lock; 3445 struct hl_mem_mgr kernel_mem_mgr; 3446 struct hl_eq event_queue; 3447 struct dma_pool *dma_pool; 3448 void *cpu_accessible_dma_mem; 3449 dma_addr_t cpu_accessible_dma_address; 3450 struct gen_pool *cpu_accessible_dma_pool; 3451 unsigned long *asid_bitmap; 3452 struct mutex asid_mutex; 3453 struct mutex send_cpu_message_lock; 3454 struct mutex debug_lock; 3455 struct mutex mmu_lock; 3456 struct asic_fixed_properties asic_prop; 3457 const struct hl_asic_funcs *asic_funcs; 3458 void *asic_specific; 3459 struct hl_vm vm; 3460 struct device *hwmon_dev; 3461 struct hwmon_chip_info *hl_chip_info; 3462 3463 struct hl_dbg_device_entry hl_debugfs; 3464 3465 struct list_head cb_pool; 3466 spinlock_t cb_pool_lock; 3467 3468 void *internal_cb_pool_virt_addr; 3469 dma_addr_t internal_cb_pool_dma_addr; 3470 struct gen_pool *internal_cb_pool; 3471 u64 internal_cb_va_base; 3472 3473 struct list_head fpriv_list; 3474 struct list_head fpriv_ctrl_list; 3475 struct mutex fpriv_list_lock; 3476 struct mutex fpriv_ctrl_list_lock; 3477 3478 struct hl_cs_counters_atomic aggregated_cs_counters; 3479 3480 struct hl_mmu_priv mmu_priv; 3481 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS]; 3482 3483 struct hl_dec *dec; 3484 3485 struct fw_load_mgr fw_loader; 3486 3487 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER]; 3488 3489 struct hl_state_dump_specs state_dump_specs; 3490 3491 struct multi_cs_completion multi_cs_completion[ 3492 MULTI_CS_MAX_USER_CTX]; 3493 struct hl_clk_throttle clk_throttling; 3494 struct hl_error_info captured_err_info; 3495 3496 struct hl_reset_info reset_info; 3497 3498 struct eq_heartbeat_debug_info heartbeat_debug_info; 3499 3500 cpumask_t irq_affinity_mask; 3501 3502 u32 *stream_master_qid_arr; 3503 u32 fw_inner_major_ver; 3504 u32 fw_inner_minor_ver; 3505 u32 fw_sw_major_ver; 3506 u32 fw_sw_minor_ver; 3507 u32 fw_sw_sub_minor_ver; 3508 atomic64_t dram_used_mem; 3509 u64 memory_scrub_val; 3510 u64 timeout_jiffies; 3511 u64 max_power; 3512 u64 boot_error_status_mask; 3513 u64 dram_pci_bar_start; 3514 u64 last_successful_open_jif; 3515 u64 last_open_session_duration_jif; 3516 u64 open_counter; 3517 u64 fw_poll_interval_usec; 3518 ktime_t last_successful_open_ktime; 3519 u64 fw_comms_poll_interval_usec; 3520 u64 dram_binning; 3521 u64 tpc_binning; 3522 atomic_t dmabuf_export_cnt; 3523 enum cpucp_card_types card_type; 3524 u32 major; 3525 u32 high_pll; 3526 u32 decoder_binning; 3527 u32 edma_binning; 3528 u32 device_release_watchdog_timeout_sec; 3529 u32 rotator_binning; 3530 u16 id; 3531 u16 cdev_idx; 3532 u16 cpu_pci_msb_addr; 3533 u8 is_in_dram_scrub; 3534 u8 disabled; 3535 u8 late_init_done; 3536 u8 hwmon_initialized; 3537 u8 reset_on_lockup; 3538 u8 dram_default_page_mapping; 3539 u8 memory_scrub; 3540 u8 pmmu_huge_range; 3541 u8 init_done; 3542 u8 device_cpu_disabled; 3543 u8 in_debug; 3544 u8 cdev_sysfs_debugfs_created; 3545 u8 stop_on_err; 3546 u8 supports_sync_stream; 3547 u8 sync_stream_queue_idx; 3548 u8 collective_mon_idx; 3549 u8 supports_coresight; 3550 u8 supports_cb_mapping; 3551 u8 process_kill_trial_cnt; 3552 u8 device_fini_pending; 3553 u8 supports_staged_submission; 3554 u8 device_cpu_is_halted; 3555 u8 supports_wait_for_multi_cs; 3556 u8 stream_master_qid_arr_size; 3557 u8 is_compute_ctx_active; 3558 u8 compute_ctx_in_release; 3559 u8 supports_mmu_prefetch; 3560 u8 reset_upon_device_release; 3561 u8 supports_ctx_switch; 3562 u8 support_preboot_binning; 3563 u8 eq_heartbeat_received; 3564 3565 /* Parameters for bring-up to be upstreamed */ 3566 u64 nic_ports_mask; 3567 u64 fw_components; 3568 u8 mmu_disable; 3569 u8 cpu_queues_enable; 3570 u8 pldm; 3571 u8 hard_reset_on_fw_events; 3572 u8 bmc_enable; 3573 u8 reset_on_preboot_fail; 3574 u8 heartbeat; 3575 }; 3576 3577 /* Retrieve PCI device name in case of a PCI device or dev name in simulator */ 3578 #define HL_DEV_NAME(hdev) \ 3579 ((hdev)->pdev ? dev_name(&(hdev)->pdev->dev) : "NA-DEVICE") 3580 3581 /** 3582 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure 3583 * @refcount: refcount used to protect removing this id when several 3584 * wait cs are used to wait of the reserved encaps signals. 3585 * @hdev: pointer to habanalabs device structure. 3586 * @hw_sob: pointer to H/W SOB used in the reservation. 3587 * @ctx: pointer to the user's context data structure 3588 * @cs_seq: staged cs sequence which contains encapsulated signals 3589 * @id: idr handler id to be used to fetch the handler info 3590 * @q_idx: stream queue index 3591 * @pre_sob_val: current SOB value before reservation 3592 * @count: signals number 3593 */ 3594 struct hl_cs_encaps_sig_handle { 3595 struct kref refcount; 3596 struct hl_device *hdev; 3597 struct hl_hw_sob *hw_sob; 3598 struct hl_ctx *ctx; 3599 u64 cs_seq; 3600 u32 id; 3601 u32 q_idx; 3602 u32 pre_sob_val; 3603 u32 count; 3604 }; 3605 3606 /** 3607 * struct hl_info_fw_err_info - firmware error information structure 3608 * @err_type: The type of error detected (or reported). 