xref: /linux/drivers/accel/habanalabs/common/command_submission.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 			HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18 
19 
20 #define MAX_TS_ITER_NUM 100
21 
22 /**
23  * enum hl_cs_wait_status - cs wait status
24  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25  * @CS_WAIT_STATUS_COMPLETED: cs completed
26  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27  */
28 enum hl_cs_wait_status {
29 	CS_WAIT_STATUS_BUSY,
30 	CS_WAIT_STATUS_COMPLETED,
31 	CS_WAIT_STATUS_GONE
32 };
33 
34 /*
35  * Data used while handling wait/timestamp nodes.
36  * The purpose of this struct is to store the needed data for both operations
37  * in one variable instead of passing large number of arguments to functions.
38  */
39 struct wait_interrupt_data {
40 	struct hl_user_interrupt *interrupt;
41 	struct hl_mmap_mem_buf *buf;
42 	struct hl_mem_mgr *mmg;
43 	struct hl_cb *cq_cb;
44 	u64 ts_handle;
45 	u64 ts_offset;
46 	u64 cq_handle;
47 	u64 cq_offset;
48 	u64 target_value;
49 	u64 intr_timeout_us;
50 };
51 
52 static void job_wq_completion(struct work_struct *work);
53 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
54 				enum hl_cs_wait_status *status, s64 *timestamp);
55 static void cs_do_release(struct kref *ref);
56 
57 static void hl_push_cs_outcome(struct hl_device *hdev,
58 			       struct hl_cs_outcome_store *outcome_store,
59 			       u64 seq, ktime_t ts, int error)
60 {
61 	struct hl_cs_outcome *node;
62 	unsigned long flags;
63 
64 	/*
65 	 * CS outcome store supports the following operations:
66 	 * push outcome - store a recent CS outcome in the store
67 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
68 	 * It uses 2 lists: used list and free list.
69 	 * It has a pre-allocated amount of nodes, each node stores
70 	 * a single CS outcome.
71 	 * Initially, all the nodes are in the free list.
72 	 * On push outcome, a node (any) is taken from the free list, its
73 	 * information is filled in, and the node is moved to the used list.
74 	 * It is possible, that there are no nodes left in the free list.
75 	 * In this case, we will lose some information about old outcomes. We
76 	 * will pop the OLDEST node from the used list, and make it free.
77 	 * On pop, the node is searched for in the used list (using a search
78 	 * index).
79 	 * If found, the node is then removed from the used list, and moved
80 	 * back to the free list. The outcome data that the node contained is
81 	 * returned back to the user.
82 	 */
83 
84 	spin_lock_irqsave(&outcome_store->db_lock, flags);
85 
86 	if (list_empty(&outcome_store->free_list)) {
87 		node = list_last_entry(&outcome_store->used_list,
88 				       struct hl_cs_outcome, list_link);
89 		hash_del(&node->map_link);
90 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
91 	} else {
92 		node = list_last_entry(&outcome_store->free_list,
93 				       struct hl_cs_outcome, list_link);
94 	}
95 
96 	list_del_init(&node->list_link);
97 
98 	node->seq = seq;
99 	node->ts = ts;
100 	node->error = error;
101 
102 	list_add(&node->list_link, &outcome_store->used_list);
103 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
104 
105 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
106 }
107 
108 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
109 			       u64 seq, ktime_t *ts, int *error)
110 {
111 	struct hl_cs_outcome *node;
112 	unsigned long flags;
113 
114 	spin_lock_irqsave(&outcome_store->db_lock, flags);
115 
116 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
117 		if (node->seq == seq) {
118 			*ts = node->ts;
119 			*error = node->error;
120 
121 			hash_del(&node->map_link);
122 			list_del_init(&node->list_link);
123 			list_add(&node->list_link, &outcome_store->free_list);
124 
125 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
126 
127 			return true;
128 		}
129 
130 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
