xref: /linux/drivers/accel/habanalabs/common/firmware_if.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 #include <linux/habanalabs/hl_boot_if.h>
10 
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 #include <linux/crc32.h>
14 #include <linux/slab.h>
15 #include <linux/ctype.h>
16 #include <linux/vmalloc.h>
17 
18 #include <trace/events/habanalabs.h>
19 
20 #define FW_FILE_MAX_SIZE		0x1400000 /* maximum size of 20MB */
21 
22 static char *comms_cmd_str_arr[COMMS_INVLD_LAST] = {
23 	[COMMS_NOOP] = __stringify(COMMS_NOOP),
24 	[COMMS_CLR_STS] = __stringify(COMMS_CLR_STS),
25 	[COMMS_RST_STATE] = __stringify(COMMS_RST_STATE),
26 	[COMMS_PREP_DESC] = __stringify(COMMS_PREP_DESC),
27 	[COMMS_DATA_RDY] = __stringify(COMMS_DATA_RDY),
28 	[COMMS_EXEC] = __stringify(COMMS_EXEC),
29 	[COMMS_RST_DEV] = __stringify(COMMS_RST_DEV),
30 	[COMMS_GOTO_WFE] = __stringify(COMMS_GOTO_WFE),
31 	[COMMS_SKIP_BMC] = __stringify(COMMS_SKIP_BMC),
32 	[COMMS_PREP_DESC_ELBI] = __stringify(COMMS_PREP_DESC_ELBI),
33 };
34 
35 static char *comms_sts_str_arr[COMMS_STS_INVLD_LAST] = {
36 	[COMMS_STS_NOOP] = __stringify(COMMS_STS_NOOP),
37 	[COMMS_STS_ACK] = __stringify(COMMS_STS_ACK),
38 	[COMMS_STS_OK] = __stringify(COMMS_STS_OK),
39 	[COMMS_STS_ERR] = __stringify(COMMS_STS_ERR),
40 	[COMMS_STS_VALID_ERR] = __stringify(COMMS_STS_VALID_ERR),
41 	[COMMS_STS_TIMEOUT_ERR] = __stringify(COMMS_STS_TIMEOUT_ERR),
42 };
43 
44 /**
45  * hl_fw_version_cmp() - compares the FW version to a specific version
46  *
47  * @hdev: pointer to hl_device structure
48  * @major: major number of a reference version
49  * @minor: minor number of a reference version
50  * @subminor: sub-minor number of a reference version
51  *
52  * Return 1 if FW version greater than the reference version, -1 if it's
53  *         smaller and 0 if versions are identical.
54  */
55 int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor)
56 {
57 	if (hdev->fw_sw_major_ver != major)
58 		return (hdev->fw_sw_major_ver > major) ? 1 : -1;
59 
60 	if (hdev->fw_sw_minor_ver != minor)
61 		return (hdev->fw_sw_minor_ver > minor) ? 1 : -1;
62 
63 	if (hdev->fw_sw_sub_minor_ver != subminor)
64 		return (hdev->fw_sw_sub_minor_ver > subminor) ? 1 : -1;
65 
66 	return 0;
67 }
68 
69 static char *extract_fw_ver_from_str(const char *fw_str)
70 {
71 	char *str, *fw_ver, *whitespace;
72 	u32 ver_offset;
73 
74 	fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
75 	if (!fw_ver)
76 		return NULL;
77 
78 	str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
79 	if (!str)
80 		goto free_fw_ver;
81 
82 	/* Skip the fw- part */
83 	str += 3;
84 	ver_offset = str - fw_str;
85 
86 	/* Copy until the next whitespace */
87 	whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
88 	if (!whitespace)
89 		goto free_fw_ver;
90 
91 	strscpy(fw_ver, str, whitespace - str + 1);
92 
93 	return fw_ver;
94 
95 free_fw_ver:
96 	kfree(fw_ver);
97 	return NULL;
98 }
99 
100 /**
101  * extract_u32_until_given_char() - given a string of the format "<u32><char>*", extract the u32.
102  * @str: the given string
103  * @ver_num: the pointer to the extracted u32 to be returned to the caller.
104  * @given_char: the given char at the end of the u32 in the string
105  *
106  * Return: Upon success, return a pointer to the given_char in the string. Upon failure, return NULL
107  */
108 static char *extract_u32_until_given_char(char *str, u32 *ver_num, char given_char)
109 {
110 	char num_str[8] = {}, *ch;
111 
112 	ch = strchrnul(str, given_char);
113 	if (*ch == '\0' || ch == str || ch - str >= sizeof(num_str))
114 		return NULL;
115 
116 	memcpy(num_str, str, ch - str);
117 	if (kstrtou32(num_str, 10, ver_num))
118 		return NULL;
119 	return ch;
120 }
121 
122 /**
123  * hl_get_sw_major_minor_subminor() - extract the FW's SW version major, minor, sub-minor
124  *				      from the version string
125  * @hdev: pointer to the hl_device
126  * @fw_str: the FW's version string
127  *
128  * The extracted version is set in the hdev fields: fw_sw_{major/minor/sub_minor}_ver.
129  *
130  * fw_str is expected to have one of two possible formats, examples:
131  * 1) 'Preboot version hl-gaudi2-1.9.0-fw-42.0.1-sec-3'
132  * 2) 'Preboot version hl-gaudi2-1.9.0-rc-fw-42.0.1-sec-3'
133  * In those examples, the SW major,minor,subminor are correspondingly: 1,9,0.
134  *
135  * Return: 0 for success or a negative error code for failure.
136  */
137 static int hl_get_sw_major_minor_subminor(struct hl_device *hdev, const char *fw_str)
138 {
139 	char *end, *start;
140 
141 	end = strnstr(fw_str, "-rc-", VERSION_MAX_LEN);
142 	if (end == fw_str)
143 		return -EINVAL;
144 
145 	if (!end)
146 		end = strnstr(fw_str, "-fw-", VERSION_MAX_LEN);
147 
148 	if (end == fw_str)
149 		return -EINVAL;
150 
151 	if (!end)
152 		return -EINVAL;
153 
154 	for (start = end - 1; start != fw_str; start--) {
155 		if (*start == '-')
156 			break;
157 	}
158 
159 	if (start == fw_str)
160 		return -EINVAL;
161 
162 	/* start/end point each to the starting and ending hyphen of the sw version e.g. -1.9.0- */
163 	start++;
164 	start = extract_u32_until_given_char(start, &hdev->fw_sw_major_ver, '.');
165 	if (!start)
166 		goto err_zero_ver;
167 
168 	start++;
169 	start = extract_u32_until_given_char(start, &hdev->fw_sw_minor_ver, '.');
170 	if (!start)
171 		goto err_zero_ver;
172 
173 	start++;
174 	start = extract_u32_until_given_char(start, &hdev->fw_sw_sub_minor_ver, '-');
175 	if (!start)
176 		goto err_zero_ver;
177 
178 	return 0;
179 
180 err_zero_ver:
181 	hdev->fw_sw_major_ver = 0;
182 	hdev->fw_sw_minor_ver = 0;
183 	hdev->fw_sw_sub_minor_ver = 0;
184 	return -EINVAL;
185 }
186 
187 /**
188  * hl_get_preboot_major_minor() - extract the FW's version major, minor from the version string.
189  * @hdev: pointer to the hl_device
190  * @preboot_ver: the FW's version string
191  *
192  * preboot_ver is expected to be the format of <major>.<minor>.<sub minor>*, e.g: 42.0.1-sec-3
193  * The extracted version is set in the hdev fields: fw_inner_{major/minor}_ver.
194  *
195  * Return: 0 on success, negative error code for failure.
196  */
197 static int hl_get_preboot_major_minor(struct hl_device *hdev, char *preboot_ver)
198 {
199 	preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_major_ver, '.');
200 	if (!preboot_ver) {
201 		dev_err(hdev->dev, "Error parsing preboot major version\n");
202 		goto err_zero_ver;
203 	}
204 
205 	preboot_ver++;
206 
207 	preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_minor_ver, '.');
208 	if (!preboot_ver) {
209 		dev_err(hdev->dev, "Error parsing preboot minor version\n");
210 		goto err_zero_ver;
211 	}
212 	return 0;
213 
214 err_zero_ver:
215 	hdev->fw_inner_major_ver = 0;
216 	hdev->fw_inner_minor_ver = 0;
217 	return -EINVAL;
218 }
219 
220 static int hl_request_fw(struct hl_device *hdev,
221 				const struct firmware **firmware_p,
222 				const char *fw_name)
223 {
224 	size_t fw_size;
225 	int rc;
226 
227 	rc = request_firmware(firmware_p, fw_name, hdev->dev);
228 	if (rc) {
229 		dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
230 				fw_name, rc);
231 		goto out;
232 	}
233 
234 	fw_size = (*firmware_p)->size;
235 	if ((fw_size % 4) != 0) {
236 		dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
237 				fw_name, fw_size);
238 		rc = -EINVAL;
239 		goto release_fw;
240 	}
241 
242 	dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
243 
244 	if (fw_size > FW_FILE_MAX_SIZE) {
245 		dev_err(hdev->dev,
246 			"FW file size %zu exceeds maximum of %u bytes\n",
247 			fw_size, FW_FILE_MAX_SIZE);
248 		rc = -EINVAL;
249 		goto release_fw;
250 	}
251 
252 	return 0;
253 
254 release_fw:
255 	release_firmware(*firmware_p);
256 out:
257 	return rc;
258 }
259 
260 /**
261  * hl_release_firmware() - release FW
262  *
263  * @fw: fw descriptor
264  *
265  * note: this inline function added to serve as a comprehensive mirror for the
266  *       hl_request_fw function.
267  */
268 static inline void hl_release_firmware(const struct firmware *fw)
269 {
270 	release_firmware(fw);
271 }
272 
273 /**
274  * hl_fw_copy_fw_to_device() - copy FW to device
275  *
276  * @hdev: pointer to hl_device structure.
277  * @fw: fw descriptor
278  * @dst: IO memory mapped address space to copy firmware to
279  * @src_offset: offset in src FW to copy from
280  * @size: amount of bytes to copy (0 to copy the whole binary)
281  *
282  * actual copy of FW binary data to device, shared by static and dynamic loaders
283  */
284 static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
285 				const struct firmware *fw, void __iomem *dst,
286 				u32 src_offset, u32 size)
287 {
288 	const void *fw_data;
289 
290 	/* size 0 indicates to copy the whole file */
291 	if (!size)
292 		size = fw->size;
293 
294 	if (src_offset + size > fw->size) {
295 		dev_err(hdev->dev,
296 			"size to copy(%u) and offset(%u) are invalid\n",
297 			size, src_offset);
298 		return -EINVAL;
299 	}
300 
301 	fw_data = (const void *) fw->data;
302 
303 	memcpy_toio(dst, fw_data + src_offset, size);
304 	return 0;
305 }
306 
307 /**
308  * hl_fw_copy_msg_to_device() - copy message to device
309  *
310  * @hdev: pointer to hl_device structure.
311  * @msg: message
312  * @dst: IO memory mapped address space to copy firmware to
313  * @src_offset: offset in src message to copy from
314  * @size: amount of bytes to copy (0 to copy the whole binary)
315  *
316  * actual copy of message data to device.
317  */
318 static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
319 		struct lkd_msg_comms *msg, void __iomem *dst,
320 		u32 src_offset, u32 size)
321 {
322 	void *msg_data;
323 
324 	/* size 0 indicates to copy the whole file */
325 	if (!size)
326 		size = sizeof(struct lkd_msg_comms);
327 
328 	if (src_offset + size > sizeof(struct lkd_msg_comms)) {
329 		dev_err(hdev->dev,
330 			"size to copy(%u) and offset(%u) are invalid\n",
331 			size, src_offset);
332 		return -EINVAL;
333 	}
334 
335 	msg_data = (void *) msg;
336 
337 	memcpy_toio(dst, msg_data + src_offset, size);
338 
339 	return 0;
340 }
341 
342 /**
343  * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
344  *
345  * @hdev: pointer to hl_device structure.
346  * @fw_name: the firmware image name
347  * @dst: IO memory mapped address space to copy firmware to
348  * @src_offset: offset in src FW to copy from
349  * @size: amount of bytes to copy (0 to copy the whole binary)
350  *
351  * Copy fw code from firmware file to device memory.
352  *
353  * Return: 0 on success, non-zero for failure.
354  */
355 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
356 				void __iomem *dst, u32 src_offset, u32 size)
357 {
358 	const struct firmware *fw;
359 	int rc;
360 
361 	rc = hl_request_fw(hdev, &fw, fw_name);
362 	if (rc)
363 		return rc;
364 
365 	rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
366 
367 	hl_release_firmware(fw);
368 	return rc;
369 }
370 
371 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
372 {
373 	struct cpucp_packet pkt = {};
374 	int rc;
375 
376 	pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
377 	pkt.value = cpu_to_le64(value);
378 
379 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
380 	if (rc)
381 		dev_err(hdev->dev, "Failed to disable FW's PCI access\n");
382 
383 	return rc;
384 }
385 
386 /**
387  * hl_fw_send_cpu_message() - send CPU message to the device.
388  *
389  * @hdev: pointer to hl_device structure.