3609 * @event_mask: Pointer to the event mask to be modified with the detected error flag 3610 * (can be NULL) 3611 * @event_id: The id of the event that reported the error 3612 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR). 3613 */ 3614 struct hl_info_fw_err_info { 3615 enum hl_info_fw_err_type err_type; 3616 u64 *event_mask; 3617 u16 event_id; 3618 }; 3619 3620 /* 3621 * IOCTLs 3622 */ 3623 3624 /** 3625 * typedef hl_ioctl_t - typedef for ioctl function in the driver 3626 * @hpriv: pointer to the FD's private data, which contains state of 3627 * user process 3628 * @data: pointer to the input/output arguments structure of the IOCTL 3629 * 3630 * Return: 0 for success, negative value for error 3631 */ 3632 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data); 3633 3634 /** 3635 * struct hl_ioctl_desc - describes an IOCTL entry of the driver. 3636 * @cmd: the IOCTL code as created by the kernel macros. 3637 * @func: pointer to the driver's function that should be called for this IOCTL. 3638 */ 3639 struct hl_ioctl_desc { 3640 unsigned int cmd; 3641 hl_ioctl_t *func; 3642 }; 3643 3644 /* 3645 * Kernel module functions that can be accessed by entire module 3646 */ 3647 3648 /** 3649 * hl_get_sg_info() - get number of pages and the DMA address from SG list. 3650 * @sg: the SG list. 3651 * @dma_addr: pointer to DMA address to return. 3652 * 3653 * Calculate the number of consecutive pages described by the SG list. Take the 3654 * offset of the address in the first page, add to it the length and round it up 3655 * to the number of needed pages. 3656 */ 3657 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) 3658 { 3659 *dma_addr = sg_dma_address(sg); 3660 3661 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + 3662 (PAGE_SIZE - 1)) >> PAGE_SHIFT; 3663 } 3664 3665 /** 3666 * hl_mem_area_inside_range() - Checks whether address+size are inside a range. 3667 * @address: The start address of the area we want to validate. 3668 * @size: The size in bytes of the area we want to validate. 3669 * @range_start_address: The start address of the valid range. 3670 * @range_end_address: The end address of the valid range. 3671 * 3672 * Return: true if the area is inside the valid range, false otherwise. 3673 */ 3674 static inline bool hl_mem_area_inside_range(u64 address, u64 size, 3675 u64 range_start_address, u64 range_end_address) 3676 { 3677 u64 end_address = address + size; 3678 3679 if ((address >= range_start_address) && 3680 (end_address <= range_end_address) && 3681 (end_address > address)) 3682 return true; 3683 3684 return false; 3685 } 3686 3687 static inline struct hl_device *to_hl_device(struct drm_device *ddev) 3688 { 3689 return container_of(ddev, struct hl_device, drm); 3690 } 3691 3692 /** 3693 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range. 3694 * @address: The start address of the area we want to validate. 3695 * @size: The size in bytes of the area we want to validate. 3696 * @range_start_address: The start address of the valid range. 3697 * @range_end_address: The end address of the valid range. 3698 * 3699 * Return: true if the area overlaps part or all of the valid range, 3700 * false otherwise. 3701 */ 3702 static inline bool hl_mem_area_crosses_range(u64 address, u32 size, 3703 u64 range_start_address, u64 range_end_address) 3704 { 3705 u64 end_address = address + size - 1; 3706 3707 return ((address <= range_end_address) && (range_start_address <= end_address)); 3708 } 3709 3710 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr); 3711 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle); 3712 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr); 3713 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 3714 gfp_t flag, const char *caller); 3715 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 3716 dma_addr_t dma_handle, const char *caller); 3717 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 3718 dma_addr_t *dma_handle, const char *caller); 3719 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 3720 const char *caller); 3721 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3722 enum dma_data_direction dir, const char *caller); 3723 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 3724 enum dma_data_direction dir, const char *caller); 3725 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3726 enum dma_data_direction dir); 3727 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 3728 enum dma_data_direction dir); 3729 