1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2022 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #define pr_fmt(fmt) "habanalabs: " fmt 9 10 #include <uapi/drm/habanalabs_accel.h> 11 #include "habanalabs.h" 12 13 #include <linux/pci.h> 14 #include <linux/hwmon.h> 15 #include <linux/vmalloc.h> 16 17 #include <drm/drm_accel.h> 18 #include <drm/drm_drv.h> 19 20 #include <trace/events/habanalabs.h> 21 22 #define HL_RESET_DELAY_USEC 10000 /* 10ms */ 23 24 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 30 25 26 enum dma_alloc_type { 27 DMA_ALLOC_COHERENT, 28 DMA_ALLOC_POOL, 29 }; 30 31 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788 32 33 static void hl_device_heartbeat(struct work_struct *work); 34 35 /* 36 * hl_set_dram_bar- sets the bar to allow later access to address 37 * 38 * @hdev: pointer to habanalabs device structure. 39 * @addr: the address the caller wants to access. 40 * @region: the PCI region. 41 * @new_bar_region_base: the new BAR region base address. 42 * 43 * @return: the old BAR base address on success, U64_MAX for failure. 44 * The caller should set it back to the old address after use. 45 * 46 * In case the bar space does not cover the whole address space, 47 * the bar base address should be set to allow access to a given address. 48 * This function can be called also if the bar doesn't need to be set, 49 * in that case it just won't change the base. 50 */ 51 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region, 52 u64 *new_bar_region_base) 53 { 54 struct asic_fixed_properties *prop = &hdev->asic_prop; 55 u64 bar_base_addr, old_base; 56 57 if (is_power_of_2(prop->dram_pci_bar_size)) 58 bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull); 59 else 60 bar_base_addr = region->region_base + 61 div64_u64((addr - region->region_base), prop->dram_pci_bar_size) * 62 prop->dram_pci_bar_size; 63 64 old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr); 65 66 /* in case of success we need to update the new BAR base */ 67 if ((old_base != U64_MAX) && new_bar_region_base) 68 *new_bar_region_base = bar_base_addr; 69 70 return old_base; 71 } 72 73 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, 74 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar) 75 { 76 struct pci_mem_region *region = &hdev->pci_mem_region[region_type]; 77 u64 old_base = 0, rc, bar_region_base = region->region_base; 78 void __iomem *acc_addr; 79 80 if (set_dram_bar) { 81 old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base); 82 if (old_base == U64_MAX) 83 return -EIO; 84 } 85 86 acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + 87 (addr - bar_region_base); 88 89 switch (acc_type) { 90 case DEBUGFS_READ8: 91 *val = readb(acc_addr); 92 break; 93 case DEBUGFS_WRITE8: 94 writeb(*val, acc_addr); 95 break; 96 case DEBUGFS_READ32: 97 *val = readl(acc_addr); 98 break; 99 case DEBUGFS_WRITE32: 100 writel(*val, acc_addr); 101 break; 102 case DEBUGFS_READ64: 103 *val = readq(acc_addr); 104 break; 105 case DEBUGFS_WRITE64: 106 writeq(*val, acc_addr); 107 break; 108 } 109 110 if (set_dram_bar) { 111 rc = hl_set_dram_bar(hdev, old_base, region, NULL); 112 if (rc == U64_MAX) 113 return -EIO; 114 } 115 116 return 0; 117 } 118 119 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 120 gfp_t flag, enum dma_alloc_type alloc_type, 121 const char *caller) 122 { 123 void *ptr = NULL; 124 125 switch (alloc_type) { 126 case DMA_ALLOC_COHERENT: 127 ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag); 128 break; 129 case DMA_ALLOC_POOL: 130 ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle); 131 break; 132 } 133 134 if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr)) 135 trace_habanalabs_dma_alloc(&(hdev)->pdev->dev, (u64) (uintptr_t) ptr, *dma_handle, 136 size, caller); 137 138 return ptr; 139 } 140 141 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr, 142 dma_addr_t dma_handle, enum dma_alloc_type alloc_type, 143 const char *caller) 144 { 145 /* this is needed to avoid warning on using freed pointer */ 146 u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr; 147 148 switch (alloc_type) { 149 case DMA_ALLOC_COHERENT: 150 hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle); 151 break; 152 case DMA_ALLOC_POOL: 153 hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle); 154 break; 155 } 156 157 trace_habanalabs_dma_free(&(hdev)->pdev->dev, store_cpu_addr, dma_handle, size, caller); 158 } 159 160 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, 161 gfp_t flag, const char *caller) 162 { 163 return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller); 164 } 165 166 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, 167 dma_addr_t dma_handle, const char *caller) 168 { 169 hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller); 170 } 171 172 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, 173 dma_addr_t *dma_handle, const char *caller) 174 { 175 return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller); 176 } 177 178 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, 179 const char *caller) 180 { 181 hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller); 182 } 183 184 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle) 185 { 186 return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); 187 } 188 189 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) 190 { 191 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr); 192 } 193 194 int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 195 enum dma_data_direction dir, const char *caller) 196 { 197 struct asic_fixed_properties *prop = &hdev->asic_prop; 198 struct scatterlist *sg; 199 int rc, i; 200 201 rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir); 202 if (rc) 203 return rc; 204 205 if (!trace_habanalabs_dma_map_page_enabled()) 206 return 0; 207 208 for_each_sgtable_dma_sg(sgt, sg, i) 209 trace_habanalabs_dma_map_page(&(hdev)->pdev->dev, 210 page_to_phys(sg_page(sg)), 211 sg->dma_address - prop->device_dma_offset_for_host_access, 212 #ifdef CONFIG_NEED_SG_DMA_LENGTH 213 sg->dma_length, 214 #else 215 sg->length, 216 #endif 217 dir, caller); 218 219 return 0; 220 } 221 222 int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, 223 enum dma_data_direction dir) 224 { 225 struct asic_fixed_properties *prop = &hdev->asic_prop; 226 struct scatterlist *sg; 227 int rc, i; 228 229 rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0); 230 if (rc) 231 return rc; 232 233 /* Shift to the device's base physical address of host memory if necessary */ 234 if (prop->device_dma_offset_for_host_access) 235 for_each_sgtable_dma_sg(sgt, sg, i) 236 sg->dma_address += prop->device_dma_offset_for_host_access; 237 238 return 0; 239 } 240 241 void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, 242 enum dma_data_direction dir, const char *caller) 243 { 244 struct asic_fixed_properties *prop = &hdev->asic_prop; 245 struct scatterlist *sg; 246 int i; 247 248 hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir); 249 250 if (trace_habanalabs_dma_unmap_page_enabled()) { 251 for_each_sgtable_dma_sg(sgt, sg, i) 252 trace_habanalabs_dma_unmap_page(&(hdev)->pdev->dev, 253 page_to_phys(sg_page(sg)), 254 sg->dma_address - prop->device_dma_offset_for_host_access, 255 #ifdef CONFIG_NEED_SG_DMA_LENGTH 256 sg->dma_length, 257 #else 258 sg->length, 259 #endif 260 dir, caller); 261 } 262 } 263 264 void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, 265 enum dma_data_direction dir) 266 { 267 struct asic_fixed_properties *prop = &hdev->asic_prop; 268 struct scatterlist *sg; 269 int i; 270 271 /* Cancel the device's base physical address of host memory if necessary */ 272 if (prop->device_dma_offset_for_host_access) 273 for_each_sgtable_dma_sg(sgt, sg, i) 274 sg->dma_address -= prop->device_dma_offset_for_host_access; 275 276 dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0); 277 } 278 279 /* 280 * hl_access_cfg_region - access the config region 281 * 282 * @hdev: pointer to habanalabs device structure 283 * @addr: the address to access 284 * @val: the value to write from or read to 285 * @acc_type: the type of access (read/write 64/32) 286 */ 287 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, 288 enum debugfs_access_type acc_type) 289 { 290 struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG]; 291 u32 val_h, val_l; 292 293 if (!IS_ALIGNED(addr, sizeof(u32))) { 294 dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32)); 295 return -EINVAL; 296 } 297 298 switch (acc_type) { 299 case DEBUGFS_READ32: 300 *val = RREG32(addr - cfg_region->region_base); 301 break; 302 case DEBUGFS_WRITE32: 303 WREG32(addr - cfg_region->region_base, *val); 304 break; 305 case DEBUGFS_READ64: 306 val_l = RREG32(addr - cfg_region->region_base); 307 val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base); 308 309 *val = (((u64) val_h) << 32) | val_l; 310 break; 311 case DEBUGFS_WRITE64: 312 WREG32(addr - cfg_region->region_base, lower_32_bits(*val)); 313 WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val)); 314 break; 315 default: 316 dev_err(hdev->dev, "access type %d is not supported\n", acc_type); 317 return -EOPNOTSUPP; 318 } 319 320 return 0; 321 } 322 323 /* 324 * hl_access_dev_mem - access device memory 325 * 326 * @hdev: pointer to habanalabs device structure 327 * @region_type: the type of the region the address belongs to 328 * @addr: the address to access 329 * @val: the value to write from or read to 330 * @acc_type: the type of access (r/w, 32/64) 331 */ 332 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, 333 u64 addr, u64 *val, enum debugfs_access_type acc_type) 334 { 335 switch (region_type) { 336 case PCI_REGION_CFG: 337 return hl_access_cfg_region(hdev, addr, val, acc_type); 338 case PCI_REGION_SRAM: 339 case PCI_REGION_DRAM: 340 return hl_access_sram_dram_region(hdev, addr, val, acc_type, 341 region_type, (region_type == PCI_REGION_DRAM)); 342 default: 343 return -EFAULT; 344 } 345 346 return 0; 347 } 348 349 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...) 