390  * @hw_queue_id: HW queue ID
391  * @msg: raw data of the message/packet
392  * @size: size of @msg in bytes
393  * @timeout_us: timeout in usec to wait for CPU reply on the message
394  * @result: return code reported by FW
395  *
396  * send message to the device CPU.
397  *
398  * Return: 0 on success, non-zero for failure.
399  *     -ENOMEM: memory allocation failure
400  *     -EAGAIN: CPU is disabled (try again when enabled)
401  *     -ETIMEDOUT: timeout waiting for FW response
402  *     -EIO: protocol error
403  */
404 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
405 				u16 size, u32 timeout_us, u64 *result)
406 {
407 	struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
408 	struct asic_fixed_properties *prop = &hdev->asic_prop;
409 	u32 tmp, expected_ack_val, pi, opcode;
410 	struct cpucp_packet *pkt;
411 	dma_addr_t pkt_dma_addr;
412 	struct hl_bd *sent_bd;
413 	int rc = 0, fw_rc;
414 
415 	pkt = hl_cpu_accessible_dma_pool_alloc(hdev, size, &pkt_dma_addr);
416 	if (!pkt) {
417 		dev_err(hdev->dev, "Failed to allocate DMA memory for packet to CPU\n");
418 		return -ENOMEM;
419 	}
420 
421 	memcpy(pkt, msg, size);
422 
423 	mutex_lock(&hdev->send_cpu_message_lock);
424 
425 	/* CPU-CP messages can be sent during soft-reset */
426 	if (hdev->disabled && !hdev->reset_info.in_compute_reset)
427 		goto out;
428 
429 	if (hdev->device_cpu_disabled) {
430 		rc = -EAGAIN;
431 		goto out;
432 	}
433 
434 	/* set fence to a non valid value */
435 	pkt->fence = cpu_to_le32(UINT_MAX);
436 	pi = queue->pi;
437 
438 	/*
439 	 * The CPU queue is a synchronous queue with an effective depth of
440 	 * a single entry (although it is allocated with room for multiple
441 	 * entries). We lock on it using 'send_cpu_message_lock' which
442 	 * serializes accesses to the CPU queue.
443 	 * Which means that we don't need to lock the access to the entire H/W
444 	 * queues module when submitting a JOB to the CPU queue.
445 	 */
446 	hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), size, pkt_dma_addr);
447 
448 	if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
449 		expected_ack_val = queue->pi;
450 	else
451 		expected_ack_val = CPUCP_PACKET_FENCE_VAL;
452 
453 	rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
454 				(tmp == expected_ack_val), 1000,
455 				timeout_us, true);
456 
457 	hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
458 
459 	if (rc == -ETIMEDOUT) {
460 		/* If FW performed reset just before sending it a packet, we will get a timeout.
461 		 * This is expected behavior, hence no need for error message.
462 		 */
463 		if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset) {
464 			dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
465 					tmp);
466 		} else {
467 			struct hl_bd *bd = queue->kernel_address;
468 
469 			bd += hl_pi_2_offset(pi);
470 
471 			dev_err(hdev->dev, "Device CPU packet timeout (status = 0x%x)\n"
472 				"Pkt info[%u]: dma_addr: 0x%llx, kernel_addr: %p, len:0x%x, ctl: 0x%x, ptr:0x%llx, dram_bd:%u\n",
473 				tmp, pi, pkt_dma_addr, (void *)pkt, bd->len, bd->ctl, bd->ptr,
474 				queue->dram_bd);
475 		}
476 		hdev->device_cpu_disabled = true;
477 		goto out;
478 	}
479 
480 	tmp = le32_to_cpu(pkt->ctl);
481 
482 	fw_rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
483 	if (fw_rc) {
484 		opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
485 
486 		if (!prop->supports_advanced_cpucp_rc) {
487 			dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
488 			rc = -EIO;
489 			goto scrub_descriptor;
490 		}
491 
492 		switch (fw_rc) {
493 		case cpucp_packet_invalid:
494 			dev_err(hdev->dev,
495 				"CPU packet %d is not supported by F/W\n", opcode);
496 			break;
497 		case cpucp_packet_fault:
498 			dev_err(hdev->dev,
499 				"F/W failed processing CPU packet %d\n", opcode);
500 			break;
501 		case cpucp_packet_invalid_pkt:
502 			dev_dbg(hdev->dev,
503 				"CPU packet %d is not supported by F/W\n", opcode);
504 			break;
505 		case cpucp_packet_invalid_params:
506 			dev_err(hdev->dev,
507 				"F/W reports invalid parameters for CPU packet %d\n", opcode);
508 			break;
509 
510 		default:
511 			dev_err(hdev->dev,
512 				"Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
513 		}
514 
515 		/* propagate the return code from the f/w to the callers who want to check it */
516 		if (result)
517 			*result = fw_rc;
518 
519 		rc = -EIO;
520 
521 	} else if (result) {
522 		*result = le64_to_cpu(pkt->result);
523 	}
524 
525 scrub_descriptor:
526 	/* Scrub previous buffer descriptor 'ctl' field which contains the
527 	 * previous PI value written during packet submission.
528 	 * We must do this or else F/W can read an old value upon queue wraparound.
529 	 */
530 	sent_bd = queue->kernel_address;
531 	sent_bd += hl_pi_2_offset(pi);
532 	sent_bd->ctl = cpu_to_le32(UINT_MAX);
533 
534 out:
535 	mutex_unlock(&hdev->send_cpu_message_lock);
536 
537 	hl_cpu_accessible_dma_pool_free(hdev, size, pkt);
538 
539 	return rc;
540 }
541 
542 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
543 {
544 	struct cpucp_packet pkt;
545 	u64 result;
546 	int rc;
547 
548 	memset(&pkt, 0, sizeof(pkt));
549 
550 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
551 				CPUCP_PKT_CTL_OPCODE_SHIFT);
552 	pkt.value = cpu_to_le64(event_type);
553 
554 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
555 						0, &result);
556 
557 	if (rc)
558 		dev_err(hdev->dev, "failed to unmask event %d", event_type);
559 
560 	return rc;
561 }
562 
563 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
564 		size_t irq_arr_size)
565 {
566 	struct cpucp_unmask_irq_arr_packet *pkt;
567 	size_t total_pkt_size;
568 	u64 result;
569 	int rc;
570 
571 	total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
572 			irq_arr_size;
573 
574 	/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
575 	total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
576 
577 	/* total_pkt_size is casted to u16 later on */
578 	if (total_pkt_size > USHRT_MAX) {
579 		dev_err(hdev->dev, "too many elements in IRQ array\n");
580 		return -EINVAL;
581 	}
582 
583 	pkt = kzalloc(total_pkt_size, GFP_KERNEL);
584 	if (!pkt)
585 		return -ENOMEM;
586 
587 	pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
588 	memcpy(&pkt->irqs, irq_arr, irq_arr_size);
589 
590 	pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
591 						CPUCP_PKT_CTL_OPCODE_SHIFT);
592 
593 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
594 						total_pkt_size, 0, &result);
595 
596 	if (rc)
597 		dev_err(hdev->dev, "failed to unmask event array\n");
598 
599 	kfree(pkt);
600 
601 	return rc;
602 }
603 
604 int hl_fw_test_cpu_queue(struct hl_device *hdev)
605 {
606 	struct cpucp_packet test_pkt = {};
607 	u64 result = 0;
608 	int rc;
609 
610 	test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
611 					CPUCP_PKT_CTL_OPCODE_SHIFT);
612 	test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
613 
614 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
615 						sizeof(test_pkt), 0, &result);
616 
617 	if (!rc) {
618 		if (result != CPUCP_PACKET_FENCE_VAL)
619 			dev_err(hdev->dev,
620 				"CPU queue test failed (%#08llx)\n", result);
621 	} else {
622 		dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
623 	}
624 
625 	return rc;
626 }
627 
628 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
629 						dma_addr_t *dma_handle)
630 {
631 	u64 kernel_addr;
632 
633 	kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
634 
635 	*dma_handle = hdev->cpu_accessible_dma_address +
636 		(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
637 
638 	return (void *) (uintptr_t) kernel_addr;
639 }
640 
641 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
642 					void *vaddr)
643 {
644 	gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
645 			size);
646 }
647 
648 int hl_fw_send_soft_reset(struct hl_device *hdev)
649 {
650 	struct cpucp_packet pkt;
651 	int rc;
652 
653 	memset(&pkt, 0, sizeof(pkt));
654 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_SOFT_RESET << CPUCP_PKT_CTL_OPCODE_SHIFT);
655 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
656 	if (rc)
657 		dev_err(hdev->dev, "failed to send soft-reset msg (err = %d)\n", rc);
658 
659 	return rc;
660 }
661 
662 int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
663 {
664 	struct cpucp_packet pkt;
665 	int rc;
666 
667 	memset(&pkt, 0, sizeof(pkt));
668 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET <<	CPUCP_PKT_CTL_OPCODE_SHIFT);
669 	pkt.value = cpu_to_le64(open);
670 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
671 	if (rc)
672 		dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
673 
674 	return rc;
675 }
676 
677 int hl_fw_send_heartbeat(struct hl_device *hdev)
678 {
679 	struct cpucp_packet hb_pkt;
680 	u64 result = 0;
681 	int rc;
682 
683 	memset(&hb_pkt, 0, sizeof(hb_pkt));
684 	hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << CPUCP_PKT_CTL_OPCODE_SHIFT);
685 	hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
686 
687 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, sizeof(hb_pkt), 0, &result);
688 
689 	if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
690 		return -EIO;
691 
692 	if (le32_to_cpu(hb_pkt.status_mask) &
693 					CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
694 		dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
695 		rc = -EIO;
696 	}
697 
698 	hdev->heartbeat_debug_info.last_pq_heartbeat_ts = ktime_get_real_seconds();
699 
700 	return rc;
701 }
702 
703 static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, u32 sts_val)
704 {
705 	bool err_exists = false;
706 
707 	if (!(err_val & CPU_BOOT_ERR0_ENABLED))
708 		return false;
709 
710 	if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL)
711 		dev_err(hdev->dev, "Device boot error - DRAM initialization failed\n");
712 
713 	if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED)
714 		dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
715 
716 	if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL)
717 		dev_err(hdev->dev, "Device boot error - Thermal Sensor initialization failed\n");
718 
719 	if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
720 		if (hdev->bmc_enable) {
721 			dev_err(hdev->dev, "Device boot error - Skipped waiting for BMC\n");
722 		} else {
723 			dev_info(hdev->dev, "Device boot message - Skipped waiting for BMC\n");
724 			/* This is an info so we don't want it to disable the
725 			 * device
726 			 */
727 			err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
728 		}
729 	}
730 
731 	if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY)
732 		dev_err(hdev->dev, "Device boot error - Serdes data from BMC not available\n");
733 
734 	if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL)
735 		dev_err(hdev->dev, "Device boot error - NIC F/W initialization failed\n");
736 
737 	if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY)
738 		dev_err(hdev->dev, "Device boot warning - security not ready\n");
739 
740 	if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL)
741 		dev_err(hdev->dev, "Device boot error - security failure\n");
742 
743 	if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL)
744 		dev_err(hdev->dev, "Device boot error - eFuse failure\n");
745 
746 	if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL)
747 		dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
748 
749 	if (err_val & CPU_BOOT_ERR0_PLL_FAIL)
750 		dev_err(hdev->dev, "Device boot error - PLL failure\n");
751 
752 	if (err_val & CPU_BOOT_ERR0_TMP_THRESH_INIT_FAIL)
753 		dev_err(hdev->dev, "Device boot error - Failed to set threshold for temperature sensor\n");
754 
755 	if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
756 		/* Ignore this bit, don't prevent driver loading */
757 		dev_dbg(hdev->dev, "device unusable status is set\n");
758 		err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
759 	}
760 
761 	if (err_val & CPU_BOOT_ERR0_BINNING_FAIL)
762 		dev_err(hdev->dev, "Device boot error - binning failure\n");
763 
764 	if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
765 		dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
766 
767 	if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED)
768 		dev_err(hdev->dev, "Device boot warning - Skipped DRAM initialization\n");
769 
770 	if (err_val & CPU_BOOT_ERR_ENG_ARC_MEM_SCRUB_FAIL)
771 		dev_err(hdev->dev, "Device boot error - ARC memory scrub failed\n");
772 
773 	/* All warnings should go here in order not to reach the unknown error validation */
774 	if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
775 		dev_err(hdev->dev, "Device boot error - EEPROM failure detected\n");
776 		err_exists = true;
777 	}
778 
779 	if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL)
780 		dev_warn(hdev->dev, "Device boot warning - Failed to load preboot primary image\n");
781 
782 	if (err_val & CPU_BOOT_ERR0_TPM_FAIL)
783 		dev_warn(hdev->dev, "Device boot warning - TPM failure\n");
784 
785 	if (err_val & CPU_BOOT_ERR_FATAL_MASK)
786 		err_exists = true;
787 
788 	/* return error only if it's in the predefined mask */
789 	if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
790 				lower_32_bits(hdev->boot_error_status_mask)))
791 		return true;
792 
793 	return false;
794 }
795 
796 /* placeholder for ERR1 as no errors defined there yet */
797 static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
798 								u32 sts_val)
799 {
800 	/*
801 	 * keep this variable to preserve the logic of the function.