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 3730 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar); 3731 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 3732 enum debugfs_access_type acc_type); 3733 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 3734 u64 addr, u64 *val, enum debugfs_access_type acc_type); 3735 3736 int hl_mmap(struct file *filp, struct vm_area_struct *vma); 3737 3738 int hl_device_open(struct drm_device *drm, struct drm_file *file_priv); 3739 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv); 3740 3741 int hl_device_open_ctrl(struct inode *inode, struct file *filp); 3742 bool hl_device_operational(struct hl_device *hdev, 3743 enum hl_device_status *status); 3744 bool hl_ctrl_device_operational(struct hl_device *hdev, 3745 enum hl_device_status *status); 3746 enum hl_device_status hl_device_status(struct hl_device *hdev); 3747 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable); 3748 int hl_hw_queues_create(struct hl_device *hdev); 3749 void hl_hw_queues_destroy(struct hl_device *hdev); 3750 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, 3751 u32 cb_size, u64 cb_ptr); 3752 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, 3753 u32 ctl, u32 len, u64 ptr); 3754 int hl_hw_queue_schedule_cs(struct hl_cs *cs); 3755 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val); 3756 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id); 3757 void hl_hw_queue_update_ci(struct hl_cs *cs); 3758 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset); 3759 3760 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1) 3761 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1)) 3762 3763 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id); 3764 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q); 3765 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q); 3766 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q); 3767 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q); 3768 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q); 3769 void hl_eq_dump(struct hl_device *hdev, struct hl_eq *q); 3770 irqreturn_t hl_irq_handler_cq(int irq, void *arg); 3771 irqreturn_t hl_irq_handler_eq(int irq, void *arg); 3772 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg); 3773 irqreturn_t hl_irq_user_interrupt_handler(int irq, void *arg); 3774 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg); 3775 irqreturn_t hl_irq_eq_error_interrupt_thread_handler(int irq, void *arg); 3776 u32 hl_cq_inc_ptr(u32 ptr); 3777 3778 int hl_asid_init(struct hl_device *hdev); 3779 void hl_asid_fini(struct hl_device *hdev); 3780 unsigned long hl_asid_alloc(struct hl_device *hdev); 3781 void hl_asid_free(struct hl_device *hdev, unsigned long asid); 3782 3783 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv); 3784 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx); 3785 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx); 3786 void hl_ctx_do_release(struct kref *ref); 3787 void hl_ctx_get(struct hl_ctx *ctx); 3788 int hl_ctx_put(struct hl_ctx *ctx); 3789 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev); 3790 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq); 3791 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, 3792 struct hl_fence **fence, u32 arr_len); 3793 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr); 3794 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr); 3795 3796 int hl_device_init(struct hl_device *hdev); 3797 void hl_device_fini(struct hl_device *hdev); 3798 int hl_device_suspend(struct hl_device *hdev); 3799 int hl_device_resume(struct hl_device *hdev); 3800 int hl_device_reset(struct hl_device *hdev, u32 flags); 3801 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask); 3802 void hl_hpriv_get(struct hl_fpriv *hpriv); 3803 int hl_hpriv_put(struct hl_fpriv *hpriv); 3804 int hl_device_utilization(struct hl_device *hdev, u32 *utilization); 3805 3806 int hl_build_hwmon_channel_info(struct hl_device *hdev, 3807 struct cpucp_sensor *sensors_arr); 3808 3809 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask); 3810 3811 int hl_sysfs_init(struct hl_device *hdev); 3812 void hl_sysfs_fini(struct hl_device *hdev); 3813 3814 int hl_hwmon_init(struct hl_device *hdev); 3815 void hl_hwmon_fini(struct hl_device *hdev); 3816 void hl_hwmon_release_resources(struct hl_device *hdev); 3817 3818 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, 3819 struct hl_ctx *ctx, u32 cb_size, bool internal_cb, 3820 bool map_cb, u64 *handle); 3821 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle); 3822 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma); 3823 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle); 3824 void hl_cb_put(struct hl_cb *cb); 3825 