1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include "habanalabs.h" 9 #include "../include/hw_ip/mmu/mmu_general.h" 10 11 #include <linux/pci.h> 12 #include <linux/uaccess.h> 13 #include <linux/vmalloc.h> 14 #include <linux/iommu.h> 15 16 #define MMU_ADDR_BUF_SIZE 40 17 #define MMU_ASID_BUF_SIZE 10 18 #define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE) 19 #define I2C_MAX_TRANSACTION_LEN 8 20 21 static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, 22 u8 i2c_reg, u8 i2c_len, u64 *val) 23 { 24 struct cpucp_packet pkt; 25 int rc; 26 27 if (!hl_device_operational(hdev, NULL)) 28 return -EBUSY; 29 30 if (i2c_len > I2C_MAX_TRANSACTION_LEN) { 31 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", 32 i2c_len, I2C_MAX_TRANSACTION_LEN); 33 return -EINVAL; 34 } 35 36 memset(&pkt, 0, sizeof(pkt)); 37 38 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD << 39 CPUCP_PKT_CTL_OPCODE_SHIFT); 40 pkt.i2c_bus = i2c_bus; 41 pkt.i2c_addr = i2c_addr; 42 pkt.i2c_reg = i2c_reg; 43 pkt.i2c_len = i2c_len; 44 45 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 46 0, val); 47 if (rc) 48 dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc); 49 50 return rc; 51 } 52 53 static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, 54 u8 i2c_reg, u8 i2c_len, u64 val) 55 { 56 struct cpucp_packet pkt; 57 int rc; 58 59 if (!hl_device_operational(hdev, NULL)) 60 return -EBUSY; 61 62 if (i2c_len > I2C_MAX_TRANSACTION_LEN) { 63 dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", 64 i2c_len, I2C_MAX_TRANSACTION_LEN); 65 return -EINVAL; 66 } 67 68 memset(&pkt, 0, sizeof(pkt)); 69 70 pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR << 71 CPUCP_PKT_CTL_OPCODE_SHIFT); 72 pkt.i2c_bus = i2c_bus; 73 pkt.i2c_addr = i2c_addr; 74 pkt.i2c_reg = i2c_reg; 75 pkt.i2c_len = i2c_len; 76 pkt.value = cpu_to_le64(val); 77 78 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 79 0, NULL); 80 81 if (rc) 82 dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc); 83 84 return rc; 85 } 86 87 static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state) 88 { 89 struct cpucp_packet pkt; 90 int rc; 91 92 if (!hl_device_operational(hdev, NULL)) 93 return; 94 95 memset(&pkt, 0, sizeof(pkt)); 96 97 pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET << 98 CPUCP_PKT_CTL_OPCODE_SHIFT); 99 pkt.led_index = cpu_to_le32(led); 100 pkt.value = cpu_to_le64(state); 101 102 rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 103 0, NULL); 104 105 if (rc) 106 dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc); 107 } 108 109 static int command_buffers_show(struct seq_file *s, void *data) 110 { 111 struct hl_debugfs_entry *entry = s->private; 112 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 113 struct hl_cb *cb; 114 bool first = true; 115 116 spin_lock(&dev_entry->cb_spinlock); 117 118 list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) { 119 if (first) { 120 first = false; 121 seq_puts(s, "\n"); 122 seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n"); 123 seq_puts(s, "---------------------------------------------------------------\n"); 124 } 125 seq_printf(s, 126 " %03llu %d 0x%08x %d %d %d\n", 127 cb->buf->handle, cb->ctx->asid, cb->size, 128 kref_read(&cb->buf->refcount), 129 atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt)); 130 } 131 132 spin_unlock(&dev_entry->cb_spinlock); 133 134 if (!first) 135 seq_puts(s, "\n"); 136 137 return 0; 138 } 139 140 static int command_submission_show(struct seq_file *s, void *data) 141 { 142 struct hl_debugfs_entry *entry = s->private; 143 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 144 struct hl_cs *cs; 145 bool first = true; 146 147 spin_lock(&dev_entry->cs_spinlock); 148 149 list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) { 150 if (first) { 151 first = false; 152 seq_puts(s, "\n"); 153 seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n"); 154 seq_puts(s, "----------------------------------------------------------------\n"); 155 } 156 seq_printf(s, 157 " %llu %d %d %d %d %d\n", 158 cs->sequence, cs->type, cs->ctx->asid, 159 kref_read(&cs->refcount), 160 cs->submitted, cs->completed); 161 } 162 163 spin_unlock(&dev_entry->cs_spinlock); 164 165 if (!first) 166 seq_puts(s, "\n"); 167 168 return 0; 169 } 170 171 static int command_submission_jobs_show(struct seq_file *s, void *data) 172 { 173 struct hl_debugfs_entry *entry = s->private; 174 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 175 struct hl_cs_job *job; 176 bool first = true; 177 178 spin_lock(&dev_entry->cs_job_spinlock); 179 180 list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) { 181 if (first) { 182 first = false; 183 seq_puts(s, "\n"); 184 seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n"); 185 seq_puts(s, "---------------------------------------------------------------\n"); 186 } 187 if (job->cs) 188 seq_printf(s, 189 " %02d %llu %d %d %d %d\n", 190 job->id, job->cs->sequence, job->cs->type, 191 job->cs->ctx->asid, kref_read(&job->refcount), 192 job->hw_queue_id); 193 else 194 seq_printf(s, 195 " %02d 0 0 %d %d %d\n", 196 job->id, HL_KERNEL_ASID_ID, 197 kref_read(&job->refcount), job->hw_queue_id); 198 } 199 200 spin_unlock(&dev_entry->cs_job_spinlock); 201 202 if (!first) 203 seq_puts(s, "\n"); 204 205 return 0; 206 } 207 208 static int userptr_show(struct seq_file *s, void *data) 209 { 210 struct hl_debugfs_entry *entry = s->private; 211 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 212 struct hl_userptr *userptr; 213 char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", 214 "DMA_FROM_DEVICE", "DMA_NONE"}; 215 bool first = true; 216 217 spin_lock(&dev_entry->userptr_spinlock); 218 219 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { 220 if (first) { 221 first = false; 222 seq_puts(s, "\n"); 223 seq_puts(s, " pid user virtual address size dma dir\n"); 224 seq_puts(s, "----------------------------------------------------------\n"); 225 } 226 seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n", 227 userptr->pid, userptr->addr, userptr->size, 228 dma_dir[userptr->dir]); 229 } 230 231 spin_unlock(&dev_entry->userptr_spinlock); 232 233 if (!first) 234 seq_puts(s, "\n"); 235 236 return 0; 237 } 238 239 static int vm_show(struct seq_file *s, void *data) 240 { 241 struct hl_debugfs_entry *entry = s->private; 242 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 243 struct hl_vm_hw_block_list_node *lnode; 244 struct hl_ctx *ctx; 245 struct hl_vm *vm; 246 struct