802 	 * this way it would require less modifications when error will be
803 	 * added to DEV_ERR1
804 	 */
805 	bool err_exists = false;
806 
807 	if (!(err_val & CPU_BOOT_ERR1_ENABLED))
808 		return false;
809 
810 	if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
811 		dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
812 
813 	if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
814 		dev_err(hdev->dev,
815 			"Device boot error - unknown ERR1 error 0x%08x\n",
816 								err_val);
817 		err_exists = true;
818 	}
819 
820 	/* return error only if it's in the predefined mask */
821 	if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
822 				upper_32_bits(hdev->boot_error_status_mask)))
823 		return true;
824 
825 	return false;
826 }
827 
828 static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
829 				u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
830 				u32 cpu_boot_dev_status1_reg)
831 {
832 	u32 err_val, status_val;
833 	bool err_exists = false;
834 
835 	/* Some of the firmware status codes are deprecated in newer f/w
836 	 * versions. In those versions, the errors are reported
837 	 * in different registers. Therefore, we need to check those
838 	 * registers and print the exact errors. Moreover, there
839 	 * may be multiple errors, so we need to report on each error
840 	 * separately. Some of the error codes might indicate a state
841 	 * that is not an error per-se, but it is an error in production
842 	 * environment
843 	 */
844 	err_val = RREG32(boot_err0_reg);
845 	status_val = RREG32(cpu_boot_dev_status0_reg);
846 	err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
847 
848 	err_val = RREG32(boot_err1_reg);
849 	status_val = RREG32(cpu_boot_dev_status1_reg);
850 	err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
851 
852 	if (err_exists)
853 		return -EIO;
854 
855 	return 0;
856 }
857 
858 int hl_fw_cpucp_info_get(struct hl_device *hdev,
859 				u32 sts_boot_dev_sts0_reg,
860 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
861 				u32 boot_err1_reg)
862 {
863 	struct asic_fixed_properties *prop = &hdev->asic_prop;
864 	struct cpucp_packet pkt = {};
865 	dma_addr_t cpucp_info_dma_addr;
866 	void *cpucp_info_cpu_addr;
867 	char *kernel_ver;
868 	u64 result;
869 	int rc;
870 
871 	cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
872 								&cpucp_info_dma_addr);
873 	if (!cpucp_info_cpu_addr) {
874 		dev_err(hdev->dev,
875 			"Failed to allocate DMA memory for CPU-CP info packet\n");
876 		return -ENOMEM;
877 	}
878 
879 	memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
880 
881 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
882 				CPUCP_PKT_CTL_OPCODE_SHIFT);
883 	pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
884 	pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
885 
886 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
887 					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
888 	if (rc) {
889 		dev_err(hdev->dev,
890 			"Failed to handle CPU-CP info pkt, error %d\n", rc);
891 		goto out;
892 	}
893 
894 	rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
895 				sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
896 	if (rc) {
897 		dev_err(hdev->dev, "Errors in device boot\n");
898 		goto out;
899 	}
900 
901 	memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
902 			sizeof(prop->cpucp_info));
903 
904 	rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
905 	if (rc) {
906 		dev_err(hdev->dev,
907 			"Failed to build hwmon channel info, error %d\n", rc);
908 		rc = -EFAULT;
909 		goto out;
910 	}
911 
912 	kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
913 	if (kernel_ver) {
914 		dev_info(hdev->dev, "Linux version %s", kernel_ver);
915 		kfree(kernel_ver);
916 	}
917 
918 	/* assume EQ code doesn't need to check eqe index */
919 	hdev->event_queue.check_eqe_index = false;
920 
921 	/* Read FW application security bits again */
922 	if (prop->fw_cpu_boot_dev_sts0_valid) {
923 		prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
924 		if (prop->fw_app_cpu_boot_dev_sts0 &
925 				CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
926 			hdev->event_queue.check_eqe_index = true;
927 	}
928 
929 	if (prop->fw_cpu_boot_dev_sts1_valid)
930 		prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
931 
932 out:
933 	hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
934 
935 	return rc;
936 }
937 
938 static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
939 {
940 	struct cpucp_array_data_packet *pkt;
941 	size_t total_pkt_size, data_size;
942 	u64 result = 0;
943 	int rc;
944 
945 	/* skip sending this info for unsupported ASICs */
946 	if (!hdev->asic_funcs->get_msi_info)
947 		return 0;
948 
949 	data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
950 	total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
951 
952 	/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
953 	total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
954 
955 	/* total_pkt_size is casted to u16 later on */
956 	if (total_pkt_size > USHRT_MAX) {
957 		dev_err(hdev->dev, "CPUCP array data is too big\n");
958 		return -EINVAL;
959 	}
960 
961 	pkt = kzalloc(total_pkt_size, GFP_KERNEL);
962 	if (!pkt)
963 		return -ENOMEM;
964 
965 	pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
966 
967 	memset((void *) &pkt->data, 0xFF, data_size);
968 	hdev->asic_funcs->get_msi_info(pkt->data);
969 
970 	pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
971 						CPUCP_PKT_CTL_OPCODE_SHIFT);
972 
973 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
974 						total_pkt_size, 0, &result);
975 
976 	/*
977 	 * in case packet result is invalid it means that FW does not support
978 	 * this feature and will use default/hard coded MSI values. no reason
979 	 * to stop the boot
980 	 */
981 	if (rc && result == cpucp_packet_invalid)
982 		rc = 0;
983 
984 	if (rc)
985 		dev_err(hdev->dev, "failed to send CPUCP array data\n");
986 
987 	kfree(pkt);
988 
989 	return rc;
990 }
991 
992 int hl_fw_cpucp_handshake(struct hl_device *hdev,
993 				u32 sts_boot_dev_sts0_reg,
994 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
995 				u32 boot_err1_reg)
996 {
997 	int rc;
998 
999 	rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
1000 					sts_boot_dev_sts1_reg, boot_err0_reg,
1001 					boot_err1_reg);
1002 	if (rc)
1003 		return rc;
1004 
1005 	return hl_fw_send_msi_info_msg(hdev);
1006 }
1007 
1008 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
1009 {
1010 	struct cpucp_packet pkt = {};
1011 	void *eeprom_info_cpu_addr;
1012 	dma_addr_t eeprom_info_dma_addr;
1013 	u64 result;
1014 	int rc;
1015 
1016 	eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
1017 									&eeprom_info_dma_addr);
1018 	if (!eeprom_info_cpu_addr) {
1019 		dev_err(hdev->dev,
1020 			"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
1021 		return -ENOMEM;
1022 	}
1023 
1024 	memset(eeprom_info_cpu_addr, 0, max_size);
1025 
1026 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
1027 				CPUCP_PKT_CTL_OPCODE_SHIFT);
1028 	pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
1029 	pkt.data_max_size = cpu_to_le32(max_size);
1030 
1031 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1032 			HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
1033 	if (rc) {
1034 		if (rc != -EAGAIN)
1035 			dev_err(hdev->dev,
1036 				"Failed to handle CPU-CP EEPROM packet, error %d\n", rc);
1037 		goto out;
1038 	}
1039 
1040 	/* result contains the actual size */
1041 	memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
1042 
1043 out:
1044 	hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
1045 
1046 	return rc;
1047 }
1048 
1049 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
1050 {
1051 	struct cpucp_monitor_dump *mon_dump_cpu_addr;
1052 	dma_addr_t mon_dump_dma_addr;
1053 	struct cpucp_packet pkt = {};
1054 	size_t data_size;
1055 	__le32 *src_ptr;
1056 	u32 *dst_ptr;
1057 	u64 result;
1058 	int i, rc;
1059 
1060 	data_size = sizeof(struct cpucp_monitor_dump);
1061 	mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
1062 	if (!mon_dump_cpu_addr) {
1063 		dev_err(hdev->dev,
1064 			"Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
1065 		return -ENOMEM;
1066 	}
1067 
1068 	memset(mon_dump_cpu_addr, 0, data_size);
1069 
1070 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
1071 	pkt.addr = cpu_to_le64(mon_dump_dma_addr);
1072 	pkt.data_max_size = cpu_to_le32(data_size);
1073 
1074 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1075 							HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
1076 	if (rc) {
1077 		if (rc != -EAGAIN)
1078 			dev_err(hdev->dev,
1079 				"Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
1080 		goto out;
1081 	}
1082 
1083 	/* result contains the actual size */
1084 	src_ptr = (__le32 *) mon_dump_cpu_addr;
1085 	dst_ptr = data;
1086 	for (i = 0; i < (data_size / sizeof(u32)); i++) {
1087 		*dst_ptr = le32_to_cpu(*src_ptr);
1088 		src_ptr++;
1089 		dst_ptr++;
1090 	}
1091 
1092 out:
1093 	hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
1094 
1095 	return rc;
1096 }
1097 
1098 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
1099 		struct hl_info_pci_counters *counters)
1100 {
1101 	struct cpucp_packet pkt = {};
1102 	u64 result;
1103 	int rc;
1104 
1105 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
1106 			CPUCP_PKT_CTL_OPCODE_SHIFT);
1107 
1108 	/* Fetch PCI rx counter */
1109 	pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
1110 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1111 					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1112 	if (rc) {
1113 		if (rc != -EAGAIN)
1114 			dev_err(hdev->dev,
1115 				"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1116 		return rc;
1117 	}
1118 	counters->rx_throughput = result;
1119 
1120 	memset(&pkt, 0, sizeof(pkt));
1121 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
1122 			CPUCP_PKT_CTL_OPCODE_SHIFT);
1123 
1124 	/* Fetch PCI tx counter */
1125 	pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
1126 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1127 					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1128 	if (rc) {
1129 		if (rc != -EAGAIN)
1130 			dev_err(hdev->dev,
1131 				"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1132 		return rc;
1133 	}
1134 	counters->tx_throughput = result;
1135 
1136 	/* Fetch PCI replay counter */
1137 	memset(&pkt, 0, sizeof(pkt));
1138 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
1139 			CPUCP_PKT_CTL_OPCODE_SHIFT);
1140 
1141 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1142 			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1143 	if (rc) {
1144 		if (rc != -EAGAIN)
1145 			dev_err(hdev->dev,
1146 				"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1147 		return rc;
1148 	}
1149 	counters->replay_cnt = (u32) result;
1150 
1151 	return rc;
1152 }
1153 
1154 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
1155 {
1156 	struct cpucp_packet pkt = {};
1157 	u64 result;
1158 	int rc;
1159 
1160 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
1161 				CPUCP_PKT_CTL_OPCODE_SHIFT);
1162 
1163 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1164 					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1165 	if (rc) {
1166 		if (rc != -EAGAIN)
1167 			dev_err(hdev->dev,
1168 				"Failed to handle CpuCP total energy pkt, error %d\n", rc);
1169 		return rc;
1170 	}
1171 
1172 	*total_energy = result;
1173 
1174 	return rc;
1175 }
1176 
1177 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
1178 						enum pll_index *pll_index)
1179 {
1180 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1181 	u8 pll_byte, pll_bit_off;
1182 	bool dynamic_pll;
1183 	int fw_pll_idx;
1184 
1185 	dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
1186 						CPU_BOOT_DEV_STS0_DYN_PLL_EN);
1187 
1188 	if (!dynamic_pll) {
1189 		/*
1190 		 * in case we are working with legacy FW (each asic has unique
1191 		 * PLL numbering) use the driver based index as they are