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, 3826 bool internal_cb); 3827 int hl_cb_pool_init(struct hl_device *hdev); 3828 int hl_cb_pool_fini(struct hl_device *hdev); 3829 int hl_cb_va_pool_init(struct hl_ctx *ctx); 3830 void hl_cb_va_pool_fini(struct hl_ctx *ctx); 3831 3832 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush); 3833 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 3834 enum hl_queue_type queue_type, bool is_kernel_allocated_cb); 3835 void hl_sob_reset_error(struct kref *ref); 3836 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask); 3837 void hl_fence_put(struct hl_fence *fence); 3838 void hl_fences_put(struct hl_fence **fence, int len); 3839 void hl_fence_get(struct hl_fence *fence); 3840 void cs_get(struct hl_cs *cs); 3841 bool cs_needs_completion(struct hl_cs *cs); 3842 bool cs_needs_timeout(struct hl_cs *cs); 3843 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs); 3844 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq); 3845 void hl_multi_cs_completion_init(struct hl_device *hdev); 3846 u32 hl_get_active_cs_num(struct hl_device *hdev); 3847 3848 void goya_set_asic_funcs(struct hl_device *hdev); 3849 void gaudi_set_asic_funcs(struct hl_device *hdev); 3850 void gaudi2_set_asic_funcs(struct hl_device *hdev); 3851 3852 int hl_vm_ctx_init(struct hl_ctx *ctx); 3853 void hl_vm_ctx_fini(struct hl_ctx *ctx); 3854 3855 int hl_vm_init(struct hl_device *hdev); 3856 void hl_vm_fini(struct hl_device *hdev); 3857 3858 void hl_hw_block_mem_init(struct hl_ctx *ctx); 3859 void hl_hw_block_mem_fini(struct hl_ctx *ctx); 3860 3861 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3862 enum hl_va_range_type type, u64 size, u32 alignment); 3863 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx, 3864 u64 start_addr, u64 size); 3865 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, 3866 struct hl_userptr *userptr); 3867 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr); 3868 void hl_userptr_delete_list(struct hl_device *hdev, 3869 struct list_head *userptr_list); 3870 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size, 3871 struct list_head *userptr_list, 3872 struct hl_userptr **userptr); 3873 3874 int hl_mmu_init(struct hl_device *hdev); 3875 void hl_mmu_fini(struct hl_device *hdev); 3876 int hl_mmu_ctx_init(struct hl_ctx *ctx); 3877 void hl_mmu_ctx_fini(struct hl_ctx *ctx); 3878 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, 3879 u32 page_size, bool flush_pte); 3880 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, 3881 u32 page_size, u32 *real_page_size, bool is_dram_addr); 3882 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, 3883 bool flush_pte); 3884 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, 3885 u64 phys_addr, u32 size); 3886 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size); 3887 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags); 3888 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, 3889 u32 flags, u32 asid, u64 va, u64 size); 3890 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size); 3891 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte); 3892 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, 3893 u8 hop_idx, u64 hop_addr, u64 virt_addr); 3894 void hl_mmu_hr_flush(struct hl_ctx *ctx); 3895 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, 3896 u64 pgt_size); 3897 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size); 3898 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3899 u32 hop_table_size); 3900 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, 3901 u32 hop_table_size); 3902 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3903 u64 val, u32 hop_table_size); 3904 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, 3905 u32 hop_table_size); 3906 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, 3907 u32 hop_table_size); 3908 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr); 3909 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, 3910 struct hl_hr_mmu_funcs *hr_func, 3911 u64 curr_pte); 3912 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, 3913 struct hl_hr_mmu_funcs *hr_func, 3914 struct hl_mmu_properties *mmu_prop); 3915 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, 3916 struct hl_mmu_hr_priv *hr_priv, 3917 struct hl_hr_mmu_funcs *hr_func, 3918 struct hl_mmu_properties *mmu_prop, 3919 u64 curr_pte, bool *is_new_hop); 3920 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, 3921 struct hl_hr_mmu_funcs *hr_func); 3922 int hl_mmu_if_set_funcs(struct hl_device *hdev); 3923 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3924 void hl_mmu_v2_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3925 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu); 3926 