hl_vm_hash_node *hnode; 247 struct hl_userptr *userptr; 248 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; 249 struct hl_va_range *va_range; 250 struct hl_vm_va_block *va_block; 251 enum vm_type *vm_type; 252 bool once = true; 253 u64 j; 254 int i; 255 256 mutex_lock(&dev_entry->ctx_mem_hash_mutex); 257 258 list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) { 259 once = false; 260 seq_puts(s, "\n\n----------------------------------------------------"); 261 seq_puts(s, "\n----------------------------------------------------\n\n"); 262 seq_printf(s, "ctx asid: %u\n", ctx->asid); 263 264 seq_puts(s, "\nmappings:\n\n"); 265 seq_puts(s, " virtual address size handle\n"); 266 seq_puts(s, "----------------------------------------------------\n"); 267 mutex_lock(&ctx->mem_hash_lock); 268 hash_for_each(ctx->mem_hash, i, hnode, node) { 269 vm_type = hnode->ptr; 270 271 if (*vm_type == VM_TYPE_USERPTR) { 272 userptr = hnode->ptr; 273 seq_printf(s, 274 " 0x%-14llx %-10llu\n", 275 hnode->vaddr, userptr->size); 276 } else { 277 phys_pg_pack = hnode->ptr; 278 seq_printf(s, 279 " 0x%-14llx %-10llu %-4u\n", 280 hnode->vaddr, phys_pg_pack->total_size, 281 phys_pg_pack->handle); 282 } 283 } 284 mutex_unlock(&ctx->mem_hash_lock); 285 286 if (ctx->asid != HL_KERNEL_ASID_ID && 287 !list_empty(&ctx->hw_block_mem_list)) { 288 seq_puts(s, "\nhw_block mappings:\n\n"); 289 seq_puts(s, 290 " virtual address block size mapped size HW block id\n"); 291 seq_puts(s, 292 "---------------------------------------------------------------\n"); 293 mutex_lock(&ctx->hw_block_list_lock); 294 list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) { 295 seq_printf(s, 296 " 0x%-14lx %-6u %-6u %-9u\n", 297 lnode->vaddr, lnode->block_size, lnode->mapped_size, 298 lnode->id); 299 } 300 mutex_unlock(&ctx->hw_block_list_lock); 301 } 302 303 vm = &ctx->hdev->vm; 304 spin_lock(&vm->idr_lock); 305 306 if (!idr_is_empty(&vm->phys_pg_pack_handles)) 307 seq_puts(s, "\n\nallocations:\n"); 308 309 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) { 310 if (phys_pg_pack->asid != ctx->asid) 311 continue; 312 313 seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle); 314 seq_printf(s, "page size: %u\n\n", 315 phys_pg_pack->page_size); 316 seq_puts(s, " physical address\n"); 317 seq_puts(s, "---------------------\n"); 318 for (j = 0 ; j < phys_pg_pack->npages ; j++) { 319 seq_printf(s, " 0x%-14llx\n", 320 phys_pg_pack->pages[j]); 321 } 322 } 323 spin_unlock(&vm->idr_lock); 324 325 } 326 327 mutex_unlock(&dev_entry->ctx_mem_hash_mutex); 328 329 ctx = hl_get_compute_ctx(dev_entry->hdev); 330 if (ctx) { 331 seq_puts(s, "\nVA ranges:\n\n"); 332 for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) { 333 va_range = ctx->va_range[i]; 334 seq_printf(s, " va_range %d\n", i); 335 seq_puts(s, "---------------------\n"); 336 mutex_lock(&va_range->lock); 337 list_for_each_entry(va_block, &va_range->list, node) { 338 seq_printf(s, "%#16llx - %#16llx (%#llx)\n", 339 va_block->start, va_block->end, 340 va_block->size); 341 } 342 mutex_unlock(&va_range->lock); 343 seq_puts(s, "\n"); 344 } 345 hl_ctx_put(ctx); 346 } 347 348 if (!once) 349 seq_puts(s, "\n"); 350 351 return 0; 352 } 353 354 static int userptr_lookup_show(struct seq_file *s, void *data) 355 { 356 struct hl_debugfs_entry *entry = s->private; 357 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 358 struct scatterlist *sg; 359 struct hl_userptr *userptr; 360 bool first = true; 361 u64 total_npages, npages, sg_start, sg_end; 362 dma_addr_t dma_addr; 363 int i; 364 365 spin_lock(&dev_entry->userptr_spinlock); 366 367 list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { 368 if (dev_entry->userptr_lookup >= userptr->addr && 369 dev_entry->userptr_lookup < userptr->addr + userptr->size) { 370 total_npages = 0; 371 for_each_sgtable_dma_sg(userptr->sgt, sg, i) { 372 npages = hl_get_sg_info(sg, &dma_addr); 373 sg_start = userptr->addr + 374 total_npages * PAGE_SIZE; 375 sg_end = userptr->addr + 376 (total_npages + npages) * PAGE_SIZE; 377 378 if (dev_entry->userptr_lookup >= sg_start && 379 dev_entry->userptr_lookup < sg_end) { 380 dma_addr += (dev_entry->userptr_lookup - 381 sg_start); 382 if (first) { 383 first = false; 384 seq_puts(s, "\n"); 385 seq_puts(s, " user virtual address dma address pid region start region size\n"); 386 seq_puts(s, "---------------------------------------------------------------------------------------\n"); 387 } 388 seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n", 389 dev_entry->userptr_lookup, 390 (u64)dma_addr, userptr->pid, 391 userptr->addr, userptr->size); 392 } 393 total_npages += npages; 394 } 395 } 396 } 397 398 spin_unlock(&dev_entry->userptr_spinlock); 399 400 if (!first) 401 seq_puts(s, "\n"); 402 403 return 0; 404 } 405 406 static ssize_t userptr_lookup_write(struct file *file, const char __user *buf, 407 size_t count, loff_t *f_pos) 408 { 409 struct seq_file *s = file->private_data; 410 struct hl_debugfs_entry *entry = s->private; 411 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 412 ssize_t rc; 413 u64 value; 414 415 rc = kstrtoull_from_user(buf, count, 16, &value); 416 if (rc) 417 return rc; 418 419 dev_entry->userptr_lookup = value; 420 421 return count; 422 } 423 424 static int mmu_show(struct seq_file *s, void *data) 425 { 426 struct hl_debugfs_entry *entry = s->private; 427 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 428 struct hl_device *hdev = dev_entry->hdev; 429 struct hl_ctx *ctx; 430 struct hl_mmu_hop_info hops_info = {0}; 431 u64 virt_addr = dev_entry->mmu_addr, phys_addr; 432 int i; 433 434 if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID) 435 ctx = hdev->kernel_ctx; 436 else 437 ctx = hl_get_compute_ctx(hdev); 438 439 if (!ctx) { 440 dev_err(hdev->dev, "no ctx available\n"); 441 return 0; 442 } 443 444 if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) { 445 dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", 446 virt_addr); 447 goto put_ctx; 448 } 449 450 hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr); 451 452 if (hops_info.scrambled_vaddr && 453 (dev_entry->mmu_addr != hops_info.scrambled_vaddr)) 454 seq_printf(s, 455 "asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n", 456 dev_entry->mmu_asid, dev_entry->mmu_addr, 457 hops_info.scrambled_vaddr, 458 hops_info.unscrambled_paddr, phys_addr); 459 else 460 seq_printf(s, 461 "asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n", 462 dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr); 