1192 		 * aligned with fw legacy numbering
1193 		 */
1194 		*pll_index = input_pll_index;
1195 		return 0;
1196 	}
1197 
1198 	/* retrieve a FW compatible PLL index based on
1199 	 * ASIC specific user request
1200 	 */
1201 	fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
1202 	if (fw_pll_idx < 0) {
1203 		dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
1204 			input_pll_index, fw_pll_idx);
1205 		return -EINVAL;
1206 	}
1207 
1208 	/* PLL map is a u8 array */
1209 	pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
1210 	pll_bit_off = fw_pll_idx & 0x7;
1211 
1212 	if (!(pll_byte & BIT(pll_bit_off))) {
1213 		dev_err(hdev->dev, "PLL index %d is not supported\n",
1214 			fw_pll_idx);
1215 		return -EINVAL;
1216 	}
1217 
1218 	*pll_index = fw_pll_idx;
1219 
1220 	return 0;
1221 }
1222 
1223 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
1224 		u16 *pll_freq_arr)
1225 {
1226 	struct cpucp_packet pkt;
1227 	enum pll_index used_pll_idx;
1228 	u64 result;
1229 	int rc;
1230 
1231 	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
1232 	if (rc)
1233 		return rc;
1234 
1235 	memset(&pkt, 0, sizeof(pkt));
1236 
1237 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
1238 				CPUCP_PKT_CTL_OPCODE_SHIFT);
1239 	pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
1240 
1241 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1242 			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1243 	if (rc) {
1244 		if (rc != -EAGAIN)
1245 			dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
1246 		return rc;
1247 	}
1248 
1249 	pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
1250 	pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
1251 	pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
1252 	pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
1253 
1254 	return 0;
1255 }
1256 
1257 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
1258 {
1259 	struct cpucp_packet pkt;
1260 	u64 result;
1261 	int rc;
1262 
1263 	memset(&pkt, 0, sizeof(pkt));
1264 
1265 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
1266 				CPUCP_PKT_CTL_OPCODE_SHIFT);
1267 	pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
1268 
1269 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1270 			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1271 	if (rc) {
1272 		if (rc != -EAGAIN)
1273 			dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
1274 		return rc;
1275 	}
1276 
1277 	*power = result;
1278 
1279 	return rc;
1280 }
1281 
1282 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
1283 				struct cpucp_hbm_row_info *info)
1284 {
1285 	struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
1286 	dma_addr_t cpucp_repl_rows_info_dma_addr;
1287 	struct cpucp_packet pkt = {};
1288 	u64 result;
1289 	int rc;
1290 
1291 	cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
1292 							sizeof(struct cpucp_hbm_row_info),
1293 							&cpucp_repl_rows_info_dma_addr);
1294 	if (!cpucp_repl_rows_info_cpu_addr) {
1295 		dev_err(hdev->dev,
1296 			"Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
1297 		return -ENOMEM;
1298 	}
1299 
1300 	memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
1301 
1302 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
1303 					CPUCP_PKT_CTL_OPCODE_SHIFT);
1304 	pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
1305 	pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
1306 
1307 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1308 					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1309 	if (rc) {
1310 		if (rc != -EAGAIN)
1311 			dev_err(hdev->dev,
1312 				"Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
1313 		goto out;
1314 	}
1315 
1316 	memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
1317 
1318 out:
1319 	hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
1320 						cpucp_repl_rows_info_cpu_addr);
1321 
1322 	return rc;
1323 }
1324 
1325 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
1326 {
1327 	struct cpucp_packet pkt;
1328 	u64 result;
1329 	int rc;
1330 
1331 	memset(&pkt, 0, sizeof(pkt));
1332 
1333 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
1334 
1335 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
1336 	if (rc) {
1337 		if (rc != -EAGAIN)
1338 			dev_err(hdev->dev,
1339 				"Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
1340 		goto out;
1341 	}
1342 
1343 	*pend_rows_num = (u32) result;
1344 out:
1345 	return rc;
1346 }
1347 
1348 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
1349 {
1350 	struct cpucp_packet pkt;
1351 	int rc;
1352 
1353 	memset(&pkt, 0, sizeof(pkt));
1354 
1355 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
1356 	pkt.value = cpu_to_le64(asid);
1357 
1358 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1359 						HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
1360 	if (rc)
1361 		dev_err(hdev->dev,
1362 			"Failed on ASID configuration request for engine core, error %d\n",
1363 			rc);
1364 
1365 	return rc;
1366 }
1367 
1368 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
1369 {
1370 	struct static_fw_load_mgr *static_loader =
1371 			&hdev->fw_loader.static_loader;
1372 	int rc;
1373 
1374 	if (hdev->asic_prop.dynamic_fw_load) {
1375 		rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1376 				COMMS_RST_DEV, 0, false,
1377 				hdev->fw_loader.cpu_timeout);
1378 		if (rc)
1379 			dev_err(hdev->dev, "Failed sending COMMS_RST_DEV\n");
1380 	} else {
1381 		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
1382 	}
1383 }
1384 
1385 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
1386 {
1387 	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
1388 	u32 status, cpu_boot_status_reg, cpu_timeout;
1389 	struct static_fw_load_mgr *static_loader;
1390 	struct pre_fw_load_props *pre_fw_load;
1391 	int rc;
1392 
1393 	if (hdev->device_cpu_is_halted)
1394 		return;
1395 
1396 	/* Stop device CPU to make sure nothing bad happens */
1397 	if (hdev->asic_prop.dynamic_fw_load) {
1398 		pre_fw_load = &fw_loader->pre_fw_load;
1399 		cpu_timeout = fw_loader->cpu_timeout;
1400 		cpu_boot_status_reg = pre_fw_load->cpu_boot_status_reg;
1401 
1402 		rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1403 				COMMS_GOTO_WFE, 0, false, cpu_timeout);
1404 		if (rc) {
1405 			dev_err(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
1406 		} else {
1407 			rc = hl_poll_timeout(
1408 				hdev,
1409 				cpu_boot_status_reg,
1410 				status,
1411 				status == CPU_BOOT_STATUS_IN_WFE,
1412 				hdev->fw_poll_interval_usec,
1413 				cpu_timeout);
1414 			if (rc)
1415 				dev_err(hdev->dev, "Current status=%u. Timed-out updating to WFE\n",
1416 						status);
1417 		}
1418 	} else {
1419 		static_loader = &hdev->fw_loader.static_loader;
1420 		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
1421 		msleep(static_loader->cpu_reset_wait_msec);
1422 
1423 		/* Must clear this register in order to prevent preboot
1424 		 * from reading WFE after reboot
1425 		 */
1426 		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
1427 	}
1428 
1429 	hdev->device_cpu_is_halted = true;
1430 }
1431 
1432 static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
1433 {
1434 	/* Some of the status codes below are deprecated in newer f/w
1435 	 * versions but we keep them here for backward compatibility
1436 	 */
1437 	switch (status) {
1438 	case CPU_BOOT_STATUS_NA:
1439 		dev_err(hdev->dev,
1440 			"Device boot progress - BTL/ROM did NOT run\n");
1441 		break;
1442 	case CPU_BOOT_STATUS_IN_WFE:
1443 		dev_err(hdev->dev,
1444 			"Device boot progress - Stuck inside WFE loop\n");
1445 		break;
1446 	case CPU_BOOT_STATUS_IN_BTL:
1447 		dev_err(hdev->dev,
1448 			"Device boot progress - Stuck in BTL\n");
1449 		break;
1450 	case CPU_BOOT_STATUS_IN_PREBOOT:
1451 		dev_err(hdev->dev,
1452 			"Device boot progress - Stuck in Preboot\n");
1453 		break;
1454 	case CPU_BOOT_STATUS_IN_SPL:
1455 		dev_err(hdev->dev,
1456 			"Device boot progress - Stuck in SPL\n");
1457 		break;
1458 	case CPU_BOOT_STATUS_IN_UBOOT:
1459 		dev_err(hdev->dev,
1460 			"Device boot progress - Stuck in u-boot\n");
1461 		break;
1462 	case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
1463 		dev_err(hdev->dev,
1464 			"Device boot progress - DRAM initialization failed\n");
1465 		break;
1466 	case CPU_BOOT_STATUS_UBOOT_NOT_READY:
1467 		dev_err(hdev->dev,
1468 			"Device boot progress - Cannot boot\n");
1469 		break;
1470 	case CPU_BOOT_STATUS_TS_INIT_FAIL:
1471 		dev_err(hdev->dev,
1472 			"Device boot progress - Thermal Sensor initialization failed\n");
1473 		break;
1474 	case CPU_BOOT_STATUS_SECURITY_READY:
1475 		dev_err(hdev->dev,
1476 			"Device boot progress - Stuck in preboot after security initialization\n");
1477 		break;
1478 	case CPU_BOOT_STATUS_FW_SHUTDOWN_PREP:
1479 		dev_err(hdev->dev,
1480 			"Device boot progress - Stuck in preparation for shutdown\n");
1481 		break;
1482 	default:
1483 		dev_err(hdev->dev,
1484 			"Device boot progress - Invalid or unexpected status code %d\n", status);
1485 		break;
1486 	}
1487 }
1488 
1489 int hl_fw_wait_preboot_ready(struct hl_device *hdev)
1490 {
1491 	struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
1492 	u32 status = 0, timeout;
1493 	int rc, tries = 1, fw_err = 0;
1494 	bool preboot_still_runs;
1495 
1496 	/* Need to check two possible scenarios:
1497 	 *
1498 	 * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
1499 	 * the preboot is waiting for the boot fit
1500 	 *
1501 	 * All other status values - for older firmwares where the uboot was
1502 	 * loaded from the FLASH
1503 	 */
1504 	timeout = pre_fw_load->wait_for_preboot_timeout;
1505 retry:
1506 	rc = hl_poll_timeout(
1507 		hdev,
1508 		pre_fw_load->cpu_boot_status_reg,
1509 		status,
1510 		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
1511 		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
1512 		(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
1513 		hdev->fw_poll_interval_usec,
1514 		timeout);
1515 	/*
1516 	 * if F/W reports "security-ready" it means preboot might take longer.
1517 	 * If the field 'wait_for_preboot_extended_timeout' is non 0 we wait again
1518 	 * with that timeout
1519 	 */
1520 	preboot_still_runs = (status == CPU_BOOT_STATUS_SECURITY_READY ||
1521 				status == CPU_BOOT_STATUS_IN_PREBOOT ||
1522 				status == CPU_BOOT_STATUS_FW_SHUTDOWN_PREP ||
1523 				status == CPU_BOOT_STATUS_DRAM_RDY);
1524 
1525 	if (rc && tries && preboot_still_runs) {
1526 		tries--;
1527 		if (pre_fw_load->wait_for_preboot_extended_timeout) {
1528 			timeout = pre_fw_load->wait_for_preboot_extended_timeout;
1529 			goto retry;
1530 		}
1531 	}
1532 
1533 	/* If we read all FF, then something is totally wrong, no point
1534 	 * of reading specific errors
1535 	 */
1536 	if (status != -1)
1537 		fw_err = fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
1538 					pre_fw_load->boot_err1_reg,
1539 					pre_fw_load->sts_boot_dev_sts0_reg,
1540 					pre_fw_load->sts_boot_dev_sts1_reg);
1541 	if (rc || fw_err) {
1542 		detect_cpu_boot_status(hdev, status);
1543 		dev_err(hdev->dev, "CPU boot %s (status = %d)\n",
1544 				fw_err ? "failed due to an error" : "ready timeout", status);
1545 		return -EIO;
1546 	}
1547 
1548 	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
1549 
1550 	return 0;
1551 }
1552 
1553 static int hl_fw_read_preboot_caps(struct hl_device *hdev)
1554 {
1555 	struct pre_fw_load_props *pre_fw_load;
1556 	struct asic_fixed_properties *prop;
1557 	u32 reg_val;
1558 	int rc;
1559 
1560 	prop = &hdev->asic_prop;
1561 	pre_fw_load = &hdev->fw_loader.pre_fw_load;
1562 
1563 	rc = hl_fw_wait_preboot_ready(hdev);
1564 	if (rc)
1565 		return rc;
1566 
1567 	/*
1568 	 * the registers DEV_STS* contain FW capabilities/features.
1569 	 * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
1570 	 * is set.
1571 	 * In the first read of this register we store the value of this
1572 	 * register ONLY if the register is enabled (which will be propagated
1573 	 * to next stages) and also mark the register as valid.