350 { 351 va_list args; 352 int str_size; 353 354 va_start(args, fmt); 355 /* Calculate formatted string length. Assuming each string is null terminated, hence 356 * increment result by 1 357 */ 358 str_size = vsnprintf(NULL, 0, fmt, args) + 1; 359 va_end(args); 360 361 if ((e->actual_size + str_size) < e->allocated_buf_size) { 362 va_start(args, fmt); 363 vsnprintf(e->buf + e->actual_size, str_size, fmt, args); 364 va_end(args); 365 } 366 367 /* Need to update the size even when not updating destination buffer to get the exact size 368 * of all input strings 369 */ 370 e->actual_size += str_size; 371 } 372 373 enum hl_device_status hl_device_status(struct hl_device *hdev) 374 { 375 enum hl_device_status status; 376 377 if (hdev->device_fini_pending) { 378 status = HL_DEVICE_STATUS_MALFUNCTION; 379 } else if (hdev->reset_info.in_reset) { 380 if (hdev->reset_info.in_compute_reset) 381 status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE; 382 else 383 status = HL_DEVICE_STATUS_IN_RESET; 384 } else if (hdev->reset_info.needs_reset) { 385 status = HL_DEVICE_STATUS_NEEDS_RESET; 386 } else if (hdev->disabled) { 387 status = HL_DEVICE_STATUS_MALFUNCTION; 388 } else if (!hdev->init_done) { 389 status = HL_DEVICE_STATUS_IN_DEVICE_CREATION; 390 } else { 391 status = HL_DEVICE_STATUS_OPERATIONAL; 392 } 393 394 return status; 395 } 396 397 bool hl_device_operational(struct hl_device *hdev, 398 enum hl_device_status *status) 399 { 400 enum hl_device_status current_status; 401 402 current_status = hl_device_status(hdev); 403 if (status) 404 *status = current_status; 405 406 switch (current_status) { 407 case HL_DEVICE_STATUS_MALFUNCTION: 408 case HL_DEVICE_STATUS_IN_RESET: 409 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: 410 case HL_DEVICE_STATUS_NEEDS_RESET: 411 return false; 412 case HL_DEVICE_STATUS_OPERATIONAL: 413 case HL_DEVICE_STATUS_IN_DEVICE_CREATION: 414 default: 415 return true; 416 } 417 } 418 419 bool hl_ctrl_device_operational(struct hl_device *hdev, 420 enum hl_device_status *status) 421 { 422 enum hl_device_status current_status; 423 424 current_status = hl_device_status(hdev); 425 if (status) 426 *status = current_status; 427 428 switch (current_status) { 429 case HL_DEVICE_STATUS_MALFUNCTION: 430 return false; 431 case HL_DEVICE_STATUS_IN_RESET: 432 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: 433 case HL_DEVICE_STATUS_NEEDS_RESET: 434 case HL_DEVICE_STATUS_OPERATIONAL: 435 case HL_DEVICE_STATUS_IN_DEVICE_CREATION: 436 default: 437 return true; 438 } 439 } 440 441 static void print_idle_status_mask(struct hl_device *hdev, const char *message, 442 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE]) 443 { 444 if (idle_mask[3]) 445 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx_%016llx_%016llx)\n", 446 dev_name(&hdev->pdev->dev), message, 447 idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]); 448 else if (idle_mask[2]) 449 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx_%016llx)\n", 450 dev_name(&hdev->pdev->dev), message, 451 idle_mask[2], idle_mask[1], idle_mask[0]); 452 else if (idle_mask[1]) 453 dev_err(hdev->dev, "%s %s (mask %#llx_%016llx)\n", 454 dev_name(&hdev->pdev->dev), message, idle_mask[1], idle_mask[0]); 455 else 456 dev_err(hdev->dev, "%s %s (mask %#llx)\n", dev_name(&hdev->pdev->dev), message, 457 idle_mask[0]); 458 } 459 460 static void hpriv_release(struct kref *ref) 461 { 462 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; 463 bool reset_device, device_is_idle = true; 464 struct hl_fpriv *hpriv; 465 struct hl_device *hdev; 466 467 hpriv = container_of(ref, struct hl_fpriv, refcount); 468 469 hdev = hpriv->hdev; 470 471 hdev->asic_funcs->send_device_activity(hdev, false); 472 473 hl_debugfs_remove_file(hpriv); 474 475 mutex_destroy(&hpriv->ctx_lock); 476 mutex_destroy(&hpriv->restore_phase_mutex); 477 478 /* There should be no memory buffers at this point and handles IDR can be destroyed */ 479 hl_mem_mgr_idr_destroy(&hpriv->mem_mgr); 480 481 /* Device should be reset if reset-upon-device-release is enabled, or if there is a pending 482 * reset that waits for device release. 483 */ 484 reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active; 485 486 /* Check the device idle status and reset if not idle. 487 * Skip it if already in reset, or if device is going to be reset in any case. 488 */ 489 if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm) 490 device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask, 491 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL); 492 if (!device_is_idle) { 493 print_idle_status_mask(hdev, "device is not idle after user context is closed", 494 idle_mask); 495 reset_device = true; 496 } 497 498 /* We need to remove the user from the list to make sure the reset process won't 499 * try to kill the user process. Because, if we got here, it means there are no 500 * more driver/device resources that the user process is occupying so there is 501 * no need to kill it 502 * 503 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent 504 * a race between the release and opening the device again. We don't want to let 505 * a user open the device while there a reset is about to happen. 506 */ 507 mutex_lock(&hdev->fpriv_list_lock); 508 list_del(&hpriv->dev_node); 509 mutex_unlock(&hdev->fpriv_list_lock); 510 511 put_pid(hpriv->taskpid); 512 513 if (reset_device) { 514 hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE); 515 } else { 516 /* Scrubbing is handled within hl_device_reset(), so here need to do it directly */ 517 int rc = hdev->asic_funcs->scrub_device_mem(hdev); 518 519 if (rc) { 520 dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc); 521 hl_device_reset(hdev, HL_DRV_RESET_HARD); 522 } 523 } 524 525 /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different 526 * thread, we don't care because the in_reset is marked so if a user will try to open 527 * the device it will fail on that, even if compute_ctx is false. 528 */ 529 mutex_lock(&hdev->fpriv_list_lock); 530 hdev->is_compute_ctx_active = false; 531 mutex_unlock(&hdev->fpriv_list_lock); 532 533 hdev->compute_ctx_in_release = 0; 534 535 /* release the eventfd */ 536 if (hpriv->notifier_event.eventfd) 537 eventfd_ctx_put(hpriv->notifier_event.eventfd); 538 539 mutex_destroy(&hpriv->notifier_event.lock); 540 541 kfree(hpriv); 542 } 543 544 void hl_hpriv_get(struct hl_fpriv *hpriv) 545 { 546 kref_get(&hpriv->refcount); 547 } 548 549 int hl_hpriv_put(struct hl_fpriv *hpriv) 550 { 551 return kref_put(&hpriv->refcount, hpriv_release); 552 } 553 554 static void print_device_in_use_info(struct hl_device *hdev, 555 struct hl_mem_mgr_fini_stats *mm_fini_stats, const char *message) 556 { 557 u32 active_cs_num, dmabuf_export_cnt; 558 bool unknown_reason = true; 559 char buf[128]; 560 size_t size; 561 int offset; 562 563 size = sizeof(buf); 564 offset = 0; 565 566 active_cs_num = hl_get_active_cs_num(hdev); 567 if (active_cs_num) { 568 unknown_reason = false; 569 offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num); 570 } 571 572 dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt); 573 if (dmabuf_export_cnt) { 574 unknown_reason = false; 575 offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]", 576 dmabuf_export_cnt); 577 } 578 579 if (mm_fini_stats->n_busy_cb) { 580 unknown_reason = false; 581 offset += scnprintf(buf + offset, size - offset, " [%u live CB handles]", 582 mm_fini_stats->n_busy_cb); 583 } 584 585 if (unknown_reason) 586 scnprintf(buf + offset, size - offset, " [unknown reason]"); 587 588 dev_notice(hdev->dev, "%s%s\n", message, buf); 589 } 590 591 /* 592 * hl_device_release() - release function for habanalabs device. 593 * @ddev: pointer to DRM device structure. 594 * @file: pointer to DRM file private data structure. 595 * 596 * Called when process closes an habanalabs device 597 */ 598 void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv) 599 { 600 struct hl_fpriv *hpriv = file_priv->driver_priv; 601 struct hl_device *hdev = to_hl_device(ddev); 602 struct hl_mem_mgr_fini_stats mm_fini_stats; 603 604 if (!hdev) { 605 pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n"); 606 put_pid(hpriv->taskpid); 607 } 608 609 hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr); 610 611 /* Memory buffers might be still in use at this point and thus the handles IDR destruction 612 * is postponed to hpriv_release(). 613 */ 614 hl_mem_mgr_fini(&hpriv->mem_mgr, &mm_fini_stats); 615 616 hdev->compute_ctx_in_release = 1; 617 618 if (!hl_hpriv_put(hpriv)) { 619 print_device_in_use_info(hdev, &mm_fini_stats, 620 "User process closed FD but device still in use"); 621 hl_device_reset(hdev, HL_DRV_RESET_HARD); 622 } 623 624 hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif; 625 } 626 627 static int hl_device_release_ctrl(struct inode *inode, struct file *filp) 628 { 629 struct hl_fpriv *hpriv = filp->private_data; 630 struct hl_device *hdev = hpriv->hdev; 631 632 filp->private_data = NULL; 633 634 if (!hdev) { 635 pr_err("Closing FD after device was removed\n"); 636 goto out; 637 } 638 639 mutex_lock(&hdev->fpriv_ctrl_list_lock); 640 list_del(&hpriv->dev_node); 641 mutex_unlock(&hdev->fpriv_ctrl_list_lock); 642 out: 643 put_pid(hpriv->taskpid); 644 645 kfree(hpriv); 646 647 return 0; 648 } 649 650 static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) 651 { 652 struct hl_device *hdev = hpriv->hdev; 653 unsigned long vm_pgoff; 654 655 if (!hdev) { 656 pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n"); 657 return -ENODEV; 658 } 659 660 vm_pgoff = vma->vm_pgoff; 661 662 switch (vm_pgoff & HL_MMAP_TYPE_MASK) { 663 case HL_MMAP_TYPE_BLOCK: 664 vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff); 665 return hl_hw_block_mmap(hpriv, vma); 666 667 case HL_MMAP_TYPE_CB: 668 case HL_MMAP_TYPE_TS_BUFF: 669 return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL); 670 } 671 return -EINVAL; 672 } 673 674 /* 675 * hl_mmap - mmap function for habanalabs device 676 * 677 * @*filp: pointer to file structure 678 * @*vma: pointer to vm_area_struct of the process 679 * 680 * Called when process does an mmap on habanalabs device. Call the relevant mmap 681 * function at the end of the common code. 682 */ 683 int hl_mmap(struct file *filp, struct vm_area_struct *vma) 684 { 685 struct drm_file *file_priv = filp->private_data; 686 struct hl_fpriv *hpriv = file_priv->driver_priv; 687 688 return __hl_mmap(hpriv, vma); 689 } 690 691 static const struct file_operations hl_ctrl_ops = { 692 .owner = THIS_MODULE, 693 .open = hl_device_open_ctrl, 694 .release = hl_device_release_ctrl, 695 .unlocked_ioctl = hl_ioctl_control, 696 .compat_ioctl = hl_ioctl_control 697 }; 698 699 static void device_release_func(struct device *dev) 700 { 701 kfree(dev); 702 } 703 704 /* 705 * device_init_cdev - Initialize cdev and device for habanalabs device 706 * 707 * @hdev: pointer to habanalabs device structure 708 * @class: pointer to the class object of the device 709 * @minor: minor number of the specific device 710 * @fops: file operations to install for this device 711 * @name: name of the device as it will appear in the filesystem 712 * @cdev: pointer to the char device object that will be initialized 713 * @dev: pointer to the device object that will be initialized 714 * 715 * Initialize a cdev and a Linux device for habanalabs's device. 716 */ 717 static int device_init_cdev(struct hl_device *hdev, const struct class *class, 718 int minor, const struct file_operations *fops, 719 char *name, struct cdev *cdev, 720 struct device **dev) 721 { 722 cdev_init(cdev, fops); 723 cdev->owner = THIS_MODULE; 724 725 *dev = kzalloc(sizeof(**dev), GFP_KERNEL); 726 if (!