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr); 3927 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, 3928 struct hl_mmu_hop_info *hops); 3929 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr); 3930 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr); 3931 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr); 3932 struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr); 3933 void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr); 3934 void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info); 3935 u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx); 3936 u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx); 3937 void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); 3938 void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val); 3939 void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr); 3940 u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); 3941 void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr); 3942 int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr); 3943 u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop); 3944 u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx); 3945 void hl_mmu_dr_flush(struct hl_ctx *ctx); 3946 int hl_mmu_dr_init(struct hl_device *hdev); 3947 void hl_mmu_dr_fini(struct hl_device *hdev); 3948 3949 int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor); 3950 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 3951 void __iomem *dst, u32 src_offset, u32 size); 3952 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value); 3953 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 3954 u16 len, u32 timeout, u64 *result); 3955 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type); 3956 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 3957 size_t irq_arr_size); 3958 int hl_fw_test_cpu_queue(struct hl_device *hdev); 3959 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 3960 dma_addr_t *dma_handle); 3961 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 3962 void *vaddr); 3963 int hl_fw_send_heartbeat(struct hl_device *hdev); 3964 int hl_fw_cpucp_info_get(struct hl_device *hdev, 3965 u32 sts_boot_dev_sts0_reg, 3966 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3967 u32 boot_err1_reg); 3968 int hl_fw_cpucp_handshake(struct hl_device *hdev, 3969 u32 sts_boot_dev_sts0_reg, 3970 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 3971 u32 boot_err1_reg); 3972 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size); 3973 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data); 3974 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 3975 struct hl_info_pci_counters *counters); 3976 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, 3977 u64 *total_energy); 3978 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 3979 enum pll_index *pll_index); 3980 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 3981 u16 *pll_freq_arr); 3982 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power); 3983 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev); 3984 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev); 3985 int hl_fw_init_cpu(struct hl_device *hdev); 3986 int hl_fw_wait_preboot_ready(struct hl_device *hdev); 3987 int hl_fw_read_preboot_status(struct hl_device *hdev); 3988 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 3989 struct fw_load_mgr *fw_loader, 3990 enum comms_cmd cmd, unsigned int size, 3991 bool wait_ok, u32 timeout); 3992 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 3993 struct cpucp_hbm_row_info *info); 3994 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num); 3995 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid); 3996 int hl_fw_send_device_activity(struct hl_device *hdev, bool open); 3997 int hl_fw_send_soft_reset(struct hl_device *hdev); 3998 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], 3999 bool is_wc[3]); 4000 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data); 4001 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data); 4002 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, 4003 struct hl_inbound_pci_region *pci_region); 4004 int hl_pci_set_outbound_region(struct hl_device *hdev, 4005 struct hl_outbound_pci_region *pci_region); 4006 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr); 4007 int hl_pci_init(struct hl_device *hdev); 4008 void hl_pci_fini(struct hl_device *hdev); 4009 4010 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr); 4011 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq); 4012 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4013 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4014 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4015 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4016 