1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 #include <linux/habanalabs/hl_boot_if.h> 10 11 #include <linux/pci.h> 12 #include <linux/firmware.h> 13 #include <linux/crc32.h> 14 #include <linux/slab.h> 15 #include <linux/ctype.h> 16 #include <linux/vmalloc.h> 17 18 #include <trace/events/habanalabs.h> 19 20 #define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ 21 22 static char *comms_cmd_str_arr[COMMS_INVLD_LAST] = { 23 [COMMS_NOOP] = __stringify(COMMS_NOOP), 24 [COMMS_CLR_STS] = __stringify(COMMS_CLR_STS), 25 [COMMS_RST_STATE] = __stringify(COMMS_RST_STATE), 26 [COMMS_PREP_DESC] = __stringify(COMMS_PREP_DESC), 27 [COMMS_DATA_RDY] = __stringify(COMMS_DATA_RDY), 28 [COMMS_EXEC] = __stringify(COMMS_EXEC), 29 [COMMS_RST_DEV] = __stringify(COMMS_RST_DEV), 30 [COMMS_GOTO_WFE] = __stringify(COMMS_GOTO_WFE), 31 [COMMS_SKIP_BMC] = __stringify(COMMS_SKIP_BMC), 32 [COMMS_PREP_DESC_ELBI] = __stringify(COMMS_PREP_DESC_ELBI), 33 }; 34 35 static char *comms_sts_str_arr[COMMS_STS_INVLD_LAST] = { 36 [COMMS_STS_NOOP] = __stringify(COMMS_STS_NOOP), 37 [COMMS_STS_ACK] = __stringify(COMMS_STS_ACK), 38 [COMMS_STS_OK] = __stringify(COMMS_STS_OK), 39 [COMMS_STS_ERR] = __stringify(COMMS_STS_ERR), 40 [COMMS_STS_VALID_ERR] = __stringify(COMMS_STS_VALID_ERR), 41 [COMMS_STS_TIMEOUT_ERR] = __stringify(COMMS_STS_TIMEOUT_ERR), 42 }; 43 44 /** 45 * hl_fw_version_cmp() - compares the FW version to a specific version 46 * 47 * @hdev: pointer to hl_device structure 48 * @major: major number of a reference version 49 * @minor: minor number of a reference version 50 * @subminor: sub-minor number of a reference version 51 * 52 * Return 1 if FW version greater than the reference version, -1 if it's 53 * smaller and 0 if versions are identical. 54 */ 55 int hl_fw_version_cmp(struct hl_device *hdev, u32 major, u32 minor, u32 subminor) 56 { 57 if (hdev->fw_sw_major_ver != major) 58 return (hdev->fw_sw_major_ver > major) ? 1 : -1; 59 60 if (hdev->fw_sw_minor_ver != minor) 61 return (hdev->fw_sw_minor_ver > minor) ? 1 : -1; 62 63 if (hdev->fw_sw_sub_minor_ver != subminor) 64 return (hdev->fw_sw_sub_minor_ver > subminor) ? 1 : -1; 65 66 return 0; 67 } 68 69 static char *extract_fw_ver_from_str(const char *fw_str) 70 { 71 char *str, *fw_ver, *whitespace; 72 u32 ver_offset; 73 74 fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL); 75 if (!fw_ver) 76 return NULL; 77 78 str = strnstr(fw_str, "fw-", VERSION_MAX_LEN); 79 if (!str) 80 goto free_fw_ver; 81 82 /* Skip the fw- part */ 83 str += 3; 84 ver_offset = str - fw_str; 85 86 /* Copy until the next whitespace */ 87 whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset); 88 if (!whitespace) 89 goto free_fw_ver; 90 91 strscpy(fw_ver, str, whitespace - str + 1); 92 93 return fw_ver; 94 95 free_fw_ver: 96 kfree(fw_ver); 97 return NULL; 98 } 99 100 /** 101 * extract_u32_until_given_char() - given a string of the format "<u32><char>*", extract the u32. 102 * @str: the given string 103 * @ver_num: the pointer to the extracted u32 to be returned to the caller. 104 * @given_char: the given char at the end of the u32 in the string 105 * 106 * Return: Upon success, return a pointer to the given_char in the string. Upon failure, return NULL 107 */ 108 static char *extract_u32_until_given_char(char *str, u32 *ver_num, char given_char) 109 { 110 char num_str[8] = {}, *ch; 111 112 ch = strchrnul(str, given_char); 113 if (*ch == '\0' || ch == str || ch - str >= sizeof(num_str)) 114 return NULL; 115 116 memcpy(num_str, str, ch - str); 117 if (kstrtou32(num_str, 10, ver_num)) 118 return NULL; 119 return ch; 120 } 121 122 /** 123 * hl_get_sw_major_minor_subminor() - extract the FW's SW version major, minor, sub-minor 124 * from the version string 125 * @hdev: pointer to the hl_device 126 * @fw_str: the FW's version string 127 * 128 * The extracted version is set in the hdev fields: fw_sw_{major/minor/sub_minor}_ver. 129 * 130 * fw_str is expected to have one of two possible formats, examples: 131 * 1) 'Preboot version hl-gaudi2-1.9.0-fw-42.0.1-sec-3' 132 * 2) 'Preboot version hl-gaudi2-1.9.0-rc-fw-42.0.1-sec-3' 133 * In those examples, the SW major,minor,subminor are correspondingly: 1,9,0. 134 * 135 * Return: 0 for success or a negative error code for failure. 136 */ 137 static int hl_get_sw_major_minor_subminor(struct hl_device *hdev, const char *fw_str) 138 { 139 char *end, *start; 140 141 end = strnstr(fw_str, "-rc-", VERSION_MAX_LEN); 142 if (end == fw_str) 143 return -EINVAL; 144 145 if (!end) 146 end = strnstr(fw_str, "-fw-", VERSION_MAX_LEN); 147 148 if (end == fw_str) 149 return -EINVAL; 150 151 if (!end) 152 return -EINVAL; 153 154 for (start = end - 1; start != fw_str; start--) { 155 if (*start == '-') 156 break; 157 } 158 159 if (start == fw_str) 160 return -EINVAL; 161 162 /* start/end point each to the starting and ending hyphen of the sw version e.g. -1.9.0- */ 163 start++; 164 start = extract_u32_until_given_char(start, &hdev->fw_sw_major_ver, '.'); 165 if (!start) 166 goto err_zero_ver; 167 168 start++; 169 start = extract_u32_until_given_char(start, &hdev->fw_sw_minor_ver, '.'); 170 if (!start) 171 goto err_zero_ver; 172 173 start++; 174 start = extract_u32_until_given_char(start, &hdev->fw_sw_sub_minor_ver, '-'); 175 if (!start) 176 goto err_zero_ver; 177 178 return 0; 179 180 err_zero_ver: 181 hdev->fw_sw_major_ver = 0; 182 hdev->fw_sw_minor_ver = 0; 183 hdev->fw_sw_sub_minor_ver = 0; 184 return -EINVAL; 185 } 186 187 /** 188 * hl_get_preboot_major_minor() - extract the FW's version major, minor from the version string. 189 * @hdev: pointer to the hl_device 190 * @preboot_ver: the FW's version string 191 * 192 * preboot_ver is expected to be the format of <major>.<minor>.<sub minor>*, e.g: 42.0.1-sec-3 193 * The extracted version is set in the hdev fields: fw_inner_{major/minor}_ver. 194 * 195 * Return: 0 on success, negative error code for failure. 196 */ 197 static int hl_get_preboot_major_minor(struct hl_device *hdev, char *preboot_ver) 198 { 199 preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_major_ver, '.'); 200 if (!preboot_ver) { 201 dev_err(hdev->dev, "Error parsing preboot major version\n"); 202 goto err_zero_ver; 203 } 204 205 preboot_ver++; 206 207 preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_minor_ver, '.'); 208 if (!preboot_ver) { 209 dev_err(hdev->dev, "Error parsing preboot minor version\n"); 210 goto err_zero_ver; 211 } 212 return 0; 213 214 err_zero_ver: 215 hdev->fw_inner_major_ver = 0; 216 hdev->fw_inner_minor_ver = 0; 217 return -EINVAL; 218 } 219 220 static int hl_request_fw(struct hl_device *hdev, 221 const struct firmware **firmware_p, 222 const char *fw_name) 223 { 224 size_t fw_size; 225 int rc; 226 227 rc = request_firmware(firmware_p, fw_name, hdev->dev); 228 if (rc) { 229 dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n", 230 fw_name, rc); 231 goto out; 232 } 233 234 fw_size = (*firmware_p)->size; 235 if ((fw_size % 4) != 0) { 236 dev_err(hdev->dev, "Illegal %s firmware size %zu\n", 237 fw_name, fw_size); 238 rc = -EINVAL; 239 goto release_fw; 240 } 241 242 dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); 243 244 if (fw_size > FW_FILE_MAX_SIZE) { 245 dev_err(hdev->dev, 246 "FW file size %zu exceeds maximum of %u bytes\n", 247 fw_size, FW_FILE_MAX_SIZE); 248 rc = -EINVAL; 249 goto release_fw; 250 } 251 252 return 0; 253 254 release_fw: 255 release_firmware(*firmware_p); 256 out: 257 return rc; 258 } 259 260 /** 261 * hl_release_firmware() - release FW 262 * 263 * @fw: fw descriptor 264 * 265 * note: this inline function added to serve as a comprehensive mirror for the 266 * hl_request_fw function. 267 */ 268 static inline void hl_release_firmware(const struct firmware *fw) 269 { 270 release_firmware(fw); 271 } 272 273 /** 274 * hl_fw_copy_fw_to_device() - copy FW to device 275 * 276 * @hdev: pointer to hl_device structure. 277 * @fw: fw descriptor 278 * @dst: IO memory mapped address space to copy firmware to 279 * @src_offset: offset in src FW to copy from 280 * @size: amount of bytes to copy (0 to copy the whole binary) 281 * 282 * actual copy of FW binary data to device, shared by static and dynamic loaders 283 */ 284 static int hl_fw_copy_fw_to_device(struct hl_device *hdev, 285 const struct firmware *fw, void __iomem *dst, 286 u32 src_offset, u32 size) 287 { 288 const void *fw_data; 289 290 /* size 0 indicates to copy the whole file */ 291 if (!size) 292 size = fw->size; 293 294 if (src_offset + size > fw->size) { 295 dev_err(hdev->dev, 296 "size to copy(%u) and offset(%u) are invalid\n", 297 size, src_offset); 298 return -EINVAL; 299 } 300 301 fw_data = (const void *) fw->data; 302 303 memcpy_toio(dst, fw_data + src_offset, size); 304 return 0; 305 } 306 307 /** 308 * hl_fw_copy_msg_to_device() - copy message to device 309 * 310 * @hdev: pointer to hl_device structure. 311 * @msg: message 312 * @dst: IO memory mapped address space to copy firmware to 313 * @src_offset: offset in src message to copy from 314 * @size: amount of bytes to copy (0 to copy the whole binary) 315 * 316 * actual copy of message data to device. 317 */ 318 static int hl_fw_copy_msg_to_device(struct hl_device *hdev, 319 struct lkd_msg_comms *msg, void __iomem *dst, 320 u32 src_offset, u32 size) 321 { 322 void *msg_data; 323 324 /* size 0 indicates to copy the whole file */ 325 if (!size) 326 size = sizeof(struct lkd_msg_comms); 327 328 if (src_offset + size > sizeof(struct lkd_msg_comms)) { 329 dev_err(hdev->dev, 330 "size to copy(%u) and offset(%u) are invalid\n", 331 size, src_offset); 332 return -EINVAL; 333 } 334 335 msg_data = (void *) msg; 336 337 memcpy_toio(dst, msg_data + src_offset, size); 338 339 return 0; 340 } 341 342 /** 343 * hl_fw_load_fw_to_device() - Load F/W code to device's memory. 344 * 345 * @hdev: pointer to hl_device structure. 346 * @fw_name: the firmware image name 347 * @dst: IO memory mapped address space to copy firmware to 348 * @src_offset: offset in src FW to copy from 349 * @size: amount of bytes to copy (0 to copy the whole binary) 350 * 351 * Copy fw code from firmware file to device memory. 352 * 353 * Return: 0 on success, non-zero for failure. 354 */ 355 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, 356 void __iomem *dst, u32 src_offset, u32 size) 357 { 358 const struct firmware *fw; 359 int rc; 360 361 rc = hl_request_fw(hdev, &fw, fw_name); 362 if (rc) 363 return rc; 364 365 rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size); 366 367 hl_release_firmware(fw); 368 return rc; 369 } 370 371 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value) 372 { 373 struct cpucp_packet pkt = {}; 374 int rc; 375 376 pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT); 377 pkt.value = cpu_to_le64(value); 378 379 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); 380 if (rc) 381 dev_err(hdev->dev, "Failed to disable FW's PCI access\n"); 382 383 return rc; 384 } 385 386 /** 387 * hl_fw_send_cpu_message() - send CPU message to the device. 388 * 389 * @hdev: pointer to hl_device structure. 390 * @hw_queue_id: HW queue ID 391 * @msg: raw data of the message/packet 392 * @size: size of @msg in bytes 393 * @timeout_us: timeout in usec to wait for CPU reply on the message 394 * @result: return code reported by FW 395 * 396 * send message to the device CPU. 397 * 398 * Return: 0 on success, non-zero for failure. 399 * -ENOMEM: memory allocation failure 400 * -EAGAIN: CPU is disabled (try again when enabled) 401 * -ETIMEDOUT: timeout waiting for FW response 402 * -EIO: protocol error 403 */ 404 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, 405 u16 size, u32 timeout_us, u64 *result) 406 { 407 struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id]; 408 struct asic_fixed_properties *prop = &hdev->asic_prop; 409 u32 tmp, expected_ack_val, pi, opcode; 410 struct cpucp_packet *pkt; 411 dma_addr_t pkt_dma_addr; 412 struct hl_bd *sent_bd; 413 int rc = 0, fw_rc; 414 415 pkt = hl_cpu_accessible_dma_pool_alloc(hdev, size, &pkt_dma_addr); 416 if (!pkt) { 417 dev_err(hdev->dev, "Failed to allocate DMA memory for packet to CPU\n"); 418 return -ENOMEM; 419 } 420 421 memcpy(pkt, msg, size); 422 423 mutex_lock(&hdev->send_cpu_message_lock); 424 425 /* CPU-CP messages can be sent during soft-reset */ 426 if (hdev->disabled && !hdev->reset_info.in_compute_reset) 427 goto out; 428 429 if (hdev->device_cpu_disabled) { 430 rc = -EAGAIN; 431 goto out; 432 } 433 434 /* set fence to a non valid value */ 435 pkt->fence = cpu_to_le32(UINT_MAX); 436 pi = queue->pi; 437 438 /* 439 * The CPU queue is a synchronous queue with an effective depth of 440 * a single entry (although it is allocated with room for multiple 441 * entries). We lock on it using 'send_cpu_message_lock' which 442 * serializes accesses to the CPU queue. 