*dev) 727 return -ENOMEM; 728 729 device_initialize(*dev); 730 (*dev)->devt = MKDEV(hdev->major, minor); 731 (*dev)->class = class; 732 (*dev)->release = device_release_func; 733 dev_set_drvdata(*dev, hdev); 734 dev_set_name(*dev, "%s", name); 735 736 return 0; 737 } 738 739 static int cdev_sysfs_debugfs_add(struct hl_device *hdev) 740 { 741 const struct class *accel_class = hdev->drm.accel->kdev->class; 742 char name[32]; 743 int rc; 744 745 hdev->cdev_idx = hdev->drm.accel->index; 746 747 /* Initialize cdev and device structures for the control device */ 748 snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx); 749 rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name, 750 &hdev->cdev_ctrl, &hdev->dev_ctrl); 751 if (rc) 752 return rc; 753 754 rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl); 755 if (rc) { 756 dev_err(hdev->dev_ctrl, 757 "failed to add an accel control char device to the system\n"); 758 goto free_ctrl_device; 759 } 760 761 rc = hl_sysfs_init(hdev); 762 if (rc) { 763 dev_err(hdev->dev, "failed to initialize sysfs\n"); 764 goto delete_ctrl_cdev_device; 765 } 766 767 hl_debugfs_add_device(hdev); 768 769 hdev->cdev_sysfs_debugfs_created = true; 770 771 return 0; 772 773 delete_ctrl_cdev_device: 774 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); 775 free_ctrl_device: 776 put_device(hdev->dev_ctrl); 777 return rc; 778 } 779 780 static void cdev_sysfs_debugfs_remove(struct hl_device *hdev) 781 { 782 if (!hdev->cdev_sysfs_debugfs_created) 783 return; 784 785 hl_sysfs_fini(hdev); 786 787 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); 788 put_device(hdev->dev_ctrl); 789 } 790 791 static void device_hard_reset_pending(struct work_struct *work) 792 { 793 struct hl_device_reset_work *device_reset_work = 794 container_of(work, struct hl_device_reset_work, reset_work.work); 795 struct hl_device *hdev = device_reset_work->hdev; 796 u32 flags; 797 int rc; 798 799 flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR; 800 801 rc = hl_device_reset(hdev, flags); 802 803 if ((rc == -EBUSY) && !hdev->device_fini_pending) { 804 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 805 806 if (ctx) { 807 /* The read refcount value should subtracted by one, because the read is 808 * protected with hl_get_compute_ctx(). 809 */ 810 dev_info(hdev->dev, 811 "Could not reset device (compute_ctx refcount %u). will try again in %u seconds", 812 kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC); 813 hl_ctx_put(ctx); 814 } else { 815 dev_info(hdev->dev, "Could not reset device. will try again in %u seconds", 816 HL_PENDING_RESET_PER_SEC); 817 } 818 819 queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work, 820 secs_to_jiffies(HL_PENDING_RESET_PER_SEC)); 821 } 822 } 823 824 static void device_release_watchdog_func(struct work_struct *work) 825 { 826 struct hl_device_reset_work *watchdog_work = 827 container_of(work, struct hl_device_reset_work, reset_work.work); 828 struct hl_device *hdev = watchdog_work->hdev; 829 u32 flags; 830 831 dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n"); 832 833 flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR; 834 835 hl_device_reset(hdev, flags); 836 } 837 838 /* 839 * device_early_init - do some early initialization for the habanalabs device 840 * 841 * @hdev: pointer to habanalabs device structure 842 * 843 * Install the relevant function pointers and call the early_init function, 844 * if such a function exists 845 */ 846 static int device_early_init(struct hl_device *hdev) 847 { 848 int i, rc; 849 char workq_name[32]; 850 851 switch (hdev->asic_type) { 852 case ASIC_GOYA: 853 goya_set_asic_funcs(hdev); 854 strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name)); 855 break; 856 case ASIC_GAUDI: 857 gaudi_set_asic_funcs(hdev); 858 strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name)); 859 break; 860 case ASIC_GAUDI_SEC: 861 gaudi_set_asic_funcs(hdev); 862 strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name)); 863 break; 864 case ASIC_GAUDI2: 865 gaudi2_set_asic_funcs(hdev); 866 strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name)); 867 break; 868 case ASIC_GAUDI2B: 869 gaudi2_set_asic_funcs(hdev); 870 strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name)); 871 break; 872 case ASIC_GAUDI2C: 873 gaudi2_set_asic_funcs(hdev); 874 strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name)); 875 break; 876 case ASIC_GAUDI2D: 877 gaudi2_set_asic_funcs(hdev); 878 strscpy(hdev->asic_name, "GAUDI2D", sizeof(hdev->asic_name)); 879 break; 880 default: 881 dev_err(hdev->dev, "Unrecognized ASIC type %d\n", 882 hdev->asic_type); 883 return -EINVAL; 884 } 885 886 rc = hdev->asic_funcs->early_init(hdev); 887 if (rc) 888 return rc; 889 890 rc = hl_asid_init(hdev); 891 if (rc) 892 goto early_fini; 893 894 if (hdev->asic_prop.completion_queues_count) { 895 hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count, 896 sizeof(struct workqueue_struct *), 897 GFP_KERNEL); 898 if (!hdev->cq_wq) { 899 rc = -ENOMEM; 900 goto asid_fini; 901 } 902 } 903 904 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) { 905 snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i); 906 hdev->cq_wq[i] = create_singlethread_workqueue(workq_name); 907 if (hdev->cq_wq[i] == NULL) { 908 dev_err(hdev->dev, "Failed to allocate CQ workqueue\n"); 909 rc = -ENOMEM; 910 goto free_cq_wq; 911 } 912 } 913 914 snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx); 915 hdev->eq_wq = create_singlethread_workqueue(workq_name); 916 if (hdev->eq_wq == NULL) { 917 dev_err(hdev->dev, "Failed to allocate EQ workqueue\n"); 918 rc = -ENOMEM; 919 goto free_cq_wq; 920 } 921 922 snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx); 923 hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); 924 if (!hdev->cs_cmplt_wq) { 925 dev_err(hdev->dev, 926 "Failed to allocate CS completions workqueue\n"); 927 rc = -ENOMEM; 928 goto free_eq_wq; 929 } 930 931 snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx); 932 hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); 933 if (!hdev->ts_free_obj_wq) { 934 dev_err(hdev->dev, 935 "Failed to allocate Timestamp registration free workqueue\n"); 936 rc = -ENOMEM; 937 goto free_cs_cmplt_wq; 938 } 939 940 snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx); 941 hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); 942 if (!hdev->prefetch_wq) { 943 dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n"); 944 rc = -ENOMEM; 945 goto free_ts_free_wq; 946 } 947 948 hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL); 949 if (!hdev->hl_chip_info) { 950 rc = -ENOMEM; 951 goto free_prefetch_wq; 952 } 953 954 rc = hl_mmu_if_set_funcs(hdev); 955 if (rc) 956 goto free_chip_info; 957 958 hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr); 959 960 snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx); 961 hdev->reset_wq = create_singlethread_workqueue(workq_name); 962 if (!hdev->reset_wq) { 963 rc = -ENOMEM; 964 dev_err(hdev->dev, "Failed to create device reset WQ\n"); 965 goto free_cb_mgr; 966 } 967 968 INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat); 969 970 INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending); 971 hdev->device_reset_work.hdev = hdev; 972 hdev->device_fini_pending = 0; 973 974 INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work, 975 device_release_watchdog_func); 976 hdev->device_release_watchdog_work.hdev = hdev; 977 978 mutex_init(&hdev->send_cpu_message_lock); 979 mutex_init(&hdev->debug_lock); 980 INIT_LIST_HEAD(&hdev->cs_mirror_list); 981 spin_lock_init(&hdev->cs_mirror_lock); 982 spin_lock_init(&hdev->reset_info.lock); 983 INIT_LIST_HEAD(&hdev->fpriv_list); 984 INIT_LIST_HEAD(&hdev->fpriv_ctrl_list); 985 mutex_init(&hdev->fpriv_list_lock); 986 mutex_init(&hdev->fpriv_ctrl_list_lock); 987 mutex_init(&hdev->clk_throttling.lock); 988 989 return 0; 990 991 free_cb_mgr: 992 hl_mem_mgr_fini(&hdev->kernel_mem_mgr, NULL); 993 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); 994 free_chip_info: 995 kfree(hdev->hl_chip_info); 996 free_prefetch_wq: 997 destroy_workqueue(hdev->prefetch_wq); 998 free_ts_free_wq: 999 destroy_workqueue(hdev->ts_free_obj_wq); 1000 free_cs_cmplt_wq: 1001 destroy_workqueue(hdev->cs_cmplt_wq); 1002 free_eq_wq: 1003 destroy_workqueue(hdev->eq_wq); 1004 free_cq_wq: 1005 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1006 if (hdev->cq_wq[i]) 1007 destroy_workqueue(hdev->cq_wq[i]); 1008 kfree(hdev->cq_wq); 1009 asid_fini: 1010 hl_asid_fini(hdev); 1011 early_fini: 1012 if (hdev->asic_funcs->early_fini) 1013 hdev->asic_funcs->early_fini(hdev); 1014 1015 return rc; 1016 } 1017 1018 /* 1019 * device_early_fini - finalize all that was done in device_early_init 1020 * 1021 * @hdev: pointer to habanalabs device structure 1022 * 1023 */ 1024 static void device_early_fini(struct hl_device *hdev) 1025 { 1026 int i; 1027 1028 mutex_destroy(&hdev->debug_lock); 1029 mutex_destroy(&hdev->send_cpu_message_lock); 1030 1031 mutex_destroy(&hdev->fpriv_list_lock); 1032 mutex_destroy(&hdev->fpriv_ctrl_list_lock); 1033 1034 mutex_destroy(&hdev->clk_throttling.lock); 1035 1036 hl_mem_mgr_fini(&hdev->kernel_mem_mgr, NULL); 1037 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); 1038 1039 kfree(hdev->hl_chip_info); 1040 1041 destroy_workqueue(hdev->prefetch_wq); 1042 destroy_workqueue(hdev->ts_free_obj_wq); 1043 destroy_workqueue(hdev->cs_cmplt_wq); 1044 destroy_workqueue(hdev->eq_wq); 1045 destroy_workqueue(hdev->reset_wq); 1046 1047 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1048 destroy_workqueue(hdev->cq_wq[i]); 1049 kfree(hdev->cq_wq); 1050 1051 hl_asid_fini(hdev); 1052 1053 if (hdev->asic_funcs->early_fini) 1054 hdev->asic_funcs->early_fini(hdev); 1055 } 1056 1057 static bool is_pci_link_healthy(struct hl_device *hdev) 1058 { 1059 u16 device_id; 1060 1061 if (!hdev->pdev) 1062 return false; 1063 1064 pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id); 1065 1066 return (device_id == hdev->pdev->device); 1067 } 1068 1069 static bool hl_device_eq_heartbeat_received(struct hl_device *hdev) 1070 { 1071 struct eq_heartbeat_debug_info *heartbeat_debug_info = &hdev->heartbeat_debug_info; 1072 u32 cpu_q_id = heartbeat_debug_info->cpu_queue_id, pq_pi_mask = (HL_QUEUE_LENGTH << 1) - 1; 1073 struct asic_fixed_properties *prop = &hdev->asic_prop; 1074 1075 if (!prop->cpucp_info.eq_health_check_supported) 1076 return true; 1077 1078 if (!hdev->eq_heartbeat_received) { 1079 dev_err(hdev->dev, "EQ heartbeat event was not received!\n"); 1080 1081 dev_err(hdev->dev, 1082 "EQ: {CI %u, HB counter %u, last HB time: %ptTs}, PQ: {PI: %u, CI: %u (%u), last HB time: %ptTs}\n", 1083 hdev->event_queue.ci, 1084 heartbeat_debug_info->heartbeat_event_counter, 1085 &hdev->heartbeat_debug_info.last_eq_heartbeat_ts, 1086 hdev->kernel_queues[cpu_q_id].pi, 1087 atomic_read(&hdev->kernel_queues[cpu_q_id].ci), 1088 atomic_read(&hdev->kernel_queues[cpu_q_id].ci) & pq_pi_mask, 1089 &hdev->heartbeat_debug_info.last_pq_heartbeat_ts); 1090 1091 hl_eq_dump(hdev, &hdev->event_queue); 1092 1093 return false; 1094 } 1095 1096 hdev->eq_heartbeat_received = false; 1097 1098 return true; 1099 } 1100 1101 static void hl_device_heartbeat(struct work_struct *work) 1102 { 1103 struct hl_device *hdev = container_of(work, struct hl_device, 1104 work_heartbeat.work); 1105 struct hl_info_fw_err_info info = {0}; 1106 u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; 1107 1108 /* Start heartbeat checks only after driver has enabled events from FW */ 1109 if (!hl_device_operational(hdev, NULL) || !hdev->init_done) 1110 goto reschedule; 1111 1112 /* 1113 * For EQ health check need to check if driver received the heartbeat eq event 1114 * in order to validate the eq is working. 1115 * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule. 1116 */ 1117 if (hl_device_eq_heartbeat_received(hdev) && (!hdev->asic_funcs->send_heartbeat(hdev))) 1118 goto reschedule; 1119 1120 if (hl_device_operational(hdev, NULL)) 1121 dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n", 1122 is_pci_link_healthy(hdev) ? "healthy" : "broken"); 1123 1124 info.err_type = HL_INFO_FW_HEARTBEAT_ERR; 1125 info.event_mask = &event_mask; 1126 hl_handle_fw_err(hdev, &info); 1127 hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask); 1128 1129 return; 1130 1131 reschedule: 1132 /* 1133 * prev_reset_trigger tracks consecutive fatal h/w errors until first 1134 * heartbeat immediately post reset. 