463 464 for (i = 0 ; i < hops_info.used_hops ; i++) { 465 seq_printf(s, "hop%d_addr: 0x%llx\n", 466 i, hops_info.hop_info[i].hop_addr); 467 seq_printf(s, "hop%d_pte_addr: 0x%llx\n", 468 i, hops_info.hop_info[i].hop_pte_addr); 469 seq_printf(s, "hop%d_pte: 0x%llx\n", 470 i, hops_info.hop_info[i].hop_pte_val); 471 } 472 473 put_ctx: 474 if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID) 475 hl_ctx_put(ctx); 476 477 return 0; 478 } 479 480 static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf, 481 size_t count, loff_t *f_pos) 482 { 483 struct seq_file *s = file->private_data; 484 struct hl_debugfs_entry *entry = s->private; 485 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 486 struct hl_device *hdev = dev_entry->hdev; 487 char kbuf[MMU_KBUF_SIZE] = {0}; 488 char *c; 489 ssize_t rc; 490 491 if (count > sizeof(kbuf) - 1) 492 goto err; 493 if (copy_from_user(kbuf, buf, count)) 494 goto err; 495 kbuf[count] = 0; 496 497 c = strchr(kbuf, ' '); 498 if (!c) 499 goto err; 500 *c = '\0'; 501 502 rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid); 503 if (rc) 504 goto err; 505 506 if (strncmp(c+1, "0x", 2)) 507 goto err; 508 rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr); 509 if (rc) 510 goto err; 511 512 return count; 513 514 err: 515 dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n"); 516 517 return -EINVAL; 518 } 519 520 static int mmu_ack_error(struct seq_file *s, void *data) 521 { 522 struct hl_debugfs_entry *entry = s->private; 523 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 524 struct hl_device *hdev = dev_entry->hdev; 525 int rc; 526 527 if (!dev_entry->mmu_cap_mask) { 528 dev_err(hdev->dev, "mmu_cap_mask is not set\n"); 529 goto err; 530 } 531 532 rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask); 533 if (rc) 534 goto err; 535 536 return 0; 537 err: 538 return -EINVAL; 539 } 540 541 static ssize_t mmu_ack_error_value_write(struct file *file, 542 const char __user *buf, 543 size_t count, loff_t *f_pos) 544 { 545 struct seq_file *s = file->private_data; 546 struct hl_debugfs_entry *entry = s->private; 547 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 548 struct hl_device *hdev = dev_entry->hdev; 549 char kbuf[MMU_KBUF_SIZE] = {0}; 550 ssize_t rc; 551 552 if (count > sizeof(kbuf) - 1) 553 goto err; 554 555 if (copy_from_user(kbuf, buf, count)) 556 goto err; 557 558 kbuf[count] = 0; 559 560 if (strncmp(kbuf, "0x", 2)) 561 goto err; 562 563 rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask); 564 if (rc) 565 goto err; 566 567 return count; 568 err: 569 dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n"); 570 571 return -EINVAL; 572 } 573 574 static int engines_show(struct seq_file *s, void *data) 575 { 576 struct hl_debugfs_entry *entry = s->private; 577 struct hl_dbg_device_entry *dev_entry = entry->dev_entry; 578 struct hl_device *hdev = dev_entry->hdev; 579 struct engines_data eng_data; 580 581 if (hdev->reset_info.in_reset) { 582 dev_warn_ratelimited(hdev->dev, 583 "Can't check device idle during reset\n"); 584 return 0; 585 } 586 587 eng_data.actual_size = 0; 588 eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE; 589 eng_data.buf = vmalloc(eng_data.allocated_buf_size); 590 if (!eng_data.buf) 591 return -ENOMEM; 592 593 hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data); 594 595 if (eng_data.actual_size > eng_data.allocated_buf_size) { 596 dev_err(hdev->dev, 597 "Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n", 598 eng_data.actual_size, eng_data.allocated_buf_size); 599 vfree(eng_data.buf); 600 return -ENOMEM; 601 } 602 603 seq_write(s, eng_data.buf, eng_data.actual_size); 604 605 vfree(eng_data.buf); 606 607 return 0; 608 } 609 610 static ssize_t hl_memory_scrub(struct file *f, const char __user *buf, 611 size_t count, loff_t *ppos) 612 { 613 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 614 struct hl_device *hdev = entry->hdev; 615 u64 val = hdev->memory_scrub_val; 616 int rc; 617 618 if (!hl_device_operational(hdev, NULL)) { 619 dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n"); 620 return -EIO; 621 } 622 623 mutex_lock(&hdev->fpriv_list_lock); 624 if (hdev->is_compute_ctx_active) { 625 mutex_unlock(&hdev->fpriv_list_lock); 626 dev_err(hdev->dev, "can't scrub dram, context exist\n"); 627 return -EBUSY; 628 } 629 hdev->is_in_dram_scrub = true; 630 mutex_unlock(&hdev->fpriv_list_lock); 631 632 rc = hdev->asic_funcs->scrub_device_dram(hdev, val); 633 634 mutex_lock(&hdev->fpriv_list_lock); 635 hdev->is_in_dram_scrub = false; 636 mutex_unlock(&hdev->fpriv_list_lock); 637 638 if (rc) 639 return rc; 640 return count; 641 } 642 643 static bool hl_is_device_va(struct hl_device *hdev, u64 addr) 644 { 645 struct asic_fixed_properties *prop = &hdev->asic_prop; 646 647 if (prop->dram_supports_virtual_memory && 648 (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr)) 649 return true; 650 651 if (addr >= prop->pmmu.start_addr && 652 addr < prop->pmmu.end_addr) 653 return true; 654 655 if (addr >= prop->pmmu_huge.start_addr && 656 addr < prop->pmmu_huge.end_addr) 657 return true; 658 659 return false; 660 } 661 662 static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr, 663 u32 size) 664 { 665 struct asic_fixed_properties *prop = &hdev->asic_prop; 666 u64 dram_start_addr, dram_end_addr; 667 668 if (prop->dram_supports_virtual_memory) { 669 dram_start_addr = prop->dmmu.start_addr; 670 dram_end_addr = prop->dmmu.end_addr; 671 } else { 672 dram_start_addr = prop->dram_base_address; 673 dram_end_addr = prop->dram_end_address; 674 } 675 676 if (hl_mem_area_inside_range(addr, size, dram_start_addr, 677 dram_end_addr)) 678 return true; 679 680 if (hl_mem_area_inside_range(addr, size, prop->sram_base_address, 681 prop->sram_end_address)) 682 return true; 683 684 return false; 685 } 686 687 static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size, 688 u64 *phys_addr) 689 { 690 struct hl_vm_phys_pg_pack *phys_pg_pack; 691 struct hl_ctx *ctx; 692 struct hl_vm_hash_node *hnode; 693 u64 end_address, range_size; 694 struct hl_userptr *userptr; 695 enum vm_type *vm_type; 696 bool valid = false; 697 int i, rc = 0; 698 699 ctx = hl_get_compute_ctx(hdev); 700 701 if (!ctx) { 702 dev_err(hdev->dev, "no ctx available\n"); 703 return -EINVAL; 704 } 705 706 /* Verify address is mapped */ 707 mutex_lock(&ctx->mem_hash_lock); 708 hash_for_each(ctx->mem_hash, i, hnode, node) { 709 vm_type = hnode->ptr; 710 711 if (*vm_type == VM_TYPE_USERPTR) { 712 userptr = hnode->ptr; 713 range_size = userptr->size; 714 } else { 715 phys_pg_pack = hnode->ptr; 716 range_size = phys_pg_pack->total_size; 717 } 718 719 end_address = virt_addr + size; 720 if ((virt_addr >= hnode->vaddr) && 721 (end_address <= hnode->vaddr + range_size)) { 722 valid = true; 723 break; 724 } 725 } 726 mutex_unlock(&ctx->mem_hash_lock); 727 728 if (!valid) { 729 dev_err(hdev->dev, 730 "virt addr 0x%llx is not mapped\n", 731 virt_addr); 732 rc = -EINVAL; 733 goto put_ctx; 734 } 735 736 rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr); 737 if (rc) { 738 dev_err(hdev->dev, 739 "virt addr 0x%llx is not mapped to phys addr\n", 740 virt_addr); 741 rc = -EINVAL; 742 } 743 744 put_ctx: 745 hl_ctx_put(ctx); 746 747 return rc; 748 } 749 750 static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr, 751 u64 *val, enum debugfs_access_type acc_type, bool *found) 752 { 753 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? 