1574 	 * In case it is not enabled the stored value will be left 0- all
1575 	 * caps/features are off
1576 	 */
1577 	reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
1578 	if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
1579 		prop->fw_cpu_boot_dev_sts0_valid = true;
1580 		prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
1581 	}
1582 
1583 	reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
1584 	if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
1585 		prop->fw_cpu_boot_dev_sts1_valid = true;
1586 		prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
1587 	}
1588 
1589 	prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
1590 						CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
1591 
1592 	/* initialize FW loader once we know what load protocol is used */
1593 	hdev->asic_funcs->init_firmware_loader(hdev);
1594 
1595 	dev_dbg(hdev->dev, "Attempting %s FW load\n",
1596 			prop->dynamic_fw_load ? "dynamic" : "legacy");
1597 	return 0;
1598 }
1599 
1600 static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
1601 					enum hl_fw_component fwc)
1602 {
1603 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1604 	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
1605 	struct static_fw_load_mgr *static_loader;
1606 	char *dest, *boot_ver, *preboot_ver;
1607 	u32 ver_off, limit;
1608 	const char *name;
1609 	char btl_ver[32];
1610 
1611 	static_loader = &hdev->fw_loader.static_loader;
1612 
1613 	switch (fwc) {
1614 	case FW_COMP_BOOT_FIT:
1615 		ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
1616 		dest = prop->uboot_ver;
1617 		name = "Boot-fit";
1618 		limit = static_loader->boot_fit_version_max_off;
1619 		break;
1620 	case FW_COMP_PREBOOT:
1621 		ver_off = RREG32(static_loader->preboot_version_offset_reg);
1622 		dest = prop->preboot_ver;
1623 		name = "Preboot";
1624 		limit = static_loader->preboot_version_max_off;
1625 		break;
1626 	default:
1627 		dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
1628 		return -EIO;
1629 	}
1630 
1631 	ver_off &= static_loader->sram_offset_mask;
1632 
1633 	if (ver_off < limit) {
1634 		memcpy_fromio(dest,
1635 			hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
1636 			VERSION_MAX_LEN);
1637 	} else {
1638 		dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
1639 								name, ver_off);
1640 		strscpy(dest, "unavailable", VERSION_MAX_LEN);
1641 		return -EIO;
1642 	}
1643 
1644 	if (fwc == FW_COMP_BOOT_FIT) {
1645 		boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
1646 		if (boot_ver) {
1647 			dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
1648 			kfree(boot_ver);
1649 		}
1650 	} else if (fwc == FW_COMP_PREBOOT) {
1651 		preboot_ver = strnstr(prop->preboot_ver, "Preboot",
1652 						VERSION_MAX_LEN);
1653 		if (preboot_ver && preboot_ver != prop->preboot_ver) {
1654 			strscpy(btl_ver, prop->preboot_ver,
1655 				min((int) (preboot_ver - prop->preboot_ver),
1656 									31));
1657 			dev_info(hdev->dev, "%s\n", btl_ver);
1658 		}
1659 
1660 		preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
1661 		if (preboot_ver) {
1662 			dev_info(hdev->dev, "preboot version %s\n",
1663 								preboot_ver);
1664 			kfree(preboot_ver);
1665 		}
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * hl_fw_preboot_update_state - update internal data structures during
1673  *                              handshake with preboot
1674  *
1675  *
1676  * @hdev: pointer to the habanalabs device structure
1677  *
1678  * @return 0 on success, otherwise non-zero error code
1679  */
1680 static void hl_fw_preboot_update_state(struct hl_device *hdev)
1681 {
1682 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1683 	u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
1684 
1685 	cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
1686 	cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
1687 
1688 	/* We read boot_dev_sts registers multiple times during boot:
1689 	 * 1. preboot - a. Check whether the security status bits are valid
1690 	 *              b. Check whether fw security is enabled
1691 	 *              c. Check whether hard reset is done by preboot
1692 	 * 2. boot cpu - a. Fetch boot cpu security status
1693 	 *               b. Check whether hard reset is done by boot cpu
1694 	 * 3. FW application - a. Fetch fw application security status
1695 	 *                     b. Check whether hard reset is done by fw app
1696 	 */
1697 	prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
1698 
1699 	prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
1700 
1701 	dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
1702 							cpu_boot_dev_sts0);
1703 
1704 	dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
1705 							cpu_boot_dev_sts1);
1706 
1707 	dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
1708 			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
1709 
1710 	dev_dbg(hdev->dev, "firmware-level security is %s\n",
1711 			prop->fw_security_enabled ? "enabled" : "disabled");
1712 
1713 	dev_dbg(hdev->dev, "GIC controller is %s\n",
1714 			prop->gic_interrupts_enable ? "enabled" : "disabled");
1715 }
1716 
1717 static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
1718 {
1719 	int rc;
1720 
1721 	rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
1722 	if (rc)
1723 		return rc;
1724 
1725 	return 0;
1726 }
1727 
1728 int hl_fw_read_preboot_status(struct hl_device *hdev)
1729 {
1730 	int rc;
1731 
1732 	if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
1733 		return 0;
1734 
1735 	/* get FW pre-load parameters  */
1736 	hdev->asic_funcs->init_firmware_preload_params(hdev);
1737 
1738 	/*
1739 	 * In order to determine boot method (static VS dynamic) we need to
1740 	 * read the boot caps register
1741 	 */
1742 	rc = hl_fw_read_preboot_caps(hdev);
1743 	if (rc)
1744 		return rc;
1745 
1746 	hl_fw_preboot_update_state(hdev);
1747 
1748 	/* no need to read preboot status in dynamic load */
1749 	if (hdev->asic_prop.dynamic_fw_load)
1750 		return 0;
1751 
1752 	return hl_fw_static_read_preboot_status(hdev);
1753 }
1754 
1755 /* associate string with COMM status */
1756 static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
1757 	[COMMS_STS_NOOP] = "NOOP",
1758 	[COMMS_STS_ACK] = "ACK",
1759 	[COMMS_STS_OK] = "OK",
1760 	[COMMS_STS_ERR] = "ERR",
1761 	[COMMS_STS_VALID_ERR] = "VALID_ERR",
1762 	[COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
1763 };
1764 
1765 /**
1766  * hl_fw_dynamic_report_error_status - report error status
1767  *
1768  * @hdev: pointer to the habanalabs device structure
1769  * @status: value of FW status register
1770  * @expected_status: the expected status
1771  */
1772 static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
1773 						u32 status,
1774 						enum comms_sts expected_status)
1775 {
1776 	enum comms_sts comm_status =
1777 				FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1778 
1779 	if (comm_status < COMMS_STS_INVLD_LAST)
1780 		dev_err(hdev->dev, "Device status %s, expected status: %s\n",
1781 				hl_dynamic_fw_status_str[comm_status],
1782 				hl_dynamic_fw_status_str[expected_status]);
1783 	else
1784 		dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
1785 				comm_status,
1786 				hl_dynamic_fw_status_str[expected_status]);
1787 }
1788 
1789 /**
1790  * hl_fw_dynamic_send_cmd - send LKD to FW cmd
1791  *
1792  * @hdev: pointer to the habanalabs device structure
1793  * @fw_loader: managing structure for loading device's FW
1794  * @cmd: LKD to FW cmd code
1795  * @size: size of next FW component to be loaded (0 if not necessary)
1796  *
1797  * LDK to FW exact command layout is defined at struct comms_command.
1798  * note: the size argument is used only when the next FW component should be
1799  *       loaded, otherwise it shall be 0. the size is used by the FW in later
1800  *       protocol stages and when sending only indicating the amount of memory
1801  *       to be allocated by the FW to receive the next boot component.
1802  */
1803 static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
1804 				struct fw_load_mgr *fw_loader,
1805 				enum comms_cmd cmd, unsigned int size)
1806 {
1807 	struct cpu_dyn_regs *dyn_regs;
1808 	u32 val;
1809 
1810 	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1811 
1812 	val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
1813 	val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
1814 
1815 	trace_habanalabs_comms_send_cmd(&hdev->pdev->dev, comms_cmd_str_arr[cmd]);
1816 	WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
1817 }
1818 
1819 /**
1820  * hl_fw_dynamic_extract_fw_response - update the FW response
1821  *
1822  * @hdev: pointer to the habanalabs device structure
1823  * @fw_loader: managing structure for loading device's FW
1824  * @response: FW response
1825  * @status: the status read from CPU status register
1826  *
1827  * @return 0 on success, otherwise non-zero error code
1828  */
1829 static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
1830 						struct fw_load_mgr *fw_loader,
1831 						struct fw_response *response,
1832 						u32 status)
1833 {
1834 	response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1835 	response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
1836 						COMMS_STATUS_OFFSET_ALIGN_SHIFT;
1837 	response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
1838 
1839 	if ((response->ram_type != COMMS_SRAM) &&
1840 					(response->ram_type != COMMS_DRAM)) {
1841 		dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
1842 							response->ram_type);
1843 		return -EIO;
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
1851  *
1852  * @hdev: pointer to the habanalabs device structure
1853  * @fw_loader: managing structure for loading device's FW
1854  * @expected_status: expected status to wait for
1855  * @timeout: timeout for status wait
1856  *
1857  * @return 0 on success, otherwise non-zero error code
1858  *
1859  * waiting for status from FW include polling the FW status register until
1860  * expected status is received or timeout occurs (whatever occurs first).
1861  */
1862 static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
1863 						struct fw_load_mgr *fw_loader,
1864 						enum comms_sts expected_status,
1865 						u32 timeout)
1866 {
1867 	struct cpu_dyn_regs *dyn_regs;
1868 	u32 status;
1869 	int rc;
1870 
1871 	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1872 
1873 	trace_habanalabs_comms_wait_status(&hdev->pdev->dev, comms_sts_str_arr[expected_status]);
1874 
1875 	/* Wait for expected status */
1876 	rc = hl_poll_timeout(
1877 		hdev,
1878 		le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
1879 		status,
1880 		FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
1881 		hdev->fw_comms_poll_interval_usec,
1882 		timeout);
1883 
1884 	if (rc) {
1885 		hl_fw_dynamic_report_error_status(hdev, status,
1886 							expected_status);
1887 		return -EIO;
1888 	}
1889 
1890 	trace_habanalabs_comms_wait_status_done(&hdev->pdev->dev,
1891 						comms_sts_str_arr[expected_status]);
1892 
1893 	/*
1894 	 * skip storing FW response for NOOP to preserve the actual desired
1895 	 * FW status
1896 	 */
1897 	if (expected_status == COMMS_STS_NOOP)
1898 		return 0;
1899 
1900 	rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
1901 					&fw_loader->dynamic_loader.response,
1902 					status);
1903 	return rc;
1904 }
1905 
1906 /**
1907  * hl_fw_dynamic_send_clear_cmd - send clear command to FW
1908  *
1909  * @hdev: pointer to the habanalabs device structure
1910  * @fw_loader: managing structure for loading device's FW
1911  *
1912  * @return 0 on success, otherwise non-zero error code
1913  *
1914  * after command cycle between LKD to FW CPU (i.e. LKD got an expected status
1915  * from FW) we need to clear the CPU status register in order to avoid garbage
1916  * between command cycles.
1917  * This is done by sending clear command and polling the CPU to LKD status
1918  * register to hold the status NOOP
1919  */
1920 static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
1921 						struct fw_load_mgr *fw_loader)
1922 {
1923 	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
1924 
1925 	return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
1926 							fw_loader->cpu_timeout);
1927 }
1928 
1929 /**
1930  * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
1931  *
1932  * @hdev: pointer to the habanalabs device structure
1933  * @fw_loader: managing structure for loading device's FW
1934  * @cmd: LKD to FW cmd code
1935  * @size: size of next FW component to be loaded (0 if not necessary)
1936  * @wait_ok: if true also wait for OK response from FW
1937  * @timeout: timeout for status wait
1938  *
1939  * @return 0 on success, otherwise non-zero error code
1940  *
1941  * brief:
1942  * when sending protocol command we have the following steps:
1943  * - send clear (clear command and verify clear status register)
1944  * - send the actual protocol command
1945  * - wait for ACK on the protocol command
1946  * - send clear
1947  * - send NOOP
1948  * if, in addition, the specific protocol command should wait for OK then:
1949  * - wait for OK
1950  * - send clear
1951  * - send NOOP
1952  *
1953  * NOTES:
1954  * send clear: this is necessary in order to clear the status register to avoid
1955  *             leftovers between command
1956  * NOOP command: necessary to avoid loop on the clear command by the FW
1957  */
1958 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
1959 				struct fw_load_mgr *fw_loader,
1960 				enum comms_cmd cmd, unsigned int size,
1961 				bool wait_ok, u32 timeout)
1962 {
1963 	int rc;
1964 
1965 	trace_habanalabs_comms_protocol_cmd(&hdev->pdev->dev, comms_cmd_str_arr[cmd]);
1966 
1967 	/* first send clear command to clean former commands */
1968 	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1969 	if (rc)
1970 		return rc;
1971 
1972 	/* send the actual command */
1973 	hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
1974 
1975 	/* wait for ACK for the command */
1976 	rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
1977 								timeout);
1978 	if (rc)
1979 		return rc;
1980 
1981 	/* clear command to prepare for NOOP command */
1982 	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1983 	if (rc)
1984 		return rc;
1985 
1986 	/* send the actual NOOP command */
1987 	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
1988 
1989 	if (!wait_ok)
1990 		return 0;
1991 
1992 	rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
1993 								timeout);
1994 	if (rc)
1995 		return rc;
1996 
1997 	/* clear command to prepare for NOOP command */
1998 	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1999 	if (rc)
2000 		return rc;
2001 
2002 	/* send the actual NOOP command */
2003 	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
2004 
2005 	return 0;
2006 }
2007 
2008 /**
2009  * hl_fw_compat_crc32 - CRC compatible with FW
2010  *
2011  * @data: pointer to the data
2012  * @size: size of the data
2013  *
2014  * @return the CRC32 result
2015  *
2016  * NOTE: kernel's CRC32 differs from standard CRC32 calculation.
2017  *       in order to be aligned we need to flip the bits of both the input
2018  *       initial CRC and kernel's CRC32 result.
2019  *       in addition both sides use initial CRC of 0,
2020  */
2021 static u32 hl_fw_compat_crc32(u8 *data, size_t size)
2022 {
2023 	return ~crc32_le(~((u32)0), data, size);
2024 }
2025 
2026 /**
2027  * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
2028  *                                        transfer (image or descriptor) between
2029  *                                        host and FW
2030  *
2031  * @hdev: pointer to the habanalabs device structure
2032  * @addr: device address of memory transfer
2033  * @size: memory transfer size
2034  * @region: PCI memory region
2035  *
2036  * @return 0 on success, otherwise non-zero error code
2037  */
2038 static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
2039 						u64 addr, size_t size,
2040 						struct pci_mem_region *region)
2041 {
2042 	u64 end_addr;
2043 
2044 	/* now make sure that the memory transfer is within region's bounds */
2045 	end_addr = addr + size;
2046 	if (end_addr >= region->region_base + region->region_size) {
2047 		dev_err(hdev->dev,
2048 			"dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
2049 							end_addr);
2050 		return -EIO;
2051 	}
2052 
2053 	/*
2054 	 * now make sure memory transfer is within predefined BAR bounds.