443 * Which means that we don't need to lock the access to the entire H/W 444 * queues module when submitting a JOB to the CPU queue. 445 */ 446 hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), size, pkt_dma_addr); 447 448 if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) 449 expected_ack_val = queue->pi; 450 else 451 expected_ack_val = CPUCP_PACKET_FENCE_VAL; 452 453 rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp, 454 (tmp == expected_ack_val), 1000, 455 timeout_us, true); 456 457 hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); 458 459 if (rc == -ETIMEDOUT) { 460 /* If FW performed reset just before sending it a packet, we will get a timeout. 461 * This is expected behavior, hence no need for error message. 462 */ 463 if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset) { 464 dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n", 465 tmp); 466 } else { 467 struct hl_bd *bd = queue->kernel_address; 468 469 bd += hl_pi_2_offset(pi); 470 471 dev_err(hdev->dev, "Device CPU packet timeout (status = 0x%x)\n" 472 "Pkt info[%u]: dma_addr: 0x%llx, kernel_addr: %p, len:0x%x, ctl: 0x%x, ptr:0x%llx, dram_bd:%u\n", 473 tmp, pi, pkt_dma_addr, (void *)pkt, bd->len, bd->ctl, bd->ptr, 474 queue->dram_bd); 475 } 476 hdev->device_cpu_disabled = true; 477 goto out; 478 } 479 480 tmp = le32_to_cpu(pkt->ctl); 481 482 fw_rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT; 483 if (fw_rc) { 484 opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT; 485 486 if (!prop->supports_advanced_cpucp_rc) { 487 dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode); 488 rc = -EIO; 489 goto scrub_descriptor; 490 } 491 492 switch (fw_rc) { 493 case cpucp_packet_invalid: 494 dev_err(hdev->dev, 495 "CPU packet %d is not supported by F/W\n", opcode); 496 break; 497 case cpucp_packet_fault: 498 dev_err(hdev->dev, 499 "F/W failed processing CPU packet %d\n", opcode); 500 break; 501 case cpucp_packet_invalid_pkt: 502 dev_dbg(hdev->dev, 503 "CPU packet %d is not supported by F/W\n", opcode); 504 break; 505 case cpucp_packet_invalid_params: 506 dev_err(hdev->dev, 507 "F/W reports invalid parameters for CPU packet %d\n", opcode); 508 break; 509 510 default: 511 dev_err(hdev->dev, 512 "Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode); 513 } 514 515 /* propagate the return code from the f/w to the callers who want to check it */ 516 if (result) 517 *result = fw_rc; 518 519 rc = -EIO; 520 521 } else if (result) { 522 *result = le64_to_cpu(pkt->result); 523 } 524 525 scrub_descriptor: 526 /* Scrub previous buffer descriptor 'ctl' field which contains the 527 * previous PI value written during packet submission. 528 * We must do this or else F/W can read an old value upon queue wraparound. 529 */ 530 sent_bd = queue->kernel_address; 531 sent_bd += hl_pi_2_offset(pi); 532 sent_bd->ctl = cpu_to_le32(UINT_MAX); 533 534 out: 535 mutex_unlock(&hdev->send_cpu_message_lock); 536 537 hl_cpu_accessible_dma_pool_free(hdev, size, pkt); 538 539 return rc; 540 } 541 542 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type) 543 { 544 struct cpucp_packet pkt; 545 u64 result; 546 int rc; 547 548 memset(&pkt, 0, sizeof(pkt)); 549 550 pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << 551 CPUCP_PKT_CTL_OPCODE_SHIFT); 552 pkt.value = cpu_to_le64(event_type); 553 554 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 555 0, &result); 556 557 if (rc) 558 dev_err(hdev->dev, "failed to unmask event %d", event_type); 559 560 return rc; 561 } 562 563 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, 564 size_t irq_arr_size) 565 { 566 struct cpucp_unmask_irq_arr_packet *pkt; 567 size_t total_pkt_size; 568 u64 result; 569 int rc; 570 571 total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + 572 irq_arr_size; 573 574 /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ 575 total_pkt_size = (total_pkt_size + 0x7) & ~0x7; 576 577 /* total_pkt_size is casted to u16 later on */ 578 if (total_pkt_size > USHRT_MAX) { 579 dev_err(hdev->dev, "too many elements in IRQ array\n"); 580 return -EINVAL; 581 } 582 583 pkt = kzalloc(total_pkt_size, GFP_KERNEL); 584 if (!pkt) 585 return -ENOMEM; 586 587 pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0])); 588 memcpy(&pkt->irqs, irq_arr, irq_arr_size); 589 590 pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << 591 CPUCP_PKT_CTL_OPCODE_SHIFT); 592 593 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, 594 total_pkt_size, 0, &result); 595 596 if (rc) 597 dev_err(hdev->dev, "failed to unmask event array\n"); 598 599 kfree(pkt); 600 601 return rc; 602 } 603 604 int hl_fw_test_cpu_queue(struct hl_device *hdev) 605 { 606 struct cpucp_packet test_pkt = {}; 607 u64 result = 0; 608 int rc; 609 610 test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << 611 CPUCP_PKT_CTL_OPCODE_SHIFT); 612 test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); 613 614 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt, 615 sizeof(test_pkt), 0, &result); 616 617 if (!rc) { 618 if (result != CPUCP_PACKET_FENCE_VAL) 619 dev_err(hdev->dev, 620 "CPU queue test failed (%#08llx)\n", result); 621 } else { 622 dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc); 623 } 624 625 return rc; 626 } 627 628 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, 629 dma_addr_t *dma_handle) 630 { 631 u64 kernel_addr; 632 633 kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size); 634 635 *dma_handle = hdev->cpu_accessible_dma_address + 636 (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem); 637 638 return (void *) (uintptr_t) kernel_addr; 639 } 640 641 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, 642 void *vaddr) 643 { 644 gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr, 645 size); 646 } 647 648 int hl_fw_send_soft_reset(struct hl_device *hdev) 649 { 650 struct cpucp_packet pkt; 651 int rc; 652 653 memset(&pkt, 0, sizeof(pkt)); 654 pkt.ctl = cpu_to_le32(CPUCP_PACKET_SOFT_RESET << CPUCP_PKT_CTL_OPCODE_SHIFT); 655 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); 656 if (rc) 657 dev_err(hdev->dev, "failed to send soft-reset msg (err = %d)\n", rc); 658 659 return rc; 660 } 661 662 int hl_fw_send_device_activity(struct hl_device *hdev, bool open) 663 { 664 struct cpucp_packet pkt; 665 int rc; 666 667 memset(&pkt, 0, sizeof(pkt)); 668 pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); 669 pkt.value = cpu_to_le64(open); 670 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); 671 if (rc) 672 dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open); 673 674 return rc; 675 } 676 677 int hl_fw_send_heartbeat(struct hl_device *hdev) 678 { 679 struct cpucp_packet hb_pkt; 680 u64 result = 0; 681 int rc; 682 683 memset(&hb_pkt, 0, sizeof(hb_pkt)); 684 hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << CPUCP_PKT_CTL_OPCODE_SHIFT); 685 hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); 686 687 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, sizeof(hb_pkt), 0, &result); 688 689 if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) 690 return -EIO; 691 692 if (le32_to_cpu(hb_pkt.status_mask) & 693 CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) { 694 dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n"); 695 rc = -EIO; 696 } 697 698 hdev->heartbeat_debug_info.last_pq_heartbeat_ts = ktime_get_real_seconds(); 699 700 return rc; 701 } 702 703 static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, u32 sts_val) 704 { 705 bool err_exists = false; 706 707 if (!(err_val & CPU_BOOT_ERR0_ENABLED)) 708 return false; 709 710 if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) 711 dev_err(hdev->dev, "Device boot error - DRAM initialization failed\n"); 712 713 if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) 714 dev_err(hdev->dev, "Device boot error - FIT image corrupted\n"); 715 716 if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) 717 dev_err(hdev->dev, "Device boot error - Thermal Sensor initialization failed\n"); 718 719 if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) { 720 if (hdev->bmc_enable) { 721 dev_err(hdev->dev, "Device boot error - Skipped waiting for BMC\n"); 722 } else { 723 dev_info(hdev->dev, "Device boot message - Skipped waiting for BMC\n"); 724 /* This is an info so we don't want it to disable the 725 * device 726 */ 727 err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED; 728 } 729 } 730 731 if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) 732 dev_err(hdev->dev, "Device boot error - Serdes data from BMC not available\n"); 733 734 if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) 735 dev_err(hdev->dev, "Device boot error - NIC F/W initialization failed\n"); 736 737 if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) 738 dev_err(hdev->dev, "Device boot warning - security not ready\n"); 739 740 if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) 741 dev_err(hdev->dev, "Device boot error - security failure\n"); 742 743 if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) 744 dev_err(hdev->dev, "Device boot error - eFuse failure\n"); 745 746 if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) 747 dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n"); 748 749 if (err_val & CPU_BOOT_ERR0_PLL_FAIL) 750 dev_err(hdev->dev, "Device boot error - PLL failure\n"); 751 752 if (err_val & CPU_BOOT_ERR0_TMP_THRESH_INIT_FAIL) 753 dev_err(hdev->dev, "Device boot error - Failed to set threshold for temperature sensor\n"); 754 755 if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) { 756 /* Ignore this bit, don't prevent driver loading */ 757 dev_dbg(hdev->dev, "device unusable status is set\n"); 758 err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL; 759 } 760 761 if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) 762 dev_err(hdev->dev, "Device boot error - binning failure\n"); 763 764 if (sts_val & CPU_BOOT_DEV_STS0_ENABLED) 765 dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val); 766 767 if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) 768 dev_err(hdev->dev, "Device boot warning - Skipped DRAM initialization\n"); 769 770 if (err_val & CPU_BOOT_ERR_ENG_ARC_MEM_SCRUB_FAIL) 771 dev_err(hdev->dev, "Device boot error - ARC memory scrub failed\n"); 772 773 /* All warnings should go here in order not to reach the unknown error validation */ 774 if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) { 775 dev_err(hdev->dev, "Device boot error - EEPROM failure detected\n"); 776 err_exists = true; 777 } 778 779 if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) 780 dev_warn(hdev->dev, "Device boot warning - Failed to load preboot primary image\n"); 781 782 if (err_val & CPU_BOOT_ERR0_TPM_FAIL) 783 dev_warn(hdev->dev, "Device boot warning - TPM failure\n"); 784 785 if (err_val & CPU_BOOT_ERR_FATAL_MASK) 786 err_exists = true; 787 788 /* return error only if it's in the predefined mask */ 789 if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) & 790 lower_32_bits(hdev->boot_error_status_mask))) 791 return true; 792 793 return false; 794 } 795 796 /* placeholder for ERR1 as no errors defined there yet */ 797 static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val, 798 u32 sts_val) 799 { 800 /* 801 * keep this variable to preserve the logic of the function. 802 * this way it would require less modifications when error will be 803 * added to DEV_ERR1 804 */ 805 bool err_exists = false; 806 807 if (!