754 sizeof(u64) : sizeof(u32); 755 struct pci_mem_region *mem_reg; 756 int i; 757 758 for (i = 0; i < PCI_REGION_NUMBER; i++) { 759 mem_reg = &hdev->pci_mem_region[i]; 760 if (!mem_reg->used) 761 continue; 762 if (addr >= mem_reg->region_base && 763 addr <= mem_reg->region_base + mem_reg->region_size - acc_size) { 764 *found = true; 765 return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type); 766 } 767 } 768 return 0; 769 } 770 771 static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val, 772 enum debugfs_access_type acc_type) 773 { 774 struct asic_fixed_properties *prop = &hdev->asic_prop; 775 u64 offset = prop->device_dma_offset_for_host_access; 776 777 switch (acc_type) { 778 case DEBUGFS_READ32: 779 *val = *(u32 *) phys_to_virt(addr - offset); 780 break; 781 case DEBUGFS_WRITE32: 782 *(u32 *) phys_to_virt(addr - offset) = *val; 783 break; 784 case DEBUGFS_READ64: 785 *val = *(u64 *) phys_to_virt(addr - offset); 786 break; 787 case DEBUGFS_WRITE64: 788 *(u64 *) phys_to_virt(addr - offset) = *val; 789 break; 790 default: 791 dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type); 792 break; 793 } 794 } 795 796 static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val, 797 enum debugfs_access_type acc_type) 798 { 799 size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? 800 sizeof(u64) : sizeof(u32); 801 u64 host_start = hdev->asic_prop.host_base_address; 802 u64 host_end = hdev->asic_prop.host_end_address; 803 bool user_address, found = false; 804 int rc; 805 806 user_address = hl_is_device_va(hdev, addr); 807 if (user_address) { 808 rc = device_va_to_pa(hdev, addr, acc_size, &addr); 809 if (rc) 810 return rc; 811 } 812 813 rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found); 814 if (rc) { 815 dev_err(hdev->dev, 816 "Failed reading addr %#llx from dev mem (%d)\n", 817 addr, rc); 818 return rc; 819 } 820 821 if (found) 822 return 0; 823 824 if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) { 825 rc = -EINVAL; 826 goto err; 827 } 828 829 if (addr >= host_start && addr <= host_end - acc_size) { 830 hl_access_host_mem(hdev, addr, val, acc_type); 831 } else { 832 rc = -EINVAL; 833 goto err; 834 } 835 836 return 0; 837 err: 838 dev_err(hdev->dev, "invalid addr %#llx\n", addr); 839 return rc; 840 } 841 842 static ssize_t hl_data_read32(struct file *f, char __user *buf, 843 size_t count, loff_t *ppos) 844 { 845 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 846 struct hl_device *hdev = entry->hdev; 847 u64 value64, addr = entry->addr; 848 char tmp_buf[32]; 849 ssize_t rc; 850 u32 val; 851 852 if (hdev->reset_info.in_reset) { 853 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); 854 return 0; 855 } 856 857 if (*ppos) 858 return 0; 859 860 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32); 861 if (rc) 862 return rc; 863 864 val = value64; /* downcast back to 32 */ 865 866 sprintf(tmp_buf, "0x%08x\n", val); 867 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 868 strlen(tmp_buf)); 869 } 870 871 static ssize_t hl_data_write32(struct file *f, const char __user *buf, 872 size_t count, loff_t *ppos) 873 { 874 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 875 struct hl_device *hdev = entry->hdev; 876 u64 value64, addr = entry->addr; 877 u32 value; 878 ssize_t rc; 879 880 if (hdev->reset_info.in_reset) { 881 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); 882 return 0; 883 } 884 885 rc = kstrtouint_from_user(buf, count, 16, &value); 886 if (rc) 887 return rc; 888 889 value64 = value; 890 rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32); 891 if (rc) 892 return rc; 893 894 return count; 895 } 896 897 static ssize_t hl_data_read64(struct file *f, char __user *buf, 898 size_t count, loff_t *ppos) 899 { 900 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 901 struct hl_device *hdev = entry->hdev; 902 u64 addr = entry->addr; 903 char tmp_buf[32]; 904 ssize_t rc; 905 u64 val; 906 907 if (hdev->reset_info.in_reset) { 908 dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); 909 return 0; 910 } 911 912 if (*ppos) 913 return 0; 914 915 rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64); 916 if (rc) 917 return rc; 918 919 sprintf(tmp_buf, "0x%016llx\n", val); 920 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 921 strlen(tmp_buf)); 922 } 923 924 static ssize_t hl_data_write64(struct file *f, const char __user *buf, 925 size_t count, loff_t *ppos) 926 { 927 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 928 struct hl_device *hdev = entry->hdev; 929 u64 addr = entry->addr; 930 u64 value; 931 ssize_t rc; 932 933 if (hdev->reset_info.in_reset) { 934 dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); 935 return 0; 936 } 937 938 rc = kstrtoull_from_user(buf, count, 16, &value); 939 if (rc) 940 return rc; 941 942 rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64); 943 if (rc) 944 return rc; 945 946 return count; 947 } 948 949 static ssize_t hl_dma_size_write(struct file *f, const char __user *buf, 950 size_t count, loff_t *ppos) 951 { 952 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 953 struct hl_device *hdev = entry->hdev; 954 u64 addr = entry->addr; 955 ssize_t rc; 956 u32 size; 957 958 if (hdev->reset_info.in_reset) { 959 dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n"); 960 return 0; 961 } 962 rc = kstrtouint_from_user(buf, count, 16, &size); 963 if (rc) 964 return rc; 965 966 if (!size) { 967 dev_err(hdev->dev, "DMA read failed. size can't be 0\n"); 968 return -EINVAL; 969 } 970 971 