131 
132 	return false;
133 }
134 
135 static void hl_sob_reset(struct kref *ref)
136 {
137 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
138 							kref);
139 	struct hl_device *hdev = hw_sob->hdev;
140 
141 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
142 
143 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
144 
145 	hw_sob->need_reset = false;
146 }
147 
148 void hl_sob_reset_error(struct kref *ref)
149 {
150 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
151 							kref);
152 	struct hl_device *hdev = hw_sob->hdev;
153 
154 	dev_crit(hdev->dev,
155 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
156 		hw_sob->q_idx, hw_sob->sob_id);
157 }
158 
159 void hw_sob_put(struct hl_hw_sob *hw_sob)
160 {
161 	if (hw_sob)
162 		kref_put(&hw_sob->kref, hl_sob_reset);
163 }
164 
165 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
166 {
167 	if (hw_sob)
168 		kref_put(&hw_sob->kref, hl_sob_reset_error);
169 }
170 
171 void hw_sob_get(struct hl_hw_sob *hw_sob)
172 {
173 	if (hw_sob)
174 		kref_get(&hw_sob->kref);
175 }
176 
177 /**
178  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
179  * @sob_base: sob base id
180  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
181  * @mask: generated mask
182  *
183  * Return: 0 if given parameters are valid
184  */
185 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
186 {
187 	int i;
188 
189 	if (sob_mask == 0)
190 		return -EINVAL;
191 
192 	if (sob_mask == 0x1) {
193 		*mask = ~(1 << (sob_base & 0x7));
194 	} else {
195 		/* find msb in order to verify sob range is valid */
196 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
197 			if (BIT(i) & sob_mask)
198 				break;
199 
200 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
201 			return -EINVAL;
202 
203 		*mask = ~sob_mask;
204 	}
205 
206 	return 0;
207 }
208 
209 static void hl_fence_release(struct kref *kref)
210 {
211 	struct hl_fence *fence =
212 		container_of(kref, struct hl_fence, refcount);
213 	struct hl_cs_compl *hl_cs_cmpl =
214 		container_of(fence, struct hl_cs_compl, base_fence);
215 
216 	kfree(hl_cs_cmpl);
217 }
218 
219 void hl_fence_put(struct hl_fence *fence)
220 {
221 	if (IS_ERR_OR_NULL(fence))
222 		return;
223 	kref_put(&fence->refcount, hl_fence_release);
224 }
225 
226 void hl_fences_put(struct hl_fence **fence, int len)
227 {
228 	int i;
229 
230 	for (i = 0; i < len; i++, fence++)
231 		hl_fence_put(*fence);
232 }
233 
234 void hl_fence_get(struct hl_fence *fence)
235 {
236 	if (fence)
237 		kref_get(&fence->refcount);
238 }
239 
240 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
241 {
242 	kref_init(&fence->refcount);
243 	fence->cs_sequence = sequence;
244 	fence->error = 0;
245 	fence->timestamp = ktime_set(0, 0);
246 	fence->mcs_handling_done = false;
247 	init_completion(&fence->completion);
248 }
249 
250 void cs_get(struct hl_cs *cs)
251 {
252 	kref_get(&cs->refcount);
253 }
254 
255 static int cs_get_unless_zero(struct hl_cs *cs)
256 {
257 	return kref_get_unless_zero(&cs->refcount);
258 }
259 
260 static void cs_put(struct hl_cs *cs)
261 {
262 	kref_put(&cs->refcount, cs_do_release);
263 }
264 
265 static void cs_job_do_release(struct kref *ref)
266 {
267 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
268 
269 	kfree(job);
270 }
271 
272 static void hl_cs_job_put(struct hl_cs_job *job)
273 {
274 	kref_put(&job->refcount, cs_job_do_release);
275 }
276 
277 bool cs_needs_completion(struct hl_cs *cs)
278 {
279 	/* In case this is a staged CS, only the last CS in sequence should
280 	 * get a completion, any non staged CS will always get a completion
281 	 */
282 	if (cs->staged_cs && !cs->staged_last)
283 		return false;
284 
285 	return true;
286 }
287 
288 bool cs_needs_timeout(struct hl_cs *cs)
289 {
290 	/* In case this is a staged CS, only the first CS in sequence should
291 	 * get a timeout, any non staged CS will always get a timeout