(err_val & CPU_BOOT_ERR1_ENABLED)) 808 return false; 809 810 if (sts_val & CPU_BOOT_DEV_STS1_ENABLED) 811 dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val); 812 813 if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) { 814 dev_err(hdev->dev, 815 "Device boot error - unknown ERR1 error 0x%08x\n", 816 err_val); 817 err_exists = true; 818 } 819 820 /* return error only if it's in the predefined mask */ 821 if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) & 822 upper_32_bits(hdev->boot_error_status_mask))) 823 return true; 824 825 return false; 826 } 827 828 static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, 829 u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg, 830 u32 cpu_boot_dev_status1_reg) 831 { 832 u32 err_val, status_val; 833 bool err_exists = false; 834 835 /* Some of the firmware status codes are deprecated in newer f/w 836 * versions. In those versions, the errors are reported 837 * in different registers. Therefore, we need to check those 838 * registers and print the exact errors. Moreover, there 839 * may be multiple errors, so we need to report on each error 840 * separately. Some of the error codes might indicate a state 841 * that is not an error per-se, but it is an error in production 842 * environment 843 */ 844 err_val = RREG32(boot_err0_reg); 845 status_val = RREG32(cpu_boot_dev_status0_reg); 846 err_exists = fw_report_boot_dev0(hdev, err_val, status_val); 847 848 err_val = RREG32(boot_err1_reg); 849 status_val = RREG32(cpu_boot_dev_status1_reg); 850 err_exists |= fw_report_boot_dev1(hdev, err_val, status_val); 851 852 if (err_exists) 853 return -EIO; 854 855 return 0; 856 } 857 858 int hl_fw_cpucp_info_get(struct hl_device *hdev, 859 u32 sts_boot_dev_sts0_reg, 860 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 861 u32 boot_err1_reg) 862 { 863 struct asic_fixed_properties *prop = &hdev->asic_prop; 864 struct cpucp_packet pkt = {}; 865 dma_addr_t cpucp_info_dma_addr; 866 void *cpucp_info_cpu_addr; 867 char *kernel_ver; 868 u64 result; 869 int rc; 870 871 cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info), 872 &cpucp_info_dma_addr); 873 if (!cpucp_info_cpu_addr) { 874 dev_err(hdev->dev, 875 "Failed to allocate DMA memory for CPU-CP info packet\n"); 876 return -ENOMEM; 877 } 878 879 memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info)); 880 881 pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET << 882 CPUCP_PKT_CTL_OPCODE_SHIFT); 883 pkt.addr = cpu_to_le64(cpucp_info_dma_addr); 884 pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info)); 885 886 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 887 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 888 if (rc) { 889 dev_err(hdev->dev, 890 "Failed to handle CPU-CP info pkt, error %d\n", rc); 891 goto out; 892 } 893 894 rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, 895 sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg); 896 if (rc) { 897 dev_err(hdev->dev, "Errors in device boot\n"); 898 goto out; 899 } 900 901 memcpy(&prop->cpucp_info, cpucp_info_cpu_addr, 902 sizeof(prop->cpucp_info)); 903 904 rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors); 905 if (rc) { 906 dev_err(hdev->dev, 907 "Failed to build hwmon channel info, error %d\n", rc); 908 rc = -EFAULT; 909 goto out; 910 } 911 912 kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version); 913 if (kernel_ver) { 914 dev_info(hdev->dev, "Linux version %s", kernel_ver); 915 kfree(kernel_ver); 916 } 917 918 /* assume EQ code doesn't need to check eqe index */ 919 hdev->event_queue.check_eqe_index = false; 920 921 /* Read FW application security bits again */ 922 if (prop->fw_cpu_boot_dev_sts0_valid) { 923 prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg); 924 if (prop->fw_app_cpu_boot_dev_sts0 & 925 CPU_BOOT_DEV_STS0_EQ_INDEX_EN) 926 hdev->event_queue.check_eqe_index = true; 927 } 928 929 if (prop->fw_cpu_boot_dev_sts1_valid) 930 prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg); 931 932 out: 933 hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr); 934 935 return rc; 936 } 937 938 static int hl_fw_send_msi_info_msg(struct hl_device *hdev) 939 { 940 struct cpucp_array_data_packet *pkt; 941 size_t total_pkt_size, data_size; 942 u64 result = 0; 943 int rc; 944 945 /* skip sending this info for unsupported ASICs */ 946 if (!hdev->asic_funcs->get_msi_info) 947 return 0; 948 949 data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32); 950 total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size; 951 952 /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ 953 total_pkt_size = (total_pkt_size + 0x7) & ~0x7; 954 955 /* total_pkt_size is casted to u16 later on */ 956 if (total_pkt_size > USHRT_MAX) { 957 dev_err(hdev->dev, "CPUCP array data is too big\n"); 958 return -EINVAL; 959 } 960 961 pkt = kzalloc(total_pkt_size, GFP_KERNEL); 962 if (!pkt) 963 return -ENOMEM; 964 965 pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES); 966 967 memset((void *) &pkt->data, 0xFF, data_size); 968 hdev->asic_funcs->get_msi_info(pkt->data); 969 970 pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET << 971 CPUCP_PKT_CTL_OPCODE_SHIFT); 972 973 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt, 974 total_pkt_size, 0, &result); 975 976 /* 977 * in case packet result is invalid it means that FW does not support 978 * this feature and will use default/hard coded MSI values. no reason 979 * to stop the boot 980 */ 981 if (rc && result == cpucp_packet_invalid) 982 rc = 0; 983 984 if (rc) 985 dev_err(hdev->dev, "failed to send CPUCP array data\n"); 986 987 kfree(pkt); 988 989 return rc; 990 } 991 992 int hl_fw_cpucp_handshake(struct hl_device *hdev, 993 u32 sts_boot_dev_sts0_reg, 994 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, 995 u32 boot_err1_reg) 996 { 997 int rc; 998 999 rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg, 1000 sts_boot_dev_sts1_reg, boot_err0_reg, 1001 boot_err1_reg); 1002 if (rc) 1003 return rc; 1004 1005 return hl_fw_send_msi_info_msg(hdev); 1006 } 1007 1008 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) 1009 { 1010 struct cpucp_packet pkt = {}; 1011 void *eeprom_info_cpu_addr; 1012 dma_addr_t eeprom_info_dma_addr; 1013 u64 result; 1014 int rc; 1015 1016 eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size, 1017 &eeprom_info_dma_addr); 1018 if (!eeprom_info_cpu_addr) { 1019 dev_err(hdev->dev, 1020 "Failed to allocate DMA memory for CPU-CP EEPROM packet\n"); 1021 return -ENOMEM; 1022 } 1023 1024 memset(eeprom_info_cpu_addr, 0, max_size); 1025 1026 pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET << 1027 CPUCP_PKT_CTL_OPCODE_SHIFT); 1028 pkt.addr = cpu_to_le64(eeprom_info_dma_addr); 1029 pkt.data_max_size = cpu_to_le32(max_size); 1030 1031 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1032 HL_CPUCP_EEPROM_TIMEOUT_USEC, &result); 1033 if (rc) { 1034 if (rc != -EAGAIN) 1035 dev_err(hdev->dev, 1036 "Failed to handle CPU-CP EEPROM packet, error %d\n", rc); 1037 goto out; 1038 } 1039 1040 /* result contains the actual size */ 1041 memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size)); 1042 1043 out: 1044 hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr); 1045 1046 return rc; 1047 } 1048 1049 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data) 1050 { 1051 struct cpucp_monitor_dump *mon_dump_cpu_addr; 1052 dma_addr_t mon_dump_dma_addr; 1053 struct cpucp_packet pkt = {}; 1054 size_t data_size; 1055 __le32 *src_ptr; 1056 u32 *dst_ptr; 1057 u64 result; 1058 int i, rc; 1059 1060 data_size = sizeof(struct cpucp_monitor_dump); 1061 mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr); 1062 if (!mon_dump_cpu_addr) { 1063 dev_err(hdev->dev, 1064 "Failed to allocate DMA memory for CPU-CP monitor-dump packet\n"); 1065 return -ENOMEM; 1066 } 1067 1068 memset(mon_dump_cpu_addr, 0, data_size); 1069 1070 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); 1071 pkt.addr = cpu_to_le64(mon_dump_dma_addr); 1072 pkt.data_max_size = cpu_to_le32(data_size); 1073 1074 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1075 HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result); 1076 if (rc) { 1077 if (rc != -EAGAIN) 1078 dev_err(hdev->dev, 1079 "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc); 1080 goto out; 1081 } 1082 1083 /* result contains the actual size */ 1084 src_ptr = (__le32 *) mon_dump_cpu_addr; 1085 dst_ptr = data; 1086 for (i = 0; i < (data_size / sizeof(u32)); i++) { 1087 *dst_ptr = le32_to_cpu(*src_ptr); 1088 src_ptr++; 1089 dst_ptr++; 1090 } 1091 1092 out: 1093 hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr); 1094 1095 return rc; 1096 } 1097 1098 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, 1099 struct hl_info_pci_counters *counters) 1100 { 1101 struct cpucp_packet pkt = {}; 1102 u64 result; 1103 int rc; 1104 1105 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << 1106 CPUCP_PKT_CTL_OPCODE_SHIFT); 1107 1108 /* Fetch PCI rx counter */ 1109 pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx); 1110 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1111 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1112 if (rc) { 1113 if (rc != -EAGAIN) 1114 dev_err(hdev->dev, 1115 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); 1116 return rc; 1117 } 1118 counters->rx_throughput = result; 1119 1120 memset(&pkt, 0, sizeof(pkt)); 1121 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << 1122 CPUCP_PKT_CTL_OPCODE_SHIFT); 1123 1124 /* Fetch PCI tx counter */ 1125 pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx); 1126 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1127 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1128 if (rc) { 1129 if (rc != -EAGAIN) 1130 dev_err(hdev->dev, 1131 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); 1132 return rc; 1133 } 1134 counters->tx_throughput = result; 1135 1136 /* Fetch PCI replay counter */ 1137 memset(&pkt, 0, sizeof(pkt)); 1138 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET << 1139 CPUCP_PKT_CTL_OPCODE_SHIFT); 1140 1141 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1142 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1143 if (rc) { 1144 if (rc != -EAGAIN) 1145 dev_err(hdev->dev, 1146 "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); 1147 return rc; 1148 } 1149 counters->replay_cnt = (u32) result; 1150 1151 return rc; 1152 } 1153 1154 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy) 1155 { 1156 struct cpucp_packet pkt = {}; 1157 u64 result; 1158 int rc; 1159 1160 pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET << 1161 CPUCP_PKT_CTL_OPCODE_SHIFT); 1162 1163 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1164 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1165 if (rc) { 1166 if (rc != -EAGAIN) 1167 dev_err(hdev->dev, 1168 "Failed to handle CpuCP total energy pkt, error %d\n", rc); 1169 return rc; 1170 } 1171 1172 *total_energy = result; 1173 1174 return rc; 1175 } 1176 1177 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, 1178 enum pll_index *pll_index) 1179 { 1180 struct asic_fixed_properties *prop = &hdev->asic_prop; 1181 u8 pll_byte, pll_bit_off; 1182 bool dynamic_pll; 1183 int fw_pll_idx; 1184 1185 dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 & 1186 CPU_BOOT_DEV_STS0_DYN_PLL_EN); 1187 1188 if (!dynamic_pll) { 1189 /* 1190 * in case we are working with legacy FW (each asic has unique 1191 * PLL numbering) use the driver based index as they are 1192 * aligned with fw legacy numbering 1193 */ 1194 *pll_index = input_pll_index; 1195 return 0; 1196 } 1197 1198 /* retrieve a FW compatible PLL index based on 1199 * ASIC specific user request 1200 */ 1201 fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index); 1202 if (fw_pll_idx < 0) { 1203 dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n", 1204 input_pll_index, fw_pll_idx); 1205 return -EINVAL; 1206 } 1207 1208 /* PLL map is a u8 array */ 1209 pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3]; 1210 pll_bit_off = fw_pll_idx & 0x7; 1211 1212 if (!(pll_byte & BIT(pll_bit_off))) { 1213 dev_err(hdev->dev, "PLL index %d is not supported\n", 1214 fw_pll_idx); 1215 return -EINVAL; 1216 } 1217 1218 *pll_index = fw_pll_idx; 1219 1220 return 0; 1221 } 1222 1223 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index, 1224 u16 *pll_freq_arr) 1225 { 1226 struct cpucp_packet pkt; 1227 enum pll_index used_pll_idx; 1228 u64 result; 1229 int rc; 1230 1231 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); 1232 if (rc) 1233 return rc; 1234 1235 memset(&pkt, 0, sizeof(pkt)); 1236 1237 pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET << 1238 CPUCP_PKT_CTL_OPCODE_SHIFT); 1239 pkt.pll_type = __cpu_to_le16((u16)used_pll_idx); 1240 1241 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1242 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1243 if (rc) { 1244 if (rc != -EAGAIN) 1245 dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc); 1246 return rc; 1247 } 1248 1249 pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result); 1250 pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result); 1251 pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result); 1252 pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result); 1253 1254 return 0; 1255 } 1256 1257 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power) 1258 { 1259 struct cpucp_packet pkt; 1260 u64 result; 1261 int rc; 1262 1263 memset(&pkt, 0, sizeof(pkt)); 1264 1265 pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET << 1266 CPUCP_PKT_CTL_OPCODE_SHIFT); 1267 pkt.type = cpu_to_le16(CPUCP_POWER_INPUT); 1268 1269 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1270 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1271 if (rc) { 1272 if (rc != -EAGAIN) 1273 dev_err(hdev->dev, "Failed to read power, error %d\n", rc); 1274 return rc; 1275 } 1276 1277 *power = result; 1278 1279 return rc; 1280 } 1281 1282 int hl_fw_dram_replaced_row_get(struct hl_device *hdev, 1283 struct cpucp_hbm_row_info *info) 1284 { 1285 struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr; 1286 dma_addr_t cpucp_repl_rows_info_dma_addr; 1287 struct cpucp_packet pkt = {}; 1288 