if (size > SZ_128M) { 972 dev_err(hdev->dev, 973 "DMA read failed. size can't be larger than 128MB\n"); 974 return -EINVAL; 975 } 976 977 if (!hl_is_device_internal_memory_va(hdev, addr, size)) { 978 dev_err(hdev->dev, 979 "DMA read failed. Invalid 0x%010llx + 0x%08x\n", 980 addr, size); 981 return -EINVAL; 982 } 983 984 /* Free the previous allocation, if there was any */ 985 entry->data_dma_blob_desc.size = 0; 986 vfree(entry->data_dma_blob_desc.data); 987 988 entry->data_dma_blob_desc.data = vmalloc(size); 989 if (!entry->data_dma_blob_desc.data) 990 return -ENOMEM; 991 992 rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size, 993 entry->data_dma_blob_desc.data); 994 if (rc) { 995 dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr); 996 vfree(entry->data_dma_blob_desc.data); 997 entry->data_dma_blob_desc.data = NULL; 998 return -EIO; 999 } 1000 1001 entry->data_dma_blob_desc.size = size; 1002 1003 return count; 1004 } 1005 1006 static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf, 1007 size_t count, loff_t *ppos) 1008 { 1009 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1010 struct hl_device *hdev = entry->hdev; 1011 u32 size, trig; 1012 ssize_t rc; 1013 1014 if (hdev->reset_info.in_reset) { 1015 dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n"); 1016 return 0; 1017 } 1018 rc = kstrtouint_from_user(buf, count, 10, &trig); 1019 if (rc) 1020 return rc; 1021 1022 if (trig != 1) { 1023 dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n"); 1024 return -EINVAL; 1025 } 1026 1027 size = sizeof(struct cpucp_monitor_dump); 1028 1029 /* Free the previous allocation, if there was any */ 1030 entry->mon_dump_blob_desc.size = 0; 1031 vfree(entry->mon_dump_blob_desc.data); 1032 1033 entry->mon_dump_blob_desc.data = vmalloc(size); 1034 if (!entry->mon_dump_blob_desc.data) 1035 return -ENOMEM; 1036 1037 rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data); 1038 if (rc) { 1039 dev_err(hdev->dev, "Failed to dump monitors\n"); 1040 vfree(entry->mon_dump_blob_desc.data); 1041 entry->mon_dump_blob_desc.data = NULL; 1042 return -EIO; 1043 } 1044 1045 entry->mon_dump_blob_desc.size = size; 1046 1047 return count; 1048 } 1049 1050 static ssize_t hl_get_power_state(struct file *f, char __user *buf, 1051 size_t count, loff_t *ppos) 1052 { 1053 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1054 struct hl_device *hdev = entry->hdev; 1055 char tmp_buf[200]; 1056 int i; 1057 1058 if (*ppos) 1059 return 0; 1060 1061 if (hdev->pdev->current_state == PCI_D0) 1062 i = 1; 1063 else if (hdev->pdev->current_state == PCI_D3hot) 1064 i = 2; 1065 else 1066 i = 3; 1067 1068 sprintf(tmp_buf, 1069 "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i); 1070 return simple_read_from_buffer(buf, count, ppos, tmp_buf, 1071 strlen(tmp_buf)); 1072 } 1073 1074 static ssize_t hl_set_power_state(struct file *f, const char __user *buf, 1075 size_t count, loff_t *ppos) 1076 { 1077 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1078 struct hl_device *hdev = entry->hdev; 1079 u32 value; 1080 ssize_t rc; 1081 1082 rc = kstrtouint_from_user(buf, count, 10, &value); 1083 if (rc) 1084 return rc; 1085 1086 if (value == 1) { 1087 pci_set_power_state(hdev->pdev, PCI_D0); 1088 pci_restore_state(hdev->pdev); 1089 rc = pci_enable_device(hdev->pdev); 1090 if (rc < 0) 1091 return rc; 1092 } else if (value == 2) { 1093 pci_save_state(hdev->pdev); 1094 pci_disable_device(hdev->pdev); 1095 pci_set_power_state(hdev->pdev, PCI_D3hot); 1096 } else { 1097 dev_dbg(hdev->dev, "invalid power state value %u\n", value); 1098 return -EINVAL; 1099 } 1100 1101 return count; 1102 } 1103 1104 static ssize_t hl_i2c_data_read(struct file *f, char __user *buf, 1105 size_t count, loff_t *ppos) 1106 { 1107 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1108 struct hl_device *hdev = entry->hdev; 1109 char tmp_buf[32]; 1110 u64 val; 1111 ssize_t rc; 1112 1113 if (*ppos) 1114 return 0; 1115 1116 rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr, 1117 entry->i2c_reg, entry->i2c_len, &val); 1118 if (rc) { 1119 dev_err(hdev->dev, 1120 "Failed to read from I2C bus %d, addr %d, reg %d, len %d\n", 1121 entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); 1122 return rc; 1123 } 1124 1125 sprintf(tmp_buf, "%#02llx\n", val); 1126 rc = simple_read_from_buffer(buf, count, ppos, tmp_buf, 1127 strlen(tmp_buf)); 1128 1129 return rc; 1130 } 1131 1132 static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf, 1133 size_t count, loff_t *ppos) 1134 { 1135 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1136 struct hl_device *hdev = entry->hdev; 1137 u64 value; 1138 ssize_t rc; 1139 1140 rc = kstrtou64_from_user(buf, count, 16, &value); 1141 if (rc) 1142 return rc; 1143 1144 rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr, 1145 entry->i2c_reg, entry->i2c_len, value); 1146 if (rc) { 1147 dev_err(hdev->dev, 1148 "Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n", 1149 value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); 1150 return rc; 1151 } 1152 1153 return count; 1154 } 1155 1156 static ssize_t hl_led0_write(struct file *f, const char __user *buf, 1157 size_t count, loff_t *ppos) 1158 { 1159 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1160 struct hl_device *hdev = entry->hdev; 1161 u32 value; 1162 ssize_t rc; 1163 1164 rc = kstrtouint_from_user(buf, count, 10, &value); 1165 if (rc) 1166 return rc; 1167 1168 value = value ? 1 : 0; 1169 1170 hl_debugfs_led_set(hdev, 0, value); 1171 1172 return count; 1173 } 1174 1175 static ssize_t hl_led1_write(struct file *f, const char __user *buf, 1176 size_t count, loff_t *ppos) 1177 { 1178 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1179 struct hl_device *hdev = entry->hdev; 1180 u32 value; 1181 ssize_t rc; 1182 1183 rc = kstrtouint_from_user(buf, count, 10, &value); 1184 if (rc) 1185 return rc; 1186 1187 value = value ? 1 : 0; 1188 1189 hl_debugfs_led_set(hdev, 1, value); 1190 1191 return count; 1192 } 1193 1194 static ssize_t hl_led2_write(struct file *f, const char __user *buf, 1195 size_t count, loff_t *ppos) 1196 { 1197 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1198 struct hl_device *hdev = entry->hdev; 1199 u32 value; 1200 ssize_t rc; 1201 1202 rc = kstrtouint_from_user(buf, count, 10, &value); 1203 if (rc) 1204 return rc; 1205 1206 value = value ? 