xref: /linux/drivers/accel/habanalabs/common/device.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #define pr_fmt(fmt)			"habanalabs: " fmt
9 
10 #include <uapi/drm/habanalabs_accel.h>
11 #include "habanalabs.h"
12 
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15 #include <linux/vmalloc.h>
16 
17 #include <drm/drm_accel.h>
18 #include <drm/drm_drv.h>
19 
20 #include <trace/events/habanalabs.h>
21 
22 #define HL_RESET_DELAY_USEC			10000	/* 10ms */
23 
24 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC	30
25 
26 enum dma_alloc_type {
27 	DMA_ALLOC_COHERENT,
28 	DMA_ALLOC_POOL,
29 };
30 
31 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
32 
33 /*
34  * hl_set_dram_bar- sets the bar to allow later access to address
35  *
36  * @hdev: pointer to habanalabs device structure.
37  * @addr: the address the caller wants to access.
38  * @region: the PCI region.
39  * @new_bar_region_base: the new BAR region base address.
40  *
41  * @return: the old BAR base address on success, U64_MAX for failure.
42  *	    The caller should set it back to the old address after use.
43  *
44  * In case the bar space does not cover the whole address space,
45  * the bar base address should be set to allow access to a given address.
46  * This function can be called also if the bar doesn't need to be set,
47  * in that case it just won't change the base.
48  */
49 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
50 				u64 *new_bar_region_base)
51 {
52 	struct asic_fixed_properties *prop = &hdev->asic_prop;
53 	u64 bar_base_addr, old_base;
54 
55 	if (is_power_of_2(prop->dram_pci_bar_size))
56 		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
57 	else
58 		bar_base_addr = region->region_base +
59 				div64_u64((addr - region->region_base), prop->dram_pci_bar_size) *
60 				prop->dram_pci_bar_size;
61 
62 	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
63 
64 	/* in case of success we need to update the new BAR base */
65 	if ((old_base != U64_MAX) && new_bar_region_base)
66 		*new_bar_region_base = bar_base_addr;
67 
68 	return old_base;
69 }
70 
71 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
72 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
73 {
74 	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
75 	u64 old_base = 0, rc, bar_region_base = region->region_base;
76 	void __iomem *acc_addr;
77 
78 	if (set_dram_bar) {
79 		old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
80 		if (old_base == U64_MAX)
81 			return -EIO;
82 	}
83 
84 	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
85 			(addr - bar_region_base);
86 
87 	switch (acc_type) {
88 	case DEBUGFS_READ8:
89 		*val = readb(acc_addr);
90 		break;
91 	case DEBUGFS_WRITE8:
92 		writeb(*val, acc_addr);
93 		break;
94 	case DEBUGFS_READ32:
95 		*val = readl(acc_addr);
96 		break;
97 	case DEBUGFS_WRITE32:
98 		writel(*val, acc_addr);
99 		break;
100 	case DEBUGFS_READ64:
101 		*val = readq(acc_addr);
102 		break;
103 	case DEBUGFS_WRITE64:
104 		writeq(*val, acc_addr);
105 		break;
106 	}
107 
108 	if (set_dram_bar) {
109 		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
110 		if (rc == U64_MAX)
111 			return -EIO;
112 	}
113 
114 	return 0;
115 }
116 
117 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
118 					gfp_t flag, enum dma_alloc_type alloc_type,
119 					const char *caller)
120 {
121 	void *ptr = NULL;
122 
123 	switch (alloc_type) {
124 	case DMA_ALLOC_COHERENT:
125 		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
126 		break;
127 	case DMA_ALLOC_POOL:
128 		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
129 		break;
130 	}
131 
132 	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
133 		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
134 						caller);
135 
136 	return ptr;
137 }
138 
139 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
140 					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
141 					const char *caller)
142 {
143 	/* this is needed to avoid warning on using freed pointer */
144 	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
145 
146 	switch (alloc_type) {
147 	case DMA_ALLOC_COHERENT:
148 		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
149 		break;
150 	case DMA_ALLOC_POOL:
151 		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
152 		break;
153 	}
154 
155 	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
156 }
157 
158 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
159 					gfp_t flag, const char *caller)
160 {
161 	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
162 }
163 
164 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
165 					dma_addr_t dma_handle, const char *caller)
166 {
167 	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
168 }
169 
170 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
171 					dma_addr_t *dma_handle, const char *caller)
172 {
173 	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
174 }
175 
176 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
177 					const char *caller)
178 {
179 	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
180 }
181 
182 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
183 {
184 	return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
185 }
186 
187 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
188 {
189 	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
190 }
191 
192 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
193 				enum dma_data_direction dir, const char *caller)
194 {
195 	struct asic_fixed_properties *prop = &hdev->asic_prop;
196 	struct scatterlist *sg;
197 	int rc, i;
198 
199 	rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir);
200 	if (rc)
201 		return rc;
202 
203 	if (!trace_habanalabs_dma_map_page_enabled())
204 		return 0;
205 
206 	for_each_sgtable_dma_sg(sgt, sg, i)
207 		trace_habanalabs_dma_map_page(hdev->dev,
208 				page_to_phys(sg_page(sg)),
209 				sg->dma_address - prop->device_dma_offset_for_host_access,
210 #ifdef CONFIG_NEED_SG_DMA_LENGTH
211 				sg->dma_length,
212 #else
213 				sg->length,
214 #endif
215 				dir, caller);
216 
217 	return 0;
218 }
219 
220 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
221 				enum dma_data_direction dir)
222 {
223 	struct asic_fixed_properties *prop = &hdev->asic_prop;
224 	struct scatterlist *sg;
225 	int rc, i;
226 
227 	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
228 	if (rc)
229 		return rc;
230 
231 	/* Shift to the device's base physical address of host memory if necessary */
232 	if (prop->device_dma_offset_for_host_access)
233 		for_each_sgtable_dma_sg(sgt, sg, i)
234 			sg->dma_address += prop->device_dma_offset_for_host_access;
235 
236 	return 0;
237 }
238 
239 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
240 					enum dma_data_direction dir, const char *caller)
241 {
242 	struct asic_fixed_properties *prop = &hdev->asic_prop;
243 	struct scatterlist *sg;
244 	int i;
245 
246 	hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir);
247 
248 	if (trace_habanalabs_dma_unmap_page_enabled()) {
249 		for_each_sgtable_dma_sg(sgt, sg, i)
250 			trace_habanalabs_dma_unmap_page(hdev->dev, page_to_phys(sg_page(sg)),
251 					sg->dma_address - prop->device_dma_offset_for_host_access,
252 #ifdef CONFIG_NEED_SG_DMA_LENGTH
253 					sg->dma_length,
254 #else
255 					sg->length,
256 #endif
257 					dir, caller);
258 	}
259 }
260 
261 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
262 				enum dma_data_direction dir)
263 {
264 	struct asic_fixed_properties *prop = &hdev->asic_prop;
265 	struct scatterlist *sg;
266 	int i;
267 
268 	/* Cancel the device's base physical address of host memory if necessary */
269 	if (prop->device_dma_offset_for_host_access)
270 		for_each_sgtable_dma_sg(sgt, sg, i)
271 			sg->dma_address -= prop->device_dma_offset_for_host_access;
272 
273 	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
274 }
275 
276 /*
277  * hl_access_cfg_region - access the config region
278  *
279  * @hdev: pointer to habanalabs device structure
280  * @addr: the address to access
281  * @val: the value to write from or read to
282  * @acc_type: the type of access (read/write 64/32)
283  */
284 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
285 	enum debugfs_access_type acc_type)
286 {
287 	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
288 	u32 val_h, val_l;
289 
290 	if (!IS_ALIGNED(addr, sizeof(u32))) {
291 		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
292 		return -EINVAL;
293 	}
294 
295 	switch (acc_type) {
296 	case DEBUGFS_READ32:
297 		*val = RREG32(addr - cfg_region->region_base);
298 		break;
299 	case DEBUGFS_WRITE32:
300 		WREG32(addr - cfg_region->region_base, *val);
301 		break;
302 	case DEBUGFS_READ64:
303 		val_l = RREG32(addr - cfg_region->region_base);
304 		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
305 
306 		*val = (((u64) val_h) << 32) | val_l;
307 		break;
308 	case DEBUGFS_WRITE64:
309 		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
310 		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
311 		break;
312 	default:
313 		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
314 		return -EOPNOTSUPP;
315 	}
316 
317 	return 0;
318 }
319 
320 /*
321  * hl_access_dev_mem - access device memory
322  *
323  * @hdev: pointer to habanalabs device structure
324  * @region_type: the type of the region the address belongs to
325  * @addr: the address to access
326  * @val: the value to write from or read to
327  * @acc_type: the type of access (r/w, 32/64)
328  */
329 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
330 			u64 addr, u64 *val, enum debugfs_access_type acc_type)
331 {
332 	switch (region_type) {
333 	case PCI_REGION_CFG:
334 		return hl_access_cfg_region(hdev, addr, val, acc_type);
335 	case PCI_REGION_SRAM:
336 	case PCI_REGION_DRAM:
337 		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
338 				region_type, (region_type == PCI_REGION_DRAM));
339 	default:
340 		return -EFAULT;
341 	}
342 
343 	return 0;
344 }
345 
346 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
347 {
348 	va_list args;
349 	int str_size;
350 
351 	va_start(args, fmt);
352 	/* Calculate formatted string length. Assuming each string is null terminated, hence
353 	 * increment result by 1
354 	 */
355 	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
356 	va_end(args);
357 
358 	if ((e->actual_size + str_size) < e->allocated_buf_size) {
359 		va_start(args, fmt);
360 		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
361 		va_end(args);
362 	}
363 
364 	/* Need to update the size even when not updating destination buffer to get the exact size
365 	 * of all input strings
366 	 */
367 	e->actual_size += str_size;
368 }
369 
370 enum hl_device_status hl_device_status(struct hl_device *hdev)
371 {
372 	enum hl_device_status status;
373 
374 	if (hdev->device_fini_pending) {
375 		status = HL_DEVICE_STATUS_MALFUNCTION;
376 	} else if (hdev->reset_info.in_reset) {
377 		if (hdev->reset_info.in_compute_reset)
378 			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
379 		else
380 			status = HL_DEVICE_STATUS_IN_RESET;
381 	} else if (hdev->reset_info.needs_reset) {
382 		status = HL_DEVICE_STATUS_NEEDS_RESET;
383 	} else if (hdev->disabled) {
384 		status = HL_DEVICE_STATUS_MALFUNCTION;
385 	} else if (!hdev->init_done) {
386 		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
387 	} else {
388 		status = HL_DEVICE_STATUS_OPERATIONAL;
389 	}
390 
391 	return status;
392 }
393 
394 bool hl_device_operational(struct hl_device *hdev,
395 		enum hl_device_status *status)
396 {
397 	enum hl_device_status current_status;
398 
399 	current_status = hl_device_status(hdev);
400 	if (status)
401 		*status = current_status;
402 
403 	switch (current_status) {
404 	case HL_DEVICE_STATUS_MALFUNCTION:
405 	case HL_DEVICE_STATUS_IN_RESET:
406 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
407 	case HL_DEVICE_STATUS_NEEDS_RESET:
408 		return false;
409 	case HL_DEVICE_STATUS_OPERATIONAL:
410 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
411 	default:
412 		return true;
413 	}
414 }
415 
416 bool hl_ctrl_device_operational(struct hl_device *hdev,
417 		enum hl_device_status *status)
418 {
419 	enum hl_device_status current_status;
420 
421 	current_status = hl_device_status(hdev);
422 	if (status)
423 		*status = current_status;
424 
425 	switch (current_status) {
426 	case HL_DEVICE_STATUS_MALFUNCTION:
427 		return false;
428 	case HL_DEVICE_STATUS_IN_RESET:
429 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
430 	case HL_DEVICE_STATUS_NEEDS_RESET:
431 	case HL_DEVICE_STATUS_OPERATIONAL:
432 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
433 	default:
434 		return true;
435 	}
436 }
437 
438 static void print_idle_status_mask(struct hl_device *hdev, const char *message,
439 					u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
440 {
441 	if (idle_mask[3])
442 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n",
443 			message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
444 	else if (idle_mask[2])
445 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n",
446 			message, idle_mask[2], idle_mask[1], idle_mask[0]);
447 	else if (idle_mask[1])
448 		dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n",
449 			message, idle_mask[1], idle_mask[0]);
450 	else
451 		dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]);
452 }
453 
454 static void hpriv_release(struct kref *ref)
455 {
456 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
457 	bool reset_device, device_is_idle = true;
458 	struct hl_fpriv *hpriv;
459 	struct hl_device *hdev;
460 
461 	hpriv = container_of(ref, struct hl_fpriv, refcount);
462 
463 	hdev = hpriv->hdev;
464 
465 	hdev->asic_funcs->send_device_activity(hdev, false);
466 
467 	hl_debugfs_remove_file(hpriv);
468 
469 	mutex_destroy(&hpriv->ctx_lock);
470 	mutex_destroy(&hpriv->restore_phase_mutex);
471 
472 	/* There should be no memory buffers at this point and handles IDR can be destroyed */
473 	hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
474 
475 	/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
476 	 * reset that waits for device release.