u64 result; 1289 int rc; 1290 1291 cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, 1292 sizeof(struct cpucp_hbm_row_info), 1293 &cpucp_repl_rows_info_dma_addr); 1294 if (!cpucp_repl_rows_info_cpu_addr) { 1295 dev_err(hdev->dev, 1296 "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n"); 1297 return -ENOMEM; 1298 } 1299 1300 memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info)); 1301 1302 pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET << 1303 CPUCP_PKT_CTL_OPCODE_SHIFT); 1304 pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr); 1305 pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info)); 1306 1307 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1308 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 1309 if (rc) { 1310 if (rc != -EAGAIN) 1311 dev_err(hdev->dev, 1312 "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc); 1313 goto out; 1314 } 1315 1316 memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info)); 1317 1318 out: 1319 hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info), 1320 cpucp_repl_rows_info_cpu_addr); 1321 1322 return rc; 1323 } 1324 1325 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num) 1326 { 1327 struct cpucp_packet pkt; 1328 u64 result; 1329 int rc; 1330 1331 memset(&pkt, 0, sizeof(pkt)); 1332 1333 pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT); 1334 1335 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); 1336 if (rc) { 1337 if (rc != -EAGAIN) 1338 dev_err(hdev->dev, 1339 "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc); 1340 goto out; 1341 } 1342 1343 *pend_rows_num = (u32) result; 1344 out: 1345 return rc; 1346 } 1347 1348 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid) 1349 { 1350 struct cpucp_packet pkt; 1351 int rc; 1352 1353 memset(&pkt, 0, sizeof(pkt)); 1354 1355 pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); 1356 pkt.value = cpu_to_le64(asid); 1357 1358 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 1359 HL_CPUCP_INFO_TIMEOUT_USEC, NULL); 1360 if (rc) 1361 dev_err(hdev->dev, 1362 "Failed on ASID configuration request for engine core, error %d\n", 1363 rc); 1364 1365 return rc; 1366 } 1367 1368 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev) 1369 { 1370 struct static_fw_load_mgr *static_loader = 1371 &hdev->fw_loader.static_loader; 1372 int rc; 1373 1374 if (hdev->asic_prop.dynamic_fw_load) { 1375 rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, 1376 COMMS_RST_DEV, 0, false, 1377 hdev->fw_loader.cpu_timeout); 1378 if (rc) 1379 dev_err(hdev->dev, "Failed sending COMMS_RST_DEV\n"); 1380 } else { 1381 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV); 1382 } 1383 } 1384 1385 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev) 1386 { 1387 struct fw_load_mgr *fw_loader = &hdev->fw_loader; 1388 u32 status, cpu_boot_status_reg, cpu_timeout; 1389 struct static_fw_load_mgr *static_loader; 1390 struct pre_fw_load_props *pre_fw_load; 1391 int rc; 1392 1393 if (hdev->device_cpu_is_halted) 1394 return; 1395 1396 /* Stop device CPU to make sure nothing bad happens */ 1397 if (hdev->asic_prop.dynamic_fw_load) { 1398 pre_fw_load = &fw_loader->pre_fw_load; 1399 cpu_timeout = fw_loader->cpu_timeout; 1400 cpu_boot_status_reg = pre_fw_load->cpu_boot_status_reg; 1401 1402 rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, 1403 COMMS_GOTO_WFE, 0, false, cpu_timeout); 1404 if (rc) { 1405 dev_err(hdev->dev, "Failed sending COMMS_GOTO_WFE\n"); 1406 } else { 1407 rc = hl_poll_timeout( 1408 hdev, 1409 cpu_boot_status_reg, 1410 status, 1411 status == CPU_BOOT_STATUS_IN_WFE, 1412 hdev->fw_poll_interval_usec, 1413 cpu_timeout); 1414 if (rc) 1415 dev_err(hdev->dev, "Current status=%u. Timed-out updating to WFE\n", 1416 status); 1417 } 1418 } else { 1419 static_loader = &hdev->fw_loader.static_loader; 1420 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE); 1421 msleep(static_loader->cpu_reset_wait_msec); 1422 1423 /* Must clear this register in order to prevent preboot 1424 * from reading WFE after reboot 1425 */ 1426 WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA); 1427 } 1428 1429 hdev->device_cpu_is_halted = true; 1430 } 1431 1432 static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) 1433 { 1434 /* Some of the status codes below are deprecated in newer f/w 1435 * versions but we keep them here for backward compatibility 1436 */ 1437 switch (status) { 1438 case CPU_BOOT_STATUS_NA: 1439 dev_err(hdev->dev, 1440 "Device boot progress - BTL/ROM did NOT run\n"); 1441 break; 1442 case CPU_BOOT_STATUS_IN_WFE: 1443 dev_err(hdev->dev, 1444 "Device boot progress - Stuck inside WFE loop\n"); 1445 break; 1446 case CPU_BOOT_STATUS_IN_BTL: 1447 dev_err(hdev->dev, 1448 "Device boot progress - Stuck in BTL\n"); 1449 break; 1450 case CPU_BOOT_STATUS_IN_PREBOOT: 1451 dev_err(hdev->dev, 1452 "Device boot progress - Stuck in Preboot\n"); 1453 break; 1454 case CPU_BOOT_STATUS_IN_SPL: 1455 dev_err(hdev->dev, 1456 "Device boot progress - Stuck in SPL\n"); 1457 break; 1458 case CPU_BOOT_STATUS_IN_UBOOT: 1459 dev_err(hdev->dev, 1460 "Device boot progress - Stuck in u-boot\n"); 1461 break; 1462 case CPU_BOOT_STATUS_DRAM_INIT_FAIL: 1463 dev_err(hdev->dev, 1464 "Device boot progress - DRAM initialization failed\n"); 1465 break; 1466 case CPU_BOOT_STATUS_UBOOT_NOT_READY: 1467 dev_err(hdev->dev, 1468 "Device boot progress - Cannot boot\n"); 1469 break; 1470 case CPU_BOOT_STATUS_TS_INIT_FAIL: 1471 dev_err(hdev->dev, 1472 "Device boot progress - Thermal Sensor initialization failed\n"); 1473 break; 1474 case CPU_BOOT_STATUS_SECURITY_READY: 1475 dev_err(hdev->dev, 1476 "Device boot progress - Stuck in preboot after security initialization\n"); 1477 break; 1478 case CPU_BOOT_STATUS_FW_SHUTDOWN_PREP: 1479 dev_err(hdev->dev, 1480 "Device boot progress - Stuck in preparation for shutdown\n"); 1481 break; 1482 default: 1483 dev_err(hdev->dev, 1484 "Device boot progress - Invalid or unexpected status code %d\n", status); 1485 break; 1486 } 1487 } 1488 1489 int hl_fw_wait_preboot_ready(struct hl_device *hdev) 1490 { 1491 struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load; 1492 u32 status = 0, timeout; 1493 int rc, tries = 1, fw_err = 0; 1494 bool preboot_still_runs; 1495 1496 /* Need to check two possible scenarios: 1497 * 1498 * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where 1499 * the preboot is waiting for the boot fit 1500 * 1501 * All other status values - for older firmwares where the uboot was 1502 * loaded from the FLASH 1503 */ 1504 timeout = pre_fw_load->wait_for_preboot_timeout; 1505 retry: 1506 rc = hl_poll_timeout( 1507 hdev, 1508 pre_fw_load->cpu_boot_status_reg, 1509 status, 1510 (status == CPU_BOOT_STATUS_NIC_FW_RDY) || 1511 (status == CPU_BOOT_STATUS_READY_TO_BOOT) || 1512 (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), 1513 hdev->fw_poll_interval_usec, 1514 timeout); 1515 /* 1516 * if F/W reports "security-ready" it means preboot might take longer. 1517 * If the field 'wait_for_preboot_extended_timeout' is non 0 we wait again 1518 * with that timeout 1519 */ 1520 preboot_still_runs = (status == CPU_BOOT_STATUS_SECURITY_READY || 1521 status == CPU_BOOT_STATUS_IN_PREBOOT || 1522 status == CPU_BOOT_STATUS_FW_SHUTDOWN_PREP || 1523 status == CPU_BOOT_STATUS_DRAM_RDY); 1524 1525 if (rc && tries && preboot_still_runs) { 1526 tries--; 1527 if (pre_fw_load->wait_for_preboot_extended_timeout) { 1528 timeout = pre_fw_load->wait_for_preboot_extended_timeout; 1529 goto retry; 1530 } 1531 } 1532 1533 /* If we read all FF, then something is totally wrong, no point 1534 * of reading specific errors 1535 */ 1536 if (status != -1) 1537 fw_err = fw_read_errors(hdev, pre_fw_load->boot_err0_reg, 1538 pre_fw_load->boot_err1_reg, 1539 pre_fw_load->sts_boot_dev_sts0_reg, 1540 pre_fw_load->sts_boot_dev_sts1_reg); 1541 if (rc || fw_err) { 1542 detect_cpu_boot_status(hdev, status); 1543 dev_err(hdev->dev, "CPU boot %s (status = %d)\n", 1544 fw_err ? "failed due to an error" : "ready timeout", status); 1545 return -EIO; 1546 } 1547 1548 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU; 1549 1550 return 0; 1551 } 1552 1553 static int hl_fw_read_preboot_caps(struct hl_device *hdev) 1554 { 1555 struct pre_fw_load_props *pre_fw_load; 1556 struct asic_fixed_properties *prop; 1557 u32 reg_val; 1558 int rc; 1559 1560 prop = &hdev->asic_prop; 1561 pre_fw_load = &hdev->fw_loader.pre_fw_load; 1562 1563 rc = hl_fw_wait_preboot_ready(hdev); 1564 if (rc) 1565 return rc; 1566 1567 /* 1568 * the registers DEV_STS* contain FW capabilities/features. 1569 * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED 1570 * is set. 1571 * In the first read of this register we store the value of this 1572 * register ONLY if the register is enabled (which will be propagated 1573 * to next stages) and also mark the register as valid. 1574 * In case it is not enabled the stored value will be left 0- all 1575 * caps/features are off 1576 */ 1577 reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg); 1578 if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) { 1579 prop->fw_cpu_boot_dev_sts0_valid = true; 1580 prop->fw_preboot_cpu_boot_dev_sts0 = reg_val; 1581 } 1582 1583 reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg); 1584 if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) { 1585 prop->fw_cpu_boot_dev_sts1_valid = true; 1586 prop->fw_preboot_cpu_boot_dev_sts1 = reg_val; 1587 } 1588 1589 prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 & 1590 CPU_BOOT_DEV_STS0_FW_LD_COM_EN); 1591 1592 /* initialize FW loader once we know what load protocol is used */ 1593 hdev->asic_funcs->init_firmware_loader(hdev); 1594 1595 dev_dbg(hdev->dev, "Attempting %s FW load\n", 1596 prop->dynamic_fw_load ? "dynamic" : "legacy"); 1597 return 0; 1598 } 1599 1600 static int hl_fw_static_read_device_fw_version(struct hl_device *hdev, 1601 enum hl_fw_component fwc) 1602 { 1603 struct asic_fixed_properties *prop = &hdev->asic_prop; 1604 struct fw_load_mgr *fw_loader = &hdev->fw_loader; 1605 struct static_fw_load_mgr *static_loader; 1606 char *dest, *boot_ver, *preboot_ver; 1607 u32 ver_off, limit; 1608 const char *name; 1609 char btl_ver[32]; 1610 1611 static_loader = &hdev->fw_loader.static_loader; 1612 1613 switch (fwc) { 1614 case FW_COMP_BOOT_FIT: 1615 ver_off = RREG32(static_loader->boot_fit_version_offset_reg); 1616 dest = prop->uboot_ver; 1617 name = "Boot-fit"; 1618 limit = static_loader->boot_fit_version_max_off; 1619 break; 1620 case FW_COMP_PREBOOT: 1621 ver_off = RREG32(static_loader->preboot_version_offset_reg); 1622 dest = prop->preboot_ver; 1623 name = "Preboot"; 1624 limit = static_loader->preboot_version_max_off; 1625 break; 1626 default: 1627 dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); 1628 return -EIO; 1629 } 1630 1631 ver_off &= static_loader->sram_offset_mask; 1632 1633 if (ver_off < limit) { 1634 memcpy_fromio(dest, 1635 hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off, 1636 VERSION_MAX_LEN); 1637 } else { 1638 dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n", 1639 name, ver_off); 1640 strscpy(dest, "unavailable", VERSION_MAX_LEN); 1641 return -EIO; 1642 } 1643 1644 if (fwc == FW_COMP_BOOT_FIT) { 1645 boot_ver = extract_fw_ver_from_str(prop->uboot_ver); 1646 if (boot_ver) { 1647 dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); 1648 kfree(boot_ver); 1649 } 1650 } else if (fwc == FW_COMP_PREBOOT) { 1651 preboot_ver = strnstr(prop->preboot_ver, "Preboot", 1652 VERSION_MAX_LEN); 1653 if (preboot_ver && preboot_ver != prop->preboot_ver) { 1654 strscpy(btl_ver, prop->preboot_ver, 1655 min((int) (preboot_ver - prop->preboot_ver), 1656 31)); 1657 dev_info(hdev->dev, "%s\n", btl_ver); 1658 } 1659 1660 preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); 1661 if (preboot_ver) { 1662 dev_info(hdev->dev, "preboot version %s\n", 1663 preboot_ver); 1664 kfree(preboot_ver); 1665 } 1666 } 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * hl_fw_preboot_update_state - update internal data structures during 1673 * handshake with preboot 1674 * 1675 * 1676 * @hdev: pointer to the habanalabs device structure 1677 * 1678 * @return 0 on success, otherwise non-zero error code 1679 */ 1680 static void hl_fw_preboot_update_state(struct hl_device *hdev) 1681 { 1682 struct asic_fixed_properties *prop = &hdev->asic_prop; 1683 u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1; 1684 1685 cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0; 1686 cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1; 1687 1688 /* We read boot_dev_sts registers multiple times during boot: 1689 * 1. preboot - a. Check whether the security status bits are valid 1690 * b. Check whether fw security is enabled 1691 * c. Check whether hard reset is done by preboot 1692 * 2. boot cpu - a. Fetch boot cpu security status 1693 * b. Check whether hard reset is done by boot cpu 1694 * 3. FW application - a. Fetch fw application security status 1695 * b. Check whether hard reset is done by fw app 1696 */ 1697 prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); 1698 1699 prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN); 1700 1701 dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n", 1702 cpu_boot_dev_sts0); 1703 1704 dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n", 1705 cpu_boot_dev_sts1); 1706 1707 dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", 1708 prop->hard_reset_done_by_fw ? "enabled" : "disabled"); 1709 1710 dev_dbg(hdev->dev, "firmware-level security is %s\n", 1711 prop->fw_security_enabled ? "enabled" : "disabled"); 1712 1713 dev_dbg(hdev->dev, "GIC controller is %s\n", 1714 prop->gic_interrupts_enable ? "enabled" : "disabled"); 1715 } 1716 1717 static int hl_fw_static_read_preboot_status(struct hl_device *hdev) 1718 { 1719 int rc; 1720 1721 rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT); 1722 if (rc) 1723 return rc; 1724 1725 return 0; 1726 } 1727 1728 int hl_fw_read_preboot_status(struct hl_device *hdev) 1729 { 1730 int rc; 1731 1732 if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU)) 1733 return 0; 1734 1735 /* get FW pre-load parameters */ 1736 hdev->asic_funcs->init_firmware_preload_params(hdev); 1737 1738 /* 1739 * In order to determine boot method (static VS dynamic) we need to 1740 * read the boot caps register 1741 */ 1742 rc = hl_fw_read_preboot_caps(hdev); 1743 if (rc) 1744 return rc; 1745 1746 hl_fw_preboot_update_state(hdev); 1747 1748 /* no need to read preboot status in dynamic load */ 1749 if (hdev->asic_prop.dynamic_fw_load) 1750 return 0; 1751 1752 return hl_fw_static_read_preboot_status(hdev); 1753 } 1754 1755 /* associate string with COMM status */ 1756 static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = { 1757 [COMMS_STS_NOOP] = "NOOP", 1758 [COMMS_STS_ACK] = "ACK", 1759 [COMMS_STS_OK] = "OK", 1760 [COMMS_STS_ERR] = "ERR", 1761 [COMMS_STS_VALID_ERR] = "VALID_ERR", 1762 [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR", 1763 }; 1764 1765 /** 1766 * hl_fw_dynamic_report_error_status - report error status 1767 * 1768 * @hdev: pointer to the habanalabs device structure 1769 * @status: value of FW status register 1770 * @expected_status: the expected status 1771 */ 1772 static void hl_fw_dynamic_report_error_status(struct hl_device *hdev, 1773 u32 status, 1774 enum comms_sts expected_status) 1775 { 1776 enum comms_sts comm_status = 1777 FIELD_GET(COMMS_STATUS_STATUS_MASK, status); 1778 1779 if (comm_status < COMMS_STS_INVLD_LAST) 1780 dev_err(hdev->dev, "Device status %s, expected status: %s\n", 1781 hl_dynamic_fw_status_str[comm_status], 1782 hl_dynamic_fw_status_str[expected_status]); 1783 else 1784 dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n", 1785 comm_status, 1786 hl_dynamic_fw_status_str[expected_status]); 1787 } 1788 1789 /** 1790 * hl_fw_dynamic_send_cmd - send LKD to FW cmd 1791 * 1792 * @hdev: pointer to the habanalabs device structure 1793 * @fw_loader: managing structure for loading device's FW 1794 * @cmd: LKD to FW cmd code 1795 * @size: size of next FW component to be loaded (0 if not necessary) 1796 * 1797 * LDK to FW exact command layout is defined at struct comms_command. 1798 * note: the size argument is used only when the next FW component should be 1799 * loaded, otherwise it shall be 0. the size is used by the FW in later 1800 * protocol stages and when sending only indicating the amount of memory 1801 * to be allocated by the FW to receive the next boot component. 1802 */ 1803 static void hl_fw_dynamic_send_cmd(struct hl_device *hdev, 1804 struct fw_load_mgr *fw_loader, 1805 enum comms_cmd cmd, unsigned int size) 1806 { 1807 struct cpu_dyn_regs *dyn_regs; 1808 u32 val; 1809 1810 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; 1811 1812 val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd); 1813 val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size); 1814 1815 trace_habanalabs_comms_send_cmd(&hdev->pdev->dev, comms_cmd_str_arr[cmd]); 1816 WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val); 1817 } 1818 1819 /** 1820 * hl_fw_dynamic_extract_fw_response - update the FW response 1821 * 1822 * @hdev: pointer to the habanalabs device structure 1823 * @fw_loader: managing structure for loading device's FW 1824 * @response: FW response 1825 * @status: the status read from CPU status register 1826 * 1827 * @return 0 on success, otherwise non-zero error code 1828 */ 1829 static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev, 1830 struct fw_load_mgr *fw_loader, 1831 struct fw_response *response, 1832 u32 status) 1833 { 1834 response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status); 1835 response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) << 1836 COMMS_STATUS_OFFSET_ALIGN_SHIFT; 1837 response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status); 1838 1839 if ((response->ram_type != COMMS_SRAM) && 1840 (response->ram_type != COMMS_DRAM)) { 1841 dev_err(hdev->dev, "FW status: invalid RAM type %u\n", 1842 response->ram_type); 1843 return -EIO; 1844 } 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load 1851 * 1852 * @hdev: pointer to the habanalabs device structure 1853 * @fw_loader: managing structure for loading device's FW 1854 * @expected_status: expected status to wait for 1855 * @timeout: timeout for status wait 1856 * 1857 * @return 0 on success, otherwise non-zero error code 1858 * 1859 * waiting for status from FW include polling the FW status register until 1860 * expected status is received or timeout occurs (whatever occurs first). 1861 */ 1862 static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev, 1863 struct fw_load_mgr *fw_loader, 1864 enum comms_sts expected_status, 1865 u32 timeout) 1866 { 1867 struct cpu_dyn_regs *dyn_regs; 1868 u32 status; 1869 int rc; 1870 1871 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; 1872 1873 trace_habanalabs_comms_wait_status(&hdev->pdev->dev, comms_sts_str_arr[expected_status]); 1874 1875 /* Wait for expected status */ 1876 rc = hl_poll_timeout( 1877 hdev, 1878 le32_to_cpu(dyn_regs->cpu_cmd_status_to_host), 1879 status, 1880 FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status, 1881 hdev->fw_comms_poll_interval_usec, 1882 timeout); 1883 1884 if (rc) { 1885 hl_fw_dynamic_report_error_status(hdev, status, 1886 expected_status); 1887 return -EIO; 1888 } 1889 1890 trace_habanalabs_comms_wait_status_done(&hdev->pdev->dev, 1891 comms_sts_str_arr[expected_status]); 1892 1893 /* 1894 * skip storing FW response for NOOP to preserve the actual desired 1895 * FW status 1896 */ 1897 if (expected_status == COMMS_STS_NOOP) 1898 return 0; 1899 1900 rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader, 1901 &fw_loader->dynamic_loader.response, 1902 status); 1903 return rc; 1904 } 1905 1906 /** 1907 * hl_fw_dynamic_send_clear_cmd - send clear command to FW 1908 * 1909 * @hdev: pointer to the habanalabs device structure 1910 * @fw_loader: managing structure for loading device's FW 1911 * 1912 * @return 0 on success, otherwise non-zero error code 1913 * 1914 * after command cycle between LKD to FW CPU (i.e. LKD got an expected status 1915 * from FW) we need to clear the CPU status register in order to avoid garbage 1916 * between command cycles. 1917 * This is done by sending clear command and polling the CPU to LKD status 1918 * register to hold the status NOOP 1919 */ 1920 static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev, 1921 struct fw_load_mgr *fw_loader) 1922 { 1923 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0); 1924 1925 return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP, 1926 fw_loader->cpu_timeout); 1927 } 1928 1929 /** 1930 * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK 1931 * 1932 * @hdev: pointer to the habanalabs device structure 1933 * @fw_loader: managing structure for loading device's FW 1934 * @cmd: LKD to FW cmd code 1935 * @size: size of next FW component to be loaded (0 if not necessary) 1936 * @wait_ok: if true also wait for OK response from FW 1937 * @timeout: timeout for status wait 1938 * 1939 * @return 0 on success, otherwise non-zero error code 1940 * 1941 * brief: 1942 * when sending protocol command we have the following steps: 1943 * - send clear (clear command and verify clear status register) 1944 * - send the actual protocol command 1945 * - wait for ACK on the protocol command 1946 * - send clear 1947 * - send NOOP 1948 * if, in addition, the specific protocol command should wait for OK then: 1949 * - wait for OK 1950 * - send clear 1951 * - send NOOP 1952 * 1953 * NOTES: 1954 * send clear: this is necessary in order to clear the status register to avoid 1955 * leftovers between command 1956 * NOOP command: necessary to avoid loop on the clear command by the FW 1957 */ 1958 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, 1959 struct fw_load_mgr *fw_loader, 1960 enum comms_cmd cmd, unsigned int size, 1961 bool wait_ok, u32 timeout) 1962 { 1963 int rc; 1964 1965 trace_habanalabs_comms_protocol_cmd(&hdev->pdev->dev, comms_cmd_str_arr[cmd]); 1966 1967 /* first send clear command to clean former commands */ 1968 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); 1969 if (rc) 1970 return rc; 1971 1972 /* send the actual command */ 1973 hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size); 1974 1975 /* wait for ACK for the command */ 1976 rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK, 1977 timeout); 1978 if (rc) 1979 return rc; 1980 1981 /* clear command to prepare for NOOP command */ 1982 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); 1983 if (rc) 1984 return rc; 1985 1986 /* send the actual NOOP command */ 1987 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); 1988 1989 if (!wait_ok) 1990 return 0; 1991 1992 rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK, 1993 timeout); 1994 if (rc) 1995 return rc; 1996 1997 /* clear command to prepare for NOOP command */ 1998 rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); 1999 if (rc) 2000 return rc; 2001 2002 /* send the actual NOOP command */ 2003 hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); 2004 2005 return 0; 2006 } 2007 2008 /** 2009 * hl_fw_compat_crc32 - CRC compatible with FW 2010 * 2011 * @data: pointer to the data 2012 * @size: size of the data 2013 * 2014 * @return the CRC32 result 2015 * 2016 * NOTE: kernel's CRC32 differs from standard CRC32 calculation. 2017 * in order to be aligned we need to flip the bits of both the input 2018 * initial CRC and kernel's CRC32 result. 2019 * in addition both sides use initial CRC of 0, 2020 */ 2021 static u32 hl_fw_compat_crc32(u8 *data, size_t size) 2022 { 2023 return ~crc32_le(~((u32)0), data, size); 2024 } 2025 2026 /** 2027 * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory 2028 * transfer (image or descriptor) between 2029 * host and FW 2030 * 2031 * @hdev: pointer to the habanalabs device structure 2032 * @addr: device address of memory transfer 2033 * @size: memory transfer size 2034 * @region: PCI memory region 2035 * 2036 * @return 0 on success, otherwise non-zero error code 2037 */ 2038 static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev, 2039 u64 addr, size_t size, 2040 struct pci_mem_region *region) 2041 { 2042 u64 end_addr; 2043 2044 /* now make sure that the memory transfer is within region's bounds */ 2045 end_addr = addr + size; 2046 if (end_addr >= region->region_base + region->region_size) { 2047 dev_err(hdev->dev, 2048 "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n", 2049 end_addr); 2050 return -EIO; 2051 } 2052 2053 /* 2054 * now make sure memory transfer is within predefined BAR bounds. 2055 * this is to make sure we do not need to set the bar (e.g. for DRAM 2056 * memory transfers) 2057 */ 2058 if (end_addr >= region->region_base - region->offset_in_bar + 2059 region->bar_size) { 2060 dev_err(hdev->dev, 2061 "FW image beyond PCI BAR bounds\n"); 2062 return -EIO; 2063 } 2064 2065 return 0; 2066 } 2067 2068 /** 2069 * hl_fw_dynamic_validate_descriptor - validate FW descriptor 2070 * 2071 * @hdev: pointer to the habanalabs device structure 2072 * @fw_loader: managing structure for loading device's FW 2073 * @fw_desc: the descriptor from FW 2074 * 2075 * @return 0 on success, otherwise non-zero error code 2076 */ 2077 static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev, 2078 struct fw_load_mgr *fw_loader, 2079 struct lkd_fw_comms_desc *fw_desc) 2080 { 2081 struct pci_mem_region *region; 2082 enum pci_region region_id; 2083 size_t data_size; 2084 u32 data_crc32; 2085 u8 *data_ptr; 2086 u64 addr; 2087 int rc; 2088 2089 if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) 2090 dev_dbg(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n", 2091 fw_desc->header.magic); 2092 2093 if (fw_desc->header.version != HL_COMMS_DESC_VER) 2094 dev_dbg(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n", 2095 fw_desc->header.version); 2096 2097 /* 2098 * Calc CRC32 of data without header. use the size of the descriptor 2099 * reported by firmware, without calculating it ourself, to allow adding 2100 * more fields to the lkd_fw_comms_desc structure. 