1 : 0; 1207 1208 hl_debugfs_led_set(hdev, 2, value); 1209 1210 return count; 1211 } 1212 1213 static ssize_t hl_device_read(struct file *f, char __user *buf, 1214 size_t count, loff_t *ppos) 1215 { 1216 static const char *help = 1217 "Valid values: disable, enable, suspend, resume, cpu_timeout\n"; 1218 return simple_read_from_buffer(buf, count, ppos, help, strlen(help)); 1219 } 1220 1221 static ssize_t hl_device_write(struct file *f, const char __user *buf, 1222 size_t count, loff_t *ppos) 1223 { 1224 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1225 struct hl_device *hdev = entry->hdev; 1226 char data[30] = {0}; 1227 1228 /* don't allow partial writes */ 1229 if (*ppos != 0) 1230 return 0; 1231 1232 simple_write_to_buffer(data, 29, ppos, buf, count); 1233 1234 if (strncmp("disable", data, strlen("disable")) == 0) { 1235 hdev->disabled = true; 1236 } else if (strncmp("enable", data, strlen("enable")) == 0) { 1237 hdev->disabled = false; 1238 } else if (strncmp("suspend", data, strlen("suspend")) == 0) { 1239 hdev->asic_funcs->suspend(hdev); 1240 } else if (strncmp("resume", data, strlen("resume")) == 0) { 1241 hdev->asic_funcs->resume(hdev); 1242 } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) { 1243 hdev->device_cpu_disabled = true; 1244 } else { 1245 dev_err(hdev->dev, 1246 "Valid values: disable, enable, suspend, resume, cpu_timeout\n"); 1247 count = -EINVAL; 1248 } 1249 1250 return count; 1251 } 1252 1253 static ssize_t hl_clk_gate_read(struct file *f, char __user *buf, 1254 size_t count, loff_t *ppos) 1255 { 1256 return 0; 1257 } 1258 1259 static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf, 1260 size_t count, loff_t *ppos) 1261 { 1262 return count; 1263 } 1264 1265 static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf, 1266 size_t count, loff_t *ppos) 1267 { 1268 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1269 struct hl_device *hdev = entry->hdev; 1270 char tmp_buf[200]; 1271 ssize_t rc; 1272 1273 if (!hdev->asic_prop.configurable_stop_on_err) 1274 return -EOPNOTSUPP; 1275 1276 if (*ppos) 1277 return 0; 1278 1279 sprintf(tmp_buf, "%d\n", hdev->stop_on_err); 1280 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, 1281 strlen(tmp_buf) + 1); 1282 1283 return rc; 1284 } 1285 1286 static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf, 1287 size_t count, loff_t *ppos) 1288 { 1289 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1290 struct hl_device *hdev = entry->hdev; 1291 u32 value; 1292 ssize_t rc; 1293 1294 if (!hdev->asic_prop.configurable_stop_on_err) 1295 return -EOPNOTSUPP; 1296 1297 if (hdev->reset_info.in_reset) { 1298 dev_warn_ratelimited(hdev->dev, 1299 "Can't change stop on error during reset\n"); 1300 return 0; 1301 } 1302 1303 rc = kstrtouint_from_user(buf, count, 10, &value); 1304 if (rc) 1305 return rc; 1306 1307 hdev->stop_on_err = value ? 1 : 0; 1308 1309 hl_device_reset(hdev, 0); 1310 1311 return count; 1312 } 1313 1314 static ssize_t hl_security_violations_read(struct file *f, char __user *buf, 1315 size_t count, loff_t *ppos) 1316 { 1317 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1318 struct hl_device *hdev = entry->hdev; 1319 1320 hdev->asic_funcs->ack_protection_bits_errors(hdev); 1321 1322 return 0; 1323 } 1324 1325 static ssize_t hl_state_dump_read(struct file *f, char __user *buf, 1326 size_t count, loff_t *ppos) 1327 { 1328 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1329 ssize_t rc; 1330 1331 down_read(&entry->state_dump_sem); 1332 if (!entry->state_dump[entry->state_dump_head]) 1333 rc = 0; 1334 else 1335 rc = simple_read_from_buffer( 1336 buf, count, ppos, 1337 entry->state_dump[entry->state_dump_head], 1338 strlen(entry->state_dump[entry->state_dump_head])); 1339 up_read(&entry->state_dump_sem); 1340 1341 return rc; 1342 } 1343 1344 static ssize_t hl_state_dump_write(struct file *f, const char __user *buf, 1345 size_t count, loff_t *ppos) 1346 { 1347 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1348 struct hl_device *hdev = entry->hdev; 1349 ssize_t rc; 1350 u32 size; 1351 int i; 1352 1353 rc = kstrtouint_from_user(buf, count, 10, &size); 1354 if (rc) 1355 return rc; 1356 1357 if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) { 1358 dev_err(hdev->dev, "Invalid number of dumps to skip\n"); 1359 return -EINVAL; 1360 } 1361 1362 if (entry->state_dump[entry->state_dump_head]) { 1363 down_write(&entry->state_dump_sem); 1364 for (i = 0; i < size; ++i) { 1365 vfree(entry->state_dump[entry->state_dump_head]); 1366 entry->state_dump[entry->state_dump_head] = NULL; 1367 if (entry->state_dump_head > 0) 1368 entry->state_dump_head--; 1369 else 1370 entry->state_dump_head = 1371 ARRAY_SIZE(entry->state_dump) - 1; 1372 } 1373 up_write(&entry->state_dump_sem); 1374 } 1375 1376 return count; 1377 } 1378 1379 static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf, 1380 size_t count, loff_t *ppos) 1381 { 1382 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1383 struct hl_device *hdev = entry->hdev; 1384 char tmp_buf[200]; 1385 ssize_t rc; 1386 1387 if (*ppos) 1388 return 0; 1389 1390 sprintf(tmp_buf, "%d\n", 1391 jiffies_to_msecs(hdev->timeout_jiffies) / 1000); 1392 rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, 1393 strlen(tmp_buf) + 1); 1394 1395 return rc; 1396 } 1397 1398 static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf, 1399 size_t count, loff_t *ppos) 1400 { 1401 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1402 struct hl_device *hdev = entry->hdev; 1403 u32 value; 1404 ssize_t rc; 1405 1406 rc = kstrtouint_from_user(buf, count, 10, &value); 1407 if (rc) 1408 return rc; 1409 1410 if (value) 1411 hdev->timeout_jiffies = msecs_to_jiffies(value * 1000); 1412 else 1413 hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT; 1414 1415 return count; 1416 } 1417 1418 static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf, 1419 size_t count, loff_t *ppos) 1420 { 1421 struct hl_dbg_device_entry *entry = file_inode(f)->i_private; 1422 struct hl_device *hdev = entry->hdev; 1423 1424 hdev->asic_funcs->check_if_razwi_happened(hdev); 1425 1426 return 0; 1427 } 1428 1429 static const struct file_operations hl_mem_scrub_fops = { 1430 .owner = THIS_MODULE, 1431 .write = hl_memory_scrub, 1432 }; 1433 1434 static const struct file_operations hl_data32b_fops = { 1435 .owner = THIS_MODULE, 1436 .read = hl_data_read32, 1437 .write = hl_data_write32 1438 }; 1439 1440 static const struct file_operations hl_data64b_fops = { 1441 .owner = THIS_MODULE, 1442 .read = hl_data_read64, 1443 .write = hl_data_write64 1444 }; 1445 1446 static const struct file_operations