477 	 */
478 	reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
479 
480 	/* Check the device idle status and reset if not idle.
481 	 * Skip it if already in reset, or if device is going to be reset in any case.
482 	 */
483 	if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm)
484 		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
485 							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
486 	if (!device_is_idle) {
487 		print_idle_status_mask(hdev, "device is not idle after user context is closed",
488 					idle_mask);
489 		reset_device = true;
490 	}
491 
492 	/* We need to remove the user from the list to make sure the reset process won't
493 	 * try to kill the user process. Because, if we got here, it means there are no
494 	 * more driver/device resources that the user process is occupying so there is
495 	 * no need to kill it
496 	 *
497 	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
498 	 * a race between the release and opening the device again. We don't want to let
499 	 * a user open the device while there a reset is about to happen.
500 	 */
501 	mutex_lock(&hdev->fpriv_list_lock);
502 	list_del(&hpriv->dev_node);
503 	mutex_unlock(&hdev->fpriv_list_lock);
504 
505 	put_pid(hpriv->taskpid);
506 
507 	if (reset_device) {
508 		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
509 	} else {
510 		/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
511 		int rc = hdev->asic_funcs->scrub_device_mem(hdev);
512 
513 		if (rc) {
514 			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
515 			hl_device_reset(hdev, HL_DRV_RESET_HARD);
516 		}
517 	}
518 
519 	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
520 	 * thread, we don't care because the in_reset is marked so if a user will try to open
521 	 * the device it will fail on that, even if compute_ctx is false.
522 	 */
523 	mutex_lock(&hdev->fpriv_list_lock);
524 	hdev->is_compute_ctx_active = false;
525 	mutex_unlock(&hdev->fpriv_list_lock);
526 
527 	hdev->compute_ctx_in_release = 0;
528 
529 	/* release the eventfd */
530 	if (hpriv->notifier_event.eventfd)
531 		eventfd_ctx_put(hpriv->notifier_event.eventfd);
532 
533 	mutex_destroy(&hpriv->notifier_event.lock);
534 
535 	kfree(hpriv);
536 }
537 
538 void hl_hpriv_get(struct hl_fpriv *hpriv)
539 {
540 	kref_get(&hpriv->refcount);
541 }
542 
543 int hl_hpriv_put(struct hl_fpriv *hpriv)
544 {
545 	return kref_put(&hpriv->refcount, hpriv_release);
546 }
547 
548 static void print_device_in_use_info(struct hl_device *hdev, const char *message)
549 {
550 	u32 active_cs_num, dmabuf_export_cnt;
551 	bool unknown_reason = true;
552 	char buf[128];
553 	size_t size;
554 	int offset;
555 
556 	size = sizeof(buf);
557 	offset = 0;
558 
559 	active_cs_num = hl_get_active_cs_num(hdev);
560 	if (active_cs_num) {
561 		unknown_reason = false;
562 		offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
563 	}
564 
565 	dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
566 	if (dmabuf_export_cnt) {
567 		unknown_reason = false;
568 		offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
569 					dmabuf_export_cnt);
570 	}
571 
572 	if (unknown_reason)
573 		scnprintf(buf + offset, size - offset, " [unknown reason]");
574 
575 	dev_notice(hdev->dev, "%s%s\n", message, buf);
576 }
577 
578 /*
579  * hl_device_release() - release function for habanalabs device.
580  * @ddev: pointer to DRM device structure.
581  * @file: pointer to DRM file private data structure.
582  *
583  * Called when process closes an habanalabs device
584  */
585 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv)
586 {
587 	struct hl_fpriv *hpriv = file_priv->driver_priv;
588 	struct hl_device *hdev = to_hl_device(ddev);
589 
590 	if (!hdev) {
591 		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
592 		put_pid(hpriv->taskpid);
593 	}
594 
595 	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
596 
597 	/* Memory buffers might be still in use at this point and thus the handles IDR destruction
598 	 * is postponed to hpriv_release().
599 	 */
600 	hl_mem_mgr_fini(&hpriv->mem_mgr);
601 
602 	hdev->compute_ctx_in_release = 1;
603 
604 	if (!hl_hpriv_put(hpriv)) {
605 		print_device_in_use_info(hdev, "User process closed FD but device still in use");
606 		hl_device_reset(hdev, HL_DRV_RESET_HARD);
607 	}
608 
609 	hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
610 }
611 
612 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
613 {
614 	struct hl_fpriv *hpriv = filp->private_data;
615 	struct hl_device *hdev = hpriv->hdev;
616 
617 	filp->private_data = NULL;
618 
619 	if (!hdev) {
620 		pr_err("Closing FD after device was removed\n");
621 		goto out;
622 	}
623 
624 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
625 	list_del(&hpriv->dev_node);
626 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
627 out:
628 	put_pid(hpriv->taskpid);
629 
630 	kfree(hpriv);
631 
632 	return 0;
633 }
634 
635 static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
636 {
637 	struct hl_device *hdev = hpriv->hdev;
638 	unsigned long vm_pgoff;
639 
640 	if (!hdev) {
641 		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
642 		return -ENODEV;
643 	}
644 
645 	vm_pgoff = vma->vm_pgoff;
646 
647 	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
648 	case HL_MMAP_TYPE_BLOCK:
649 		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
650 		return hl_hw_block_mmap(hpriv, vma);
651 
652 	case HL_MMAP_TYPE_CB:
653 	case HL_MMAP_TYPE_TS_BUFF:
654 		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
655 	}
656 	return -EINVAL;
657 }
658 
659 /*
660  * hl_mmap - mmap function for habanalabs device
661  *
662  * @*filp: pointer to file structure
663  * @*vma: pointer to vm_area_struct of the process
664  *
665  * Called when process does an mmap on habanalabs device. Call the relevant mmap
666  * function at the end of the common code.
667  */
668 int hl_mmap(struct file *filp, struct vm_area_struct *vma)
669 {
670 	struct drm_file *file_priv = filp->private_data;
671 	struct hl_fpriv *hpriv = file_priv->driver_priv;
672 
673 	return __hl_mmap(hpriv, vma);
674 }
675 
676 static const struct file_operations hl_ctrl_ops = {
677 	.owner = THIS_MODULE,
678 	.open = hl_device_open_ctrl,
679 	.release = hl_device_release_ctrl,
680 	.unlocked_ioctl = hl_ioctl_control,
681 	.compat_ioctl = hl_ioctl_control
682 };
683 
684 static void device_release_func(struct device *dev)
685 {
686 	kfree(dev);
687 }
688 
689 /*
690  * device_init_cdev - Initialize cdev and device for habanalabs device
691  *
692  * @hdev: pointer to habanalabs device structure
693  * @class: pointer to the class object of the device
694  * @minor: minor number of the specific device
695  * @fops: file operations to install for this device
696  * @name: name of the device as it will appear in the filesystem
697  * @cdev: pointer to the char device object that will be initialized
698  * @dev: pointer to the device object that will be initialized
699  *
700  * Initialize a cdev and a Linux device for habanalabs's device.
701  */
702 static int device_init_cdev(struct hl_device *hdev, const struct class *class,
703 				int minor, const struct file_operations *fops,
704 				char *name, struct cdev *cdev,
705 				struct device **dev)
706 {
707 	cdev_init(cdev, fops);
708 	cdev->owner = THIS_MODULE;
709 
710 	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
711 	if (!*dev)
712 		return -ENOMEM;
713 
714 	device_initialize(*dev);
715 	(*dev)->devt = MKDEV(hdev->major, minor);
716 	(*dev)->class = class;
717 	(*dev)->release = device_release_func;
718 	dev_set_drvdata(*dev, hdev);
719 	dev_set_name(*dev, "%s", name);
720 
721 	return 0;
722 }
723 
724 static int cdev_sysfs_debugfs_add(struct hl_device *hdev)
725 {
726 	const struct class *accel_class = hdev->drm.accel->kdev->class;
727 	char name[32];
728 	int rc;
729 
730 	hdev->cdev_idx = hdev->drm.accel->index;
731 
732 	/* Initialize cdev and device structures for the control device */
733 	snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx);
734 	rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name,
735 				&hdev->cdev_ctrl, &hdev->dev_ctrl);
736 	if (rc)
737 		return rc;
738 
739 	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
740 	if (rc) {
741 		dev_err(hdev->dev_ctrl,
742 			"failed to add an accel control char device to the system\n");
743 		goto free_ctrl_device;
744 	}
745 
746 	rc = hl_sysfs_init(hdev);
747 	if (rc) {
748 		dev_err(hdev->dev, "failed to initialize sysfs\n");
749 		goto delete_ctrl_cdev_device;
750 	}
751 
752 	hl_debugfs_add_device(hdev);
753 
754 	hdev->cdev_sysfs_debugfs_created = true;
755 
756 	return 0;
757 
758 delete_ctrl_cdev_device:
759 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
760 free_ctrl_device:
761 	put_device(hdev->dev_ctrl);
762 	return rc;
763 }
764 
765 static void cdev_sysfs_debugfs_remove(struct hl_device *hdev)
766 {
767 	if (!hdev->cdev_sysfs_debugfs_created)
768 		return;
769 
770 	hl_sysfs_fini(hdev);
771 
772 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
773 	put_device(hdev->dev_ctrl);
774 }
775 
776 static void device_hard_reset_pending(struct work_struct *work)
777 {
778 	struct hl_device_reset_work *device_reset_work =
779 		container_of(work, struct hl_device_reset_work, reset_work.work);
780 	struct hl_device *hdev = device_reset_work->hdev;
781 	u32 flags;
782 	int rc;
783 
784 	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
785 
786 	rc = hl_device_reset(hdev, flags);
787 
788 	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
789 		struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
790 
791 		if (ctx) {
792 			/* The read refcount value should subtracted by one, because the read is
793 			 * protected with hl_get_compute_ctx().