292 	 */
293 	if (cs->staged_cs && !cs->staged_first)
294 		return false;
295 
296 	return true;
297 }
298 
299 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
300 {
301 	/* Patched CB is created for external queues jobs */
302 	return (job->queue_type == QUEUE_TYPE_EXT);
303 }
304 
305 /*
306  * cs_parser - parse the user command submission
307  *
308  * @hpriv	: pointer to the private data of the fd
309  * @job        : pointer to the job that holds the command submission info
310  *
311  * The function parses the command submission of the user. It calls the
312  * ASIC specific parser, which returns a list of memory blocks to send
313  * to the device as different command buffers
314  *
315  */
316 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
317 {
318 	struct hl_device *hdev = hpriv->hdev;
319 	struct hl_cs_parser parser;
320 	int rc;
321 
322 	parser.ctx_id = job->cs->ctx->asid;
323 	parser.cs_sequence = job->cs->sequence;
324 	parser.job_id = job->id;
325 
326 	parser.hw_queue_id = job->hw_queue_id;
327 	parser.job_userptr_list = &job->userptr_list;
328 	parser.patched_cb = NULL;
329 	parser.user_cb = job->user_cb;
330 	parser.user_cb_size = job->user_cb_size;
331 	parser.queue_type = job->queue_type;
332 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
333 	job->patched_cb = NULL;
334 	parser.completion = cs_needs_completion(job->cs);
335 
336 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
337 
338 	if (is_cb_patched(hdev, job)) {
339 		if (!rc) {
340 			job->patched_cb = parser.patched_cb;
341 			job->job_cb_size = parser.patched_cb_size;
342 			job->contains_dma_pkt = parser.contains_dma_pkt;
343 			atomic_inc(&job->patched_cb->cs_cnt);
344 		}
345 
346 		/*
347 		 * Whether the parsing worked or not, we don't need the
348 		 * original CB anymore because it was already parsed and
349 		 * won't be accessed again for this CS
350 		 */
351 		atomic_dec(&job->user_cb->cs_cnt);
352 		hl_cb_put(job->user_cb);
353 		job->user_cb = NULL;
354 	} else if (!rc) {
355 		job->job_cb_size = job->user_cb_size;
356 	}
357 
358 	return rc;
359 }
360 
361 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
362 {
363 	struct hl_cs *cs = job->cs;
364 
365 	if (is_cb_patched(hdev, job)) {
366 		hl_userptr_delete_list(hdev, &job->userptr_list);
367 
368 		/*
369 		 * We might arrive here from rollback and patched CB wasn't
370 		 * created, so we need to check it's not NULL
371 		 */
372 		if (job->patched_cb) {
373 			atomic_dec(&job->patched_cb->cs_cnt);
374 			hl_cb_put(job->patched_cb);
375 		}
376 	}
377 
378 	/* For H/W queue jobs, if a user CB was allocated by driver,
379 	 * the user CB isn't released in cs_parser() and thus should be
380 	 * released here. This is also true for INT queues jobs which were
381 	 * allocated by driver.
382 	 */
383 	if (job->is_kernel_allocated_cb &&
384 			(job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) {
385 		atomic_dec(&job->user_cb->cs_cnt);
386 		hl_cb_put(job->user_cb);
387 	}
388 
389 	/*
390 	 * This is the only place where there can be multiple threads
391 	 * modifying the list at the same time
392 	 */
393 	spin_lock(&cs->job_lock);
394 	list_del(&job->cs_node);
395 	spin_unlock(&cs->job_lock);
396 
397 	hl_debugfs_remove_job(hdev, job);
398 
399 	/* We decrement reference only for a CS that gets completion
400 	 * because the reference was incremented only for this kind of CS
401 	 * right before it was scheduled.
402 	 *
403 	 * In staged submission, only the last CS marked as 'staged_last'
404 	 * gets completion, hence its release function will be called from here.
405 	 * As for all the rest CS's in the staged submission which do not get
406 	 * completion, their CS reference will be decremented by the
407 	 * 'staged_last' CS during the CS release flow.
408 	 * All relevant PQ CI counters will be incremented during the CS release
409 	 * flow by calling 'hl_hw_queue_update_ci'.