1135 * If control reached here, then at least one heartbeat work has been 1136 * scheduled since last reset/init cycle. 1137 * So if the device is not already in reset cycle, reset the flag 1138 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR 1139 * status for at least one heartbeat. From this point driver restarts 1140 * tracking future consecutive fatal errors. 1141 */ 1142 if (!hdev->reset_info.in_reset) 1143 hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT; 1144 1145 schedule_delayed_work(&hdev->work_heartbeat, 1146 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); 1147 } 1148 1149 /* 1150 * device_late_init - do late stuff initialization for the habanalabs device 1151 * 1152 * @hdev: pointer to habanalabs device structure 1153 * 1154 * Do stuff that either needs the device H/W queues to be active or needs 1155 * to happen after all the rest of the initialization is finished 1156 */ 1157 static int device_late_init(struct hl_device *hdev) 1158 { 1159 int rc; 1160 1161 if (hdev->asic_funcs->late_init) { 1162 rc = hdev->asic_funcs->late_init(hdev); 1163 if (rc) { 1164 dev_err(hdev->dev, 1165 "failed late initialization for the H/W\n"); 1166 return rc; 1167 } 1168 } 1169 1170 hdev->high_pll = hdev->asic_prop.high_pll; 1171 hdev->late_init_done = true; 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * device_late_fini - finalize all that was done in device_late_init 1178 * 1179 * @hdev: pointer to habanalabs device structure 1180 * 1181 */ 1182 static void device_late_fini(struct hl_device *hdev) 1183 { 1184 if (!hdev->late_init_done) 1185 return; 1186 1187 if (hdev->asic_funcs->late_fini) 1188 hdev->asic_funcs->late_fini(hdev); 1189 1190 hdev->late_init_done = false; 1191 } 1192 1193 int hl_device_utilization(struct hl_device *hdev, u32 *utilization) 1194 { 1195 u64 max_power, curr_power, dc_power, dividend, divisor; 1196 int rc; 1197 1198 max_power = hdev->max_power; 1199 dc_power = hdev->asic_prop.dc_power_default; 1200 divisor = max_power - dc_power; 1201 if (!divisor) { 1202 dev_warn(hdev->dev, "device utilization is not supported\n"); 1203 return -EOPNOTSUPP; 1204 } 1205 rc = hl_fw_cpucp_power_get(hdev, &curr_power); 1206 1207 if (rc) 1208 return rc; 1209 1210 curr_power = clamp(curr_power, dc_power, max_power); 1211 1212 dividend = (curr_power - dc_power) * 100; 1213 *utilization = (u32) div_u64(dividend, divisor); 1214 1215 return 0; 1216 } 1217 1218 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable) 1219 { 1220 int rc = 0; 1221 1222 mutex_lock(&hdev->debug_lock); 1223 1224 if (!enable) { 1225 if (!hdev->in_debug) { 1226 dev_err(hdev->dev, 1227 "Failed to disable debug mode because device was not in debug mode\n"); 1228 rc = -EFAULT; 1229 goto out; 1230 } 1231 1232 if (!hdev->reset_info.hard_reset_pending) 1233 hdev->asic_funcs->halt_coresight(hdev, ctx); 1234 1235 hdev->in_debug = 0; 1236 1237 goto out; 1238 } 1239 1240 if (hdev->in_debug) { 1241 dev_err(hdev->dev, 1242 "Failed to enable debug mode because device is already in debug mode\n"); 1243 rc = -EFAULT; 1244 goto out; 1245 } 1246 1247 hdev->in_debug = 1; 1248 1249 out: 1250 mutex_unlock(&hdev->debug_lock); 1251 1252 return rc; 1253 } 1254 1255 static void take_release_locks(struct hl_device *hdev) 1256 { 1257 /* Flush anyone that is inside the critical section of enqueue 1258 * jobs to the H/W 1259 */ 1260 hdev->asic_funcs->hw_queues_lock(hdev); 1261 hdev->asic_funcs->hw_queues_unlock(hdev); 1262 1263 /* Flush processes that are sending message to CPU */ 1264 mutex_lock(&hdev->send_cpu_message_lock); 1265 mutex_unlock(&hdev->send_cpu_message_lock); 1266 1267 /* Flush anyone that is inside device open */ 1268 mutex_lock(&hdev->fpriv_list_lock); 1269 mutex_unlock(&hdev->fpriv_list_lock); 1270 mutex_lock(&hdev->fpriv_ctrl_list_lock); 1271 mutex_unlock(&hdev->fpriv_ctrl_list_lock); 1272 } 1273 1274 static void hl_abort_waiting_for_completions(struct hl_device *hdev) 1275 { 1276 hl_abort_waiting_for_cs_completions(hdev); 1277 1278 /* Release all pending user interrupts, each pending user interrupt 1279 * holds a reference to a user context. 1280 */ 1281 hl_release_pending_user_interrupts(hdev); 1282 } 1283 1284 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset, 1285 bool skip_wq_flush) 1286 { 1287 if (hard_reset) { 1288 if (hdev->heartbeat) 1289 cancel_delayed_work_sync(&hdev->work_heartbeat); 1290 1291 device_late_fini(hdev); 1292 } 1293 1294 /* 1295 * Halt the engines and disable interrupts so we won't get any more 1296 * completions from H/W and we won't have any accesses from the 1297 * H/W to the host machine 1298 */ 1299 hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset); 1300 1301 /* Go over all the queues, release all CS and their jobs */ 1302 hl_cs_rollback_all(hdev, skip_wq_flush); 1303 1304 /* flush the MMU prefetch workqueue */ 1305 flush_workqueue(hdev->prefetch_wq); 1306 1307 hl_abort_waiting_for_completions(hdev); 1308 } 1309 1310 /* 1311 * hl_device_suspend - initiate device suspend 1312 * 1313 * @hdev: pointer to habanalabs device structure 1314 * 1315 * Puts the hw in the suspend state (all asics). 1316 * Returns 0 for success or an error on failure. 1317 * Called at driver suspend. 1318 */ 1319 int hl_device_suspend(struct hl_device *hdev) 1320 { 1321 int rc; 1322 1323 pci_save_state(hdev->pdev); 1324 1325 /* Block future CS/VM/JOB completion operations */ 1326 spin_lock(&hdev->reset_info.lock); 1327 if (hdev->reset_info.in_reset) { 1328 spin_unlock(&hdev->reset_info.lock); 1329 dev_err(hdev->dev, "Can't suspend while in reset\n"); 1330 return -EIO; 1331 } 1332 hdev->reset_info.in_reset = 1; 1333 spin_unlock(&hdev->reset_info.lock); 1334 1335 /* This blocks all other stuff that is not blocked by in_reset */ 1336 hdev->disabled = true; 1337 1338 take_release_locks(hdev); 1339 1340 rc = hdev->asic_funcs->suspend(hdev); 1341 if (rc) 1342 dev_err(hdev->dev, 1343 "Failed to disable PCI access of device CPU\n"); 1344 1345 /* Shut down the device */ 1346 pci_disable_device(hdev->pdev); 1347 pci_set_power_state(hdev->pdev, PCI_D3hot); 1348 1349 return 0; 1350 } 1351 1352 /* 1353 * hl_device_resume - initiate device resume 1354 * 1355 * @hdev: pointer to habanalabs device structure 1356 * 1357 * Bring the hw back to operating state (all asics). 1358 * Returns 0 for success or an error on failure. 1359 * Called at driver resume. 1360 */ 1361 int hl_device_resume(struct hl_device *hdev) 1362 { 1363 int rc; 1364 1365 pci_set_power_state(hdev->pdev, PCI_D0); 1366 pci_restore_state(hdev->pdev); 1367 rc = pci_enable_device_mem(hdev->pdev); 1368 if (rc) { 1369 dev_err(hdev->dev, 1370 "Failed to enable PCI device in resume\n"); 1371 return rc; 1372 } 1373 1374 pci_set_master(hdev->pdev); 1375 1376 rc = hdev->asic_funcs->resume(hdev); 1377 if (rc) { 1378 dev_err(hdev->dev, "Failed to resume device after suspend\n"); 1379 goto disable_device; 1380 } 1381 1382 1383 /* 'in_reset' was set to true during suspend, now we must clear it in order 1384 * for hard reset to be performed 1385 */ 1386 spin_lock(&hdev->reset_info.lock); 1387 hdev->reset_info.in_reset = 0; 1388 spin_unlock(&hdev->reset_info.lock); 1389 1390 rc = hl_device_reset(hdev, HL_DRV_RESET_HARD); 1391 if (rc) { 1392 dev_err(hdev->dev, "Failed to reset device during resume\n"); 1393 goto disable_device; 1394 } 1395 1396 return 0; 1397 1398 disable_device: 1399 pci_disable_device(hdev->pdev); 1400 1401 return rc; 1402 } 1403 1404 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev) 1405 { 1406 struct task_struct *task = NULL; 1407 struct list_head *hpriv_list; 1408 struct hl_fpriv *hpriv; 1409 struct mutex *hpriv_lock; 1410 u32 pending_cnt; 1411 1412 hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; 1413 hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; 1414 1415 /* Giving time for user to close FD, and for processes that are inside 1416 * hl_device_open to finish 1417 */ 1418 if (!list_empty(hpriv_list)) 1419 ssleep(1); 1420 1421 if (timeout) { 1422 pending_cnt = timeout; 1423 } else { 1424 if (hdev->process_kill_trial_cnt) { 1425 /* Processes have been already killed */ 1426 pending_cnt = 1; 1427 goto wait_for_processes; 1428 } else { 1429 /* Wait a small period after process kill */ 1430 pending_cnt = HL_PENDING_RESET_PER_SEC; 1431 } 1432 } 1433 1434 mutex_lock(hpriv_lock); 1435 1436 /* This section must be protected because we are dereferencing 1437 * pointers that are freed if the process exits 1438 */ 1439 list_for_each_entry(hpriv, hpriv_list, dev_node) { 1440 task = get_pid_task(hpriv->taskpid, PIDTYPE_PID); 1441 if (task) { 1442 dev_info(hdev->dev, "Killing user process pid=%d\n", 1443 task_pid_nr(task)); 1444 send_sig(SIGKILL, task, 1); 1445 usleep_range(1000, 10000); 1446 1447 put_task_struct(task); 1448 } else { 1449 dev_dbg(hdev->dev, 1450 "Can't get task struct for user process %d, process was killed from outside the driver\n", 1451 pid_nr(hpriv->taskpid)); 1452 } 1453 } 1454 1455 mutex_unlock(hpriv_lock); 1456 1457 /* 1458 * We killed the open users, but that doesn't mean they are closed. 1459 * It could be that they are running a long cleanup phase in the driver 1460 * e.g. MMU unmappings, or running other long teardown flow even before 1461 * our cleanup. 1462 * Therefore we need to wait again to make sure they are closed before 1463 * continuing with the reset. 1464 */ 1465 1466 wait_for_processes: 1467 while ((!list_empty(hpriv_list)) && (pending_cnt)) { 1468 dev_dbg(hdev->dev, 1469 "Waiting for all unmap operations to finish before hard reset\n"); 1470 1471 pending_cnt--; 1472 1473 ssleep(1); 1474 } 1475 1476 /* All processes exited successfully */ 1477 if (list_empty(hpriv_list)) 1478 return 0; 1479 1480 /* Give up waiting for processes to exit */ 1481 if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS) 1482 return -ETIME; 1483 1484 hdev->process_kill_trial_cnt++; 1485 1486 return -EBUSY; 1487 } 1488 1489 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev) 1490 { 1491 struct list_head *hpriv_list; 1492 struct hl_fpriv *hpriv; 1493 struct mutex *hpriv_lock; 1494 1495 hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; 1496 hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; 1497 1498 mutex_lock(hpriv_lock); 1499 list_for_each_entry(hpriv, hpriv_list, dev_node) 1500 hpriv->hdev = NULL; 1501 mutex_unlock(hpriv_lock); 1502 } 1503 1504 static void send_disable_pci_access(struct hl_device *hdev, u32 flags) 1505 { 1506 /* If reset is due to heartbeat, device CPU is no responsive in 1507 * which case no point sending PCI disable message to it. 1508 */ 1509 if ((flags & HL_DRV_RESET_HARD) && 1510 !