794 			 */
795 			dev_info(hdev->dev,
796 				"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
797 				kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
798 			hl_ctx_put(ctx);
799 		} else {
800 			dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
801 				HL_PENDING_RESET_PER_SEC);
802 		}
803 
804 		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
805 					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
806 	}
807 }
808 
809 static void device_release_watchdog_func(struct work_struct *work)
810 {
811 	struct hl_device_reset_work *watchdog_work =
812 			container_of(work, struct hl_device_reset_work, reset_work.work);
813 	struct hl_device *hdev = watchdog_work->hdev;
814 	u32 flags;
815 
816 	dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
817 
818 	flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
819 
820 	hl_device_reset(hdev, flags);
821 }
822 
823 /*
824  * device_early_init - do some early initialization for the habanalabs device
825  *
826  * @hdev: pointer to habanalabs device structure
827  *
828  * Install the relevant function pointers and call the early_init function,
829  * if such a function exists
830  */
831 static int device_early_init(struct hl_device *hdev)
832 {
833 	int i, rc;
834 	char workq_name[32];
835 
836 	switch (hdev->asic_type) {
837 	case ASIC_GOYA:
838 		goya_set_asic_funcs(hdev);
839 		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
840 		break;
841 	case ASIC_GAUDI:
842 		gaudi_set_asic_funcs(hdev);
843 		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
844 		break;
845 	case ASIC_GAUDI_SEC:
846 		gaudi_set_asic_funcs(hdev);
847 		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
848 		break;
849 	case ASIC_GAUDI2:
850 		gaudi2_set_asic_funcs(hdev);
851 		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
852 		break;
853 	case ASIC_GAUDI2B:
854 		gaudi2_set_asic_funcs(hdev);
855 		strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
856 		break;
857 	case ASIC_GAUDI2C:
858 		gaudi2_set_asic_funcs(hdev);
859 		strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name));
860 		break;
861 	default:
862 		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
863 			hdev->asic_type);
864 		return -EINVAL;
865 	}
866 
867 	rc = hdev->asic_funcs->early_init(hdev);
868 	if (rc)
869 		return rc;
870 
871 	rc = hl_asid_init(hdev);
872 	if (rc)
873 		goto early_fini;
874 
875 	if (hdev->asic_prop.completion_queues_count) {
876 		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
877 				sizeof(struct workqueue_struct *),
878 				GFP_KERNEL);
879 		if (!hdev->cq_wq) {
880 			rc = -ENOMEM;
881 			goto asid_fini;
882 		}
883 	}
884 
885 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
886 		snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
887 		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
888 		if (hdev->cq_wq[i] == NULL) {
889 			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
890 			rc = -ENOMEM;
891 			goto free_cq_wq;
892 		}
893 	}
894 
895 	snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
896 	hdev->eq_wq = create_singlethread_workqueue(workq_name);
897 	if (hdev->eq_wq == NULL) {
898 		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
899 		rc = -ENOMEM;
900 		goto free_cq_wq;
901 	}
902 
903 	snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
904 	hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
905 	if (!hdev->cs_cmplt_wq) {
906 		dev_err(hdev->dev,
907 			"Failed to allocate CS completions workqueue\n");
908 		rc = -ENOMEM;
909 		goto free_eq_wq;
910 	}
911 
912 	snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
913 	hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
914 	if (!hdev->ts_free_obj_wq) {
915 		dev_err(hdev->dev,
916 			"Failed to allocate Timestamp registration free workqueue\n");
917 		rc = -ENOMEM;
918 		goto free_cs_cmplt_wq;
919 	}
920 
921 	snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
922 	hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
923 	if (!hdev->prefetch_wq) {
924 		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
925 		rc = -ENOMEM;
926 		goto free_ts_free_wq;
927 	}
928 
929 	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
930 	if (!hdev->hl_chip_info) {
931 		rc = -ENOMEM;
932 		goto free_prefetch_wq;
933 	}
934 
935 	rc = hl_mmu_if_set_funcs(hdev);
936 	if (rc)
937 		goto free_chip_info;
938 
939 	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
940 
941 	snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
942 	hdev->reset_wq = create_singlethread_workqueue(workq_name);
943 	if (!hdev->reset_wq) {
944 		rc = -ENOMEM;
945 		dev_err(hdev->dev, "Failed to create device reset WQ\n");
946 		goto free_cb_mgr;
947 	}
948 
949 	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
950 	hdev->device_reset_work.hdev = hdev;
951 	hdev->device_fini_pending = 0;
952 
953 	INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
954 				device_release_watchdog_func);
955 	hdev->device_release_watchdog_work.hdev = hdev;
956 
957 	mutex_init(&hdev->send_cpu_message_lock);
958 	mutex_init(&hdev->debug_lock);
959 	INIT_LIST_HEAD(&hdev->cs_mirror_list);
960 	spin_lock_init(&hdev->cs_mirror_lock);
961 	spin_lock_init(&hdev->reset_info.lock);
962 	INIT_LIST_HEAD(&hdev->fpriv_list);
963 	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
964 	mutex_init(&hdev->fpriv_list_lock);
965 	mutex_init(&hdev->fpriv_ctrl_list_lock);
966 	mutex_init(&hdev->clk_throttling.lock);
967 
968 	return 0;
969 
970 free_cb_mgr:
971 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
972 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
973 free_chip_info:
974 	kfree(hdev->hl_chip_info);
975 free_prefetch_wq:
976 	destroy_workqueue(hdev->prefetch_wq);
977 free_ts_free_wq:
978 	destroy_workqueue(hdev->ts_free_obj_wq);
979 free_cs_cmplt_wq:
980 	destroy_workqueue(hdev->cs_cmplt_wq);
981 free_eq_wq:
982 	destroy_workqueue(hdev->eq_wq);
983 free_cq_wq:
984 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
985 		if (hdev->cq_wq[i])
986 			destroy_workqueue(hdev->cq_wq[i]);
987 	kfree(hdev->cq_wq);
988 asid_fini:
989 	hl_asid_fini(hdev);
990 early_fini:
991 	if (hdev->asic_funcs->early_fini)
992 		hdev->asic_funcs->early_fini(hdev);
993 
994 	return rc;
995 }
996 
997 /*
998  * device_early_fini - finalize all that was done in device_early_init
999  *
1000  * @hdev: pointer to habanalabs device structure
1001  *
1002  */
1003 static void device_early_fini(struct hl_device *hdev)
1004 {
1005 	int i;
1006 
1007 	mutex_destroy(&hdev->debug_lock);
1008 	mutex_destroy(&hdev->send_cpu_message_lock);
1009 
1010 	mutex_destroy(&hdev->fpriv_list_lock);
1011 	mutex_destroy(&hdev->fpriv_ctrl_list_lock);
1012 
1013 	mutex_destroy(&hdev->clk_throttling.lock);
1014 
1015 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
1016 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
1017 
1018 	kfree(hdev->hl_chip_info);
1019 
1020 	destroy_workqueue(hdev->prefetch_wq);
1021 	destroy_workqueue(hdev->ts_free_obj_wq);
1022 	destroy_workqueue(hdev->cs_cmplt_wq);
1023 	destroy_workqueue(hdev->eq_wq);
1024 	destroy_workqueue(hdev->reset_wq);
1025 
1026 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1027 		destroy_workqueue(hdev->cq_wq[i]);
1028 	kfree(hdev->cq_wq);
1029 
1030 	hl_asid_fini(hdev);
1031 
1032 	if (hdev->asic_funcs->early_fini)
1033 		hdev->asic_funcs->early_fini(hdev);
1034 }
1035 
1036 static bool is_pci_link_healthy(struct hl_device *hdev)
1037 {
1038 	u16 device_id;
1039 
1040 	if (!hdev->pdev)
1041 		return false;
1042 
1043 	pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id);
1044 
1045 	return (device_id == hdev->pdev->device);
1046 }
1047 
1048 static int hl_device_eq_heartbeat_check(struct hl_device *hdev)
1049 {
1050 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1051 
1052 	if (!prop->cpucp_info.eq_health_check_supported)
1053 		return 0;
1054 
1055 	if (hdev->eq_heartbeat_received) {
1056 		hdev->eq_heartbeat_received = false;
1057 	} else {
1058 		dev_err(hdev->dev, "EQ heartbeat event was not received!\n");
1059 		return -EIO;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static void hl_device_heartbeat(struct work_struct *work)
1066 {
1067 	struct hl_device *hdev = container_of(work, struct hl_device,
1068 						work_heartbeat.work);
1069 	struct hl_info_fw_err_info info = {0};
1070 	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1071 
1072 	/* Start heartbeat checks only after driver has enabled events from FW */
1073 	if (!hl_device_operational(hdev, NULL) || !hdev->init_done)
1074 		goto reschedule;
1075 
1076 	/*
1077 	 * For EQ health check need to check if driver received the heartbeat eq event
1078 	 * in order to validate the eq is working.
1079 	 * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule.
1080 	 */
1081 	if ((!hl_device_eq_heartbeat_check(hdev)) && (!hdev->asic_funcs->send_heartbeat(hdev)))
1082 		goto reschedule;
1083 
1084 	if (hl_device_operational(hdev, NULL))
1085 		dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
1086 			is_pci_link_healthy(hdev) ? "healthy" : "broken");
1087 
1088 	info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1089 	info.event_mask = &event_mask;
1090 	hl_handle_fw_err(hdev, &info);
1091 	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1092 
1093 	return;
1094 
1095 reschedule:
1096 	/*
1097 	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1098 	 * heartbeat immediately post reset.
1099 	 * If control reached here, then at least one heartbeat work has been
1100 	 * scheduled since last reset/init cycle.
1101 	 * So if the device is not already in reset cycle, reset the flag
1102 	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1103 	 * status for at least one heartbeat. From this point driver restarts
1104 	 * tracking future consecutive fatal errors.
1105 	 */
1106 	if (!hdev->reset_info.in_reset)
1107 		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1108 
1109 	schedule_delayed_work(&hdev->work_heartbeat,
1110 			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1111 }
1112 
1113 /*
1114  * device_late_init - do late stuff initialization for the habanalabs device
1115  *
1116  * @hdev: pointer to habanalabs device structure
1117  *
1118  * Do stuff that either needs the device H/W queues to be active or needs
1119  * to happen after all the rest of the initialization is finished
1120  */
1121 static int device_late_init(struct hl_device *hdev)
1122 {
1123 	int rc;
1124 
1125 	if (hdev->asic_funcs->late_init) {
1126 		rc = hdev->asic_funcs->late_init(hdev);
1127 		if (rc) {
1128 			dev_err(hdev->dev,
1129 				"failed late initialization for the H/W\n");
1130 			return rc;
1131 		}
1132 	}
1133 
1134 	hdev->high_pll = hdev->asic_prop.high_pll;
1135 
1136 	if (hdev->heartbeat) {
1137 		/*
1138 		 * Before scheduling the heartbeat driver will check if eq event has received.