hl_dma_size_fops = { 1447 .owner = THIS_MODULE, 1448 .write = hl_dma_size_write 1449 }; 1450 1451 static const struct file_operations hl_monitor_dump_fops = { 1452 .owner = THIS_MODULE, 1453 .write = hl_monitor_dump_trigger 1454 }; 1455 1456 static const struct file_operations hl_i2c_data_fops = { 1457 .owner = THIS_MODULE, 1458 .read = hl_i2c_data_read, 1459 .write = hl_i2c_data_write 1460 }; 1461 1462 static const struct file_operations hl_power_fops = { 1463 .owner = THIS_MODULE, 1464 .read = hl_get_power_state, 1465 .write = hl_set_power_state 1466 }; 1467 1468 static const struct file_operations hl_led0_fops = { 1469 .owner = THIS_MODULE, 1470 .write = hl_led0_write 1471 }; 1472 1473 static const struct file_operations hl_led1_fops = { 1474 .owner = THIS_MODULE, 1475 .write = hl_led1_write 1476 }; 1477 1478 static const struct file_operations hl_led2_fops = { 1479 .owner = THIS_MODULE, 1480 .write = hl_led2_write 1481 }; 1482 1483 static const struct file_operations hl_device_fops = { 1484 .owner = THIS_MODULE, 1485 .read = hl_device_read, 1486 .write = hl_device_write 1487 }; 1488 1489 static const struct file_operations hl_clk_gate_fops = { 1490 .owner = THIS_MODULE, 1491 .read = hl_clk_gate_read, 1492 .write = hl_clk_gate_write 1493 }; 1494 1495 static const struct file_operations hl_stop_on_err_fops = { 1496 .owner = THIS_MODULE, 1497 .read = hl_stop_on_err_read, 1498 .write = hl_stop_on_err_write 1499 }; 1500 1501 static const struct file_operations hl_security_violations_fops = { 1502 .owner = THIS_MODULE, 1503 .read = hl_security_violations_read 1504 }; 1505 1506 static const struct file_operations hl_state_dump_fops = { 1507 .owner = THIS_MODULE, 1508 .read = hl_state_dump_read, 1509 .write = hl_state_dump_write 1510 }; 1511 1512 static const struct file_operations hl_timeout_locked_fops = { 1513 .owner = THIS_MODULE, 1514 .read = hl_timeout_locked_read, 1515 .write = hl_timeout_locked_write 1516 }; 1517 1518 static const struct file_operations hl_razwi_check_fops = { 1519 .owner = THIS_MODULE, 1520 .read = hl_check_razwi_happened 1521 }; 1522 1523 static const struct hl_info_list hl_debugfs_list[] = { 1524 {"command_buffers", command_buffers_show, NULL}, 1525 {"command_submission", command_submission_show, NULL}, 1526 {"command_submission_jobs", command_submission_jobs_show, NULL}, 1527 {"userptr", userptr_show, NULL}, 1528 {"vm", vm_show, NULL}, 1529 {"userptr_lookup", userptr_lookup_show, userptr_lookup_write}, 1530 {"mmu", mmu_show, mmu_asid_va_write}, 1531 {"mmu_error", mmu_ack_error, mmu_ack_error_value_write}, 1532 {"engines", engines_show, NULL}, 1533 }; 1534 1535 static int hl_debugfs_open(struct inode *inode, struct file *file) 1536 { 1537 struct hl_debugfs_entry *node = inode->i_private; 1538 1539 return single_open(file, node->info_ent->show, node); 1540 } 1541 1542 static ssize_t hl_debugfs_write(struct file *file, const char __user *buf, 1543 size_t count, loff_t *f_pos) 1544 { 1545 struct hl_debugfs_entry *node = file->f_inode->i_private; 1546 1547 if (node->info_ent->write) 1548 return node->info_ent->write(file, buf, count, f_pos); 1549 else 1550 return -EINVAL; 1551 1552 } 1553 1554 static const struct file_operations hl_debugfs_fops = { 1555 .owner = THIS_MODULE, 1556 .open = hl_debugfs_open, 1557 .read = seq_read, 1558 .write = hl_debugfs_write, 1559 .llseek = seq_lseek, 1560 .release = single_release, 1561 }; 1562 1563 static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry, struct dentry *root) 1564 { 1565 debugfs_create_u8("i2c_bus", 1566 0644, 1567 root, 1568 &dev_entry->i2c_bus); 1569 1570 debugfs_create_u8("i2c_addr", 1571 0644, 1572 root, 1573 &dev_entry->i2c_addr); 1574 1575 debugfs_create_u8("i2c_reg", 1576 0644, 1577 root, 1578 &dev_entry->i2c_reg); 1579 1580 debugfs_create_u8("i2c_len", 1581 0644, 1582 root, 1583 &dev_entry->i2c_len); 1584 1585 debugfs_create_file("i2c_data", 1586 0644, 1587 root, 1588 dev_entry, 1589 &hl_i2c_data_fops); 1590 1591 debugfs_create_file("led0", 1592 0200, 1593 root, 1594 dev_entry, 1595 &hl_led0_fops); 1596 1597 debugfs_create_file("led1", 1598 0200, 1599 root, 1600 dev_entry, 1601 &hl_led1_fops); 1602 1603 debugfs_create_file("led2", 1604 0200, 1605 root, 1606 dev_entry, 1607 &hl_led2_fops); 1608 } 1609 1610 static void add_files_to_device(struct hl_device *hdev, struct hl_dbg_device_entry *dev_entry, 1611 struct dentry *root) 1612 { 1613 int count = ARRAY_SIZE(hl_debugfs_list); 1614 struct hl_debugfs_entry *entry; 1615 int i; 1616 1617 debugfs_create_x64("memory_scrub_val", 1618 0644, 1619 root, 1620 &hdev->memory_scrub_val); 1621 1622 debugfs_create_file("memory_scrub", 1623 0200, 1624 root, 1625 dev_entry, 1626 &hl_mem_scrub_fops); 1627 1628 debugfs_create_x64("addr", 1629 0644, 1630 root, 1631 &dev_entry->addr); 1632 1633 debugfs_create_file("data32", 1634 0644, 1635 root, 1636 dev_entry, 1637 &hl_data32b_fops); 1638 1639 debugfs_create_file("data64", 1640 0644, 1641 root, 1642 dev_entry, 1643 &hl_data64b_fops); 1644 1645 debugfs_create_file("set_power_state", 1646 0644, 1647 root, 1648 dev_entry, 1649 &hl_power_fops); 1650 1651 debugfs_create_file("device", 1652 0644, 1653 root, 1654 dev_entry, 1655 &hl_device_fops); 1656 1657 debugfs_create_file("clk_gate", 1658 0644, 1659 root, 1660 dev_entry, 1661 &hl_clk_gate_fops); 1662 1663 debugfs_create_file("stop_on_err", 1664 0644, 1665 root, 1666 dev_entry, 1667 &hl_stop_on_err_fops); 1668 1669 debugfs_create_file("dump_security_violations", 1670 0400, 1671 root, 1672 dev_entry, 1673 &hl_security_violations_fops); 1674 1675 debugfs_create_file("dump_razwi_events", 1676 0400, 1677 root, 1678 dev_entry, 1679 &hl_razwi_check_fops); 1680 1681 debugfs_create_file("dma_size", 1682 0200, 1683 root, 1684 dev_entry, 1685 &hl_dma_size_fops); 1686 1687 debugfs_create_blob("data_dma", 1688 0400, 1689 root, 1690 &dev_entry->data_dma_blob_desc); 1691 1692 debugfs_create_file("monitor_dump_trig", 1693 0200, 1694 root, 1695 dev_entry, 1696 &hl_monitor_dump_fops); 1697 1698 debugfs_create_blob("monitor_dump", 1699 0400, 1700 root, 1701 &dev_entry->mon_dump_blob_desc); 1702 1703 debugfs_create_x8("skip_reset_on_timeout", 1704 0644, 1705 root, 1706 &hdev->reset_info.skip_reset_on_timeout); 1707 1708 debugfs_create_file("state_dump", 1709 0644, 1710 root, 1711 dev_entry, 1712 &hl_state_dump_fops); 1713 1714 debugfs_create_file("timeout_locked", 1715 0644, 1716 root, 1717 dev_entry, 1718 &hl_timeout_locked_fops); 1719 1720 debugfs_create_u32("device_release_watchdog_timeout", 