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) { 1511 /* Disable PCI access from device F/W so he won't send 1512 * us additional interrupts. We disable MSI/MSI-X at 1513 * the halt_engines function and we can't have the F/W 1514 * sending us interrupts after that. We need to disable 1515 * the access here because if the device is marked 1516 * disable, the message won't be send. Also, in case 1517 * of heartbeat, the device CPU is marked as disable 1518 * so this message won't be sent 1519 */ 1520 if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) 1521 return; 1522 1523 /* disable_irq also generates sync irq, this verifies that last EQs are handled 1524 * before disabled is set. The IRQ will be enabled again in request_irq call. 1525 */ 1526 if (hdev->cpu_queues_enable) 1527 disable_irq(pci_irq_vector(hdev->pdev, hdev->asic_prop.eq_interrupt_id)); 1528 } 1529 } 1530 1531 static void handle_reset_trigger(struct hl_device *hdev, u32 flags) 1532 { 1533 u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT; 1534 1535 /* No consecutive mechanism when user context exists */ 1536 if (hdev->is_compute_ctx_active) 1537 return; 1538 1539 /* 1540 * 'reset cause' is being updated here, because getting here 1541 * means that it's the 1st time and the last time we're here 1542 * ('in_reset' makes sure of it). This makes sure that 1543 * 'reset_cause' will continue holding its 1st recorded reason! 1544 */ 1545 if (flags & HL_DRV_RESET_HEARTBEAT) { 1546 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT; 1547 cur_reset_trigger = HL_DRV_RESET_HEARTBEAT; 1548 } else if (flags & HL_DRV_RESET_TDR) { 1549 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR; 1550 cur_reset_trigger = HL_DRV_RESET_TDR; 1551 } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) { 1552 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; 1553 cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR; 1554 } else { 1555 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; 1556 } 1557 1558 /* 1559 * If reset cause is same twice, then reset_trigger_repeated 1560 * is set and if this reset is due to a fatal FW error 1561 * device is set to an unstable state. 1562 */ 1563 if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) { 1564 hdev->reset_info.prev_reset_trigger = cur_reset_trigger; 1565 hdev->reset_info.reset_trigger_repeated = 0; 1566 } else { 1567 hdev->reset_info.reset_trigger_repeated = 1; 1568 } 1569 } 1570 1571 static void reset_heartbeat_debug_info(struct hl_device *hdev) 1572 { 1573 hdev->heartbeat_debug_info.last_pq_heartbeat_ts = 0; 1574 hdev->heartbeat_debug_info.last_eq_heartbeat_ts = 0; 1575 hdev->heartbeat_debug_info.heartbeat_event_counter = 0; 1576 } 1577 1578 static inline void device_heartbeat_schedule(struct hl_device *hdev) 1579 { 1580 if (!hdev->heartbeat) 1581 return; 1582 1583 reset_heartbeat_debug_info(hdev); 1584 1585 /* 1586 * Before scheduling the heartbeat driver will check if eq event has received. 1587 * for the first schedule we need to set the indication as true then for the next 1588 * one this indication will be true only if eq event was sent by FW. 1589 */ 1590 hdev->eq_heartbeat_received = true; 1591 1592 schedule_delayed_work(&hdev->work_heartbeat, 1593 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); 1594 } 1595 1596 /* 1597 * hl_device_reset - reset the device 1598 * 1599 * @hdev: pointer to habanalabs device structure 1600 * @flags: reset flags. 1601 * 1602 * Block future CS and wait for pending CS to be enqueued 1603 * Call ASIC H/W fini 1604 * Flush all completions 1605 * Re-initialize all internal data structures 1606 * Call ASIC H/W init, late_init 1607 * Test queues 1608 * Enable device 1609 * 1610 * Returns 0 for success or an error on failure. 1611 */ 1612 int hl_device_reset(struct hl_device *hdev, u32 flags) 1613 { 1614 bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release, 1615 schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread; 1616 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; 1617 struct hl_ctx *ctx; 1618 int i, rc, hw_fini_rc; 1619 1620 if (!hdev->init_done) { 1621 dev_err(hdev->dev, "Can't reset before initialization is done\n"); 1622 return 0; 1623 } 1624 1625 hard_reset = !!(flags & HL_DRV_RESET_HARD); 1626 from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR); 1627 fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW); 1628 from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE); 1629 delay_reset = !!(flags & HL_DRV_RESET_DELAY); 1630 from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR); 1631 reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release; 1632 1633 if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) { 1634 dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n"); 1635 return 0; 1636 } 1637 1638 if (!hard_reset && !hdev->asic_prop.supports_compute_reset) { 1639 dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n"); 1640 hard_reset = true; 1641 } 1642 1643 if (reset_upon_device_release) { 1644 if (hard_reset) { 1645 dev_crit(hdev->dev, 1646 "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n"); 1647 return -EINVAL; 1648 } 1649 1650 goto do_reset; 1651 } 1652 1653 if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) { 1654 dev_dbg(hdev->dev, 1655 "asic doesn't allow inference soft reset - do hard-reset instead\n"); 1656 hard_reset = true; 1657 } 1658 1659 do_reset: 1660 /* Re-entry of reset thread */ 1661 if (from_hard_reset_thread && hdev->process_kill_trial_cnt) 1662 goto kill_processes; 1663 1664 /* 1665 * Prevent concurrency in this function - only one reset should be 1666 * done at any given time. We need to perform this only if we didn't 1667 * get here from a dedicated hard reset thread. 1668 */ 1669 if (!from_hard_reset_thread) { 1670 /* Block future CS/VM/JOB completion operations */ 1671 spin_lock(&hdev->reset_info.lock); 1672 if (hdev->reset_info.in_reset) { 1673 /* We allow scheduling of a hard reset only during a compute reset */ 1674 if (hard_reset && hdev->reset_info.in_compute_reset) 1675 hdev->reset_info.hard_reset_schedule_flags = flags; 1676 spin_unlock(&hdev->reset_info.lock); 1677 return 0; 1678 } 1679 1680 /* This still allows the completion of some KDMA ops 1681 * Update this before in_reset because in_compute_reset implies we are in reset 1682 */ 1683 hdev->reset_info.in_compute_reset = !hard_reset; 1684 1685 hdev->reset_info.in_reset = 1; 1686 1687 spin_unlock(&hdev->reset_info.lock); 1688 1689 /* Cancel the device release watchdog work if required. 1690 * In case of reset-upon-device-release while the release watchdog work is 1691 * scheduled due to a hard-reset, do hard-reset instead of compute-reset. 1692 */ 1693 if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) { 1694 struct hl_device_reset_work *watchdog_work = 1695 &hdev->device_release_watchdog_work; 1696 1697 hdev->reset_info.watchdog_active = 0; 1698 if (!from_watchdog_thread) 1699 cancel_delayed_work_sync(&watchdog_work->reset_work); 1700 1701 if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) { 1702 hdev->reset_info.in_compute_reset = 0; 1703 flags |= HL_DRV_RESET_HARD; 1704 flags &= ~HL_DRV_RESET_DEV_RELEASE; 1705 hard_reset = true; 1706 } 1707 } 1708 1709 if (delay_reset) 1710 usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1); 1711 1712 escalate_reset_flow: 1713 handle_reset_trigger(hdev, flags); 1714 send_disable_pci_access(hdev, flags); 1715 1716 /* This also blocks future CS/VM/JOB completion operations */ 1717 hdev->disabled = true; 1718 1719 take_release_locks(hdev); 1720 1721 if (hard_reset) 1722 dev_info(hdev->dev, "Going to reset device\n"); 1723 else if (reset_upon_device_release) 1724 dev_dbg(hdev->dev, "Going to reset device after release by user\n"); 1725 else 1726 dev_dbg(hdev->dev, "Going to reset engines of inference device\n"); 1727 } 1728 1729 if ((hard_reset) && (!from_hard_reset_thread)) { 1730 hdev->reset_info.hard_reset_pending = true; 1731 1732 hdev->process_kill_trial_cnt = 0; 1733 1734 hdev->device_reset_work.flags = flags; 1735 1736 /* 1737 * Because the reset function can't run from heartbeat work, 1738 * we need to call the reset function from a dedicated work. 1739 */ 1740 queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0); 1741 1742 return 0; 1743 } 1744 1745 cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release); 1746 1747 kill_processes: 1748 if (hard_reset) { 1749 /* Kill processes here after CS rollback. This is because the 1750 * process can't really exit until all its CSs are done, which 1751 * is what we do in cs rollback 1752 */ 1753 rc = device_kill_open_processes(hdev, 0, false); 1754 1755 if (rc == -EBUSY) { 1756 if (hdev->device_fini_pending) { 1757 dev_crit(hdev->dev, 1758 "%s Failed to kill all open processes, stopping hard reset\n", 1759 dev_name(&(hdev)->pdev->dev)); 1760 goto out_err; 1761 } 1762 1763 /* signal reset thread to reschedule */ 1764 return rc; 1765 } 1766 1767 if (rc) { 1768 dev_crit(hdev->dev, 1769 "%s Failed to kill all open processes, stopping hard reset\n", 1770 dev_name(&(hdev)->pdev->dev)); 1771 goto out_err; 1772 } 1773 1774 /* Flush the Event queue workers to make sure no other thread is 1775 * reading or writing to registers during the reset 1776 */ 1777 flush_workqueue(hdev->eq_wq); 1778 } 1779 1780 /* Reset the H/W. It will be in idle state after this returns */ 1781 hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset); 1782 1783 if (hard_reset) { 1784 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; 1785 1786 /* Release kernel context */ 1787 if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1) 1788 hdev->kernel_ctx = NULL; 1789 1790 hl_vm_fini(hdev); 1791 hl_mmu_fini(hdev); 1792 hl_eq_reset(hdev, &hdev->event_queue); 1793 } 1794 1795 /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */ 1796 hl_hw_queue_reset(hdev, hard_reset); 1797 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1798 hl_cq_reset(hdev, &hdev->completion_queue[i]); 1799 1800 /* Make sure the context switch phase will run again */ 1801 ctx = hl_get_compute_ctx(hdev); 1802 if (ctx) { 1803 atomic_set(&ctx->thread_ctx_switch_token, 1); 1804 ctx->thread_ctx_switch_wait_token = 0; 1805 hl_ctx_put(ctx); 1806 } 1807 1808 if (hw_fini_rc) { 1809 rc = hw_fini_rc; 1810 goto out_err; 1811 } 1812 /* Finished tear-down, starting to re-initialize */ 1813 1814 if (hard_reset) { 1815 hdev->device_cpu_disabled = false; 1816 hdev->reset_info.hard_reset_pending = false; 1817 1818 /* 1819 * Put the device in an unusable state if there are 2 back to back resets due to 1820 * fatal errors. 