1139 		 * for the first schedule we need to set the indication as true then for the next
1140 		 * one this indication will be true only if eq event was sent by FW.
1141 		 */
1142 		hdev->eq_heartbeat_received = true;
1143 
1144 		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
1145 
1146 		schedule_delayed_work(&hdev->work_heartbeat,
1147 				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1148 	}
1149 
1150 	hdev->late_init_done = true;
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * device_late_fini - finalize all that was done in device_late_init
1157  *
1158  * @hdev: pointer to habanalabs device structure
1159  *
1160  */
1161 static void device_late_fini(struct hl_device *hdev)
1162 {
1163 	if (!hdev->late_init_done)
1164 		return;
1165 
1166 	if (hdev->heartbeat)
1167 		cancel_delayed_work_sync(&hdev->work_heartbeat);
1168 
1169 	if (hdev->asic_funcs->late_fini)
1170 		hdev->asic_funcs->late_fini(hdev);
1171 
1172 	hdev->late_init_done = false;
1173 }
1174 
1175 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1176 {
1177 	u64 max_power, curr_power, dc_power, dividend, divisor;
1178 	int rc;
1179 
1180 	max_power = hdev->max_power;
1181 	dc_power = hdev->asic_prop.dc_power_default;
1182 	divisor = max_power - dc_power;
1183 	if (!divisor) {
1184 		dev_warn(hdev->dev, "device utilization is not supported\n");
1185 		return -EOPNOTSUPP;
1186 	}
1187 	rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1188 
1189 	if (rc)
1190 		return rc;
1191 
1192 	curr_power = clamp(curr_power, dc_power, max_power);
1193 
1194 	dividend = (curr_power - dc_power) * 100;
1195 	*utilization = (u32) div_u64(dividend, divisor);
1196 
1197 	return 0;
1198 }
1199 
1200 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1201 {
1202 	int rc = 0;
1203 
1204 	mutex_lock(&hdev->debug_lock);
1205 
1206 	if (!enable) {
1207 		if (!hdev->in_debug) {
1208 			dev_err(hdev->dev,
1209 				"Failed to disable debug mode because device was not in debug mode\n");
1210 			rc = -EFAULT;
1211 			goto out;
1212 		}
1213 
1214 		if (!hdev->reset_info.hard_reset_pending)
1215 			hdev->asic_funcs->halt_coresight(hdev, ctx);
1216 
1217 		hdev->in_debug = 0;
1218 
1219 		goto out;
1220 	}
1221 
1222 	if (hdev->in_debug) {
1223 		dev_err(hdev->dev,
1224 			"Failed to enable debug mode because device is already in debug mode\n");
1225 		rc = -EFAULT;
1226 		goto out;
1227 	}
1228 
1229 	hdev->in_debug = 1;
1230 
1231 out:
1232 	mutex_unlock(&hdev->debug_lock);
1233 
1234 	return rc;
1235 }
1236 
1237 static void take_release_locks(struct hl_device *hdev)
1238 {
1239 	/* Flush anyone that is inside the critical section of enqueue
1240 	 * jobs to the H/W
1241 	 */
1242 	hdev->asic_funcs->hw_queues_lock(hdev);
1243 	hdev->asic_funcs->hw_queues_unlock(hdev);
1244 
1245 	/* Flush processes that are sending message to CPU */
1246 	mutex_lock(&hdev->send_cpu_message_lock);
1247 	mutex_unlock(&hdev->send_cpu_message_lock);
1248 
1249 	/* Flush anyone that is inside device open */
1250 	mutex_lock(&hdev->fpriv_list_lock);
1251 	mutex_unlock(&hdev->fpriv_list_lock);
1252 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1253 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1254 }
1255 
1256 static void hl_abort_waiting_for_completions(struct hl_device *hdev)
1257 {
1258 	hl_abort_waiting_for_cs_completions(hdev);
1259 
1260 	/* Release all pending user interrupts, each pending user interrupt
1261 	 * holds a reference to a user context.
1262 	 */
1263 	hl_release_pending_user_interrupts(hdev);
1264 }
1265 
1266 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1267 				bool skip_wq_flush)
1268 {
1269 	if (hard_reset)
1270 		device_late_fini(hdev);
1271 
1272 	/*
1273 	 * Halt the engines and disable interrupts so we won't get any more
1274 	 * completions from H/W and we won't have any accesses from the
1275 	 * H/W to the host machine
1276 	 */
1277 	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1278 
1279 	/* Go over all the queues, release all CS and their jobs */
1280 	hl_cs_rollback_all(hdev, skip_wq_flush);
1281 
1282 	/* flush the MMU prefetch workqueue */
1283 	flush_workqueue(hdev->prefetch_wq);
1284 
1285 	hl_abort_waiting_for_completions(hdev);
1286 }
1287 
1288 /*
1289  * hl_device_suspend - initiate device suspend
1290  *
1291  * @hdev: pointer to habanalabs device structure
1292  *
1293  * Puts the hw in the suspend state (all asics).
1294  * Returns 0 for success or an error on failure.
1295  * Called at driver suspend.
1296  */
1297 int hl_device_suspend(struct hl_device *hdev)
1298 {
1299 	int rc;
1300 
1301 	pci_save_state(hdev->pdev);
1302 
1303 	/* Block future CS/VM/JOB completion operations */
1304 	spin_lock(&hdev->reset_info.lock);
1305 	if (hdev->reset_info.in_reset) {
1306 		spin_unlock(&hdev->reset_info.lock);
1307 		dev_err(hdev->dev, "Can't suspend while in reset\n");
1308 		return -EIO;
1309 	}
1310 	hdev->reset_info.in_reset = 1;
1311 	spin_unlock(&hdev->reset_info.lock);
1312 
1313 	/* This blocks all other stuff that is not blocked by in_reset */
1314 	hdev->disabled = true;
1315 
1316 	take_release_locks(hdev);
1317 
1318 	rc = hdev->asic_funcs->suspend(hdev);
1319 	if (rc)
1320 		dev_err(hdev->dev,
1321 			"Failed to disable PCI access of device CPU\n");
1322 
1323 	/* Shut down the device */
1324 	pci_disable_device(hdev->pdev);
1325 	pci_set_power_state(hdev->pdev, PCI_D3hot);
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * hl_device_resume - initiate device resume
1332  *
1333  * @hdev: pointer to habanalabs device structure
1334  *
1335  * Bring the hw back to operating state (all asics).
1336  * Returns 0 for success or an error on failure.
1337  * Called at driver resume.
1338  */
1339 int hl_device_resume(struct hl_device *hdev)
1340 {
1341 	int rc;
1342 
1343 	pci_set_power_state(hdev->pdev, PCI_D0);
1344 	pci_restore_state(hdev->pdev);
1345 	rc = pci_enable_device_mem(hdev->pdev);
1346 	if (rc) {
1347 		dev_err(hdev->dev,
1348 			"Failed to enable PCI device in resume\n");
1349 		return rc;
1350 	}
1351 
1352 	pci_set_master(hdev->pdev);
1353 
1354 	rc = hdev->asic_funcs->resume(hdev);
1355 	if (rc) {
1356 		dev_err(hdev->dev, "Failed to resume device after suspend\n");
1357 		goto disable_device;
1358 	}
1359 
1360 
1361 	/* 'in_reset' was set to true during suspend, now we must clear it in order
1362 	 * for hard reset to be performed
1363 	 */
1364 	spin_lock(&hdev->reset_info.lock);
1365 	hdev->reset_info.in_reset = 0;
1366 	spin_unlock(&hdev->reset_info.lock);
1367 
1368 	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1369 	if (rc) {
1370 		dev_err(hdev->dev, "Failed to reset device during resume\n");
1371 		goto disable_device;
1372 	}
1373 
1374 	return 0;
1375 
1376 disable_device:
1377 	pci_disable_device(hdev->pdev);
1378 
1379 	return rc;
1380 }
1381 
1382 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1383 {
1384 	struct task_struct *task = NULL;
1385 	struct list_head *hpriv_list;
1386 	struct hl_fpriv *hpriv;
1387 	struct mutex *hpriv_lock;
1388 	u32 pending_cnt;
1389 
1390 	hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1391 	hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1392 
1393 	/* Giving time for user to close FD, and for processes that are inside
1394 	 * hl_device_open to finish
1395 	 */
1396 	if (!list_empty(hpriv_list))
1397 		ssleep(1);
1398 
1399 	if (timeout) {
1400 		pending_cnt = timeout;
1401 	} else {
1402 		if (hdev->process_kill_trial_cnt) {
1403 			/* Processes have been already killed */
1404 			pending_cnt = 1;
1405 			goto wait_for_processes;
1406 		} else {
1407 			/* Wait a small period after process kill */
1408 			pending_cnt = HL_PENDING_RESET_PER_SEC;
1409 		}
1410 	}
1411 
1412 	mutex_lock(hpriv_lock);
1413 
1414 	/* This section must be protected because we are dereferencing
1415 	 * pointers that are freed if the process exits
1416 	 */
1417 	list_for_each_entry(hpriv, hpriv_list, dev_node) {
1418 		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1419 		if (task) {
1420 			dev_info(hdev->dev, "Killing user process pid=%d\n",
1421 				task_pid_nr(task));
1422 			send_sig(SIGKILL, task, 1);
1423 			usleep_range(1000, 10000);
1424 
1425 			put_task_struct(task);
1426 		} else {
1427 			dev_dbg(hdev->dev,
1428 				"Can't get task struct for user process %d, process was killed from outside the driver\n",
1429 				pid_nr(hpriv->taskpid));
1430 		}
1431 	}
1432 
1433 	mutex_unlock(hpriv_lock);
1434 
1435 	/*
1436 	 * We killed the open users, but that doesn't mean they are closed.
1437 	 * It could be that they are running a long cleanup phase in the driver
1438 	 * e.g. MMU unmappings, or running other long teardown flow even before
1439 	 * our cleanup.
1440 	 * Therefore we need to wait again to make sure they are closed before
1441 	 * continuing with the reset.
1442 	 */
1443 
1444 wait_for_processes:
1445 	while ((!list_empty(hpriv_list)) && (pending_cnt)) {
1446 		dev_dbg(hdev->dev,
1447 			"Waiting for all unmap operations to finish before hard reset\n");
1448 
1449 		pending_cnt--;
1450 
1451 		ssleep(1);
1452 	}
1453 
1454 	/* All processes exited successfully */
1455 	if (list_empty(hpriv_list))
1456 		return 0;
1457 
1458 	/* Give up waiting for processes to exit */
1459 	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1460 		return -ETIME;
1461 
1462 	hdev->process_kill_trial_cnt++;
1463 
1464 	return -EBUSY;
1465 }
1466 
1467 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1468 {
1469 	struct list_head *hpriv_list;
1470 	struct hl_fpriv *hpriv;
1471 	struct mutex *hpriv_lock;
1472 
1473 	hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1474 	hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1475 
1476 	mutex_lock(hpriv_lock);
1477 	list_for_each_entry(hpriv, hpriv_list, dev_node)
1478 		hpriv->hdev = NULL;
1479 	mutex_unlock(hpriv_lock);
1480 }
1481 
1482 static void send_disable_pci_access(struct hl_device *hdev, u32 flags)
1483 {
1484 	/* If reset is due to heartbeat, device CPU is no responsive in
1485 	 * which case no point sending PCI disable message to it.