2055 	 * this is to make sure we do not need to set the bar (e.g. for DRAM
2056 	 * memory transfers)
2057 	 */
2058 	if (end_addr >= region->region_base - region->offset_in_bar +
2059 							region->bar_size) {
2060 		dev_err(hdev->dev,
2061 			"FW image beyond PCI BAR bounds\n");
2062 		return -EIO;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * hl_fw_dynamic_validate_descriptor - validate FW descriptor
2070  *
2071  * @hdev: pointer to the habanalabs device structure
2072  * @fw_loader: managing structure for loading device's FW
2073  * @fw_desc: the descriptor from FW
2074  *
2075  * @return 0 on success, otherwise non-zero error code
2076  */
2077 static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
2078 					struct fw_load_mgr *fw_loader,
2079 					struct lkd_fw_comms_desc *fw_desc)
2080 {
2081 	struct pci_mem_region *region;
2082 	enum pci_region region_id;
2083 	size_t data_size;
2084 	u32 data_crc32;
2085 	u8 *data_ptr;
2086 	u64 addr;
2087 	int rc;
2088 
2089 	if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
2090 		dev_dbg(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
2091 				fw_desc->header.magic);
2092 
2093 	if (fw_desc->header.version != HL_COMMS_DESC_VER)
2094 		dev_dbg(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
2095 				fw_desc->header.version);
2096 
2097 	/*
2098 	 * Calc CRC32 of data without header. use the size of the descriptor
2099 	 * reported by firmware, without calculating it ourself, to allow adding
2100 	 * more fields to the lkd_fw_comms_desc structure.
2101 	 * note that no alignment/stride address issues here as all structures
2102 	 * are 64 bit padded.
2103 	 */
2104 	data_ptr = (u8 *)fw_desc + sizeof(struct comms_msg_header);
2105 	data_size = le16_to_cpu(fw_desc->header.size);
2106 
2107 	data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
2108 	if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
2109 		dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
2110 			data_crc32, fw_desc->header.crc32);
2111 		return -EIO;
2112 	}
2113 
2114 	/* find memory region to which to copy the image */
2115 	addr = le64_to_cpu(fw_desc->img_addr);
2116 	region_id = hl_get_pci_memory_region(hdev, addr);
2117 	if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
2118 		dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
2119 		return -EIO;
2120 	}
2121 
2122 	region = &hdev->pci_mem_region[region_id];
2123 
2124 	/* store the region for the copy stage */
2125 	fw_loader->dynamic_loader.image_region = region;
2126 
2127 	/*
2128 	 * here we know that the start address is valid, now make sure that the
2129 	 * image is within region's bounds
2130 	 */
2131 	rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
2132 					fw_loader->dynamic_loader.fw_image_size,
2133 					region);
2134 	if (rc) {
2135 		dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
2136 		return rc;
2137 	}
2138 
2139 	/* here we can mark the descriptor as valid as the content has been validated */
2140 	fw_loader->dynamic_loader.fw_desc_valid = true;
2141 
2142 	return 0;
2143 }
2144 
2145 static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
2146 						struct fw_response *response,
2147 						struct pci_mem_region *region)
2148 {
2149 	u64 device_addr;
2150 	int rc;
2151 
2152 	device_addr = region->region_base + response->ram_offset;
2153 
2154 	/*
2155 	 * validate that the descriptor is within region's bounds
2156 	 * Note that as the start address was supplied according to the RAM
2157 	 * type- testing only the end address is enough
2158 	 */
2159 	rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
2160 					sizeof(struct lkd_fw_comms_desc),
2161 					region);
2162 	return rc;
2163 }
2164 
2165 /*
2166  * hl_fw_dynamic_read_descriptor_msg - read and show the ascii msg that sent by fw
2167  *
2168  * @hdev: pointer to the habanalabs device structure
2169  * @fw_desc: the descriptor from FW
2170  */
2171 static void hl_fw_dynamic_read_descriptor_msg(struct hl_device *hdev,
2172 					struct lkd_fw_comms_desc *fw_desc)
2173 {
2174 	int i;
2175 	char *msg;
2176 
2177 	for (i = 0 ; i < LKD_FW_ASCII_MSG_MAX ; i++) {
2178 		if (!fw_desc->ascii_msg[i].valid)
2179 			return;
2180 
2181 		/* force NULL termination */
2182 		msg = fw_desc->ascii_msg[i].msg;
2183 		msg[LKD_FW_ASCII_MSG_MAX_LEN - 1] = '\0';
2184 
2185 		switch (fw_desc->ascii_msg[i].msg_lvl) {
2186 		case LKD_FW_ASCII_MSG_ERR:
2187 			dev_err(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2188 			break;
2189 		case LKD_FW_ASCII_MSG_WRN:
2190 			dev_warn(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2191 			break;
2192 		case LKD_FW_ASCII_MSG_INF:
2193 			dev_info(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2194 			break;
2195 		default:
2196 			dev_dbg(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2197 			break;
2198 		}
2199 	}
2200 }
2201 
2202 /**
2203  * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
2204  *
2205  * @hdev: pointer to the habanalabs device structure
2206  * @fw_loader: managing structure for loading device's FW
2207  *
2208  * @return 0 on success, otherwise non-zero error code
2209  */
2210 static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
2211 						struct fw_load_mgr *fw_loader)
2212 {
2213 	struct lkd_fw_comms_desc *fw_desc;
2214 	struct pci_mem_region *region;
2215 	struct fw_response *response;
2216 	void *temp_fw_desc;
2217 	void __iomem *src;
2218 	u16 fw_data_size;
2219 	enum pci_region region_id;
2220 	int rc;
2221 
2222 	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2223 	response = &fw_loader->dynamic_loader.response;
2224 
2225 	region_id = (response->ram_type == COMMS_SRAM) ?
2226 					PCI_REGION_SRAM : PCI_REGION_DRAM;
2227 
2228 	region = &hdev->pci_mem_region[region_id];
2229 
2230 	rc = hl_fw_dynamic_validate_response(hdev, response, region);
2231 	if (rc) {
2232 		dev_err(hdev->dev,
2233 			"invalid mem transfer request for FW descriptor\n");
2234 		return rc;
2235 	}
2236 
2237 	/*
2238 	 * extract address to copy the descriptor from
2239 	 * in addition, as the descriptor value is going to be over-ridden by new data- we mark it
2240 	 * as invalid.
2241 	 * it will be marked again as valid once validated
2242 	 */
2243 	fw_loader->dynamic_loader.fw_desc_valid = false;
2244 	src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2245 							response->ram_offset;
2246 
2247 	/*
2248 	 * We do the copy of the fw descriptor in 2 phases:
2249 	 * 1. copy the header + data info according to our lkd_fw_comms_desc definition.
2250 	 *    then we're able to read the actual data size provided by fw.
2251 	 *    this is needed for cases where data in descriptor was changed(add/remove)
2252 	 *    in embedded specs header file before updating lkd copy of the header file
2253 	 * 2. copy descriptor to temporary buffer with aligned size and send it to validation
2254 	 */
2255 	memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
2256 	fw_data_size = le16_to_cpu(fw_desc->header.size);
2257 
2258 	temp_fw_desc = vzalloc(sizeof(struct comms_msg_header) + fw_data_size);
2259 	if (!temp_fw_desc)
2260 		return -ENOMEM;
2261 
2262 	memcpy_fromio(temp_fw_desc, src, sizeof(struct comms_msg_header) + fw_data_size);
2263 
2264 	rc = hl_fw_dynamic_validate_descriptor(hdev, fw_loader,
2265 					(struct lkd_fw_comms_desc *) temp_fw_desc);
2266 
2267 	if (!rc)
2268 		hl_fw_dynamic_read_descriptor_msg(hdev, temp_fw_desc);
2269 
2270 	vfree(temp_fw_desc);
2271 
2272 	return rc;
2273 }
2274 
2275 /**
2276  * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
2277  *
2278  * @hdev: pointer to the habanalabs device structure
2279  * @fw_loader: managing structure for loading device's FW
2280  * @next_image_size: size to allocate for next FW component
2281  *
2282  * @return 0 on success, otherwise non-zero error code
2283  */
2284 static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
2285 						struct fw_load_mgr *fw_loader,
2286 						size_t next_image_size)
2287 {
2288 	int rc;
2289 
2290 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
2291 						next_image_size, true,
2292 						fw_loader->cpu_timeout);
2293 	if (rc)
2294 		return rc;
2295 
2296 	return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
2297 }
2298 
2299 /**
2300  * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
2301  *
2302  * @hdev: pointer to the habanalabs device structure
2303  * @fwc: the firmware component
2304  * @fw_version: fw component's version string
2305  */
2306 static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
2307 					enum hl_fw_component fwc,
2308 					const char *fw_version)
2309 {
2310 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2311 	char *preboot_ver, *boot_ver;
2312 	char btl_ver[32];
2313 	int rc;
2314 
2315 	switch (fwc) {
2316 	case FW_COMP_BOOT_FIT:
2317 		strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
2318 		boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
2319 		if (boot_ver) {
2320 			dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
2321 			kfree(boot_ver);
2322 		}
2323 
2324 		break;
2325 	case FW_COMP_PREBOOT:
2326 		strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
2327 		preboot_ver = strnstr(prop->preboot_ver, "Preboot", VERSION_MAX_LEN);
2328 		dev_info(hdev->dev, "preboot full version: '%s'\n", preboot_ver);
2329 
2330 		if (preboot_ver && preboot_ver != prop->preboot_ver) {
2331 			strscpy(btl_ver, prop->preboot_ver,
2332 				min((int) (preboot_ver - prop->preboot_ver), 31));
2333 			dev_info(hdev->dev, "%s\n", btl_ver);
2334 		}
2335 
2336 		rc = hl_get_sw_major_minor_subminor(hdev, preboot_ver);
2337 		if (rc)
2338 			return rc;
2339 		preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
2340 		if (preboot_ver) {
2341 			rc = hl_get_preboot_major_minor(hdev, preboot_ver);
2342 			kfree(preboot_ver);
2343 			if (rc)
2344 				return rc;
2345 		}
2346 
2347 		break;
2348 	default:
2349 		dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
2358  *
2359  * @hdev: pointer to the habanalabs device structure
2360  * @fw: fw descriptor
2361  * @fw_loader: managing structure for loading device's FW
2362  */
2363 static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
2364 						const struct firmware *fw,
2365 						struct fw_load_mgr *fw_loader)
2366 {
2367 	struct lkd_fw_comms_desc *fw_desc;
2368 	struct pci_mem_region *region;
2369 	void __iomem *dest;
2370 	u64 addr;
2371 	int rc;
2372 
2373 	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2374 	addr = le64_to_cpu(fw_desc->img_addr);
2375 
2376 	/* find memory region to which to copy the image */
2377 	region = fw_loader->dynamic_loader.image_region;
2378 
2379 	dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2380 					(addr - region->region_base);
2381 
2382 	rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
2383 					fw_loader->boot_fit_img.src_off,
2384 					fw_loader->boot_fit_img.copy_size);
2385 
2386 	return rc;
2387 }
2388 
2389 /**
2390  * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
2391  *
2392  * @hdev: pointer to the habanalabs device structure
2393  * @msg: message
2394  * @fw_loader: managing structure for loading device's FW
2395  */
2396 static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
2397 		struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
2398 {
2399 	struct lkd_fw_comms_desc *fw_desc;
2400 	struct pci_mem_region *region;
2401 	void __iomem *dest;
2402 	u64 addr;
2403 	int rc;
2404 
2405 	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2406 	addr = le64_to_cpu(fw_desc->img_addr);
2407 
2408 	/* find memory region to which to copy the image */
2409 	region = fw_loader->dynamic_loader.image_region;
2410 
2411 	dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2412 					(addr - region->region_base);
2413 
2414 	rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
2415 
2416 	return rc;
2417 }
2418 
2419 /**
2420  * hl_fw_boot_fit_update_state - update internal data structures after boot-fit
2421  *                               is loaded
2422  *
2423  * @hdev: pointer to the habanalabs device structure
2424  * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2425  * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2426  *
2427  * @return 0 on success, otherwise non-zero error code
2428  */
2429 static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
2430 						u32 cpu_boot_dev_sts0_reg,
2431 						u32 cpu_boot_dev_sts1_reg)
2432 {
2433 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2434 
2435 	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
2436 
2437 	/* Read boot_cpu status bits */
2438 	if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
2439 		prop->fw_bootfit_cpu_boot_dev_sts0 =
2440 				RREG32(cpu_boot_dev_sts0_reg);
2441 
2442 		prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
2443 							CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2444 
2445 		dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
2446 					prop->fw_bootfit_cpu_boot_dev_sts0);
2447 	}
2448 
2449 	if (prop->fw_cpu_boot_dev_sts1_valid) {
2450 		prop->fw_bootfit_cpu_boot_dev_sts1 =
2451 				RREG32(cpu_boot_dev_sts1_reg);
2452 
2453 		dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
2454 					prop->fw_bootfit_cpu_boot_dev_sts1);