1821 */ 1822 if (hdev->reset_info.reset_trigger_repeated && 1823 (hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR || 1824 hdev->reset_info.prev_reset_trigger == 1825 HL_DRV_RESET_HEARTBEAT)) { 1826 dev_crit(hdev->dev, 1827 "%s Consecutive fatal errors, stopping hard reset\n", 1828 dev_name(&(hdev)->pdev->dev)); 1829 rc = -EIO; 1830 goto out_err; 1831 } 1832 1833 if (hdev->kernel_ctx) { 1834 dev_crit(hdev->dev, 1835 "%s kernel ctx was alive during hard reset, something is terribly wrong\n", 1836 dev_name(&(hdev)->pdev->dev)); 1837 rc = -EBUSY; 1838 goto out_err; 1839 } 1840 1841 rc = hl_mmu_init(hdev); 1842 if (rc) { 1843 dev_err(hdev->dev, 1844 "Failed to initialize MMU S/W after hard reset\n"); 1845 goto out_err; 1846 } 1847 1848 /* Allocate the kernel context */ 1849 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), 1850 GFP_KERNEL); 1851 if (!hdev->kernel_ctx) { 1852 rc = -ENOMEM; 1853 hl_mmu_fini(hdev); 1854 goto out_err; 1855 } 1856 1857 hdev->is_compute_ctx_active = false; 1858 1859 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); 1860 if (rc) { 1861 dev_err(hdev->dev, 1862 "failed to init kernel ctx in hard reset\n"); 1863 kfree(hdev->kernel_ctx); 1864 hdev->kernel_ctx = NULL; 1865 hl_mmu_fini(hdev); 1866 goto out_err; 1867 } 1868 } 1869 1870 /* Device is now enabled as part of the initialization requires 1871 * communication with the device firmware to get information that 1872 * is required for the initialization itself 1873 */ 1874 hdev->disabled = false; 1875 1876 /* F/W security enabled indication might be updated after hard-reset */ 1877 if (hard_reset) { 1878 rc = hl_fw_read_preboot_status(hdev); 1879 if (rc) 1880 goto out_err; 1881 } 1882 1883 rc = hdev->asic_funcs->hw_init(hdev); 1884 if (rc) { 1885 dev_err(hdev->dev, "failed to initialize the H/W after reset\n"); 1886 goto out_err; 1887 } 1888 1889 /* If device is not idle fail the reset process */ 1890 if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask, 1891 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) { 1892 print_idle_status_mask(hdev, "device is not idle after reset", idle_mask); 1893 rc = -EIO; 1894 goto out_err; 1895 } 1896 1897 /* Check that the communication with the device is working */ 1898 rc = hdev->asic_funcs->test_queues(hdev); 1899 if (rc) { 1900 dev_err(hdev->dev, "Failed to detect if device is alive after reset\n"); 1901 goto out_err; 1902 } 1903 1904 if (hard_reset) { 1905 rc = device_late_init(hdev); 1906 if (rc) { 1907 dev_err(hdev->dev, "Failed late init after hard reset\n"); 1908 goto out_err; 1909 } 1910 1911 rc = hl_vm_init(hdev); 1912 if (rc) { 1913 dev_err(hdev->dev, "Failed to init memory module after hard reset\n"); 1914 goto out_err; 1915 } 1916 1917 if (!hdev->asic_prop.fw_security_enabled) 1918 hl_fw_set_max_power(hdev); 1919 } else { 1920 rc = hdev->asic_funcs->compute_reset_late_init(hdev); 1921 if (rc) { 1922 if (reset_upon_device_release) 1923 dev_err(hdev->dev, 1924 "Failed late init in reset after device release\n"); 1925 else 1926 dev_err(hdev->dev, "Failed late init after compute reset\n"); 1927 goto out_err; 1928 } 1929 } 1930 1931 rc = hdev->asic_funcs->scrub_device_mem(hdev); 1932 if (rc) { 1933 dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc); 1934 goto out_err; 1935 } 1936 1937 spin_lock(&hdev->reset_info.lock); 1938 hdev->reset_info.in_compute_reset = 0; 1939 1940 /* Schedule hard reset only if requested and if not already in hard reset. 1941 * We keep 'in_reset' enabled, so no other reset can go in during the hard 1942 * reset schedule 1943 */ 1944 if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags) 1945 schedule_hard_reset = true; 1946 else 1947 hdev->reset_info.in_reset = 0; 1948 1949 spin_unlock(&hdev->reset_info.lock); 1950 1951 hdev->reset_info.needs_reset = false; 1952 1953 if (hard_reset) 1954 dev_info(hdev->dev, 1955 "Successfully finished resetting the %s device\n", 1956 dev_name(&(hdev)->pdev->dev)); 1957 else 1958 dev_dbg(hdev->dev, 1959 "Successfully finished resetting the %s device\n", 1960 dev_name(&(hdev)->pdev->dev)); 1961 1962 if (hard_reset) { 1963 hdev->reset_info.hard_reset_cnt++; 1964 1965 device_heartbeat_schedule(hdev); 1966 1967 /* After reset is done, we are ready to receive events from 1968 * the F/W. We can't do it before because we will ignore events 1969 * and if those events are fatal, we won't know about it and 1970 * the device will be operational although it shouldn't be 1971 */ 1972 hdev->asic_funcs->enable_events_from_fw(hdev); 1973 } else { 1974 if (!reset_upon_device_release) 1975 hdev->reset_info.compute_reset_cnt++; 1976 1977 if (schedule_hard_reset) { 1978 dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n"); 1979 flags = hdev->reset_info.hard_reset_schedule_flags; 1980 hdev->reset_info.hard_reset_schedule_flags = 0; 1981 hard_reset = true; 1982 goto escalate_reset_flow; 1983 } 1984 } 1985 1986 return 0; 1987 1988 out_err: 1989 hdev->disabled = true; 1990 1991 spin_lock(&hdev->reset_info.lock); 1992 hdev->reset_info.in_compute_reset = 0; 1993 1994 if (hard_reset) { 1995 dev_err(hdev->dev, 1996 "%s Failed to reset! Device is NOT usable\n", 1997 dev_name(&(hdev)->pdev->dev)); 1998 hdev->reset_info.hard_reset_cnt++; 1999 } else { 2000 if (reset_upon_device_release) { 2001 dev_err(hdev->dev, "Failed to reset device after user release\n"); 2002 flags &= ~HL_DRV_RESET_DEV_RELEASE; 2003 } else { 2004 dev_err(hdev->dev, "Failed to do compute reset\n"); 2005 hdev->reset_info.compute_reset_cnt++; 2006 } 2007 2008 spin_unlock(&hdev->reset_info.lock); 2009 flags |= HL_DRV_RESET_HARD; 2010 hard_reset = true; 2011 goto escalate_reset_flow; 2012 } 2013 2014 hdev->reset_info.in_reset = 0; 2015 2016 spin_unlock(&hdev->reset_info.lock); 2017 2018 return rc; 2019 } 2020 2021 /* 2022 * hl_device_cond_reset() - conditionally reset the device. 2023 * @hdev: pointer to habanalabs device structure. 2024 * @reset_flags: reset flags. 2025 * @event_mask: events to notify user about. 2026 * 2027 * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device 2028 * unless another reset precedes it. 2029 */ 2030 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask) 2031 { 2032 struct hl_ctx *ctx = NULL; 2033 2034 /* F/W reset cannot be postponed */ 2035 if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW) 2036 goto device_reset; 2037 2038 /* Device release watchdog is relevant only if user exists and gets a reset notification */ 2039 if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) { 2040 dev_err(hdev->dev, "Resetting device without a reset indication to user\n"); 2041 goto device_reset; 2042 } 2043 2044 ctx = hl_get_compute_ctx(hdev); 2045 if (!ctx) 2046 goto device_reset; 2047 2048 /* 2049 * There is no point in postponing the reset if user is not registered for events. 2050 * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it 2051 * just implies that user has unregistered as part of handling a previous event. In this 2052 * case an immediate reset is not required. 2053 */ 2054 if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active) 2055 goto device_reset; 2056 2057 /* Schedule the device release watchdog work unless reset is already in progress or if the 2058 * work is already scheduled. 2059 */ 2060 spin_lock(&hdev->reset_info.lock); 2061 if (hdev->reset_info.in_reset) { 2062 spin_unlock(&hdev->reset_info.lock); 2063 goto device_reset; 2064 } 2065 2066 if (hdev->reset_info.watchdog_active) { 2067 hdev->device_release_watchdog_work.flags |= flags; 2068 goto out; 2069 } 2070 2071 hdev->device_release_watchdog_work.flags = flags; 2072 dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n", 2073 hdev->device_release_watchdog_timeout_sec); 2074 schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work, 2075 secs_to_jiffies(hdev->device_release_watchdog_timeout_sec)); 2076 hdev->reset_info.watchdog_active = 1; 2077 out: 2078 spin_unlock(&hdev->reset_info.lock); 2079 2080 hl_notifier_event_send_all(hdev, event_mask); 2081 2082 hl_ctx_put(ctx); 2083 2084 hl_abort_waiting_for_completions(hdev); 2085 2086 return 0; 2087 2088 device_reset: 2089 if (event_mask) 2090 hl_notifier_event_send_all(hdev, event_mask); 2091 if (ctx) 2092 hl_ctx_put(ctx); 2093 2094 return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD); 2095 } 2096 2097 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask) 2098 { 2099 mutex_lock(¬ifier_event->lock); 2100 notifier_event->events_mask |= event_mask; 2101 2102 if (notifier_event->eventfd) 2103 eventfd_signal(notifier_event->eventfd); 2104 2105 mutex_unlock(¬ifier_event->lock); 2106 } 2107 2108 /* 2109 * hl_notifier_event_send_all - notify all user processes via eventfd 2110 * 2111 * @hdev: pointer to habanalabs device structure 2112 * @event_mask: the occurred event/s 2113 * Returns 0 for success or an error on failure. 2114 */ 2115 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask) 2116 { 2117 struct hl_fpriv *hpriv; 2118 2119 if (!event_mask) { 2120 dev_warn(hdev->dev, "Skip sending zero event"); 2121 return; 2122 } 2123 2124 mutex_lock(&hdev->fpriv_list_lock); 2125 2126 list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) 2127 hl_notifier_event_send(&hpriv->notifier_event, event_mask); 2128 2129 mutex_unlock(&hdev->fpriv_list_lock); 2130 } 2131 2132 /* 2133 * hl_device_init - main initialization function for habanalabs device 2134 * 2135 * @hdev: pointer to habanalabs device structure 2136 * 2137 * Allocate an id for the device, do early initialization and then call the 2138 * ASIC specific initialization functions. Finally, create the cdev and the 2139 * Linux device to expose it to the user 2140 */ 2141 int hl_device_init(struct hl_device *hdev) 2142 { 2143 int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt; 2144 struct hl_ts_free_jobs *free_jobs_data; 2145 bool expose_interfaces_on_err = false; 2146 void *p; 2147 2148 /* Initialize ASIC function pointers and perform early init */ 2149 rc = device_early_init(hdev); 2150 if (rc) 2151 goto out_disabled; 2152 2153 user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + 2154 hdev->asic_prop.user_interrupt_count; 2155 2156 if (user_interrupt_cnt) { 2157 hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt), 2158 GFP_KERNEL); 2159 if (!hdev->user_interrupt) { 2160 rc = -ENOMEM; 2161 goto early_fini; 2162 } 2163 2164 /* Timestamp records supported only if CQ supported in device */ 2165 if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { 2166 for (i = 0 ; i < user_interrupt_cnt ; i++) { 2167 p = vzalloc(TIMESTAMP_FREE_NODES_NUM * 2168 sizeof(struct timestamp_reg_free_node)); 2169 if (!p) { 2170 rc = -ENOMEM; 2171 goto free_usr_intr_mem; 2172 } 2173 free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data; 2174 free_jobs_data->free_nodes_pool = p; 2175 free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; 2176 free_jobs_data->next_avail_free_node_idx = 0; 2177 } 2178 } 2179 } 2180 2181 free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data; 2182 p = vzalloc(TIMESTAMP_FREE_NODES_NUM * 2183 sizeof(struct timestamp_reg_free_node)); 2184 if (!p) { 2185 rc = -ENOMEM; 2186 goto free_usr_intr_mem; 2187 } 2188 2189 free_jobs_data->free_nodes_pool = p; 2190 free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; 2191 free_jobs_data->next_avail_free_node_idx = 0; 2192 2193 /* 2194 * Start calling ASIC initialization. First S/W then H/W and finally 2195 * late init 2196 */ 2197 rc = hdev->asic_funcs->sw_init(hdev); 2198 if (rc) 2199 goto free_common_usr_intr_mem; 2200 2201 2202 /* initialize completion structure for multi CS wait */ 2203 hl_multi_cs_completion_init(hdev); 2204 2205 /* 2206 * Initialize the H/W queues. Must be done before hw_init, because 2207 * there the addresses of the kernel queue are being written to the 2208 * registers of the device 2209 */ 2210 rc = hl_hw_queues_create(hdev); 2211 if (rc) { 2212 dev_err(hdev->dev, "failed to initialize kernel queues\n"); 2213 goto sw_fini; 2214 } 2215 2216 cq_cnt = hdev->asic_prop.completion_queues_count; 2217 2218 /* 2219 * Initialize the completion queues. Must be done before hw_init, 2220 * because there the addresses of the completion queues are being 2221 * passed as arguments to request_irq 2222 */ 2223 if (cq_cnt) { 2224 hdev->completion_queue = kcalloc(cq_cnt, 2225 sizeof(*hdev->completion_queue), 2226 GFP_KERNEL); 2227 2228 if (!hdev->completion_queue) { 2229 dev_err(hdev->dev, 2230 "failed to allocate