1486 	 */
1487 	if ((flags & HL_DRV_RESET_HARD) &&
1488 			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1489 		/* Disable PCI access from device F/W so he won't send
1490 		 * us additional interrupts. We disable MSI/MSI-X at
1491 		 * the halt_engines function and we can't have the F/W
1492 		 * sending us interrupts after that. We need to disable
1493 		 * the access here because if the device is marked
1494 		 * disable, the message won't be send. Also, in case
1495 		 * of heartbeat, the device CPU is marked as disable
1496 		 * so this message won't be sent
1497 		 */
1498 		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) {
1499 			dev_warn(hdev->dev, "Failed to disable FW's PCI access\n");
1500 			return;
1501 		}
1502 
1503 		/* verify that last EQs are handled before disabled is set */
1504 		if (hdev->cpu_queues_enable)
1505 			synchronize_irq(pci_irq_vector(hdev->pdev,
1506 					hdev->asic_prop.eq_interrupt_id));
1507 	}
1508 }
1509 
1510 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1511 {
1512 	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1513 
1514 	/* No consecutive mechanism when user context exists */
1515 	if (hdev->is_compute_ctx_active)
1516 		return;
1517 
1518 	/*
1519 	 * 'reset cause' is being updated here, because getting here
1520 	 * means that it's the 1st time and the last time we're here
1521 	 * ('in_reset' makes sure of it). This makes sure that
1522 	 * 'reset_cause' will continue holding its 1st recorded reason!
1523 	 */
1524 	if (flags & HL_DRV_RESET_HEARTBEAT) {
1525 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1526 		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1527 	} else if (flags & HL_DRV_RESET_TDR) {
1528 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1529 		cur_reset_trigger = HL_DRV_RESET_TDR;
1530 	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1531 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1532 		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1533 	} else {
1534 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1535 	}
1536 
1537 	/*
1538 	 * If reset cause is same twice, then reset_trigger_repeated
1539 	 * is set and if this reset is due to a fatal FW error
1540 	 * device is set to an unstable state.
1541 	 */
1542 	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1543 		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1544 		hdev->reset_info.reset_trigger_repeated = 0;
1545 	} else {
1546 		hdev->reset_info.reset_trigger_repeated = 1;
1547 	}
1548 }
1549 
1550 /*
1551  * hl_device_reset - reset the device
1552  *
1553  * @hdev: pointer to habanalabs device structure
1554  * @flags: reset flags.
1555  *
1556  * Block future CS and wait for pending CS to be enqueued
1557  * Call ASIC H/W fini
1558  * Flush all completions
1559  * Re-initialize all internal data structures
1560  * Call ASIC H/W init, late_init
1561  * Test queues
1562  * Enable device
1563  *
1564  * Returns 0 for success or an error on failure.
1565  */
1566 int hl_device_reset(struct hl_device *hdev, u32 flags)
1567 {
1568 	bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1569 		schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1570 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1571 	struct hl_ctx *ctx;
1572 	int i, rc, hw_fini_rc;
1573 
1574 	if (!hdev->init_done) {
1575 		dev_err(hdev->dev, "Can't reset before initialization is done\n");
1576 		return 0;
1577 	}
1578 
1579 	hard_reset = !!(flags & HL_DRV_RESET_HARD);
1580 	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1581 	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1582 	from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1583 	delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1584 	from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1585 	reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1586 
1587 	if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1588 		dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1589 		return 0;
1590 	}
1591 
1592 	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1593 		dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1594 		hard_reset = true;
1595 	}
1596 
1597 	if (reset_upon_device_release) {
1598 		if (hard_reset) {
1599 			dev_crit(hdev->dev,
1600 				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1601 			return -EINVAL;
1602 		}
1603 
1604 		goto do_reset;
1605 	}
1606 
1607 	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1608 		dev_dbg(hdev->dev,
1609 			"asic doesn't allow inference soft reset - do hard-reset instead\n");
1610 		hard_reset = true;
1611 	}
1612 
1613 do_reset:
1614 	/* Re-entry of reset thread */
1615 	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1616 		goto kill_processes;
1617 
1618 	/*
1619 	 * Prevent concurrency in this function - only one reset should be
1620 	 * done at any given time. We need to perform this only if we didn't
1621 	 * get here from a dedicated hard reset thread.
1622 	 */
1623 	if (!from_hard_reset_thread) {
1624 		/* Block future CS/VM/JOB completion operations */
1625 		spin_lock(&hdev->reset_info.lock);
1626 		if (hdev->reset_info.in_reset) {
1627 			/* We allow scheduling of a hard reset only during a compute reset */
1628 			if (hard_reset && hdev->reset_info.in_compute_reset)
1629 				hdev->reset_info.hard_reset_schedule_flags = flags;
1630 			spin_unlock(&hdev->reset_info.lock);
1631 			return 0;
1632 		}
1633 
1634 		/* This still allows the completion of some KDMA ops
1635 		 * Update this before in_reset because in_compute_reset implies we are in reset
1636 		 */
1637 		hdev->reset_info.in_compute_reset = !hard_reset;
1638 
1639 		hdev->reset_info.in_reset = 1;
1640 
1641 		spin_unlock(&hdev->reset_info.lock);
1642 
1643 		/* Cancel the device release watchdog work if required.
1644 		 * In case of reset-upon-device-release while the release watchdog work is
1645 		 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1646 		 */
1647 		if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1648 			struct hl_device_reset_work *watchdog_work =
1649 					&hdev->device_release_watchdog_work;
1650 
1651 			hdev->reset_info.watchdog_active = 0;
1652 			if (!from_watchdog_thread)
1653 				cancel_delayed_work_sync(&watchdog_work->reset_work);
1654 
1655 			if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1656 				hdev->reset_info.in_compute_reset = 0;
1657 				flags |= HL_DRV_RESET_HARD;
1658 				flags &= ~HL_DRV_RESET_DEV_RELEASE;
1659 				hard_reset = true;
1660 			}
1661 		}
1662 
1663 		if (delay_reset)
1664 			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1665 
1666 escalate_reset_flow:
1667 		handle_reset_trigger(hdev, flags);
1668 		send_disable_pci_access(hdev, flags);
1669 
1670 		/* This also blocks future CS/VM/JOB completion operations */
1671 		hdev->disabled = true;
1672 
1673 		take_release_locks(hdev);
1674 
1675 		if (hard_reset)
1676 			dev_info(hdev->dev, "Going to reset device\n");
1677 		else if (reset_upon_device_release)
1678 			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1679 		else
1680 			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1681 	}
1682 
1683 	if ((hard_reset) && (!from_hard_reset_thread)) {
1684 		hdev->reset_info.hard_reset_pending = true;
1685 
1686 		hdev->process_kill_trial_cnt = 0;
1687 
1688 		hdev->device_reset_work.flags = flags;
1689 
1690 		/*
1691 		 * Because the reset function can't run from heartbeat work,
1692 		 * we need to call the reset function from a dedicated work.
1693 		 */
1694 		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1695 
1696 		return 0;
1697 	}
1698 
1699 	cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1700 
1701 kill_processes:
1702 	if (hard_reset) {
1703 		/* Kill processes here after CS rollback. This is because the
1704 		 * process can't really exit until all its CSs are done, which
1705 		 * is what we do in cs rollback
1706 		 */
1707 		rc = device_kill_open_processes(hdev, 0, false);
1708 
1709 		if (rc == -EBUSY) {
1710 			if (hdev->device_fini_pending) {
1711 				dev_crit(hdev->dev,
1712 					"%s Failed to kill all open processes, stopping hard reset\n",
1713 					dev_name(&(hdev)->pdev->dev));
1714 				goto out_err;
1715 			}
1716 
1717 			/* signal reset thread to reschedule */
1718 			return rc;
1719 		}
1720 
1721 		if (rc) {
1722 			dev_crit(hdev->dev,
1723 				"%s Failed to kill all open processes, stopping hard reset\n",
1724 				dev_name(&(hdev)->pdev->dev));
1725 			goto out_err;
1726 		}
1727 
1728 		/* Flush the Event queue workers to make sure no other thread is
1729 		 * reading or writing to registers during the reset
1730 		 */
1731 		flush_workqueue(hdev->eq_wq);
1732 	}
1733 
1734 	/* Reset the H/W. It will be in idle state after this returns */
1735 	hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1736 
1737 	if (hard_reset) {
1738 		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1739 
1740 		/* Release kernel context */
1741 		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1742 			hdev->kernel_ctx = NULL;
1743 
1744 		hl_vm_fini(hdev);
1745 		hl_mmu_fini(hdev);
1746 		hl_eq_reset(hdev, &hdev->event_queue);
1747 	}
1748 
1749 	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1750 	hl_hw_queue_reset(hdev, hard_reset);
1751 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1752 		hl_cq_reset(hdev, &hdev->completion_queue[i]);
1753 
1754 	/* Make sure the context switch phase will run again */
1755 	ctx = hl_get_compute_ctx(hdev);
1756 	if (ctx) {
1757 		atomic_set(&ctx->thread_ctx_switch_token, 1);
1758 		ctx->thread_ctx_switch_wait_token = 0;
1759 		hl_ctx_put(ctx);
1760 	}
1761 
1762 	if (hw_fini_rc) {
1763 		rc = hw_fini_rc;
1764 		goto out_err;
1765 	}
1766 	/* Finished tear-down, starting to re-initialize */
1767 
1768 	if (hard_reset) {
1769 		hdev->device_cpu_disabled = false;
1770 		hdev->reset_info.hard_reset_pending = false;
1771 
1772 		/*
1773 		 * Put the device in an unusable state if there are 2 back to back resets due to
1774 		 * fatal errors.