2101 * note that no alignment/stride address issues here as all structures 2102 * are 64 bit padded. 2103 */ 2104 data_ptr = (u8 *)fw_desc + sizeof(struct comms_msg_header); 2105 data_size = le16_to_cpu(fw_desc->header.size); 2106 2107 data_crc32 = hl_fw_compat_crc32(data_ptr, data_size); 2108 if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) { 2109 dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n", 2110 data_crc32, fw_desc->header.crc32); 2111 return -EIO; 2112 } 2113 2114 /* find memory region to which to copy the image */ 2115 addr = le64_to_cpu(fw_desc->img_addr); 2116 region_id = hl_get_pci_memory_region(hdev, addr); 2117 if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) { 2118 dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr); 2119 return -EIO; 2120 } 2121 2122 region = &hdev->pci_mem_region[region_id]; 2123 2124 /* store the region for the copy stage */ 2125 fw_loader->dynamic_loader.image_region = region; 2126 2127 /* 2128 * here we know that the start address is valid, now make sure that the 2129 * image is within region's bounds 2130 */ 2131 rc = hl_fw_dynamic_validate_memory_bound(hdev, addr, 2132 fw_loader->dynamic_loader.fw_image_size, 2133 region); 2134 if (rc) { 2135 dev_err(hdev->dev, "invalid mem transfer request for FW image\n"); 2136 return rc; 2137 } 2138 2139 /* here we can mark the descriptor as valid as the content has been validated */ 2140 fw_loader->dynamic_loader.fw_desc_valid = true; 2141 2142 return 0; 2143 } 2144 2145 static int hl_fw_dynamic_validate_response(struct hl_device *hdev, 2146 struct fw_response *response, 2147 struct pci_mem_region *region) 2148 { 2149 u64 device_addr; 2150 int rc; 2151 2152 device_addr = region->region_base + response->ram_offset; 2153 2154 /* 2155 * validate that the descriptor is within region's bounds 2156 * Note that as the start address was supplied according to the RAM 2157 * type- testing only the end address is enough 2158 */ 2159 rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr, 2160 sizeof(struct lkd_fw_comms_desc), 2161 region); 2162 return rc; 2163 } 2164 2165 /* 2166 * hl_fw_dynamic_read_descriptor_msg - read and show the ascii msg that sent by fw 2167 * 2168 * @hdev: pointer to the habanalabs device structure 2169 * @fw_desc: the descriptor from FW 2170 */ 2171 static void hl_fw_dynamic_read_descriptor_msg(struct hl_device *hdev, 2172 struct lkd_fw_comms_desc *fw_desc) 2173 { 2174 int i; 2175 char *msg; 2176 2177 for (i = 0 ; i < LKD_FW_ASCII_MSG_MAX ; i++) { 2178 if (!fw_desc->ascii_msg[i].valid) 2179 return; 2180 2181 /* force NULL termination */ 2182 msg = fw_desc->ascii_msg[i].msg; 2183 msg[LKD_FW_ASCII_MSG_MAX_LEN - 1] = '\0'; 2184 2185 switch (fw_desc->ascii_msg[i].msg_lvl) { 2186 case LKD_FW_ASCII_MSG_ERR: 2187 dev_err(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg); 2188 break; 2189 case LKD_FW_ASCII_MSG_WRN: 2190 dev_warn(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg); 2191 break; 2192 case LKD_FW_ASCII_MSG_INF: 2193 dev_info(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg); 2194 break; 2195 default: 2196 dev_dbg(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg); 2197 break; 2198 } 2199 } 2200 } 2201 2202 /** 2203 * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor 2204 * 2205 * @hdev: pointer to the habanalabs device structure 2206 * @fw_loader: managing structure for loading device's FW 2207 * 2208 * @return 0 on success, otherwise non-zero error code 2209 */ 2210 static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev, 2211 struct fw_load_mgr *fw_loader) 2212 { 2213 struct lkd_fw_comms_desc *fw_desc; 2214 struct pci_mem_region *region; 2215 struct fw_response *response; 2216 void *temp_fw_desc; 2217 void __iomem *src; 2218 u16 fw_data_size; 2219 enum pci_region region_id; 2220 int rc; 2221 2222 fw_desc = &fw_loader->dynamic_loader.comm_desc; 2223 response = &fw_loader->dynamic_loader.response; 2224 2225 region_id = (response->ram_type == COMMS_SRAM) ? 2226 PCI_REGION_SRAM : PCI_REGION_DRAM; 2227 2228 region = &hdev->pci_mem_region[region_id]; 2229 2230 rc = hl_fw_dynamic_validate_response(hdev, response, region); 2231 if (rc) { 2232 dev_err(hdev->dev, 2233 "invalid mem transfer request for FW descriptor\n"); 2234 return rc; 2235 } 2236 2237 /* 2238 * extract address to copy the descriptor from 2239 * in addition, as the descriptor value is going to be over-ridden by new data- we mark it 2240 * as invalid. 2241 * it will be marked again as valid once validated 2242 */ 2243 fw_loader->dynamic_loader.fw_desc_valid = false; 2244 src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + 2245 response->ram_offset; 2246 2247 /* 2248 * We do the copy of the fw descriptor in 2 phases: 2249 * 1. copy the header + data info according to our lkd_fw_comms_desc definition. 2250 * then we're able to read the actual data size provided by fw. 2251 * this is needed for cases where data in descriptor was changed(add/remove) 2252 * in embedded specs header file before updating lkd copy of the header file 2253 * 2. copy descriptor to temporary buffer with aligned size and send it to validation 2254 */ 2255 memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc)); 2256 fw_data_size = le16_to_cpu(fw_desc->header.size); 2257 2258 temp_fw_desc = vzalloc(sizeof(struct comms_msg_header) + fw_data_size); 2259 if (!temp_fw_desc) 2260 return -ENOMEM; 2261 2262 memcpy_fromio(temp_fw_desc, src, sizeof(struct comms_msg_header) + fw_data_size); 2263 2264 rc = hl_fw_dynamic_validate_descriptor(hdev, fw_loader, 2265 (struct lkd_fw_comms_desc *) temp_fw_desc); 2266 2267 if (!rc) 2268 hl_fw_dynamic_read_descriptor_msg(hdev, temp_fw_desc); 2269 2270 vfree(temp_fw_desc); 2271 2272 return rc; 2273 } 2274 2275 /** 2276 * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor 2277 * 2278 * @hdev: pointer to the habanalabs device structure 2279 * @fw_loader: managing structure for loading device's FW 2280 * @next_image_size: size to allocate for next FW component 2281 * 2282 * @return 0 on success, otherwise non-zero error code 2283 */ 2284 static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev, 2285 struct fw_load_mgr *fw_loader, 2286 size_t next_image_size) 2287 { 2288 int rc; 2289 2290 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC, 2291 next_image_size, true, 2292 fw_loader->cpu_timeout); 2293 if (rc) 2294 return rc; 2295 2296 return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader); 2297 } 2298 2299 /** 2300 * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties 2301 * 2302 * @hdev: pointer to the habanalabs device structure 2303 * @fwc: the firmware component 2304 * @fw_version: fw component's version string 2305 */ 2306 static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev, 2307 enum hl_fw_component fwc, 2308 const char *fw_version) 2309 { 2310 struct asic_fixed_properties *prop = &hdev->asic_prop; 2311 char *preboot_ver, *boot_ver; 2312 char btl_ver[32]; 2313 int rc; 2314 2315 switch (fwc) { 2316 case FW_COMP_BOOT_FIT: 2317 strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN); 2318 boot_ver = extract_fw_ver_from_str(prop->uboot_ver); 2319 if (boot_ver) { 2320 dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); 2321 kfree(boot_ver); 2322 } 2323 2324 break; 2325 case FW_COMP_PREBOOT: 2326 strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN); 2327 preboot_ver = strnstr(prop->preboot_ver, "Preboot", VERSION_MAX_LEN); 2328 dev_info(hdev->dev, "preboot full version: '%s'\n", preboot_ver); 2329 2330 if (preboot_ver && preboot_ver != prop->preboot_ver) { 2331 strscpy(btl_ver, prop->preboot_ver, 2332 min((int) (preboot_ver - prop->preboot_ver), 31)); 2333 dev_info(hdev->dev, "%s\n", btl_ver); 2334 } 2335 2336 rc = hl_get_sw_major_minor_subminor(hdev, preboot_ver); 2337 if (rc) 2338 return rc; 2339 preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); 2340 if (preboot_ver) { 2341 rc = hl_get_preboot_major_minor(hdev, preboot_ver); 2342 kfree(preboot_ver); 2343 if (rc) 2344 return rc; 2345 } 2346 2347 break; 2348 default: 2349 dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); 2350 return -EINVAL; 2351 } 2352 2353 return 0; 2354 } 2355 2356 /** 2357 * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW 2358 * 2359 * @hdev: pointer to the habanalabs device structure 2360 * @fw: fw descriptor 2361 * @fw_loader: managing structure for loading device's FW 2362 */ 2363 static int hl_fw_dynamic_copy_image(struct hl_device *hdev, 2364 const struct firmware *fw, 2365 struct fw_load_mgr *fw_loader) 2366 { 2367 struct lkd_fw_comms_desc *fw_desc; 2368 struct pci_mem_region *region; 2369 void __iomem *dest; 2370 u64 addr; 2371 int rc; 2372 2373 fw_desc = &fw_loader->dynamic_loader.comm_desc; 2374 addr = le64_to_cpu(fw_desc->img_addr); 2375 2376 /* find memory region to which to copy the image */ 2377 region = fw_loader->dynamic_loader.image_region; 2378 2379 dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + 2380 (addr - region->region_base); 2381 2382 rc = hl_fw_copy_fw_to_device(hdev, fw, dest, 2383 fw_loader->boot_fit_img.src_off, 2384 fw_loader->boot_fit_img.copy_size); 2385 2386 return rc; 2387 } 2388 2389 /** 2390 * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW 2391 * 2392 * @hdev: pointer to the habanalabs device structure 2393 * @msg: message 2394 * @fw_loader: managing structure for loading device's FW 2395 */ 2396 static int hl_fw_dynamic_copy_msg(struct hl_device *hdev, 2397 struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader) 2398 { 2399 struct lkd_fw_comms_desc *fw_desc; 2400 struct pci_mem_region *region; 2401 void __iomem *dest; 2402 u64 addr; 2403 int rc; 2404 2405 fw_desc = &fw_loader->dynamic_loader.comm_desc; 2406 addr = le64_to_cpu(fw_desc->img_addr); 2407 2408 /* find memory region to which to copy the image */ 2409 region = fw_loader->dynamic_loader.image_region; 2410 2411 dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + 2412 (addr - region->region_base); 2413 2414 rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0); 2415 2416 return rc; 2417 } 2418 2419 /** 2420 * hl_fw_boot_fit_update_state - update internal data structures after boot-fit 2421 * is loaded 2422 * 2423 * @hdev: pointer to the habanalabs device structure 2424 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 2425 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 2426 * 2427 * @return 0 on success, otherwise non-zero error code 2428 */ 2429 static void hl_fw_boot_fit_update_state(struct hl_device *hdev, 2430 u32 cpu_boot_dev_sts0_reg, 2431 u32 cpu_boot_dev_sts1_reg) 2432 { 2433 struct asic_fixed_properties *prop = &hdev->asic_prop; 2434 2435 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU; 2436 2437 /* Read boot_cpu status bits */ 2438 if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) { 2439 prop->fw_bootfit_cpu_boot_dev_sts0 = 2440 RREG32(cpu_boot_dev_sts0_reg); 2441 2442 prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 & 2443 CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); 2444 2445 dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n", 2446 prop->fw_bootfit_cpu_boot_dev_sts0); 2447 } 2448 2449 if (prop->fw_cpu_boot_dev_sts1_valid) { 2450 prop->fw_bootfit_cpu_boot_dev_sts1 = 2451 RREG32(cpu_boot_dev_sts1_reg); 2452 2453 dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n", 2454 prop->fw_bootfit_cpu_boot_dev_sts1); 2455 } 2456 2457 dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", 2458 prop->hard_reset_done_by_fw ? "enabled" : "disabled"); 2459 } 2460 2461 static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev) 2462 { 2463 struct cpu_dyn_regs *dyn_regs = 2464 &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; 2465 2466 /* Check whether all 3 interrupt interfaces are set, if not use a 2467 * single interface 2468 */ 2469 if (!hdev->asic_prop.gic_interrupts_enable && 2470 !