410 	 */
411 	if (cs_needs_completion(cs) &&
412 			(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
413 
414 		/* In CS based completions, the timestamp is already available,
415 		 * so no need to extract it from job
416 		 */
417 		if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
418 			cs->completion_timestamp = job->timestamp;
419 
420 		cs_put(cs);
421 	}
422 
423 	hl_cs_job_put(job);
424 }
425 
426 /*
427  * hl_staged_cs_find_first - locate the first CS in this staged submission
428  *
429  * @hdev: pointer to device structure
430  * @cs_seq: staged submission sequence number
431  *
432  * @note: This function must be called under 'hdev->cs_mirror_lock'
433  *
434  * Find and return a CS pointer with the given sequence
435  */
436 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
437 {
438 	struct hl_cs *cs;
439 
440 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
441 		if (cs->staged_cs && cs->staged_first &&
442 				cs->sequence == cs_seq)
443 			return cs;
444 
445 	return NULL;
446 }
447 
448 /*
449  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
450  *
451  * @hdev: pointer to device structure
452  * @cs: staged submission member
453  *
454  */
455 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
456 {
457 	struct hl_cs *last_entry;
458 
459 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
460 								staged_cs_node);
461 
462 	if (last_entry->staged_last)
463 		return true;
464 
465 	return false;
466 }
467 
468 /*
469  * staged_cs_get - get CS reference if this CS is a part of a staged CS
470  *
471  * @hdev: pointer to device structure
472  * @cs: current CS
473  * @cs_seq: staged submission sequence number
474  *
475  * Increment CS reference for every CS in this staged submission except for
476  * the CS which get completion.
477  */
478 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
479 {
480 	/* Only the last CS in this staged submission will get a completion.
481 	 * We must increment the reference for all other CS's in this
482 	 * staged submission.
483 	 * Once we get a completion we will release the whole staged submission.
484 	 */
485 	if (!cs->staged_last)
486 		cs_get(cs);
487 }
488 
489 /*
490  * staged_cs_put - put a CS in case it is part of staged submission
491  *
492  * @hdev: pointer to device structure
493  * @cs: CS to put
494  *
495  * This function decrements a CS reference (for a non completion CS)
496  */
497 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
498 {
499 	/* We release all CS's in a staged submission except the last
500 	 * CS which we have never incremented its reference.
501 	 */
502 	if (!cs_needs_completion(cs))
503 		cs_put(cs);
504 }
505 
506 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
507 {
508 	struct hl_cs *next = NULL, *iter, *first_cs;
509 
510 	if (!cs_needs_timeout(cs))
511 		return;
512 
513 	spin_lock(&hdev->cs_mirror_lock);
514 
515 	/* We need to handle tdr only once for the complete staged submission.
516 	 * Hence, we choose the CS that reaches this function first which is
517 	 * the CS marked as 'staged_last'.
518 	 * In case single staged cs was submitted which has both first and last
519 	 * indications, then "cs_find_first" below will return NULL, since we
520 	 * removed the cs node from the list before getting here,
521 	 * in such cases just continue with the cs to cancel it's TDR work.
522 	 */
523 	if (cs->staged_cs && cs->staged_last) {
524 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
525 		if (first_cs)
526 			cs = first_cs;
527 	}
528 
529 	spin_unlock(&hdev->cs_mirror_lock);
530 
531 	/* Don't cancel TDR in case this CS was timedout because we might be
532 	 * running from the TDR context
533 	 */
534 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
535 		return;
536 
537 	if (cs->tdr_active)
538 		cancel_delayed_work_sync(&cs->work_tdr);
539 
540 	spin_lock(&hdev->cs_mirror_lock);
541 
542 	/* queue TDR for next CS */
543 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
544 		if (cs_needs_timeout(iter)) {
545 			next = iter;
546 			break;
547 		}
548 
549 	if (next && !next->tdr_active) {
550 		next->tdr_active = true;
551 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
552 	}
553 
554 	spin_unlock(&hdev->cs_mirror_lock);
555 }
556 
557 /*
558  * force_complete_multi_cs - complete all contexts that wait on multi-CS
559  *
560  * @hdev: pointer to habanalabs device structure
561  */
562 static void force_complete_multi_cs(struct hl_device *hdev)
563 {
564 	int i;
565 
566 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
567 		struct multi_cs_completion *mcs_compl;
568 
569 		mcs_compl = &hdev->multi_cs_completion[i];
570 
571 		spin_lock(&mcs_compl->lock);
572 
573 		if (!mcs_compl->used) {
574 			spin_unlock(&mcs_compl->lock);
575 			continue;
576 		}
577 
578 		/* when calling force complete no context should be waiting on
579 		 * multi-cS.
580 		 * We are calling the function as a protection for such case
581 		 * to free any pending context and print error message
582 		 */
583 		dev_err(hdev->dev,
584 				"multi-CS completion context %d still waiting when calling force completion\n",
585 				i);
586 		complete_all(&mcs_compl->completion);
587 		spin_unlock(&mcs_compl->lock);
588 	}
589 }
590 
591 /*
592  * complete_multi_cs - complete all waiting entities on multi-CS
593  *
594  * @hdev: pointer to habanalabs device structure
595  * @cs: CS structure
596  * The function signals a waiting entity that has an overlapping stream masters
597  * with the completed CS.