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4017 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4018 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4019 long hl_fw_get_max_power(struct hl_device *hdev); 4020 void hl_fw_set_max_power(struct hl_device *hdev); 4021 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 4022 u32 nonce); 4023 int hl_fw_get_dev_info_signed(struct hl_device *hdev, 4024 struct cpucp_dev_info_signed *dev_info_signed, u32 nonce); 4025 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4026 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4027 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value); 4028 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value); 4029 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk); 4030 void hl_fw_set_pll_profile(struct hl_device *hdev); 4031 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp); 4032 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp); 4033 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 4034 dma_addr_t buff, u32 *size); 4035 4036 void hw_sob_get(struct hl_hw_sob *hw_sob); 4037 void hw_sob_put(struct hl_hw_sob *hw_sob); 4038 void hl_encaps_release_handle_and_put_ctx(struct kref *ref); 4039 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref); 4040 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, 4041 struct hl_cs *cs, struct hl_cs_job *job, 4042 struct hl_cs_compl *cs_cmpl); 4043 4044 int hl_dec_init(struct hl_device *hdev); 4045 void hl_dec_fini(struct hl_device *hdev); 4046 void hl_dec_ctx_fini(struct hl_ctx *ctx); 4047 4048 void hl_release_pending_user_interrupts(struct hl_device *hdev); 4049 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev); 4050 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 4051 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig); 4052 4053 int hl_state_dump(struct hl_device *hdev); 4054 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id); 4055 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev, 4056 struct hl_mon_state_dump *mon); 4057 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map); 4058 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, 4059 const char *format, ...); 4060 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); 4061 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); 4062 4063 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg); 4064 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg, struct hl_mem_mgr_fini_stats *stats); 4065 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg); 4066 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma, 4067 void *args); 4068 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg, 4069 u64 handle); 4070 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle); 4071 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf); 4072 struct hl_mmap_mem_buf * 4073 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg, 4074 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp, 4075 void *args); 4076 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...); 4077 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4078 u8 flags); 4079 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 4080 u8 flags, u64 *event_mask); 4081 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu); 4082 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 4083 u64 *event_mask); 4084 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask); 4085 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info); 4086 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count); 4087 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info); 4088 void hl_init_cpu_for_irq(struct hl_device *hdev); 4089 void hl_set_irq_affinity(struct hl_device *hdev, int irq); 4090 void hl_eq_heartbeat_event_handle(struct hl_device *hdev); 4091 void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask); 4092 4093 #ifdef CONFIG_DEBUG_FS 4094 4095 int hl_debugfs_device_init(struct hl_device *hdev); 4096 void hl_debugfs_device_fini(struct hl_device *hdev); 4097 void hl_debugfs_add_device(struct hl_device *hdev); 4098 void hl_debugfs_add_file(struct hl_fpriv *hpriv); 4099 void hl_debugfs_remove_file(struct hl_fpriv *hpriv); 4100 void hl_debugfs_add_cb(struct hl_cb *cb); 4101 void hl_debugfs_remove_cb(struct hl_cb *cb); 4102 void hl_debugfs_add_cs(struct hl_cs *cs); 4103 void hl_debugfs_remove_cs(struct hl_cs *cs); 4104 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job); 4105 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job); 4106 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr); 4107 void hl_debugfs_remove_userptr(struct hl_device *hdev, 4108 struct hl_userptr *userptr); 4109 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4110 