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & 2471 CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) { 2472 dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq; 2473 dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq; 2474 2475 dev_warn(hdev->dev, 2476 "Using a single interrupt interface towards cpucp"); 2477 } 2478 } 2479 /** 2480 * hl_fw_dynamic_load_image - load FW image using dynamic protocol 2481 * 2482 * @hdev: pointer to the habanalabs device structure 2483 * @fw_loader: managing structure for loading device's FW 2484 * @load_fwc: the FW component to be loaded 2485 * @img_ld_timeout: image load timeout 2486 * 2487 * @return 0 on success, otherwise non-zero error code 2488 */ 2489 static int hl_fw_dynamic_load_image(struct hl_device *hdev, 2490 struct fw_load_mgr *fw_loader, 2491 enum hl_fw_component load_fwc, 2492 u32 img_ld_timeout) 2493 { 2494 enum hl_fw_component cur_fwc; 2495 const struct firmware *fw; 2496 char *fw_name; 2497 int rc = 0; 2498 2499 /* 2500 * when loading image we have one of 2 scenarios: 2501 * 1. current FW component is preboot and we want to load boot-fit 2502 * 2. current FW component is boot-fit and we want to load linux 2503 */ 2504 if (load_fwc == FW_COMP_BOOT_FIT) { 2505 cur_fwc = FW_COMP_PREBOOT; 2506 fw_name = fw_loader->boot_fit_img.image_name; 2507 } else { 2508 cur_fwc = FW_COMP_BOOT_FIT; 2509 fw_name = fw_loader->linux_img.image_name; 2510 } 2511 2512 /* request FW in order to communicate to FW the size to be allocated */ 2513 rc = hl_request_fw(hdev, &fw, fw_name); 2514 if (rc) 2515 return rc; 2516 2517 /* store the image size for future validation */ 2518 fw_loader->dynamic_loader.fw_image_size = fw->size; 2519 2520 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size); 2521 if (rc) 2522 goto release_fw; 2523 2524 /* read preboot version */ 2525 rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc, 2526 fw_loader->dynamic_loader.comm_desc.cur_fw_ver); 2527 if (rc) 2528 goto release_fw; 2529 2530 /* copy boot fit to space allocated by FW */ 2531 rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader); 2532 if (rc) 2533 goto release_fw; 2534 2535 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, 2536 0, true, 2537 fw_loader->cpu_timeout); 2538 if (rc) 2539 goto release_fw; 2540 2541 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, 2542 0, false, 2543 img_ld_timeout); 2544 2545 release_fw: 2546 hl_release_firmware(fw); 2547 return rc; 2548 } 2549 2550 static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev, 2551 struct fw_load_mgr *fw_loader) 2552 { 2553 struct dynamic_fw_load_mgr *dyn_loader; 2554 u32 status; 2555 int rc; 2556 2557 dyn_loader = &fw_loader->dynamic_loader; 2558 2559 /* 2560 * Make sure CPU boot-loader is running 2561 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux 2562 * yet there is a debug scenario in which we loading uboot (without Linux) 2563 * which at later stage is relocated to DRAM. In this case we expect 2564 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the 2565 * poll flags 2566 */ 2567 rc = hl_poll_timeout( 2568 hdev, 2569 le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), 2570 status, 2571 (status == CPU_BOOT_STATUS_READY_TO_BOOT) || 2572 (status == CPU_BOOT_STATUS_SRAM_AVAIL), 2573 hdev->fw_poll_interval_usec, 2574 dyn_loader->wait_for_bl_timeout); 2575 if (rc) { 2576 dev_err(hdev->dev, "failed to wait for boot (status = %d)\n", status); 2577 return rc; 2578 } 2579 2580 dev_dbg(hdev->dev, "uboot status = %d\n", status); 2581 return 0; 2582 } 2583 2584 static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev, 2585 struct fw_load_mgr *fw_loader) 2586 { 2587 struct dynamic_fw_load_mgr *dyn_loader; 2588 u32 status; 2589 int rc; 2590 2591 dyn_loader = &fw_loader->dynamic_loader; 2592 2593 /* Make sure CPU linux is running */ 2594 2595 rc = hl_poll_timeout( 2596 hdev, 2597 le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), 2598 status, 2599 (status == CPU_BOOT_STATUS_SRAM_AVAIL), 2600 hdev->fw_poll_interval_usec, 2601 fw_loader->cpu_timeout); 2602 if (rc) { 2603 dev_err(hdev->dev, "failed to wait for Linux (status = %d)\n", status); 2604 return rc; 2605 } 2606 2607 dev_dbg(hdev->dev, "Boot status = %d\n", status); 2608 return 0; 2609 } 2610 2611 /** 2612 * hl_fw_linux_update_state - update internal data structures after Linux 2613 * is loaded. 2614 * Note: Linux initialization is comprised mainly 2615 * of two stages - loading kernel (SRAM_AVAIL) 2616 * & loading ARMCP. 2617 * Therefore reading boot device status in any of 2618 * these stages might result in different values. 2619 * 2620 * @hdev: pointer to the habanalabs device structure 2621 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 2622 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 2623 * 2624 * @return 0 on success, otherwise non-zero error code 2625 */ 2626 static void hl_fw_linux_update_state(struct hl_device *hdev, 2627 u32 cpu_boot_dev_sts0_reg, 2628 u32 cpu_boot_dev_sts1_reg) 2629 { 2630 struct asic_fixed_properties *prop = &hdev->asic_prop; 2631 2632 hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX; 2633 2634 /* Read FW application security bits */ 2635 if (prop->fw_cpu_boot_dev_sts0_valid) { 2636 prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg); 2637 2638 prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 & 2639 CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); 2640 2641 if (prop->fw_app_cpu_boot_dev_sts0 & 2642 CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN) 2643 prop->gic_interrupts_enable = false; 2644 2645 dev_dbg(hdev->dev, 2646 "Firmware application CPU status0 %#x\n", 2647 prop->fw_app_cpu_boot_dev_sts0); 2648 2649 dev_dbg(hdev->dev, "GIC controller is %s\n", 2650 prop->gic_interrupts_enable ? 2651 "enabled" : "disabled"); 2652 } 2653 2654 if (prop->fw_cpu_boot_dev_sts1_valid) { 2655 prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg); 2656 2657 dev_dbg(hdev->dev, 2658 "Firmware application CPU status1 %#x\n", 2659 prop->fw_app_cpu_boot_dev_sts1); 2660 } 2661 2662 dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", 2663 prop->hard_reset_done_by_fw ? "enabled" : "disabled"); 2664 2665 dev_info(hdev->dev, "Successfully loaded firmware to device\n"); 2666 } 2667 2668 /** 2669 * hl_fw_dynamic_send_msg - send a COMMS message with attached data 2670 * 2671 * @hdev: pointer to the habanalabs device structure 2672 * @fw_loader: managing structure for loading device's FW 2673 * @msg_type: message type 2674 * @data: data to be sent 2675 * 2676 * @return 0 on success, otherwise non-zero error code 2677 */ 2678 static int hl_fw_dynamic_send_msg(struct hl_device *hdev, 2679 struct fw_load_mgr *fw_loader, u8 msg_type, void *data) 2680 { 2681 struct lkd_msg_comms *msg; 2682 int rc; 2683 2684 msg = kzalloc(sizeof(*msg), GFP_KERNEL); 2685 if (!msg) 2686 return -ENOMEM; 2687 2688 /* create message to be sent */ 2689 msg->header.type = msg_type; 2690 msg->header.size = cpu_to_le16(sizeof(struct comms_msg_header)); 2691 msg->header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC); 2692 2693 switch (msg_type) { 2694 case HL_COMMS_RESET_CAUSE_TYPE: 2695 msg->reset_cause = *(__u8 *) data; 2696 break; 2697 2698 default: 2699 dev_err(hdev->dev, 2700 "Send COMMS message - invalid message type %u\n", 2701 msg_type); 2702 rc = -EINVAL; 2703 goto out; 2704 } 2705 2706 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 2707 sizeof(struct lkd_msg_comms)); 2708 if (rc) 2709 goto out; 2710 2711 /* copy message to space allocated by FW */ 2712 rc = hl_fw_dynamic_copy_msg(hdev, msg, fw_loader); 2713 if (rc) 2714 goto out; 2715 2716 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, 2717 0, true, 2718 fw_loader->cpu_timeout); 2719 if (rc) 2720 goto out; 2721 2722 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, 2723 0, true, 2724 fw_loader->cpu_timeout); 2725 2726 out: 2727 kfree(msg); 2728 return rc; 2729 } 2730 2731 /** 2732 * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol 2733 * 2734 * @hdev: pointer to the habanalabs device structure 2735 * @fw_loader: managing structure for loading device's FW 2736 * 2737 * @return 0 on success, otherwise non-zero error code 2738 * 2739 * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol. 2740 * the communication is done using registers: 2741 * - LKD command register 2742 * - FW status register 2743 * the protocol is race free. this goal is achieved by splitting the requests 2744 * and response to known synchronization points between the LKD and the FW. 2745 * each response to LKD request is known and bound to a predefined timeout. 2746 * in case of timeout expiration without the desired status from FW- the 2747 * protocol (and hence the boot) will fail. 2748 */ 2749 static int hl_fw_dynamic_init_cpu(struct hl_device *hdev, 2750 struct fw_load_mgr *fw_loader) 2751 { 2752 struct cpu_dyn_regs *dyn_regs; 2753 int rc, fw_error_rc; 2754 2755 dev_info(hdev->dev, 2756 "Loading %sfirmware to device, may take some time...\n", 2757 hdev->asic_prop.fw_security_enabled ? "secured " : ""); 2758 2759 /* initialize FW descriptor as invalid */ 2760 fw_loader->dynamic_loader.fw_desc_valid = false; 2761 2762 /* 2763 * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values! 2764 * It will be updated from FW after hl_fw_dynamic_request_descriptor(). 2765 */ 2766 dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; 2767 2768 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE, 2769 0, true, 2770 fw_loader->cpu_timeout); 2771 if (rc) 2772 goto protocol_err; 2773 2774 if (hdev->reset_info.curr_reset_cause) { 2775 rc = hl_fw_dynamic_send_msg(hdev, fw_loader, 2776 HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause); 2777 if (rc) 2778 goto protocol_err; 2779 2780 /* Clear current reset cause */ 2781 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; 2782 } 2783 2784 rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, sizeof(struct lkd_msg_comms)); 2785 if (rc) 2786 goto protocol_err; 2787 2788 if (hdev->asic_prop.support_dynamic_resereved_fw_size) 2789 hdev->asic_prop.reserved_fw_mem_size = 2790 le32_to_cpu(fw_loader->dynamic_loader.comm_desc.rsvd_mem_size_mb) * SZ_1M; 2791 2792 if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) { 2793 struct lkd_fw_binning_info *binning_info; 2794 2795 /* read preboot version */ 2796 rc = hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT, 2797 fw_loader->dynamic_loader.comm_desc.cur_fw_ver); 2798 if (rc) 2799 return rc; 2800 2801 /* read binning info from preboot */ 2802 if (hdev->support_preboot_binning) { 2803 binning_info = &fw_loader->dynamic_loader.comm_desc.binning_info; 2804 hdev->tpc_binning = le64_to_cpu(binning_info->tpc_mask_l); 2805 hdev->dram_binning = le32_to_cpu(binning_info->dram_mask); 2806 hdev->edma_binning = le32_to_cpu(binning_info->edma_mask); 2807 hdev->decoder_binning = le32_to_cpu(binning_info->dec_mask); 2808 hdev->rotator_binning = le32_to_cpu(binning_info->rot_mask); 2809 2810 rc = hdev->asic_funcs->set_dram_properties(hdev); 2811 if (rc) 2812 return rc; 2813 2814 rc = hdev->asic_funcs->set_binning_masks(hdev); 2815 if (rc) 2816 return rc; 2817 2818 dev_dbg(hdev->dev, 2819 "Read binning masks: tpc: 0x%llx, dram: 0x%llx, edma: 0x%x, dec: 0x%x, rot:0x%x\n", 2820 hdev->tpc_binning, hdev->dram_binning, hdev->edma_binning, 2821 hdev->decoder_binning, hdev->rotator_binning); 2822 } 2823 2824 return 0; 2825 } 2826 2827 /* load boot fit to FW */ 2828 rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT, 2829 fw_loader->boot_fit_timeout); 2830 if (rc) { 2831 dev_err(hdev->dev, "failed to load boot fit\n"); 2832 goto protocol_err; 2833 } 2834 2835 rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader); 2836 if (rc) 2837 goto protocol_err; 2838 2839 hl_fw_boot_fit_update_state(hdev, 2840 le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), 2841 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); 2842 2843 /* 2844 * when testing FW load (without Linux) on PLDM we don't want to 2845 * wait until boot fit is active as it may take several hours. 2846 * instead, we load the bootfit and let it do all initialization in 2847 * the background. 2848 */ 2849 if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX)) 2850 return 0; 2851 2852 /* Enable DRAM scrambling before Linux boot and after successful 2853 * UBoot 2854 */ 2855 hdev->asic_funcs->init_cpu_scrambler_dram(hdev); 2856 2857 if (!