598  * For example:
599  * - a completed CS worked on stream master QID 4, multi CS completion
600  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
601  *   common stream master QID
602  * - a completed CS worked on stream master QID 4, multi CS completion
603  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
604  *   master QID 4 is common
605  */
606 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
607 {
608 	struct hl_fence *fence = cs->fence;
609 	int i;
610 
611 	/* in case of multi CS check for completion only for the first CS */
612 	if (cs->staged_cs && !cs->staged_first)
613 		return;
614 
615 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
616 		struct multi_cs_completion *mcs_compl;
617 
618 		mcs_compl = &hdev->multi_cs_completion[i];
619 		if (!mcs_compl->used)
620 			continue;
621 
622 		spin_lock(&mcs_compl->lock);
623 
624 		/*
625 		 * complete if:
626 		 * 1. still waiting for completion
627 		 * 2. the completed CS has at least one overlapping stream
628 		 *    master with the stream masters in the completion
629 		 */
630 		if (mcs_compl->used &&
631 				(fence->stream_master_qid_map &
632 					mcs_compl->stream_master_qid_map)) {
633 			/* extract the timestamp only of first completed CS */
634 			if (!mcs_compl->timestamp)
635 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
636 
637 			complete_all(&mcs_compl->completion);
638 
639 			/*
640 			 * Setting mcs_handling_done inside the lock ensures
641 			 * at least one fence have mcs_handling_done set to
642 			 * true before wait for mcs finish. This ensures at
643 			 * least one CS will be set as completed when polling
644 			 * mcs fences.
645 			 */
646 			fence->mcs_handling_done = true;
647 		}
648 
649 		spin_unlock(&mcs_compl->lock);
650 	}
651 	/* In case CS completed without mcs completion initialized */
652 	fence->mcs_handling_done = true;
653 }
654 
655 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
656 					struct hl_cs *cs,
657 					struct hl_cs_compl *hl_cs_cmpl)
658 {
659 	/* Skip this handler if the cs wasn't submitted, to avoid putting
660 	 * the hw_sob twice, since this case already handled at this point,
661 	 * also skip if the hw_sob pointer wasn't set.
662 	 */
663 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
664 		return;
665 
666 	spin_lock(&hl_cs_cmpl->lock);
667 
668 	/*
669 	 * we get refcount upon reservation of signals or signal/wait cs for the
670 	 * hw_sob object, and need to put it when the first staged cs
671 	 * (which contains the encaps signals) or cs signal/wait is completed.
672 	 */
673 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
674 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
675 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
676 			(!!hl_cs_cmpl->encaps_signals)) {
677 		dev_dbg(hdev->dev,
678 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
679 				hl_cs_cmpl->cs_seq,
680 				hl_cs_cmpl->type,
681 				hl_cs_cmpl->hw_sob->sob_id,
682 				hl_cs_cmpl->sob_val);
683 
684 		hw_sob_put(hl_cs_cmpl->hw_sob);
685 
686 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
687 			hdev->asic_funcs->reset_sob_group(hdev,
688 					hl_cs_cmpl->sob_group);
689 	}
690 
691 	spin_unlock(&hl_cs_cmpl->lock);
692 }
693 
694 static void cs_do_release(struct kref *ref)
695 {
696 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
697 	struct hl_device *hdev = cs->ctx->hdev;
698 	struct hl_cs_job *job, *tmp;
699 	struct hl_cs_compl *hl_cs_cmpl =
700 			container_of(cs->fence, struct hl_cs_compl, base_fence);
701 
702 	cs->completed = true;
703 
704 	/*
705 	 * Although if we reached here it means that all external jobs have
706 	 * finished, because each one of them took refcnt to CS, we still
707 	 * need to go over the internal jobs and complete them. Otherwise, we
708 	 * will have leaked memory and what's worse, the CS object (and
709 	 * potentially the CTX object) could be released, while the JOB
710 	 * still holds a pointer to them (but no reference).
711 	 */
712 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
713 		hl_complete_job(hdev, job);
714 
715 	if (!cs->submitted) {
716 		/*
717 		 * In case the wait for signal CS was submitted, the fence put
718 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
719 		 * right before hanging on the PQ.