1775 		 */
1776 		if (hdev->reset_info.reset_trigger_repeated &&
1777 				(hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR ||
1778 						hdev->reset_info.prev_reset_trigger ==
1779 								HL_DRV_RESET_HEARTBEAT)) {
1780 			dev_crit(hdev->dev,
1781 				"%s Consecutive fatal errors, stopping hard reset\n",
1782 				dev_name(&(hdev)->pdev->dev));
1783 			rc = -EIO;
1784 			goto out_err;
1785 		}
1786 
1787 		if (hdev->kernel_ctx) {
1788 			dev_crit(hdev->dev,
1789 				"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1790 				dev_name(&(hdev)->pdev->dev));
1791 			rc = -EBUSY;
1792 			goto out_err;
1793 		}
1794 
1795 		rc = hl_mmu_init(hdev);
1796 		if (rc) {
1797 			dev_err(hdev->dev,
1798 				"Failed to initialize MMU S/W after hard reset\n");
1799 			goto out_err;
1800 		}
1801 
1802 		/* Allocate the kernel context */
1803 		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1804 						GFP_KERNEL);
1805 		if (!hdev->kernel_ctx) {
1806 			rc = -ENOMEM;
1807 			hl_mmu_fini(hdev);
1808 			goto out_err;
1809 		}
1810 
1811 		hdev->is_compute_ctx_active = false;
1812 
1813 		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1814 		if (rc) {
1815 			dev_err(hdev->dev,
1816 				"failed to init kernel ctx in hard reset\n");
1817 			kfree(hdev->kernel_ctx);
1818 			hdev->kernel_ctx = NULL;
1819 			hl_mmu_fini(hdev);
1820 			goto out_err;
1821 		}
1822 	}
1823 
1824 	/* Device is now enabled as part of the initialization requires
1825 	 * communication with the device firmware to get information that
1826 	 * is required for the initialization itself
1827 	 */
1828 	hdev->disabled = false;
1829 
1830 	/* F/W security enabled indication might be updated after hard-reset */
1831 	if (hard_reset) {
1832 		rc = hl_fw_read_preboot_status(hdev);
1833 		if (rc)
1834 			goto out_err;
1835 	}
1836 
1837 	rc = hdev->asic_funcs->hw_init(hdev);
1838 	if (rc) {
1839 		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1840 		goto out_err;
1841 	}
1842 
1843 	/* If device is not idle fail the reset process */
1844 	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1845 						HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1846 		print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1847 		rc = -EIO;
1848 		goto out_err;
1849 	}
1850 
1851 	/* Check that the communication with the device is working */
1852 	rc = hdev->asic_funcs->test_queues(hdev);
1853 	if (rc) {
1854 		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1855 		goto out_err;
1856 	}
1857 
1858 	if (hard_reset) {
1859 		rc = device_late_init(hdev);
1860 		if (rc) {
1861 			dev_err(hdev->dev, "Failed late init after hard reset\n");
1862 			goto out_err;
1863 		}
1864 
1865 		rc = hl_vm_init(hdev);
1866 		if (rc) {
1867 			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1868 			goto out_err;
1869 		}
1870 
1871 		if (!hdev->asic_prop.fw_security_enabled)
1872 			hl_fw_set_max_power(hdev);
1873 	} else {
1874 		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1875 		if (rc) {
1876 			if (reset_upon_device_release)
1877 				dev_err(hdev->dev,
1878 					"Failed late init in reset after device release\n");
1879 			else
1880 				dev_err(hdev->dev, "Failed late init after compute reset\n");
1881 			goto out_err;
1882 		}
1883 	}
1884 
1885 	rc = hdev->asic_funcs->scrub_device_mem(hdev);
1886 	if (rc) {
1887 		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1888 		goto out_err;
1889 	}
1890 
1891 	spin_lock(&hdev->reset_info.lock);
1892 	hdev->reset_info.in_compute_reset = 0;
1893 
1894 	/* Schedule hard reset only if requested and if not already in hard reset.
1895 	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1896 	 * reset schedule
1897 	 */
1898 	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1899 		schedule_hard_reset = true;
1900 	else
1901 		hdev->reset_info.in_reset = 0;
1902 
1903 	spin_unlock(&hdev->reset_info.lock);
1904 
1905 	hdev->reset_info.needs_reset = false;
1906 
1907 	if (hard_reset)
1908 		dev_info(hdev->dev,
1909 			 "Successfully finished resetting the %s device\n",
1910 			 dev_name(&(hdev)->pdev->dev));
1911 	else
1912 		dev_dbg(hdev->dev,
1913 			"Successfully finished resetting the %s device\n",
1914 			dev_name(&(hdev)->pdev->dev));
1915 
1916 	if (hard_reset) {
1917 		hdev->reset_info.hard_reset_cnt++;
1918 
1919 		/* After reset is done, we are ready to receive events from
1920 		 * the F/W. We can't do it before because we will ignore events
1921 		 * and if those events are fatal, we won't know about it and
1922 		 * the device will be operational although it shouldn't be
1923 		 */
1924 		hdev->asic_funcs->enable_events_from_fw(hdev);
1925 	} else {
1926 		if (!reset_upon_device_release)
1927 			hdev->reset_info.compute_reset_cnt++;
1928 
1929 		if (schedule_hard_reset) {
1930 			dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1931 			flags = hdev->reset_info.hard_reset_schedule_flags;
1932 			hdev->reset_info.hard_reset_schedule_flags = 0;
1933 			hard_reset = true;
1934 			goto escalate_reset_flow;
1935 		}
1936 	}
1937 
1938 	return 0;
1939 
1940 out_err:
1941 	hdev->disabled = true;
1942 
1943 	spin_lock(&hdev->reset_info.lock);
1944 	hdev->reset_info.in_compute_reset = 0;
1945 
1946 	if (hard_reset) {
1947 		dev_err(hdev->dev,
1948 			"%s Failed to reset! Device is NOT usable\n",
1949 			dev_name(&(hdev)->pdev->dev));
1950 		hdev->reset_info.hard_reset_cnt++;
1951 	} else {
1952 		if (reset_upon_device_release) {
1953 			dev_err(hdev->dev, "Failed to reset device after user release\n");
1954 			flags &= ~HL_DRV_RESET_DEV_RELEASE;
1955 		} else {
1956 			dev_err(hdev->dev, "Failed to do compute reset\n");
1957 			hdev->reset_info.compute_reset_cnt++;
1958 		}
1959 
1960 		spin_unlock(&hdev->reset_info.lock);
1961 		flags |= HL_DRV_RESET_HARD;
1962 		hard_reset = true;
1963 		goto escalate_reset_flow;
1964 	}
1965 
1966 	hdev->reset_info.in_reset = 0;
1967 
1968 	spin_unlock(&hdev->reset_info.lock);
1969 
1970 	return rc;
1971 }
1972 
1973 /*
1974  * hl_device_cond_reset() - conditionally reset the device.
1975  * @hdev: pointer to habanalabs device structure.
1976  * @reset_flags: reset flags.
1977  * @event_mask: events to notify user about.
1978  *
1979  * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
1980  * unless another reset precedes it.
1981  */
1982 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
1983 {
1984 	struct hl_ctx *ctx = NULL;
1985 
1986 	/* F/W reset cannot be postponed */
1987 	if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
1988 		goto device_reset;
1989 
1990 	/* Device release watchdog is relevant only if user exists and gets a reset notification */
1991 	if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
1992 		dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
1993 		goto device_reset;
1994 	}
1995 
1996 	ctx = hl_get_compute_ctx(hdev);
1997 	if (!ctx)
1998 		goto device_reset;
1999 
2000 	/*
2001 	 * There is no point in postponing the reset if user is not registered for events.
2002 	 * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it
2003 	 * just implies that user has unregistered as part of handling a previous event. In this
2004 	 * case an immediate reset is not required.
2005 	 */
2006 	if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active)
2007 		goto device_reset;
2008 
2009 	/* Schedule the device release watchdog work unless reset is already in progress or if the
2010 	 * work is already scheduled.
2011 	 */
2012 	spin_lock(&hdev->reset_info.lock);
2013 	if (hdev->reset_info.in_reset) {
2014 		spin_unlock(&hdev->reset_info.lock);
2015 		goto device_reset;
2016 	}
2017 
2018 	if (hdev->reset_info.watchdog_active) {
2019 		hdev->device_release_watchdog_work.flags |= flags;
2020 		goto out;
2021 	}
2022 
2023 	hdev->device_release_watchdog_work.flags = flags;
2024 	dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
2025 		hdev->device_release_watchdog_timeout_sec);
2026 	schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
2027 				msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
2028 	hdev->reset_info.watchdog_active = 1;
2029 out:
2030 	spin_unlock(&hdev->reset_info.lock);
2031 
2032 	hl_notifier_event_send_all(hdev, event_mask);
2033 
2034 	hl_ctx_put(ctx);
2035 
2036 	hl_abort_waiting_for_completions(hdev);
2037 
2038 	return 0;
2039 
2040 device_reset:
2041 	if (event_mask)
2042 		hl_notifier_event_send_all(hdev, event_mask);
2043 	if (ctx)
2044 		hl_ctx_put(ctx);
2045 
2046 	return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD);
2047 }
2048 
2049 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
2050 {
2051 	mutex_lock(&notifier_event->lock);
2052 	notifier_event->events_mask |= event_mask;
2053 
2054 	if (notifier_event->eventfd)
2055 		eventfd_signal(notifier_event->eventfd);
2056 
2057 	mutex_unlock(&notifier_event->lock);
2058 }
2059 
2060 /*
2061  * hl_notifier_event_send_all - notify all user processes via eventfd
2062  *
2063  * @hdev: pointer to habanalabs device structure
2064  * @event_mask: the occurred event/s
2065  * Returns 0 for success or an error on failure.