completion queues\n"); 2231 rc = -ENOMEM; 2232 goto hw_queues_destroy; 2233 } 2234 } 2235 2236 for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) { 2237 rc = hl_cq_init(hdev, &hdev->completion_queue[i], 2238 hdev->asic_funcs->get_queue_id_for_cq(hdev, i)); 2239 if (rc) { 2240 dev_err(hdev->dev, 2241 "failed to initialize completion queue\n"); 2242 goto cq_fini; 2243 } 2244 hdev->completion_queue[i].cq_idx = i; 2245 } 2246 2247 hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs, 2248 sizeof(struct hl_cs *), GFP_KERNEL); 2249 if (!hdev->shadow_cs_queue) { 2250 rc = -ENOMEM; 2251 goto cq_fini; 2252 } 2253 2254 /* 2255 * Initialize the event queue. Must be done before hw_init, 2256 * because there the address of the event queue is being 2257 * passed as argument to request_irq 2258 */ 2259 rc = hl_eq_init(hdev, &hdev->event_queue); 2260 if (rc) { 2261 dev_err(hdev->dev, "failed to initialize event queue\n"); 2262 goto free_shadow_cs_queue; 2263 } 2264 2265 /* MMU S/W must be initialized before kernel context is created */ 2266 rc = hl_mmu_init(hdev); 2267 if (rc) { 2268 dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n"); 2269 goto eq_fini; 2270 } 2271 2272 /* Allocate the kernel context */ 2273 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); 2274 if (!hdev->kernel_ctx) { 2275 rc = -ENOMEM; 2276 goto mmu_fini; 2277 } 2278 2279 hdev->is_compute_ctx_active = false; 2280 2281 hdev->asic_funcs->state_dump_init(hdev); 2282 2283 hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC; 2284 2285 hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL; 2286 2287 rc = hl_debugfs_device_init(hdev); 2288 if (rc) { 2289 dev_err(hdev->dev, "failed to initialize debugfs entry structure\n"); 2290 kfree(hdev->kernel_ctx); 2291 goto mmu_fini; 2292 } 2293 2294 /* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after 2295 * hl_debugfs_device_init(). 2296 */ 2297 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); 2298 if (rc) { 2299 dev_err(hdev->dev, "failed to initialize kernel context\n"); 2300 kfree(hdev->kernel_ctx); 2301 goto debugfs_device_fini; 2302 } 2303 2304 rc = hl_cb_pool_init(hdev); 2305 if (rc) { 2306 dev_err(hdev->dev, "failed to initialize CB pool\n"); 2307 goto release_ctx; 2308 } 2309 2310 rc = hl_dec_init(hdev); 2311 if (rc) { 2312 dev_err(hdev->dev, "Failed to initialize the decoder module\n"); 2313 goto cb_pool_fini; 2314 } 2315 2316 /* 2317 * From this point, override rc (=0) in case of an error to allow debugging 2318 * (by adding char devices and creating sysfs/debugfs files as part of the error flow). 2319 */ 2320 expose_interfaces_on_err = true; 2321 2322 /* Device is now enabled as part of the initialization requires 2323 * communication with the device firmware to get information that 2324 * is required for the initialization itself 2325 */ 2326 hdev->disabled = false; 2327 2328 rc = hdev->asic_funcs->hw_init(hdev); 2329 if (rc) { 2330 dev_err(hdev->dev, "failed to initialize the H/W\n"); 2331 rc = 0; 2332 goto out_disabled; 2333 } 2334 2335 /* Check that the communication with the device is working */ 2336 rc = hdev->asic_funcs->test_queues(hdev); 2337 if (rc) { 2338 dev_err(hdev->dev, "Failed to detect if device is alive\n"); 2339 rc = 0; 2340 goto out_disabled; 2341 } 2342 2343 rc = device_late_init(hdev); 2344 if (rc) { 2345 dev_err(hdev->dev, "Failed late initialization\n"); 2346 rc = 0; 2347 goto out_disabled; 2348 } 2349 2350 dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n", 2351 hdev->asic_name, 2352 hdev->asic_prop.dram_size / SZ_1G); 2353 2354 rc = hl_vm_init(hdev); 2355 if (rc) { 2356 dev_err(hdev->dev, "Failed to initialize memory module\n"); 2357 rc = 0; 2358 goto out_disabled; 2359 } 2360 2361 /* 2362 * Expose devices and sysfs/debugfs files to user. 2363 * From here there is no need to expose them in case of an error. 2364 */ 2365 expose_interfaces_on_err = false; 2366 2367 rc = drm_dev_register(&hdev->drm, 0); 2368 if (rc) { 2369 dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc); 2370 rc = 0; 2371 goto out_disabled; 2372 } 2373 2374 rc = cdev_sysfs_debugfs_add(hdev); 2375 if (rc) { 2376 dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n"); 2377 rc = 0; 2378 goto out_disabled; 2379 } 2380 2381 /* Need to call this again because the max power might change, 2382 * depending on card type for certain ASICs 2383 */ 2384 if (hdev->asic_prop.set_max_power_on_device_init && 2385 !hdev->asic_prop.fw_security_enabled) 2386 hl_fw_set_max_power(hdev); 2387 2388 /* 2389 * hl_hwmon_init() must be called after device_late_init(), because only 2390 * there we get the information from the device about which 2391 * hwmon-related sensors the device supports. 2392 * Furthermore, it must be done after adding the device to the system. 2393 */ 2394 rc = hl_hwmon_init(hdev); 2395 if (rc) { 2396 dev_err(hdev->dev, "Failed to initialize hwmon\n"); 2397 rc = 0; 2398 goto out_disabled; 2399 } 2400 2401 /* Scheduling the EQ heartbeat thread must come after driver is done with all 2402 * initializations, as we want to make sure the FW gets enough time to be prepared 2403 * to respond to heartbeat packets. 2404 */ 2405 device_heartbeat_schedule(hdev); 2406 2407 dev_notice(hdev->dev, 2408 "Successfully added device %s to habanalabs driver\n", 2409 dev_name(&(hdev)->pdev->dev)); 2410 2411 /* After initialization is done, we are ready to receive events from 2412 * the F/W. We can't do it before because we will ignore events and if 2413 * those events are fatal, we won't know about it and the device will 2414 * be operational although it shouldn't be 2415 */ 2416 hdev->asic_funcs->enable_events_from_fw(hdev); 2417 2418 hdev->init_done = true; 2419 2420 return 0; 2421 2422 cb_pool_fini: 2423 hl_cb_pool_fini(hdev); 2424 release_ctx: 2425 if (hl_ctx_put(hdev->kernel_ctx) != 1) 2426 dev_err(hdev->dev, 2427 "kernel ctx is still alive on initialization failure\n"); 2428 debugfs_device_fini: 2429 hl_debugfs_device_fini(hdev); 2430 mmu_fini: 2431 hl_mmu_fini(hdev); 2432 eq_fini: 2433 hl_eq_fini(hdev, &hdev->event_queue); 2434 free_shadow_cs_queue: 2435 kfree(hdev->shadow_cs_queue); 2436 cq_fini: 2437 for (i = 0 ; i < cq_ready_cnt ; i++) 2438 hl_cq_fini(hdev, &hdev->completion_queue[i]); 2439 kfree(hdev->completion_queue); 2440 hw_queues_destroy: 2441 hl_hw_queues_destroy(hdev); 2442 sw_fini: 2443 hdev->asic_funcs->sw_fini(hdev); 2444 free_common_usr_intr_mem: 2445 vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); 2446 free_usr_intr_mem: 2447 if (user_interrupt_cnt) { 2448 for (i = 0 ; i < user_interrupt_cnt ; i++) { 2449 if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool) 2450 break; 2451 vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); 2452 } 2453 kfree(hdev->user_interrupt); 2454 } 2455 early_fini: 2456 device_early_fini(hdev); 2457 out_disabled: 2458 hdev->disabled = true; 2459 if (expose_interfaces_on_err) { 2460 drm_dev_register(&hdev->drm, 0); 2461 cdev_sysfs_debugfs_add(hdev); 2462 } 2463 2464 pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n", 2465 hdev->cdev_idx, dev_name(&hdev->pdev->dev)); 2466 2467 return rc; 2468 } 2469 2470 /* 2471 * hl_device_fini - main tear-down function for habanalabs device 2472 * 2473 * @hdev: pointer to habanalabs device structure 2474 * 2475 * Destroy the device, call ASIC fini functions and release the id 2476 */ 2477 void hl_device_fini(struct hl_device *hdev) 2478 { 2479 u32 user_interrupt_cnt; 2480 bool device_in_reset; 2481 ktime_t timeout; 2482 u64 reset_sec; 2483 int i, rc; 2484 2485 dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev)); 2486 2487 hdev->device_fini_pending = 1; 2488 flush_delayed_work(&hdev->device_reset_work.reset_work); 2489 2490 if (hdev->pldm) 2491 reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT; 2492 else 2493 reset_sec = HL_HARD_RESET_MAX_TIMEOUT; 2494 2495 /* 2496 * This function is competing with the reset function, so try to 2497 * take the reset atomic and if we are already in middle of reset, 2498 * wait until reset function is finished. Reset function is designed 2499 * to always finish. However, in Gaudi, because of all the network 2500 * ports, the hard reset could take between 10-30 seconds 2501 */ 2502 2503 timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000); 2504 2505 spin_lock(&hdev->reset_info.lock); 2506 device_in_reset = !!hdev->reset_info.in_reset; 2507 if (!device_in_reset) 2508 hdev->reset_info.in_reset = 1; 2509 spin_unlock(&hdev->reset_info.lock); 2510 2511 while (device_in_reset) { 2512 usleep_range(50, 200); 2513 2514 spin_lock(&hdev->reset_info.lock); 2515 device_in_reset = !!hdev->reset_info.in_reset; 2516 if (!device_in_reset) 2517 hdev->reset_info.in_reset = 1; 2518 spin_unlock(&hdev->reset_info.lock); 2519 2520 if (ktime_compare(ktime_get(), timeout) > 0) { 2521 dev_crit(hdev->dev, 2522 "%s Failed to remove device because reset function did not finish\n", 2523 dev_name(&(hdev)->pdev->dev)); 2524 return; 2525 } 2526 } 2527 2528 cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work); 2529 2530 /* Disable PCI access from device F/W so it won't send us additional 2531 * interrupts. We disable MSI/MSI-X at the halt_engines function and we 2532 * can't have the F/W sending us interrupts after that. We need to 2533 * disable the access here because if the device is marked disable, the 2534 * message won't be send. Also, in case of heartbeat, the device CPU is 2535 * marked as disable so this message won't be sent 2536 */ 2537 hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); 2538 2539 /* Mark device as disabled */ 2540 hdev->disabled = true; 2541 2542 take_release_locks(hdev); 2543 2544 hdev->reset_info.hard_reset_pending = true; 2545 2546 hl_hwmon_fini(hdev); 2547 2548 cleanup_resources(hdev, true, false, false); 2549 2550 /* Kill processes here after CS rollback. This is because the process 2551 * can't really exit until all its CSs are done, which is what we 2552 * do in cs rollback 2553 */ 2554 dev_info(hdev->dev, 2555 "Waiting for all processes to exit (timeout of %u seconds)", 2556 HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI); 2557 2558 hdev->process_kill_trial_cnt = 0; 2559 rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false); 2560 if (rc) { 2561 dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc); 2562 device_disable_open_processes(hdev, false); 2563 } 2564 2565 hdev->process_kill_trial_cnt = 0; 2566 rc = device_kill_open_processes(hdev, 0, true); 2567 if (rc) { 2568 dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc); 2569 device_disable_open_processes(hdev, true); 2570 } 2571 2572 hl_cb_pool_fini(hdev); 2573 2574 /* Reset the H/W. It will be in idle state after this returns */ 2575 rc = hdev->asic_funcs->hw_fini(hdev, true, false); 2576 if (rc) 2577 dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc); 2578 2579 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; 2580 2581 /* Release kernel context */ 2582 if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1)) 2583 dev_err(hdev->dev, "kernel ctx is still alive\n"); 2584 2585 hl_dec_fini(hdev); 2586 2587 hl_vm_fini(hdev); 2588 2589 hl_mmu_fini(hdev); 2590 2591 vfree(hdev->captured_err_info.page_fault_info.user_mappings); 2592 2593 hl_eq_fini(hdev, &hdev->event_queue); 2594 2595 kfree(hdev->shadow_cs_queue); 2596 2597 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 2598 hl_cq_fini(hdev, &hdev->completion_queue[i]); 2599 kfree(hdev->completion_queue); 2600 2601 user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + 2602 hdev->asic_prop.user_interrupt_count; 2603 2604 if (user_interrupt_cnt) { 2605 if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { 2606 for (i = 0 ; i < user_interrupt_cnt ; i++) 2607 vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); 2608 } 2609 2610 kfree(hdev->user_interrupt); 2611 } 2612 2613 vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); 2614 2615 hl_hw_queues_destroy(hdev); 2616 2617 /* Call ASIC S/W finalize function */ 2618 hdev->asic_funcs->sw_fini(hdev); 2619 2620 device_early_fini(hdev); 2621 2622 /* Hide devices and sysfs/debugfs files from user */ 2623 cdev_sysfs_debugfs_remove(hdev); 2624 drm_dev_unregister(&hdev->drm); 2625 2626 hl_debugfs_device_fini(hdev); 2627 2628 pr_info("removed device successfully\n"); 2629 } 2630 2631 /* 2632 * MMIO register access helper functions. 