2455 	}
2456 
2457 	dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
2458 			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2459 }
2460 
2461 static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
2462 {
2463 	struct cpu_dyn_regs *dyn_regs =
2464 			&hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
2465 
2466 	/* Check whether all 3 interrupt interfaces are set, if not use a
2467 	 * single interface
2468 	 */
2469 	if (!hdev->asic_prop.gic_interrupts_enable &&
2470 			!(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
2471 				CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
2472 		dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
2473 		dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
2474 
2475 		dev_warn(hdev->dev,
2476 			"Using a single interrupt interface towards cpucp");
2477 	}
2478 }
2479 /**
2480  * hl_fw_dynamic_load_image - load FW image using dynamic protocol
2481  *
2482  * @hdev: pointer to the habanalabs device structure
2483  * @fw_loader: managing structure for loading device's FW
2484  * @load_fwc: the FW component to be loaded
2485  * @img_ld_timeout: image load timeout
2486  *
2487  * @return 0 on success, otherwise non-zero error code
2488  */
2489 static int hl_fw_dynamic_load_image(struct hl_device *hdev,
2490 						struct fw_load_mgr *fw_loader,
2491 						enum hl_fw_component load_fwc,
2492 						u32 img_ld_timeout)
2493 {
2494 	enum hl_fw_component cur_fwc;
2495 	const struct firmware *fw;
2496 	char *fw_name;
2497 	int rc = 0;
2498 
2499 	/*
2500 	 * when loading image we have one of 2 scenarios:
2501 	 * 1. current FW component is preboot and we want to load boot-fit
2502 	 * 2. current FW component is boot-fit and we want to load linux
2503 	 */
2504 	if (load_fwc == FW_COMP_BOOT_FIT) {
2505 		cur_fwc = FW_COMP_PREBOOT;
2506 		fw_name = fw_loader->boot_fit_img.image_name;
2507 	} else {
2508 		cur_fwc = FW_COMP_BOOT_FIT;
2509 		fw_name = fw_loader->linux_img.image_name;
2510 	}
2511 
2512 	/* request FW in order to communicate to FW the size to be allocated */
2513 	rc = hl_request_fw(hdev, &fw, fw_name);
2514 	if (rc)
2515 		return rc;
2516 
2517 	/* store the image size for future validation */
2518 	fw_loader->dynamic_loader.fw_image_size = fw->size;
2519 
2520 	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
2521 	if (rc)
2522 		goto release_fw;
2523 
2524 	/* read preboot version */
2525 	rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
2526 				fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2527 	if (rc)
2528 		goto release_fw;
2529 
2530 	/* copy boot fit to space allocated by FW */
2531 	rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
2532 	if (rc)
2533 		goto release_fw;
2534 
2535 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2536 						0, true,
2537 						fw_loader->cpu_timeout);
2538 	if (rc)
2539 		goto release_fw;
2540 
2541 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2542 						0, false,
2543 						img_ld_timeout);
2544 
2545 release_fw:
2546 	hl_release_firmware(fw);
2547 	return rc;
2548 }
2549 
2550 static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
2551 					struct fw_load_mgr *fw_loader)
2552 {
2553 	struct dynamic_fw_load_mgr *dyn_loader;
2554 	u32 status;
2555 	int rc;
2556 
2557 	dyn_loader = &fw_loader->dynamic_loader;
2558 
2559 	/*
2560 	 * Make sure CPU boot-loader is running
2561 	 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2562 	 * yet there is a debug scenario in which we loading uboot (without Linux)
2563 	 * which at later stage is relocated to DRAM. In this case we expect
2564 	 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2565 	 * poll flags
2566 	 */
2567 	rc = hl_poll_timeout(
2568 		hdev,
2569 		le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2570 		status,
2571 		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2572 		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2573 		hdev->fw_poll_interval_usec,
2574 		dyn_loader->wait_for_bl_timeout);
2575 	if (rc) {
2576 		dev_err(hdev->dev, "failed to wait for boot (status = %d)\n", status);
2577 		return rc;
2578 	}
2579 
2580 	dev_dbg(hdev->dev, "uboot status = %d\n", status);
2581 	return 0;
2582 }
2583 
2584 static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
2585 						struct fw_load_mgr *fw_loader)
2586 {
2587 	struct dynamic_fw_load_mgr *dyn_loader;
2588 	u32 status;
2589 	int rc;
2590 
2591 	dyn_loader = &fw_loader->dynamic_loader;
2592 
2593 	/* Make sure CPU linux is running */
2594 
2595 	rc = hl_poll_timeout(
2596 		hdev,
2597 		le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2598 		status,
2599 		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2600 		hdev->fw_poll_interval_usec,
2601 		fw_loader->cpu_timeout);
2602 	if (rc) {
2603 		dev_err(hdev->dev, "failed to wait for Linux (status = %d)\n", status);
2604 		return rc;
2605 	}
2606 
2607 	dev_dbg(hdev->dev, "Boot status = %d\n", status);
2608 	return 0;
2609 }
2610 
2611 /**
2612  * hl_fw_linux_update_state -	update internal data structures after Linux
2613  *				is loaded.
2614  *				Note: Linux initialization is comprised mainly
2615  *				of two stages - loading kernel (SRAM_AVAIL)
2616  *				& loading ARMCP.
2617  *				Therefore reading boot device status in any of
2618  *				these stages might result in different values.
2619  *
2620  * @hdev: pointer to the habanalabs device structure
2621  * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2622  * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2623  *
2624  * @return 0 on success, otherwise non-zero error code
2625  */
2626 static void hl_fw_linux_update_state(struct hl_device *hdev,
2627 						u32 cpu_boot_dev_sts0_reg,
2628 						u32 cpu_boot_dev_sts1_reg)
2629 {
2630 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2631 
2632 	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
2633 
2634 	/* Read FW application security bits */
2635 	if (prop->fw_cpu_boot_dev_sts0_valid) {
2636 		prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
2637 
2638 		prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
2639 							CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2640 
2641 		if (prop->fw_app_cpu_boot_dev_sts0 &
2642 				CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
2643 			prop->gic_interrupts_enable = false;
2644 
2645 		dev_dbg(hdev->dev,
2646 			"Firmware application CPU status0 %#x\n",
2647 			prop->fw_app_cpu_boot_dev_sts0);
2648 
2649 		dev_dbg(hdev->dev, "GIC controller is %s\n",
2650 				prop->gic_interrupts_enable ?
2651 						"enabled" : "disabled");
2652 	}
2653 
2654 	if (prop->fw_cpu_boot_dev_sts1_valid) {
2655 		prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
2656 
2657 		dev_dbg(hdev->dev,
2658 			"Firmware application CPU status1 %#x\n",
2659 			prop->fw_app_cpu_boot_dev_sts1);
2660 	}
2661 
2662 	dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
2663 			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2664 
2665 	dev_info(hdev->dev, "Successfully loaded firmware to device\n");
2666 }
2667 
2668 /**
2669  * hl_fw_dynamic_send_msg - send a COMMS message with attached data
2670  *
2671  * @hdev: pointer to the habanalabs device structure
2672  * @fw_loader: managing structure for loading device's FW
2673  * @msg_type: message type
2674  * @data: data to be sent
2675  *
2676  * @return 0 on success, otherwise non-zero error code
2677  */
2678 static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
2679 		struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
2680 {
2681 	struct lkd_msg_comms *msg;
2682 	int rc;
2683 
2684 	msg = kzalloc(sizeof(*msg), GFP_KERNEL);
2685 	if (!msg)
2686 		return -ENOMEM;
2687 
2688 	/* create message to be sent */
2689 	msg->header.type = msg_type;
2690 	msg->header.size = cpu_to_le16(sizeof(struct comms_msg_header));
2691 	msg->header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
2692 
2693 	switch (msg_type) {
2694 	case HL_COMMS_RESET_CAUSE_TYPE:
2695 		msg->reset_cause = *(__u8 *) data;
2696 		break;
2697 
2698 	default:
2699 		dev_err(hdev->dev,
2700 			"Send COMMS message - invalid message type %u\n",
2701 			msg_type);
2702 		rc = -EINVAL;
2703 		goto out;
2704 	}
2705 
2706 	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
2707 			sizeof(struct lkd_msg_comms));
2708 	if (rc)
2709 		goto out;
2710 
2711 	/* copy message to space allocated by FW */
2712 	rc = hl_fw_dynamic_copy_msg(hdev, msg, fw_loader);
2713 	if (rc)
2714 		goto out;
2715 
2716 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2717 						0, true,
2718 						fw_loader->cpu_timeout);
2719 	if (rc)
2720 		goto out;
2721 
2722 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2723 						0, true,
2724 						fw_loader->cpu_timeout);
2725 
2726 out:
2727 	kfree(msg);
2728 	return rc;
2729 }
2730 
2731 /**
2732  * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
2733  *
2734  * @hdev: pointer to the habanalabs device structure
2735  * @fw_loader: managing structure for loading device's FW
2736  *
2737  * @return 0 on success, otherwise non-zero error code
2738  *
2739  * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
2740  * the communication is done using registers:
2741  * - LKD command register
2742  * - FW status register
2743  * the protocol is race free. this goal is achieved by splitting the requests
2744  * and response to known synchronization points between the LKD and the FW.
2745  * each response to LKD request is known and bound to a predefined timeout.
2746  * in case of timeout expiration without the desired status from FW- the
2747  * protocol (and hence the boot) will fail.
2748  */
2749 static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
2750 					struct fw_load_mgr *fw_loader)
2751 {
2752 	struct cpu_dyn_regs *dyn_regs;
2753 	int rc, fw_error_rc;
2754 
2755 	dev_info(hdev->dev,
2756 		"Loading %sfirmware to device, may take some time...\n",
2757 		hdev->asic_prop.fw_security_enabled ? "secured " : "");
2758 
2759 	/* initialize FW descriptor as invalid */
2760 	fw_loader->dynamic_loader.fw_desc_valid = false;
2761 
2762 	/*
2763 	 * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
2764 	 * It will be updated from FW after hl_fw_dynamic_request_descriptor().
2765 	 */
2766 	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
2767 
2768 	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
2769 						0, true,
2770 						fw_loader->cpu_timeout);
2771 	if (rc)
2772 		goto protocol_err;
2773 
2774 	if (hdev->reset_info.curr_reset_cause) {
2775 		rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
2776 				HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
2777 		if (rc)
2778 			goto protocol_err;
2779 
2780 		/* Clear current reset cause */
2781 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
2782 	}
2783 
2784 	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, sizeof(struct lkd_msg_comms));
2785 	if (rc)
2786 		goto protocol_err;
2787 
2788 	if (hdev->asic_prop.support_dynamic_resereved_fw_size)
2789 		hdev->asic_prop.reserved_fw_mem_size =
2790 			le32_to_cpu(fw_loader->dynamic_loader.comm_desc.rsvd_mem_size_mb) * SZ_1M;
2791 
2792 	if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
2793 		struct lkd_fw_binning_info *binning_info;
2794 
2795 		/* read preboot version */
2796 		rc = hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
2797 				fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2798 		if (rc)
2799 			return rc;
2800 
2801 		/* read binning info from preboot */
2802 		if (hdev->support_preboot_binning) {
2803 			binning_info = &fw_loader->dynamic_loader.comm_desc.binning_info;
2804 			hdev->tpc_binning = le64_to_cpu(binning_info->tpc_mask_l);
2805 			hdev->dram_binning = le32_to_cpu(binning_info->dram_mask);
2806 			hdev->edma_binning = le32_to_cpu(binning_info->edma_mask);
2807 			hdev->decoder_binning = le32_to_cpu(binning_info->dec_mask);
2808 			hdev->rotator_binning = le32_to_cpu(binning_info->rot_mask);
2809 
2810 			rc = hdev->asic_funcs->set_dram_properties(hdev);
2811 			if (rc)
2812 				return rc;
2813 
2814 			rc = hdev->asic_funcs->set_binning_masks(hdev);
2815 			if (rc)
2816 				return rc;
2817 
2818 			dev_dbg(hdev->dev,
2819 				"Read binning masks: tpc: 0x%llx, dram: 0x%llx, edma: 0x%x, dec: 0x%x, rot:0x%x\n",
2820 				hdev->tpc_binning, hdev->dram_binning, hdev->edma_binning,
2821 				hdev->decoder_binning, hdev->rotator_binning);
2822 		}
2823 
2824 		return 0;
2825 	}
2826 
2827 	/* load boot fit to FW */
2828 	rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
2829 						fw_loader->boot_fit_timeout);
2830 	if (rc) {
2831 		dev_err(hdev->dev, "failed to load boot fit\n");
2832 		goto protocol_err;
2833 	}
2834 
2835 	rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
2836 	if (rc)
2837 		goto protocol_err;
2838 
2839 	hl_fw_boot_fit_update_state(hdev,
2840 			le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2841 			le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2842 
2843 	/*
2844 	 * when testing FW load (without Linux) on PLDM we don't want to
2845 	 * wait until boot fit is active as it may take several hours.
2846 	 * instead, we load the bootfit and let it do all initialization in
2847 	 * the background.