720 		 */
721 		if (cs->type == CS_TYPE_WAIT ||
722 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
723 			hl_fence_put(cs->signal_fence);
724 
725 		goto out;
726 	}
727 
728 	/* Need to update CI for all queue jobs that does not get completion */
729 	hl_hw_queue_update_ci(cs);
730 
731 	/* remove CS from CS mirror list */
732 	spin_lock(&hdev->cs_mirror_lock);
733 	list_del_init(&cs->mirror_node);
734 	spin_unlock(&hdev->cs_mirror_lock);
735 
736 	cs_handle_tdr(hdev, cs);
737 
738 	if (cs->staged_cs) {
739 		/* the completion CS decrements reference for the entire
740 		 * staged submission
741 		 */
742 		if (cs->staged_last) {
743 			struct hl_cs *staged_cs, *tmp_cs;
744 
745 			list_for_each_entry_safe(staged_cs, tmp_cs,
746 					&cs->staged_cs_node, staged_cs_node)
747 				staged_cs_put(hdev, staged_cs);
748 		}
749 
750 		/* A staged CS will be a member in the list only after it
751 		 * was submitted. We used 'cs_mirror_lock' when inserting
752 		 * it to list so we will use it again when removing it
753 		 */
754 		if (cs->submitted) {
755 			spin_lock(&hdev->cs_mirror_lock);
756 			list_del(&cs->staged_cs_node);
757 			spin_unlock(&hdev->cs_mirror_lock);
758 		}
759 
760 		/* decrement refcount to handle when first staged cs
761 		 * with encaps signals is completed.
762 		 */
763 		if (hl_cs_cmpl->encaps_signals)
764 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
765 					hl_encaps_release_handle_and_put_ctx);
766 	}
767 
768 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
769 		kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
770 
771 out:
772 	/* Must be called before hl_ctx_put because inside we use ctx to get
773 	 * the device
774 	 */
775 	hl_debugfs_remove_cs(cs);
776 
777 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
778 
779 	/* We need to mark an error for not submitted because in that case
780 	 * the hl fence release flow is different. Mainly, we don't need
781 	 * to handle hw_sob for signal/wait
782 	 */
783 	if (cs->timedout)
784 		cs->fence->error = -ETIMEDOUT;
785 	else if (cs->aborted)
786 		cs->fence->error = -EIO;
787 	else if (!cs->submitted)
788 		cs->fence->error = -EBUSY;
789 
790 	if (unlikely(cs->skip_reset_on_timeout)) {
791 		dev_err(hdev->dev,
792 			"Command submission %llu completed after %llu (s)\n",
793 			cs->sequence,
794 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
795 	}
796 
797 	if (cs->timestamp) {
798 		cs->fence->timestamp = cs->completion_timestamp;
799 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
800 				   cs->fence->timestamp, cs->fence->error);
801 	}
802 
803 	hl_ctx_put(cs->ctx);
804 
805 	complete_all(&cs->fence->completion);
806 	complete_multi_cs(hdev, cs);
807 
808 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
809 
810 	hl_fence_put(cs->fence);
811 
812 	kfree(cs->jobs_in_queue_cnt);
813 	kfree(cs);
814 }
815 
816 static void cs_timedout(struct work_struct *work)
817 {
818 	struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work);
819 	bool skip_reset_on_timeout, device_reset = false;
820 	struct hl_device *hdev;
821 	u64 event_mask = 0x0;
822 	uint timeout_sec;
823 	int rc;
824 
825 	skip_reset_on_timeout = cs->skip_reset_on_timeout;
826 
827 	rc = cs_get_unless_zero(cs);
828 	if (!rc)
829 		return;
830 
831 	if ((!cs->submitted) || (cs->completed)) {
832 		cs_put(cs);
833 		return;
834 	}
835 
836 	hdev = cs->ctx->hdev;
837 
838 	if (likely(!skip_reset_on_timeout)) {
839 		if (hdev->reset_on_lockup)
840 			device_reset = true;
841 		else
842 			hdev->reset_info.needs_reset = true;
843 
844 		/* Mark the CS is timed out so we won't try to cancel its TDR */
845 		cs->timedout = true;
846 	}
847 
848 	/* Save only the first CS timeout parameters */
849 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
850 	if (rc) {
851 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
852 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
853 		event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
854 	}
855 
856 	timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000;
857 
858 	switch (cs->type) {
859 	case CS_TYPE_SIGNAL:
860 		dev_err(hdev->dev,
861 			"Signal command submission %llu has not finished in %u seconds!\n",