(hdev->fw_components & FW_TYPE_LINUX)) { 2858 dev_dbg(hdev->dev, "Skip loading Linux F/W\n"); 2859 return 0; 2860 } 2861 2862 if (fw_loader->skip_bmc) { 2863 rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, 2864 COMMS_SKIP_BMC, 0, 2865 true, 2866 fw_loader->cpu_timeout); 2867 if (rc) { 2868 dev_err(hdev->dev, "failed to load boot fit\n"); 2869 goto protocol_err; 2870 } 2871 } 2872 2873 /* load Linux image to FW */ 2874 rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX, 2875 fw_loader->cpu_timeout); 2876 if (rc) { 2877 dev_err(hdev->dev, "failed to load Linux\n"); 2878 goto protocol_err; 2879 } 2880 2881 rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader); 2882 if (rc) 2883 goto protocol_err; 2884 2885 hl_fw_linux_update_state(hdev, 2886 le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), 2887 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); 2888 2889 hl_fw_dynamic_update_linux_interrupt_if(hdev); 2890 2891 protocol_err: 2892 if (fw_loader->dynamic_loader.fw_desc_valid) { 2893 fw_error_rc = fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0), 2894 le32_to_cpu(dyn_regs->cpu_boot_err1), 2895 le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), 2896 le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); 2897 2898 if (fw_error_rc) 2899 return fw_error_rc; 2900 } 2901 2902 return rc; 2903 } 2904 2905 /** 2906 * hl_fw_static_init_cpu - initialize the device CPU using static protocol 2907 * 2908 * @hdev: pointer to the habanalabs device structure 2909 * @fw_loader: managing structure for loading device's FW 2910 * 2911 * @return 0 on success, otherwise non-zero error code 2912 */ 2913 static int hl_fw_static_init_cpu(struct hl_device *hdev, 2914 struct fw_load_mgr *fw_loader) 2915 { 2916 u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status; 2917 u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg; 2918 struct static_fw_load_mgr *static_loader; 2919 u32 cpu_boot_status_reg; 2920 int rc; 2921 2922 if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) 2923 return 0; 2924 2925 /* init common loader parameters */ 2926 cpu_timeout = fw_loader->cpu_timeout; 2927 2928 /* init static loader parameters */ 2929 static_loader = &fw_loader->static_loader; 2930 cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg; 2931 msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg; 2932 cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg; 2933 cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg; 2934 cpu_boot_status_reg = static_loader->cpu_boot_status_reg; 2935 2936 dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", 2937 cpu_timeout / USEC_PER_SEC); 2938 2939 /* Wait for boot FIT request */ 2940 rc = hl_poll_timeout( 2941 hdev, 2942 cpu_boot_status_reg, 2943 status, 2944 status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, 2945 hdev->fw_poll_interval_usec, 2946 fw_loader->boot_fit_timeout); 2947 2948 if (rc) { 2949 dev_dbg(hdev->dev, 2950 "No boot fit request received (status = %d), resuming boot\n", status); 2951 } else { 2952 rc = hdev->asic_funcs->load_boot_fit_to_device(hdev); 2953 if (rc) 2954 goto out; 2955 2956 /* Clear device CPU message status */ 2957 WREG32(cpu_msg_status_reg, CPU_MSG_CLR); 2958 2959 /* Signal device CPU that boot loader is ready */ 2960 WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); 2961 2962 /* Poll for CPU device ack */ 2963 rc = hl_poll_timeout( 2964 hdev, 2965 cpu_msg_status_reg, 2966 status, 2967 status == CPU_MSG_OK, 2968 hdev->fw_poll_interval_usec, 2969 fw_loader->boot_fit_timeout); 2970 2971 if (rc) { 2972 dev_err(hdev->dev, 2973 "Timeout waiting for boot fit load ack (status = %d)\n", status); 2974 goto out; 2975 } 2976 2977 /* Clear message */ 2978 WREG32(msg_to_cpu_reg, KMD_MSG_NA); 2979 } 2980 2981 /* 2982 * Make sure CPU boot-loader is running 2983 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux 2984 * yet there is a debug scenario in which we loading uboot (without Linux) 2985 * which at later stage is relocated to DRAM. In this case we expect 2986 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the 2987 * poll flags 2988 */ 2989 rc = hl_poll_timeout( 2990 hdev, 2991 cpu_boot_status_reg, 2992 status, 2993 (status == CPU_BOOT_STATUS_DRAM_RDY) || 2994 (status == CPU_BOOT_STATUS_NIC_FW_RDY) || 2995 (status == CPU_BOOT_STATUS_READY_TO_BOOT) || 2996 (status == CPU_BOOT_STATUS_SRAM_AVAIL), 2997 hdev->fw_poll_interval_usec, 2998 cpu_timeout); 2999 3000 dev_dbg(hdev->dev, "uboot status = %d\n", status); 3001 3002 /* Read U-Boot version now in case we will later fail */ 3003 hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT); 3004 3005 /* update state according to boot stage */ 3006 hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg, 3007 cpu_boot_dev_status1_reg); 3008 3009 if (rc) { 3010 detect_cpu_boot_status(hdev, status); 3011 rc = -EIO; 3012 goto out; 3013 } 3014 3015 /* Enable DRAM scrambling before Linux boot and after successful 3016 * UBoot 3017 */ 3018 hdev->asic_funcs->init_cpu_scrambler_dram(hdev); 3019 3020 if (!(hdev->fw_components & FW_TYPE_LINUX)) { 3021 dev_info(hdev->dev, "Skip loading Linux F/W\n"); 3022 rc = 0; 3023 goto out; 3024 } 3025 3026 if (status == CPU_BOOT_STATUS_SRAM_AVAIL) { 3027 rc = 0; 3028 goto out; 3029 } 3030 3031 dev_info(hdev->dev, 3032 "Loading firmware to device, may take some time...\n"); 3033 3034 rc = hdev->asic_funcs->load_firmware_to_device(hdev); 3035 if (rc) 3036 goto out; 3037 3038 if (fw_loader->skip_bmc) { 3039 WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); 3040 3041 rc = hl_poll_timeout( 3042 hdev, 3043 cpu_boot_status_reg, 3044 status, 3045 (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), 3046 hdev->fw_poll_interval_usec, 3047 cpu_timeout); 3048 3049 if (rc) { 3050 dev_err(hdev->dev, 3051 "Failed to get ACK on skipping BMC (status = %d)\n", 3052 status); 3053 WREG32(msg_to_cpu_reg, KMD_MSG_NA); 3054 rc = -EIO; 3055 goto out; 3056 } 3057 } 3058 3059 WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); 3060 3061 rc = hl_poll_timeout( 3062 hdev, 3063 cpu_boot_status_reg, 3064 status, 3065 (status == CPU_BOOT_STATUS_SRAM_AVAIL), 3066 hdev->fw_poll_interval_usec, 3067 cpu_timeout); 3068 3069 /* Clear message */ 3070 WREG32(msg_to_cpu_reg, KMD_MSG_NA); 3071 3072 if (rc) { 3073 if (status == CPU_BOOT_STATUS_FIT_CORRUPTED) 3074 dev_err(hdev->dev, 3075 "Device reports FIT image is corrupted\n"); 3076 else 3077 dev_err(hdev->dev, 3078 "Failed to load firmware to device (status = %d)\n", 3079 status); 3080 3081 rc = -EIO; 3082 goto out; 3083 } 3084 3085 rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, 3086 fw_loader->static_loader.boot_err1_reg, 3087 cpu_boot_dev_status0_reg, 3088 cpu_boot_dev_status1_reg); 3089 if (rc) 3090 return rc; 3091 3092 hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg, 3093 cpu_boot_dev_status1_reg); 3094 3095 return 0; 3096 3097 out: 3098 fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, 3099 fw_loader->static_loader.boot_err1_reg, 3100 cpu_boot_dev_status0_reg, 3101 cpu_boot_dev_status1_reg); 3102 3103 return rc; 3104 } 3105 3106 /** 3107 * hl_fw_init_cpu - initialize the device CPU 3108 * 3109 * @hdev: pointer to the habanalabs device structure 3110 * 3111 * @return 0 on success, otherwise non-zero error code 3112 * 3113 * perform necessary initializations for device's CPU. takes into account if 3114 * init protocol is static or dynamic. 3115 */ 3116 int hl_fw_init_cpu(struct hl_device *hdev) 3117 { 3118 struct asic_fixed_properties *prop = &hdev->asic_prop; 3119 struct fw_load_mgr *fw_loader = &hdev->fw_loader; 3120 3121 return prop->dynamic_fw_load ? 3122 hl_fw_dynamic_init_cpu(hdev, fw_loader) : 3123 hl_fw_static_init_cpu(hdev, fw_loader); 3124 } 3125 3126 void hl_fw_set_pll_profile(struct hl_device *hdev) 3127 { 3128 hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index, 3129 hdev->asic_prop.max_freq_value); 3130 } 3131 3132 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk) 3133 { 3134 long value; 3135 3136 if (!hl_device_operational(hdev, NULL)) 3137 return -ENODEV; 3138 3139 if (!hdev->pdev) { 3140 *cur_clk = 0; 3141 *max_clk = 0; 3142 return 0; 3143 } 3144 3145 value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false); 3146 3147 if (value < 0) { 3148 dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value); 3149 return value; 3150 } 3151 3152 *max_clk = (value / 1000 / 1000); 3153 3154 value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true); 3155 3156 if (value < 0) { 3157 dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value); 3158 return value; 3159 } 3160 3161 *cur_clk = (value / 1000 / 1000); 3162 3163 return 0; 3164 } 3165 3166 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr) 3167 { 3168 struct cpucp_packet pkt; 3169 u32 used_pll_idx; 3170 u64 result; 3171 int rc; 3172 3173 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); 3174 if (rc) 3175 return rc; 3176 3177 memset(&pkt, 0, sizeof(pkt)); 3178 3179 if (curr) 3180 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET << 3181 CPUCP_PKT_CTL_OPCODE_SHIFT); 3182 else 3183 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); 3184 3185 pkt.pll_index = cpu_to_le32((u32)used_pll_idx); 3186 3187 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); 3188 if (rc) { 3189 if (rc != -EAGAIN) 3190 dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n", 3191 used_pll_idx, rc); 3192 return rc; 3193 } 3194 3195 return (long) result; 3196 } 3197 3198 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq) 3199 { 3200 struct cpucp_packet pkt; 3201 u32 used_pll_idx; 3202 int rc; 3203 3204 rc = get_used_pll_index(hdev, pll_index, &used_pll_idx); 3205 if (rc) 3206 return; 3207 3208 memset(&pkt, 0, sizeof(pkt)); 3209 3210 pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); 3211 pkt.pll_index = cpu_to_le32((u32)used_pll_idx); 3212 pkt.value = cpu_to_le64(freq); 3213 3214 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); 3215 if (rc && rc != -EAGAIN) 3216 dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n", 3217 used_pll_idx, rc); 3218 } 3219 3220 long hl_fw_get_max_power(struct hl_device *hdev) 3221 { 3222 struct cpucp_packet pkt; 3223 u64 result; 3224 int rc; 3225 3226 memset(&pkt, 0, sizeof(pkt)); 3227 3228 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT); 3229 3230 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result); 3231 if (rc) { 3232 if (rc != -EAGAIN) 3233 dev_err(hdev->dev, "Failed to get max power, error %d\n", rc); 3234 return rc; 3235 } 3236 3237 return result; 3238 } 3239 3240 void hl_fw_set_max_power(struct hl_device *hdev) 3241 { 3242 struct cpucp_packet pkt; 3243 int rc; 3244 3245 /* TODO: remove this after simulator supports this packet */ 3246 if (!hdev->pdev) 3247 return; 3248 3249 memset(&pkt, 0, sizeof(pkt)); 3250 3251 pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); 3252 pkt.value = cpu_to_le64(hdev->max_power); 3253 3254 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); 3255 if (rc && rc != -EAGAIN) 3256 dev_err(hdev->dev, "Failed to set max power, error %d\n", rc); 3257 } 3258 3259 static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size, 3260 u32 nonce, u32 timeout) 3261 { 3262 struct cpucp_packet pkt = {}; 3263 dma_addr_t req_dma_addr; 3264 void *req_cpu_addr; 3265 int rc; 3266 3267 req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr); 3268 if (!req_cpu_addr) { 3269 dev_err(hdev->dev, 3270 "Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id); 3271 return -ENOMEM; 3272 } 3273 3274 memset(data, 0, size); 3275 3276 pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT); 3277 pkt.addr = cpu_to_le64(req_dma_addr); 3278 pkt.data_max_size = cpu_to_le32(size); 3279 pkt.nonce = cpu_to_le32(nonce); 3280 3281 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), timeout, NULL); 3282 if (rc) { 3283 if (rc != -EAGAIN) 3284 dev_err(hdev->dev, 3285 "Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc); 3286 goto out; 3287 } 3288 3289 memcpy(data, req_cpu_addr, size); 3290 3291 out: 3292 hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr); 3293 3294 return rc; 3295 } 3296 3297 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info, 3298 u32 nonce) 3299 { 3300 return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info, 3301 sizeof(struct cpucp_sec_attest_info), nonce, 3302 HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC); 3303 } 3304 3305 int hl_fw_get_dev_info_signed(struct hl_device *hdev, 3306 struct cpucp_dev_info_signed *dev_info_signed, u32 nonce) 3307 { 3308 return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_INFO_SIGNED_GET, dev_info_signed, 3309 sizeof(struct cpucp_dev_info_signed), nonce, 3310 HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC); 3311 } 3312 3313 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode, 3314 dma_addr_t buff, u32 *size) 3315 { 3316 struct cpucp_packet pkt = {}; 3317 u64 result; 3318 int rc = 0; 3319 3320 pkt.ctl = cpu_to_le32(CPUCP_PACKET_GENERIC_PASSTHROUGH << CPUCP_PKT_CTL_OPCODE_SHIFT); 3321 pkt.addr = cpu_to_le64(buff); 3322 pkt.data_max_size = cpu_to_le32(*size); 3323 pkt.pkt_subidx = cpu_to_le32(sub_opcode); 3324 3325 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)&pkt, sizeof(pkt), 3326 HL_CPUCP_INFO_TIMEOUT_USEC, &result); 3327 if (rc) { 3328 if (rc != -EAGAIN) 3329 dev_err(hdev->dev, "failed to send CPUCP data of generic fw pkt\n"); 3330 } else { 3331 dev_dbg(hdev->dev, "generic pkt was successful, result: 0x%llx\n", result); 3332 } 3333 3334 *size = (u32)result; 3335 3336 return rc; 3337 } 3338