2848 	 */
2849 	if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
2850 		return 0;
2851 
2852 	/* Enable DRAM scrambling before Linux boot and after successful
2853 	 *  UBoot
2854 	 */
2855 	hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
2856 
2857 	if (!(hdev->fw_components & FW_TYPE_LINUX)) {
2858 		dev_dbg(hdev->dev, "Skip loading Linux F/W\n");
2859 		return 0;
2860 	}
2861 
2862 	if (fw_loader->skip_bmc) {
2863 		rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
2864 							COMMS_SKIP_BMC, 0,
2865 							true,
2866 							fw_loader->cpu_timeout);
2867 		if (rc) {
2868 			dev_err(hdev->dev, "failed to load boot fit\n");
2869 			goto protocol_err;
2870 		}
2871 	}
2872 
2873 	/* load Linux image to FW */
2874 	rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
2875 							fw_loader->cpu_timeout);
2876 	if (rc) {
2877 		dev_err(hdev->dev, "failed to load Linux\n");
2878 		goto protocol_err;
2879 	}
2880 
2881 	rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
2882 	if (rc)
2883 		goto protocol_err;
2884 
2885 	hl_fw_linux_update_state(hdev,
2886 				le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2887 				le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2888 
2889 	hl_fw_dynamic_update_linux_interrupt_if(hdev);
2890 
2891 protocol_err:
2892 	if (fw_loader->dynamic_loader.fw_desc_valid) {
2893 		fw_error_rc = fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
2894 				le32_to_cpu(dyn_regs->cpu_boot_err1),
2895 				le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2896 				le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2897 
2898 		if (fw_error_rc)
2899 			return fw_error_rc;
2900 	}
2901 
2902 	return rc;
2903 }
2904 
2905 /**
2906  * hl_fw_static_init_cpu - initialize the device CPU using static protocol
2907  *
2908  * @hdev: pointer to the habanalabs device structure
2909  * @fw_loader: managing structure for loading device's FW
2910  *
2911  * @return 0 on success, otherwise non-zero error code
2912  */
2913 static int hl_fw_static_init_cpu(struct hl_device *hdev,
2914 					struct fw_load_mgr *fw_loader)
2915 {
2916 	u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
2917 	u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
2918 	struct static_fw_load_mgr *static_loader;
2919 	u32 cpu_boot_status_reg;
2920 	int rc;
2921 
2922 	if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
2923 		return 0;
2924 
2925 	/* init common loader parameters */
2926 	cpu_timeout = fw_loader->cpu_timeout;
2927 
2928 	/* init static loader parameters */
2929 	static_loader = &fw_loader->static_loader;
2930 	cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
2931 	msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
2932 	cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
2933 	cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
2934 	cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
2935 
2936 	dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
2937 		cpu_timeout / USEC_PER_SEC);
2938 
2939 	/* Wait for boot FIT request */
2940 	rc = hl_poll_timeout(
2941 		hdev,
2942 		cpu_boot_status_reg,
2943 		status,
2944 		status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
2945 		hdev->fw_poll_interval_usec,
2946 		fw_loader->boot_fit_timeout);
2947 
2948 	if (rc) {
2949 		dev_dbg(hdev->dev,
2950 			"No boot fit request received (status = %d), resuming boot\n", status);
2951 	} else {
2952 		rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
2953 		if (rc)
2954 			goto out;
2955 
2956 		/* Clear device CPU message status */
2957 		WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
2958 
2959 		/* Signal device CPU that boot loader is ready */
2960 		WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
2961 
2962 		/* Poll for CPU device ack */
2963 		rc = hl_poll_timeout(
2964 			hdev,
2965 			cpu_msg_status_reg,
2966 			status,
2967 			status == CPU_MSG_OK,
2968 			hdev->fw_poll_interval_usec,
2969 			fw_loader->boot_fit_timeout);
2970 
2971 		if (rc) {
2972 			dev_err(hdev->dev,
2973 				"Timeout waiting for boot fit load ack (status = %d)\n", status);
2974 			goto out;
2975 		}
2976 
2977 		/* Clear message */
2978 		WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2979 	}
2980 
2981 	/*
2982 	 * Make sure CPU boot-loader is running
2983 	 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2984 	 * yet there is a debug scenario in which we loading uboot (without Linux)
2985 	 * which at later stage is relocated to DRAM. In this case we expect
2986 	 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2987 	 * poll flags
2988 	 */
2989 	rc = hl_poll_timeout(
2990 		hdev,
2991 		cpu_boot_status_reg,
2992 		status,
2993 		(status == CPU_BOOT_STATUS_DRAM_RDY) ||
2994 		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
2995 		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2996 		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2997 		hdev->fw_poll_interval_usec,
2998 		cpu_timeout);
2999 
3000 	dev_dbg(hdev->dev, "uboot status = %d\n", status);
3001 
3002 	/* Read U-Boot version now in case we will later fail */
3003 	hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
3004 
3005 	/* update state according to boot stage */
3006 	hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
3007 						cpu_boot_dev_status1_reg);
3008 
3009 	if (rc) {
3010 		detect_cpu_boot_status(hdev, status);
3011 		rc = -EIO;
3012 		goto out;
3013 	}
3014 
3015 	/* Enable DRAM scrambling before Linux boot and after successful
3016 	 *  UBoot
3017 	 */
3018 	hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
3019 
3020 	if (!(hdev->fw_components & FW_TYPE_LINUX)) {
3021 		dev_info(hdev->dev, "Skip loading Linux F/W\n");
3022 		rc = 0;
3023 		goto out;
3024 	}
3025 
3026 	if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
3027 		rc = 0;
3028 		goto out;
3029 	}
3030 
3031 	dev_info(hdev->dev,
3032 		"Loading firmware to device, may take some time...\n");
3033 
3034 	rc = hdev->asic_funcs->load_firmware_to_device(hdev);
3035 	if (rc)
3036 		goto out;
3037 
3038 	if (fw_loader->skip_bmc) {
3039 		WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
3040 
3041 		rc = hl_poll_timeout(
3042 			hdev,
3043 			cpu_boot_status_reg,
3044 			status,
3045 			(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
3046 			hdev->fw_poll_interval_usec,
3047 			cpu_timeout);
3048 
3049 		if (rc) {
3050 			dev_err(hdev->dev,
3051 				"Failed to get ACK on skipping BMC (status = %d)\n",
3052 				status);
3053 			WREG32(msg_to_cpu_reg, KMD_MSG_NA);
3054 			rc = -EIO;
3055 			goto out;
3056 		}
3057 	}
3058 
3059 	WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
3060 
3061 	rc = hl_poll_timeout(
3062 		hdev,
3063 		cpu_boot_status_reg,
3064 		status,
3065 		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
3066 		hdev->fw_poll_interval_usec,
3067 		cpu_timeout);
3068 
3069 	/* Clear message */
3070 	WREG32(msg_to_cpu_reg, KMD_MSG_NA);
3071 
3072 	if (rc) {
3073 		if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
3074 			dev_err(hdev->dev,
3075 				"Device reports FIT image is corrupted\n");
3076 		else
3077 			dev_err(hdev->dev,
3078 				"Failed to load firmware to device (status = %d)\n",
3079 				status);
3080 
3081 		rc = -EIO;
3082 		goto out;
3083 	}
3084 
3085 	rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
3086 					fw_loader->static_loader.boot_err1_reg,
3087 					cpu_boot_dev_status0_reg,
3088 					cpu_boot_dev_status1_reg);
3089 	if (rc)
3090 		return rc;
3091 
3092 	hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
3093 						cpu_boot_dev_status1_reg);
3094 
3095 	return 0;
3096 
3097 out:
3098 	fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
3099 					fw_loader->static_loader.boot_err1_reg,
3100 					cpu_boot_dev_status0_reg,
3101 					cpu_boot_dev_status1_reg);
3102 
3103 	return rc;
3104 }
3105 
3106 /**
3107  * hl_fw_init_cpu - initialize the device CPU
3108  *
3109  * @hdev: pointer to the habanalabs device structure
3110  *
3111  * @return 0 on success, otherwise non-zero error code
3112  *
3113  * perform necessary initializations for device's CPU. takes into account if
3114  * init protocol is static or dynamic.
3115  */
3116 int hl_fw_init_cpu(struct hl_device *hdev)
3117 {
3118 	struct asic_fixed_properties *prop = &hdev->asic_prop;
3119 	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
3120 
3121 	return  prop->dynamic_fw_load ?
3122 			hl_fw_dynamic_init_cpu(hdev, fw_loader) :
3123 			hl_fw_static_init_cpu(hdev, fw_loader);
3124 }
3125 
3126 void hl_fw_set_pll_profile(struct hl_device *hdev)
3127 {
3128 	hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
3129 				hdev->asic_prop.max_freq_value);
3130 }
3131 
3132 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
3133 {
3134 	long value;
3135 
3136 	if (!hl_device_operational(hdev, NULL))
3137 		return -ENODEV;
3138 
3139 	if (!hdev->pdev) {
3140 		*cur_clk = 0;
3141 		*max_clk = 0;
3142 		return 0;
3143 	}
3144 
3145 	value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
3146 
3147 	if (value < 0) {
3148 		dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
3149 		return value;
3150 	}
3151 
3152 	*max_clk = (value / 1000 / 1000);
3153 
3154 	value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
3155 
3156 	if (value < 0) {
3157 		dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
3158 		return value;
3159 	}
3160 
3161 	*cur_clk = (value / 1000 / 1000);
3162 
3163 	return 0;
3164 }
3165 
3166 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
3167 {
3168 	struct cpucp_packet pkt;
3169 	u32 used_pll_idx;
3170 	u64 result;
3171 	int rc;
3172 
3173 	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
3174 	if (rc)
3175 		return rc;
3176 
3177 	memset(&pkt, 0, sizeof(pkt));
3178 
3179 	if (curr)
3180 		pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
3181 						CPUCP_PKT_CTL_OPCODE_SHIFT);
3182 	else
3183 		pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3184 
3185 	pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
3186 
3187 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
3188 	if (rc) {
3189 		if (rc != -EAGAIN)
3190 			dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
3191 				used_pll_idx, rc);
3192 		return rc;
3193 	}
3194 
3195 	return (long) result;
3196 }
3197 
3198 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
3199 {
3200 	struct cpucp_packet pkt;
3201 	u32 used_pll_idx;
3202 	int rc;
3203 
3204 	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
3205 	if (rc)
3206 		return;
3207 
3208 	memset(&pkt, 0, sizeof(pkt));
3209 
3210 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3211 	pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
3212 	pkt.value = cpu_to_le64(freq);
3213 
3214 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
3215 	if (rc && rc != -EAGAIN)
3216 		dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
3217 			used_pll_idx, rc);
3218 }
3219 
3220 long hl_fw_get_max_power(struct hl_device *hdev)
3221 {
3222 	struct cpucp_packet pkt;
3223 	u64 result;
3224 	int rc;
3225 
3226 	memset(&pkt, 0, sizeof(pkt));
3227 
3228 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3229 
3230 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
3231 	if (rc) {
3232 		if (rc != -EAGAIN)
3233 			dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
3234 		return rc;
3235 	}
3236 
3237 	return result;
3238 }
3239 
3240 void hl_fw_set_max_power(struct hl_device *hdev)
3241 {
3242 	struct cpucp_packet pkt;
3243 	int rc;
3244 
3245 	/* TODO: remove this after simulator supports this packet */
3246 	if (!hdev->pdev)
3247 		return;
3248 
3249 	memset(&pkt, 0, sizeof(pkt));
3250 
3251 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3252 	pkt.value = cpu_to_le64(hdev->max_power);
3253 
3254 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
3255 	if (rc && rc != -EAGAIN)
3256 		dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
3257 }
3258 
3259 static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
3260 					u32 nonce, u32 timeout)
3261 {
3262 	struct cpucp_packet pkt = {};
3263 	dma_addr_t req_dma_addr;
3264 	void *req_cpu_addr;
3265 	int rc;
3266 
3267 	req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
3268 	if (!req_cpu_addr) {
3269 		dev_err(hdev->dev,
3270 			"Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
3271 		return -ENOMEM;
3272 	}
3273 
3274 	memset(data, 0, size);
3275 
3276 	pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
3277 	pkt.addr = cpu_to_le64(req_dma_addr);
3278 	pkt.data_max_size = cpu_to_le32(size);
3279 	pkt.nonce = cpu_to_le32(nonce);
3280 
3281 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), timeout, NULL);
3282 	if (rc) {
3283 		if (rc != -EAGAIN)
3284 			dev_err(hdev->dev,
3285 				"Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
3286 		goto out;
3287 	}
3288 
3289 	memcpy(data, req_cpu_addr, size);
3290 
3291 out:
3292 	hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
3293 
3294 	return rc;
3295 }
3296 
3297 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3298 				u32 nonce)
3299 {
3300 	return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
3301 					sizeof(struct cpucp_sec_attest_info), nonce,
3302 					HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
3303 }
3304 
3305 int hl_fw_get_dev_info_signed(struct hl_device *hdev,
3306 			      struct cpucp_dev_info_signed *dev_info_signed, u32 nonce)
3307 {
3308 	return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_INFO_SIGNED_GET, dev_info_signed,
3309 					 sizeof(struct cpucp_dev_info_signed), nonce,
3310 					 HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
3311 }
3312 
3313 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3314 						dma_addr_t buff, u32 *size)
3315 {
3316 	struct cpucp_packet pkt = {};
3317 	u64 result;
3318 	int rc = 0;
3319 
3320 	pkt.ctl = cpu_to_le32(CPUCP_PACKET_GENERIC_PASSTHROUGH << CPUCP_PKT_CTL_OPCODE_SHIFT);
3321 	pkt.addr = cpu_to_le64(buff);
3322 	pkt.data_max_size = cpu_to_le32(*size);
3323 	pkt.pkt_subidx = cpu_to_le32(sub_opcode);
3324 
3325 	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)&pkt, sizeof(pkt),
3326 						HL_CPUCP_INFO_TIMEOUT_USEC, &result);
3327 	if (rc) {
3328 		if (rc != -EAGAIN)
3329 			dev_err(hdev->dev, "failed to send CPUCP data of generic fw pkt\n");
3330 	} else {
3331 		dev_dbg(hdev->dev, "generic pkt was successful, result: 0x%llx\n", result);
3332 	}
3333 
3334 	*size = (u32)result;
3335 
3336 	return rc;
3337 }
3338