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx); 4111 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 4112 unsigned long length); 4113 4114 #else 4115 4116 static inline int hl_debugfs_device_init(struct hl_device *hdev) 4117 { 4118 return 0; 4119 } 4120 4121 static inline void hl_debugfs_device_fini(struct hl_device *hdev) 4122 { 4123 } 4124 4125 static inline void hl_debugfs_add_device(struct hl_device *hdev) 4126 { 4127 } 4128 4129 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv) 4130 { 4131 } 4132 4133 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 4134 { 4135 } 4136 4137 static inline void hl_debugfs_add_cb(struct hl_cb *cb) 4138 { 4139 } 4140 4141 static inline void hl_debugfs_remove_cb(struct hl_cb *cb) 4142 { 4143 } 4144 4145 static inline void hl_debugfs_add_cs(struct hl_cs *cs) 4146 { 4147 } 4148 4149 static inline void hl_debugfs_remove_cs(struct hl_cs *cs) 4150 { 4151 } 4152 4153 static inline void hl_debugfs_add_job(struct hl_device *hdev, 4154 struct hl_cs_job *job) 4155 { 4156 } 4157 4158 static inline void hl_debugfs_remove_job(struct hl_device *hdev, 4159 struct hl_cs_job *job) 4160 { 4161 } 4162 4163 static inline void hl_debugfs_add_userptr(struct hl_device *hdev, 4164 struct hl_userptr *userptr) 4165 { 4166 } 4167 4168 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev, 4169 struct hl_userptr *userptr) 4170 { 4171 } 4172 4173 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, 4174 struct hl_ctx *ctx) 4175 { 4176 } 4177 4178 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, 4179 struct hl_ctx *ctx) 4180 { 4181 } 4182 4183 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev, 4184 char *data, unsigned long length) 4185 { 4186 } 4187 4188 #endif 4189 4190 /* Security */ 4191 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset, 4192 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[], 4193 int array_size); 4194 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[], 4195 int mm_array_size, int offset, const u32 pb_blocks[], 4196 struct hl_block_glbl_sec sgs_array[], int blocks_array_size); 4197 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[], 4198 struct hl_block_glbl_sec sgs_array[], u32 block_offset, 4199 int array_size); 4200 void hl_secure_block(struct hl_device *hdev, 4201 struct hl_block_glbl_sec sgs_array[], int array_size); 4202 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4203 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4204 const u32 pb_blocks[], u32 blocks_array_size, 4205 const u32 *regs_array, u32 regs_array_size, u64 mask); 4206 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4207 u32 num_instances, u32 instance_offset, 4208 const u32 pb_blocks[], u32 blocks_array_size, 4209 const u32 *regs_array, u32 regs_array_size); 4210 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores, 4211 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4212 const u32 pb_blocks[], u32 blocks_array_size, 4213 const struct range *regs_range_array, u32 regs_range_array_size, 4214 u64 mask); 4215 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores, 4216 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4217 const u32 pb_blocks[], u32 blocks_array_size, 4218 const struct range *regs_range_array, 4219 u32 regs_range_array_size); 4220 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4221 u32 num_instances, u32 instance_offset, 4222 const u32 pb_blocks[], u32 blocks_array_size, 4223 const u32 *regs_array, u32 regs_array_size); 4224 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4225 u32 num_instances, u32 instance_offset, 4226 const u32 pb_blocks[], u32 blocks_array_size, 4227 const struct range *regs_range_array, 4228 u32 regs_range_array_size); 4229 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset, 4230 u32 num_instances, u32 instance_offset, 4231 const u32 pb_blocks[], u32 blocks_array_size); 4232 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores, 4233 u32 dcore_offset, u32 num_instances, u32 instance_offset, 4234 const u32 pb_blocks[], u32 blocks_array_size, u64 mask); 4235 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset, 4236 u32 num_instances, u32 instance_offset, 4237 const u32 pb_blocks[], u32 blocks_array_size); 4238 4239 /* IOCTLs */ 4240 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg); 4241 int hl_info_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4242 int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4243 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4244 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4245 int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4246 int hl_debug_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv); 4247 4248 #endif /* HABANALABSP_H_ */ 4249