2066  */
2067 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
2068 {
2069 	struct hl_fpriv	*hpriv;
2070 
2071 	if (!event_mask) {
2072 		dev_warn(hdev->dev, "Skip sending zero event");
2073 		return;
2074 	}
2075 
2076 	mutex_lock(&hdev->fpriv_list_lock);
2077 
2078 	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
2079 		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
2080 
2081 	mutex_unlock(&hdev->fpriv_list_lock);
2082 }
2083 
2084 /*
2085  * hl_device_init - main initialization function for habanalabs device
2086  *
2087  * @hdev: pointer to habanalabs device structure
2088  *
2089  * Allocate an id for the device, do early initialization and then call the
2090  * ASIC specific initialization functions. Finally, create the cdev and the
2091  * Linux device to expose it to the user
2092  */
2093 int hl_device_init(struct hl_device *hdev)
2094 {
2095 	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2096 	struct hl_ts_free_jobs *free_jobs_data;
2097 	bool expose_interfaces_on_err = false;
2098 	void *p;
2099 
2100 	/* Initialize ASIC function pointers and perform early init */
2101 	rc = device_early_init(hdev);
2102 	if (rc)
2103 		goto out_disabled;
2104 
2105 	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2106 				hdev->asic_prop.user_interrupt_count;
2107 
2108 	if (user_interrupt_cnt) {
2109 		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2110 						GFP_KERNEL);
2111 		if (!hdev->user_interrupt) {
2112 			rc = -ENOMEM;
2113 			goto early_fini;
2114 		}
2115 
2116 		/* Timestamp records supported only if CQ supported in device */
2117 		if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2118 			for (i = 0 ; i < user_interrupt_cnt ; i++) {
2119 				p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2120 						sizeof(struct timestamp_reg_free_node));
2121 				if (!p) {
2122 					rc = -ENOMEM;
2123 					goto free_usr_intr_mem;
2124 				}
2125 				free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data;
2126 				free_jobs_data->free_nodes_pool = p;
2127 				free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2128 				free_jobs_data->next_avail_free_node_idx = 0;
2129 			}
2130 		}
2131 	}
2132 
2133 	free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data;
2134 	p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2135 				sizeof(struct timestamp_reg_free_node));
2136 	if (!p) {
2137 		rc = -ENOMEM;
2138 		goto free_usr_intr_mem;
2139 	}
2140 
2141 	free_jobs_data->free_nodes_pool = p;
2142 	free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2143 	free_jobs_data->next_avail_free_node_idx = 0;
2144 
2145 	/*
2146 	 * Start calling ASIC initialization. First S/W then H/W and finally
2147 	 * late init
2148 	 */
2149 	rc = hdev->asic_funcs->sw_init(hdev);
2150 	if (rc)
2151 		goto free_common_usr_intr_mem;
2152 
2153 
2154 	/* initialize completion structure for multi CS wait */
2155 	hl_multi_cs_completion_init(hdev);
2156 
2157 	/*
2158 	 * Initialize the H/W queues. Must be done before hw_init, because
2159 	 * there the addresses of the kernel queue are being written to the
2160 	 * registers of the device
2161 	 */
2162 	rc = hl_hw_queues_create(hdev);
2163 	if (rc) {
2164 		dev_err(hdev->dev, "failed to initialize kernel queues\n");
2165 		goto sw_fini;
2166 	}
2167 
2168 	cq_cnt = hdev->asic_prop.completion_queues_count;
2169 
2170 	/*
2171 	 * Initialize the completion queues. Must be done before hw_init,
2172 	 * because there the addresses of the completion queues are being
2173 	 * passed as arguments to request_irq
2174 	 */
2175 	if (cq_cnt) {
2176 		hdev->completion_queue = kcalloc(cq_cnt,
2177 				sizeof(*hdev->completion_queue),
2178 				GFP_KERNEL);
2179 
2180 		if (!hdev->completion_queue) {
2181 			dev_err(hdev->dev,
2182 				"failed to allocate completion queues\n");
2183 			rc = -ENOMEM;
2184 			goto hw_queues_destroy;
2185 		}
2186 	}
2187 
2188 	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2189 		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2190 				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2191 		if (rc) {
2192 			dev_err(hdev->dev,
2193 				"failed to initialize completion queue\n");
2194 			goto cq_fini;
2195 		}
2196 		hdev->completion_queue[i].cq_idx = i;
2197 	}
2198 
2199 	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2200 					sizeof(struct hl_cs *), GFP_KERNEL);
2201 	if (!hdev->shadow_cs_queue) {
2202 		rc = -ENOMEM;
2203 		goto cq_fini;
2204 	}
2205 
2206 	/*
2207 	 * Initialize the event queue. Must be done before hw_init,
2208 	 * because there the address of the event queue is being
2209 	 * passed as argument to request_irq
2210 	 */
2211 	rc = hl_eq_init(hdev, &hdev->event_queue);
2212 	if (rc) {
2213 		dev_err(hdev->dev, "failed to initialize event queue\n");
2214 		goto free_shadow_cs_queue;
2215 	}
2216 
2217 	/* MMU S/W must be initialized before kernel context is created */
2218 	rc = hl_mmu_init(hdev);
2219 	if (rc) {
2220 		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2221 		goto eq_fini;
2222 	}
2223 
2224 	/* Allocate the kernel context */
2225 	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2226 	if (!hdev->kernel_ctx) {
2227 		rc = -ENOMEM;
2228 		goto mmu_fini;
2229 	}
2230 
2231 	hdev->is_compute_ctx_active = false;
2232 
2233 	hdev->asic_funcs->state_dump_init(hdev);
2234 
2235 	hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2236 
2237 	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2238 
2239 	rc = hl_debugfs_device_init(hdev);
2240 	if (rc) {
2241 		dev_err(hdev->dev, "failed to initialize debugfs entry structure\n");
2242 		kfree(hdev->kernel_ctx);
2243 		goto mmu_fini;
2244 	}
2245 
2246 	/* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after
2247 	 * hl_debugfs_device_init().
2248 	 */
2249 	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2250 	if (rc) {
2251 		dev_err(hdev->dev, "failed to initialize kernel context\n");
2252 		kfree(hdev->kernel_ctx);
2253 		goto debugfs_device_fini;
2254 	}
2255 
2256 	rc = hl_cb_pool_init(hdev);
2257 	if (rc) {
2258 		dev_err(hdev->dev, "failed to initialize CB pool\n");
2259 		goto release_ctx;
2260 	}
2261 
2262 	rc = hl_dec_init(hdev);
2263 	if (rc) {
2264 		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2265 		goto cb_pool_fini;
2266 	}
2267 
2268 	/*
2269 	 * From this point, override rc (=0) in case of an error to allow debugging
2270 	 * (by adding char devices and creating sysfs/debugfs files as part of the error flow).
2271 	 */
2272 	expose_interfaces_on_err = true;
2273 
2274 	/* Device is now enabled as part of the initialization requires
2275 	 * communication with the device firmware to get information that
2276 	 * is required for the initialization itself
2277 	 */
2278 	hdev->disabled = false;
2279 
2280 	rc = hdev->asic_funcs->hw_init(hdev);
2281 	if (rc) {
2282 		dev_err(hdev->dev, "failed to initialize the H/W\n");
2283 		rc = 0;
2284 		goto out_disabled;
2285 	}
2286 
2287 	/* Check that the communication with the device is working */
2288 	rc = hdev->asic_funcs->test_queues(hdev);
2289 	if (rc) {
2290 		dev_err(hdev->dev, "Failed to detect if device is alive\n");
2291 		rc = 0;
2292 		goto out_disabled;
2293 	}
2294 
2295 	rc = device_late_init(hdev);
2296 	if (rc) {
2297 		dev_err(hdev->dev, "Failed late initialization\n");
2298 		rc = 0;
2299 		goto out_disabled;
2300 	}
2301 
2302 	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2303 		hdev->asic_name,
2304 		hdev->asic_prop.dram_size / SZ_1G);
2305 
2306 	rc = hl_vm_init(hdev);
2307 	if (rc) {
2308 		dev_err(hdev->dev, "Failed to initialize memory module\n");
2309 		rc = 0;
2310 		goto out_disabled;
2311 	}
2312 
2313 	/*
2314 	 * Expose devices and sysfs/debugfs files to user.
2315 	 * From here there is no need to expose them in case of an error.
2316 	 */
2317 	expose_interfaces_on_err = false;
2318 
2319 	rc = drm_dev_register(&hdev->drm, 0);
2320 	if (rc) {
2321 		dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc);
2322 		rc = 0;
2323 		goto out_disabled;
2324 	}
2325 
2326 	rc = cdev_sysfs_debugfs_add(hdev);
2327 	if (rc) {
2328 		dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n");
2329 		rc = 0;
2330 		goto out_disabled;
2331 	}
2332 
2333 	/* Need to call this again because the max power might change,
2334 	 * depending on card type for certain ASICs
2335 	 */
2336 	if (hdev->asic_prop.set_max_power_on_device_init &&
2337 			!hdev->asic_prop.fw_security_enabled)
2338 		hl_fw_set_max_power(hdev);
2339 
2340 	/*
2341 	 * hl_hwmon_init() must be called after device_late_init(), because only
2342 	 * there we get the information from the device about which
2343 	 * hwmon-related sensors the device supports.
2344 	 * Furthermore, it must be done after adding the device to the system.
2345 	 */
2346 	rc = hl_hwmon_init(hdev);
2347 	if (rc) {
2348 		dev_err(hdev->dev, "Failed to initialize hwmon\n");
2349 		rc = 0;
2350 		goto out_disabled;
2351 	}
2352 
2353 	dev_notice(hdev->dev,
2354 		"Successfully added device %s to habanalabs driver\n",
2355 		dev_name(&(hdev)->pdev->dev));
2356 
2357 	/* After initialization is done, we are ready to receive events from
2358 	 * the F/W. We can't do it before because we will ignore events and if
2359 	 * those events are fatal, we won't know about it and the device will
2360 	 * be operational although it shouldn't be
2361 	 */
2362 	hdev->asic_funcs->enable_events_from_fw(hdev);
2363 
2364 	hdev->init_done = true;
2365 
2366 	return 0;
2367 
2368 cb_pool_fini:
2369 	hl_cb_pool_fini(hdev);
2370 release_ctx:
2371 	if (hl_ctx_put(hdev->kernel_ctx) != 1)
2372 		dev_err(hdev->dev,
2373 			"kernel ctx is still alive on initialization failure\n");
2374 debugfs_device_fini:
2375 	hl_debugfs_device_fini(hdev);
2376 mmu_fini:
2377 	hl_mmu_fini(hdev);
2378 eq_fini:
2379 	hl_eq_fini(hdev, &hdev->event_queue);
2380 free_shadow_cs_queue:
2381 	kfree(hdev->shadow_cs_queue);
2382 cq_fini:
2383 	for (i = 0 ; i < cq_ready_cnt ; i++)
2384 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2385 	kfree(hdev->completion_queue);
2386 hw_queues_destroy:
2387 	hl_hw_queues_destroy(hdev);
2388 sw_fini:
2389 	hdev->asic_funcs->sw_fini(hdev);
2390 free_common_usr_intr_mem:
2391 	vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2392 free_usr_intr_mem:
2393 	if (user_interrupt_cnt) {
2394 		for (i = 0 ; i < user_interrupt_cnt ; i++) {
2395 			if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool)
2396 				break;
2397 			vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2398 		}
2399 		kfree(hdev->user_interrupt);
2400 	}
2401 early_fini:
2402 	device_early_fini(hdev);
2403 out_disabled:
2404 	hdev->disabled = true;
2405 	if (expose_interfaces_on_err) {
2406 		drm_dev_register(&hdev->drm, 0);
2407 		cdev_sysfs_debugfs_add(hdev);
2408 	}
2409 
2410 	pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n",
2411 		hdev->cdev_idx, dev_name(&hdev->pdev->dev));
2412 
2413 	return rc;
2414 }
2415 
2416 /*
2417  * hl_device_fini - main tear-down function for habanalabs device
2418  *
2419  * @hdev: pointer to habanalabs device structure
2420  *
2421  * Destroy the device, call ASIC fini functions and release the id
2422  */
2423 void hl_device_fini(struct hl_device *hdev)
2424 {
2425 	u32 user_interrupt_cnt;
2426 	bool device_in_reset;
2427 	ktime_t timeout;
2428 	u64 reset_sec;
2429 	int i, rc;
2430 
2431 	dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev));
2432 
2433 	hdev->device_fini_pending = 1;
2434 	flush_delayed_work(&hdev->device_reset_work.reset_work);
2435 
2436 	if (hdev->pldm)
2437 		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2438 	else
2439 		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2440 
2441 	/*
2442 	 * This function is competing with the reset function, so try to
2443 	 * take the reset atomic and if we are already in middle of reset,
2444 	 * wait until reset function is finished. Reset function is designed
2445 	 * to always finish. However, in Gaudi, because of all the network
2446 	 * ports, the hard reset could take between 10-30 seconds
2447 	 */
2448 
2449 	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2450 
2451 	spin_lock(&hdev->reset_info.lock);
2452 	device_in_reset = !!hdev->reset_info.in_reset;