2633 */ 2634 2635 /* 2636 * hl_rreg - Read an MMIO register 2637 * 2638 * @hdev: pointer to habanalabs device structure 2639 * @reg: MMIO register offset (in bytes) 2640 * 2641 * Returns the value of the MMIO register we are asked to read 2642 * 2643 */ 2644 inline u32 hl_rreg(struct hl_device *hdev, u32 reg) 2645 { 2646 u32 val = readl(hdev->rmmio + reg); 2647 2648 if (unlikely(trace_habanalabs_rreg32_enabled())) 2649 trace_habanalabs_rreg32(&(hdev)->pdev->dev, reg, val); 2650 2651 return val; 2652 } 2653 2654 /* 2655 * hl_wreg - Write to an MMIO register 2656 * 2657 * @hdev: pointer to habanalabs device structure 2658 * @reg: MMIO register offset (in bytes) 2659 * @val: 32-bit value 2660 * 2661 * Writes the 32-bit value into the MMIO register 2662 * 2663 */ 2664 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val) 2665 { 2666 if (unlikely(trace_habanalabs_wreg32_enabled())) 2667 trace_habanalabs_wreg32(&(hdev)->pdev->dev, reg, val); 2668 2669 writel(val, hdev->rmmio + reg); 2670 } 2671 2672 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 2673 u8 flags) 2674 { 2675 struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info; 2676 2677 if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) { 2678 dev_err(hdev->dev, 2679 "Number of possible razwi initiators (%u) exceeded limit (%u)\n", 2680 num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR); 2681 return; 2682 } 2683 2684 /* In case it's the first razwi since the device was opened, capture its parameters */ 2685 if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1)) 2686 return; 2687 2688 razwi_info->razwi.timestamp = ktime_to_ns(ktime_get()); 2689 razwi_info->razwi.addr = addr; 2690 razwi_info->razwi.num_of_possible_engines = num_of_engines; 2691 memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0], 2692 num_of_engines * sizeof(u16)); 2693 razwi_info->razwi.flags = flags; 2694 2695 razwi_info->razwi_info_available = true; 2696 } 2697 2698 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, 2699 u8 flags, u64 *event_mask) 2700 { 2701 hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags); 2702 2703 if (event_mask) 2704 *event_mask |= HL_NOTIFIER_EVENT_RAZWI; 2705 } 2706 2707 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu) 2708 { 2709 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; 2710 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 2711 struct hl_vm_hash_node *hnode; 2712 struct hl_userptr *userptr; 2713 enum vm_type *vm_type; 2714 struct hl_ctx *ctx; 2715 u32 map_idx = 0; 2716 int i; 2717 2718 /* Reset previous session count*/ 2719 pgf_info->num_of_user_mappings = 0; 2720 2721 ctx = hl_get_compute_ctx(hdev); 2722 if (!ctx) { 2723 dev_err(hdev->dev, "Can't get user context for user mappings\n"); 2724 return; 2725 } 2726 2727 mutex_lock(&ctx->mem_hash_lock); 2728 hash_for_each(ctx->mem_hash, i, hnode, node) { 2729 vm_type = hnode->ptr; 2730 if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) || 2731 ((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu)) 2732 pgf_info->num_of_user_mappings++; 2733 2734 } 2735 2736 if (!pgf_info->num_of_user_mappings) 2737 goto finish; 2738 2739 /* In case we already allocated in previous session, need to release it before 2740 * allocating new buffer. 2741 */ 2742 vfree(pgf_info->user_mappings); 2743 pgf_info->user_mappings = 2744 vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping)); 2745 if (!pgf_info->user_mappings) { 2746 pgf_info->num_of_user_mappings = 0; 2747 goto finish; 2748 } 2749 2750 hash_for_each(ctx->mem_hash, i, hnode, node) { 2751 vm_type = hnode->ptr; 2752 if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) { 2753 userptr = hnode->ptr; 2754 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; 2755 pgf_info->user_mappings[map_idx].size = userptr->size; 2756 map_idx++; 2757 } else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) { 2758 phys_pg_pack = hnode->ptr; 2759 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; 2760 pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size; 2761 map_idx++; 2762 } 2763 } 2764 finish: 2765 mutex_unlock(&ctx->mem_hash_lock); 2766 hl_ctx_put(ctx); 2767 } 2768 2769 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu) 2770 { 2771 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; 2772 2773 /* Capture only the first page fault */ 2774 if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1)) 2775 return; 2776 2777 pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get()); 2778 pgf_info->page_fault.addr = addr; 2779 pgf_info->page_fault.engine_id = eng_id; 2780 hl_capture_user_mappings(hdev, is_pmmu); 2781 2782 pgf_info->page_fault_info_available = true; 2783 } 2784 2785 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, 2786 u64 *event_mask) 2787 { 2788 hl_capture_page_fault(hdev, addr, eng_id, is_pmmu); 2789 2790 if (event_mask) 2791 *event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT; 2792 } 2793 2794 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id) 2795 { 2796 struct hw_err_info *info = &hdev->captured_err_info.hw_err; 2797 2798 /* Capture only the first HW err */ 2799 if (atomic_cmpxchg(&info->event_detected, 0, 1)) 2800 return; 2801 2802 info->event.timestamp = ktime_to_ns(ktime_get()); 2803 info->event.event_id = event_id; 2804 2805 info->event_info_available = true; 2806 } 2807 2808 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask) 2809 { 2810 hl_capture_hw_err(hdev, event_id); 2811 2812 if (event_mask) 2813 *event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR; 2814 } 2815 2816 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info) 2817 { 2818 struct fw_err_info *info = &hdev->captured_err_info.fw_err; 2819 2820 /* Capture only the first FW error */ 2821 if (atomic_cmpxchg(&info->event_detected, 0, 1)) 2822 return; 2823 2824 info->event.timestamp = ktime_to_ns(ktime_get()); 2825 info->event.err_type = fw_info->err_type; 2826 if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR) 2827 info->event.event_id = fw_info->event_id; 2828 2829 info->event_info_available = true; 2830 } 2831 2832 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info) 2833 { 2834 hl_capture_fw_err(hdev, info); 2835 2836 if (info->event_mask) 2837 *info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR; 2838 } 2839 2840 void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count) 2841 { 2842 struct engine_err_info *info = &hdev->captured_err_info.engine_err; 2843 2844 /* Capture only the first engine error */ 2845 if (atomic_cmpxchg(&info->event_detected, 0, 1)) 2846 return; 2847 2848 info->event.timestamp = ktime_to_ns(ktime_get()); 2849 info->event.engine_id = engine_id; 2850 info->event.error_count = error_count; 2851 info->event_info_available = true; 2852 } 2853 2854 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info) 2855 { 2856 vfree(captured_err_info->page_fault_info.user_mappings); 2857 memset(captured_err_info, 0, sizeof(struct hl_error_info)); 2858 atomic_set(&captured_err_info->cs_timeout.write_enable, 1); 2859 captured_err_info->undef_opcode.write_enable = true; 2860 } 2861 2862 void hl_init_cpu_for_irq(struct hl_device *hdev) 2863 { 2864 #ifdef CONFIG_NUMA 2865 struct cpumask *available_mask = &hdev->irq_affinity_mask; 2866 int numa_node = hdev->pdev->dev.numa_node, i; 2867 static struct cpumask cpu_mask; 2868 2869 if (numa_node < 0) 2870 return; 2871 2872 if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) { 2873 dev_err(hdev->dev, "No available affinities in current numa node\n"); 2874 return; 2875 } 2876 2877 /* Remove HT siblings */ 2878 for_each_cpu(i, &cpu_mask) 2879 cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask); 2880 #endif 2881 } 2882 2883 void hl_set_irq_affinity(struct hl_device *hdev, int irq) 2884 { 2885 if (cpumask_empty(&hdev->irq_affinity_mask)) { 2886 dev_dbg(hdev->dev, "affinity mask is empty\n"); 2887 return; 2888 } 2889 2890 if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask)) 2891 dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq); 2892 } 2893 2894 void hl_eq_heartbeat_event_handle(struct hl_device *hdev) 2895 { 2896 hdev->heartbeat_debug_info.heartbeat_event_counter++; 2897 hdev->heartbeat_debug_info.last_eq_heartbeat_ts = ktime_get_real_seconds(); 2898 hdev->eq_heartbeat_received = true; 2899 } 2900 2901 void hl_handle_clk_change_event(struct hl_device *hdev, u16 event_type, u64 *event_mask) 2902 { 2903 struct hl_clk_throttle *clk_throttle = &hdev->clk_throttling; 2904 ktime_t zero_time = ktime_set(0, 0); 2905 2906 mutex_lock(&clk_throttle->lock); 2907 2908 switch (event_type) { 2909 case EQ_EVENT_POWER_EVT_START: 2910 clk_throttle->current_reason |= HL_CLK_THROTTLE_POWER; 2911 clk_throttle->aggregated_reason |= HL_CLK_THROTTLE_POWER; 2912 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].start = ktime_get(); 2913 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = zero_time; 2914 dev_dbg_ratelimited(hdev->dev, "Clock throttling due to power consumption\n"); 2915 break; 2916 2917 case EQ_EVENT_POWER_EVT_END: 2918 clk_throttle->current_reason &= ~HL_CLK_THROTTLE_POWER; 2919 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_POWER].end = ktime_get(); 2920 dev_dbg_ratelimited(hdev->dev, "Power envelop is safe, back to optimal clock\n"); 2921 break; 2922 2923 case EQ_EVENT_THERMAL_EVT_START: 2924 clk_throttle->current_reason |= HL_CLK_THROTTLE_THERMAL; 2925 clk_throttle->aggregated_reason |= HL_CLK_THROTTLE_THERMAL; 2926 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].start = ktime_get(); 2927 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = zero_time; 2928 *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; 2929 dev_info_ratelimited(hdev->dev, "Clock throttling due to overheating\n"); 2930 break; 2931 2932 case EQ_EVENT_THERMAL_EVT_END: 2933 clk_throttle->current_reason &= ~HL_CLK_THROTTLE_THERMAL; 2934 clk_throttle->timestamp[HL_CLK_THROTTLE_TYPE_THERMAL].end = ktime_get(); 2935 *event_mask |= HL_NOTIFIER_EVENT_USER_ENGINE_ERR; 2936 dev_info_ratelimited(hdev->dev, "Thermal envelop is safe, back to optimal clock\n"); 2937 break; 2938 2939 default: 2940 dev_err(hdev->dev, "Received invalid clock change event %d\n", event_type); 2941 break; 2942 } 2943 2944 mutex_unlock(&clk_throttle->lock); 2945 } 2946