1721 0644, 1722 root, 1723 &hdev->device_release_watchdog_timeout_sec); 1724 1725 for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) { 1726 debugfs_create_file(hl_debugfs_list[i].name, 1727 0644, 1728 root, 1729 entry, 1730 &hl_debugfs_fops); 1731 entry->info_ent = &hl_debugfs_list[i]; 1732 entry->dev_entry = dev_entry; 1733 } 1734 } 1735 1736 int hl_debugfs_device_init(struct hl_device *hdev) 1737 { 1738 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1739 int count = ARRAY_SIZE(hl_debugfs_list); 1740 1741 dev_entry->hdev = hdev; 1742 dev_entry->entry_arr = kmalloc_array(count, sizeof(struct hl_debugfs_entry), GFP_KERNEL); 1743 if (!dev_entry->entry_arr) 1744 return -ENOMEM; 1745 1746 dev_entry->data_dma_blob_desc.size = 0; 1747 dev_entry->data_dma_blob_desc.data = NULL; 1748 dev_entry->mon_dump_blob_desc.size = 0; 1749 dev_entry->mon_dump_blob_desc.data = NULL; 1750 1751 INIT_LIST_HEAD(&dev_entry->file_list); 1752 INIT_LIST_HEAD(&dev_entry->cb_list); 1753 INIT_LIST_HEAD(&dev_entry->cs_list); 1754 INIT_LIST_HEAD(&dev_entry->cs_job_list); 1755 INIT_LIST_HEAD(&dev_entry->userptr_list); 1756 INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list); 1757 mutex_init(&dev_entry->file_mutex); 1758 init_rwsem(&dev_entry->state_dump_sem); 1759 spin_lock_init(&dev_entry->cb_spinlock); 1760 spin_lock_init(&dev_entry->cs_spinlock); 1761 spin_lock_init(&dev_entry->cs_job_spinlock); 1762 spin_lock_init(&dev_entry->userptr_spinlock); 1763 mutex_init(&dev_entry->ctx_mem_hash_mutex); 1764 1765 return 0; 1766 } 1767 1768 void hl_debugfs_device_fini(struct hl_device *hdev) 1769 { 1770 struct hl_dbg_device_entry *entry = &hdev->hl_debugfs; 1771 int i; 1772 1773 mutex_destroy(&entry->ctx_mem_hash_mutex); 1774 mutex_destroy(&entry->file_mutex); 1775 1776 vfree(entry->data_dma_blob_desc.data); 1777 vfree(entry->mon_dump_blob_desc.data); 1778 1779 for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i) 1780 vfree(entry->state_dump[i]); 1781 1782 kfree(entry->entry_arr); 1783 } 1784 1785 void hl_debugfs_add_device(struct hl_device *hdev) 1786 { 1787 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1788 1789 dev_entry->root = hdev->drm.accel->debugfs_root; 1790 1791 add_files_to_device(hdev, dev_entry, dev_entry->root); 1792 1793 if (!hdev->asic_prop.fw_security_enabled) 1794 add_secured_nodes(dev_entry, dev_entry->root); 1795 } 1796 1797 void hl_debugfs_add_file(struct hl_fpriv *hpriv) 1798 { 1799 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; 1800 1801 mutex_lock(&dev_entry->file_mutex); 1802 list_add(&hpriv->debugfs_list, &dev_entry->file_list); 1803 mutex_unlock(&dev_entry->file_mutex); 1804 } 1805 1806 void hl_debugfs_remove_file(struct hl_fpriv *hpriv) 1807 { 1808 struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; 1809 1810 mutex_lock(&dev_entry->file_mutex); 1811 list_del(&hpriv->debugfs_list); 1812 mutex_unlock(&dev_entry->file_mutex); 1813 } 1814 1815 void hl_debugfs_add_cb(struct hl_cb *cb) 1816 { 1817 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; 1818 1819 spin_lock(&dev_entry->cb_spinlock); 1820 list_add(&cb->debugfs_list, &dev_entry->cb_list); 1821 spin_unlock(&dev_entry->cb_spinlock); 1822 } 1823 1824 void hl_debugfs_remove_cb(struct hl_cb *cb) 1825 { 1826 struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; 1827 1828 spin_lock(&dev_entry->cb_spinlock); 1829 list_del(&cb->debugfs_list); 1830 spin_unlock(&dev_entry->cb_spinlock); 1831 } 1832 1833 void hl_debugfs_add_cs(struct hl_cs *cs) 1834 { 1835 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; 1836 1837 spin_lock(&dev_entry->cs_spinlock); 1838 list_add(&cs->debugfs_list, &dev_entry->cs_list); 1839 spin_unlock(&dev_entry->cs_spinlock); 1840 } 1841 1842 void hl_debugfs_remove_cs(struct hl_cs *cs) 1843 { 1844 struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; 1845 1846 spin_lock(&dev_entry->cs_spinlock); 1847 list_del(&cs->debugfs_list); 1848 spin_unlock(&dev_entry->cs_spinlock); 1849 } 1850 1851 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) 1852 { 1853 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1854 1855 spin_lock(&dev_entry->cs_job_spinlock); 1856 list_add(&job->debugfs_list, &dev_entry->cs_job_list); 1857 spin_unlock(&dev_entry->cs_job_spinlock); 1858 } 1859 1860 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) 1861 { 1862 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1863 1864 spin_lock(&dev_entry->cs_job_spinlock); 1865 list_del(&job->debugfs_list); 1866 spin_unlock(&dev_entry->cs_job_spinlock); 1867 } 1868 1869 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) 1870 { 1871 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1872 1873 spin_lock(&dev_entry->userptr_spinlock); 1874 list_add(&userptr->debugfs_list, &dev_entry->userptr_list); 1875 spin_unlock(&dev_entry->userptr_spinlock); 1876 } 1877 1878 void hl_debugfs_remove_userptr(struct hl_device *hdev, 1879 struct hl_userptr *userptr) 1880 { 1881 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1882 1883 spin_lock(&dev_entry->userptr_spinlock); 1884 list_del(&userptr->debugfs_list); 1885 spin_unlock(&dev_entry->userptr_spinlock); 1886 } 1887 1888 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) 1889 { 1890 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1891 1892 mutex_lock(&dev_entry->ctx_mem_hash_mutex); 1893 list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list); 1894 mutex_unlock(&dev_entry->ctx_mem_hash_mutex); 1895 } 1896 1897 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) 1898 { 1899 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1900 1901 mutex_lock(&dev_entry->ctx_mem_hash_mutex); 1902 list_del(&ctx->debugfs_list); 1903 mutex_unlock(&dev_entry->ctx_mem_hash_mutex); 1904 } 1905 1906 /** 1907 * hl_debugfs_set_state_dump - register state dump making it accessible via 1908 * debugfs 1909 * @hdev: pointer to the device structure 1910 * @data: the actual dump data 1911 * @length: the length of the data 1912 */ 1913 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, 1914 unsigned long length) 1915 { 1916 struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; 1917 1918 down_write(&dev_entry->state_dump_sem); 1919 1920 dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) % 1921 ARRAY_SIZE(dev_entry->state_dump); 1922 vfree(dev_entry->state_dump[dev_entry->state_dump_head]); 1923 dev_entry->state_dump[dev_entry->state_dump_head] = data; 1924 1925 up_write(&dev_entry->state_dump_sem); 1926 } 1927