2453 	if (!device_in_reset)
2454 		hdev->reset_info.in_reset = 1;
2455 	spin_unlock(&hdev->reset_info.lock);
2456 
2457 	while (device_in_reset) {
2458 		usleep_range(50, 200);
2459 
2460 		spin_lock(&hdev->reset_info.lock);
2461 		device_in_reset = !!hdev->reset_info.in_reset;
2462 		if (!device_in_reset)
2463 			hdev->reset_info.in_reset = 1;
2464 		spin_unlock(&hdev->reset_info.lock);
2465 
2466 		if (ktime_compare(ktime_get(), timeout) > 0) {
2467 			dev_crit(hdev->dev,
2468 				"%s Failed to remove device because reset function did not finish\n",
2469 				dev_name(&(hdev)->pdev->dev));
2470 			return;
2471 		}
2472 	}
2473 
2474 	cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2475 
2476 	/* Disable PCI access from device F/W so it won't send us additional
2477 	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2478 	 * can't have the F/W sending us interrupts after that. We need to
2479 	 * disable the access here because if the device is marked disable, the
2480 	 * message won't be send. Also, in case of heartbeat, the device CPU is
2481 	 * marked as disable so this message won't be sent
2482 	 */
2483 	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2484 
2485 	/* Mark device as disabled */
2486 	hdev->disabled = true;
2487 
2488 	take_release_locks(hdev);
2489 
2490 	hdev->reset_info.hard_reset_pending = true;
2491 
2492 	hl_hwmon_fini(hdev);
2493 
2494 	cleanup_resources(hdev, true, false, false);
2495 
2496 	/* Kill processes here after CS rollback. This is because the process
2497 	 * can't really exit until all its CSs are done, which is what we
2498 	 * do in cs rollback
2499 	 */
2500 	dev_info(hdev->dev,
2501 		"Waiting for all processes to exit (timeout of %u seconds)",
2502 		HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2503 
2504 	hdev->process_kill_trial_cnt = 0;
2505 	rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2506 	if (rc) {
2507 		dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc);
2508 		device_disable_open_processes(hdev, false);
2509 	}
2510 
2511 	hdev->process_kill_trial_cnt = 0;
2512 	rc = device_kill_open_processes(hdev, 0, true);
2513 	if (rc) {
2514 		dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc);
2515 		device_disable_open_processes(hdev, true);
2516 	}
2517 
2518 	hl_cb_pool_fini(hdev);
2519 
2520 	/* Reset the H/W. It will be in idle state after this returns */
2521 	rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2522 	if (rc)
2523 		dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2524 
2525 	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2526 
2527 	/* Release kernel context */
2528 	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2529 		dev_err(hdev->dev, "kernel ctx is still alive\n");
2530 
2531 	hl_dec_fini(hdev);
2532 
2533 	hl_vm_fini(hdev);
2534 
2535 	hl_mmu_fini(hdev);
2536 
2537 	vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2538 
2539 	hl_eq_fini(hdev, &hdev->event_queue);
2540 
2541 	kfree(hdev->shadow_cs_queue);
2542 
2543 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2544 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2545 	kfree(hdev->completion_queue);
2546 
2547 	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2548 					hdev->asic_prop.user_interrupt_count;
2549 
2550 	if (user_interrupt_cnt) {
2551 		if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2552 			for (i = 0 ; i < user_interrupt_cnt ; i++)
2553 				vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2554 		}
2555 
2556 		kfree(hdev->user_interrupt);
2557 	}
2558 
2559 	vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2560 
2561 	hl_hw_queues_destroy(hdev);
2562 
2563 	/* Call ASIC S/W finalize function */
2564 	hdev->asic_funcs->sw_fini(hdev);
2565 
2566 	device_early_fini(hdev);
2567 
2568 	/* Hide devices and sysfs/debugfs files from user */
2569 	cdev_sysfs_debugfs_remove(hdev);
2570 	drm_dev_unregister(&hdev->drm);
2571 
2572 	hl_debugfs_device_fini(hdev);
2573 
2574 	pr_info("removed device successfully\n");
2575 }
2576 
2577 /*
2578  * MMIO register access helper functions.
2579  */
2580 
2581 /*
2582  * hl_rreg - Read an MMIO register
2583  *
2584  * @hdev: pointer to habanalabs device structure
2585  * @reg: MMIO register offset (in bytes)
2586  *
2587  * Returns the value of the MMIO register we are asked to read
2588  *
2589  */
2590 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2591 {
2592 	u32 val = readl(hdev->rmmio + reg);
2593 
2594 	if (unlikely(trace_habanalabs_rreg32_enabled()))
2595 		trace_habanalabs_rreg32(hdev->dev, reg, val);
2596 
2597 	return val;
2598 }
2599 
2600 /*
2601  * hl_wreg - Write to an MMIO register
2602  *
2603  * @hdev: pointer to habanalabs device structure
2604  * @reg: MMIO register offset (in bytes)
2605  * @val: 32-bit value
2606  *
2607  * Writes the 32-bit value into the MMIO register
2608  *
2609  */
2610 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2611 {
2612 	if (unlikely(trace_habanalabs_wreg32_enabled()))
2613 		trace_habanalabs_wreg32(hdev->dev, reg, val);
2614 
2615 	writel(val, hdev->rmmio + reg);
2616 }
2617 
2618 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2619 			u8 flags)
2620 {
2621 	struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2622 
2623 	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2624 		dev_err(hdev->dev,
2625 				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2626 				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2627 		return;
2628 	}
2629 
2630 	/* In case it's the first razwi since the device was opened, capture its parameters */
2631 	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2632 		return;
2633 
2634 	razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2635 	razwi_info->razwi.addr = addr;
2636 	razwi_info->razwi.num_of_possible_engines = num_of_engines;
2637 	memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2638 			num_of_engines * sizeof(u16));
2639 	razwi_info->razwi.flags = flags;
2640 
2641 	razwi_info->razwi_info_available = true;
2642 }
2643 
2644 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2645 			u8 flags, u64 *event_mask)
2646 {
2647 	hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2648 
2649 	if (event_mask)
2650 		*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2651 }
2652 
2653 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2654 {
2655 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2656 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2657 	struct hl_vm_hash_node *hnode;
2658 	struct hl_userptr *userptr;
2659 	enum vm_type *vm_type;
2660 	struct hl_ctx *ctx;
2661 	u32 map_idx = 0;
2662 	int i;
2663 
2664 	/* Reset previous session count*/
2665 	pgf_info->num_of_user_mappings = 0;
2666 
2667 	ctx = hl_get_compute_ctx(hdev);
2668 	if (!ctx) {
2669 		dev_err(hdev->dev, "Can't get user context for user mappings\n");
2670 		return;
2671 	}
2672 
2673 	mutex_lock(&ctx->mem_hash_lock);
2674 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2675 		vm_type = hnode->ptr;
2676 		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2677 				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2678 			pgf_info->num_of_user_mappings++;
2679 
2680 	}
2681 
2682 	if (!pgf_info->num_of_user_mappings)
2683 		goto finish;
2684 
2685 	/* In case we already allocated in previous session, need to release it before
2686 	 * allocating new buffer.
2687 	 */
2688 	vfree(pgf_info->user_mappings);
2689 	pgf_info->user_mappings =
2690 			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2691 	if (!pgf_info->user_mappings) {
2692 		pgf_info->num_of_user_mappings = 0;
2693 		goto finish;
2694 	}
2695 
2696 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2697 		vm_type = hnode->ptr;
2698 		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2699 			userptr = hnode->ptr;
2700 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2701 			pgf_info->user_mappings[map_idx].size = userptr->size;
2702 			map_idx++;
2703 		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2704 			phys_pg_pack = hnode->ptr;
2705 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2706 			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2707 			map_idx++;
2708 		}
2709 	}
2710 finish:
2711 	mutex_unlock(&ctx->mem_hash_lock);
2712 	hl_ctx_put(ctx);
2713 }
2714 
2715 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2716 {
2717 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2718 
2719 	/* Capture only the first page fault */
2720 	if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2721 		return;
2722 
2723 	pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2724 	pgf_info->page_fault.addr = addr;
2725 	pgf_info->page_fault.engine_id = eng_id;
2726 	hl_capture_user_mappings(hdev, is_pmmu);
2727 
2728 	pgf_info->page_fault_info_available = true;
2729 }
2730 
2731 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2732 				u64 *event_mask)
2733 {
2734 	hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2735 
2736 	if (event_mask)
2737 		*event_mask |=  HL_NOTIFIER_EVENT_PAGE_FAULT;
2738 }
2739 
2740 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2741 {
2742 	struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2743 
2744 	/* Capture only the first HW err */
2745 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2746 		return;
2747 
2748 	info->event.timestamp = ktime_to_ns(ktime_get());
2749 	info->event.event_id = event_id;
2750 
2751 	info->event_info_available = true;
2752 }
2753 
2754 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2755 {
2756 	hl_capture_hw_err(hdev, event_id);
2757 
2758 	if (event_mask)
2759 		*event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2760 }
2761 
2762 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2763 {
2764 	struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2765 
2766 	/* Capture only the first FW error */
2767 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2768 		return;
2769 
2770 	info->event.timestamp = ktime_to_ns(ktime_get());
2771 	info->event.err_type = fw_info->err_type;
2772 	if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2773 		info->event.event_id = fw_info->event_id;
2774 
2775 	info->event_info_available = true;
2776 }
2777 
2778 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2779 {
2780 	hl_capture_fw_err(hdev, info);
2781 
2782 	if (info->event_mask)
2783 		*info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2784 }
2785 
2786 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count)
2787 {
2788 	struct engine_err_info *info = &hdev->captured_err_info.engine_err;
2789 
2790 	/* Capture only the first engine error */
2791 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2792 		return;
2793 
2794 	info->event.timestamp = ktime_to_ns(ktime_get());
2795 	info->event.engine_id = engine_id;
2796 	info->event.error_count = error_count;
2797 	info->event_info_available = true;
2798 }
2799 
2800 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info)
2801 {
2802 	vfree(captured_err_info->page_fault_info.user_mappings);
2803 	memset(captured_err_info, 0, sizeof(struct hl_error_info));
2804 	atomic_set(&captured_err_info->cs_timeout.write_enable, 1);
2805 	captured_err_info->undef_opcode.write_enable = true;
2806 }
2807 
2808 void hl_init_cpu_for_irq(struct hl_device *hdev)
2809 {
2810 #ifdef CONFIG_NUMA
2811 	struct cpumask *available_mask = &hdev->irq_affinity_mask;
2812 	int numa_node = hdev->pdev->dev.numa_node, i;
2813 	static struct cpumask cpu_mask;
2814 
2815 	if (numa_node < 0)
2816 		return;
2817 
2818 	if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) {
2819 		dev_err(hdev->dev, "No available affinities in current numa node\n");
2820 		return;
2821 	}
2822 
2823 	/* Remove HT siblings */
2824 	for_each_cpu(i, &cpu_mask)
2825 		cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask);
2826 #endif
2827 }
2828 
2829 void hl_set_irq_affinity(struct hl_device *hdev, int irq)
2830 {
2831 	if (cpumask_empty(&hdev->irq_affinity_mask)) {
2832 		dev_dbg(hdev->dev, "affinity mask is empty\n");
2833 		return;
2834 	}
2835 
2836 	if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask))
2837 		dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq);
2838 }
2839