862 			cs->sequence, timeout_sec);
863 		break;
864 
865 	case CS_TYPE_WAIT:
866 		dev_err(hdev->dev,
867 			"Wait command submission %llu has not finished in %u seconds!\n",
868 			cs->sequence, timeout_sec);
869 		break;
870 
871 	case CS_TYPE_COLLECTIVE_WAIT:
872 		dev_err(hdev->dev,
873 			"Collective Wait command submission %llu has not finished in %u seconds!\n",
874 			cs->sequence, timeout_sec);
875 		break;
876 
877 	default:
878 		dev_err(hdev->dev,
879 			"Command submission %llu has not finished in %u seconds!\n",
880 			cs->sequence, timeout_sec);
881 		break;
882 	}
883 
884 	rc = hl_state_dump(hdev);
885 	if (rc)
886 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
887 
888 	cs_put(cs);
889 
890 	if (device_reset) {
891 		event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
892 		hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
893 	} else if (event_mask) {
894 		hl_notifier_event_send_all(hdev, event_mask);
895 	}
896 }
897 
898 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
899 			enum hl_cs_type cs_type, u64 user_sequence,
900 			struct hl_cs **cs_new, u32 flags, u32 timeout)
901 {
902 	struct hl_cs_counters_atomic *cntr;
903 	struct hl_fence *other = NULL;
904 	struct hl_cs_compl *cs_cmpl;
905 	struct hl_cs *cs;
906 	int rc;
907 
908 	cntr = &hdev->aggregated_cs_counters;
909 
910 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
911 	if (!cs)
912 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
913 
914 	if (!cs) {
915 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
916 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
917 		return -ENOMEM;
918 	}
919 
920 	/* increment refcnt for context */
921 	hl_ctx_get(ctx);
922 
923 	cs->ctx = ctx;
924 	cs->submitted = false;
925 	cs->completed = false;
926 	cs->type = cs_type;
927 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
928 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
929 	cs->timeout_jiffies = timeout;
930 	cs->skip_reset_on_timeout =
931 		hdev->reset_info.skip_reset_on_timeout ||
932 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
933 	cs->submission_time_jiffies = jiffies;
934 	INIT_LIST_HEAD(&cs->job_list);
935 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
936 	kref_init(&cs->refcount);
937 	spin_lock_init(&cs->job_lock);
938 
939 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
940 	if (!cs_cmpl)
941 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
942 
943 	if (!cs_cmpl) {
944 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
945 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
946 		rc = -ENOMEM;
947 		goto free_cs;
948 	}
949 
950 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
951 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
952 	if (!cs->jobs_in_queue_cnt)
953 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
954 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
955 
956 	if (!cs->jobs_in_queue_cnt) {
957 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
958 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
959 		rc = -ENOMEM;
960 		goto free_cs_cmpl;
961 	}
962 
963 	cs_cmpl->hdev = hdev;
964 	cs_cmpl->type = cs->type;
965 	spin_lock_init(&cs_cmpl->lock);
966 	cs->fence = &cs_cmpl->base_fence;
967 
968 	spin_lock(&ctx->cs_lock);
969 
970 	cs_cmpl->cs_seq = ctx->cs_sequence;
971 	other = ctx->cs_pending[cs_cmpl->cs_seq &
972 				(hdev->asic_prop.max_pending_cs - 1)];
973 
974 	if (other && !completion_done(&other->completion)) {
975 		/* If the following statement is true, it means we have reached
976 		 * a point in which only part of the staged submission was
977 		 * submitted and we don't have enough room in the 'cs_pending'
978 		 * array for the rest of the submission.
979 		 * This causes a deadlock because this CS will never be
980 		 * completed as it depends on future CS's for completion.
981 		 */
982 		if (other->cs_sequence == user_sequence)
983 			dev_crit_ratelimited(hdev->dev,
984 				"Staged CS %llu deadlock due to lack of resources",
985 				user_sequence);
986 
987 		dev_dbg_ratelimited(hdev->dev,
988 			"Rejecting CS because of too many in-flights CS\n");
989 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
990 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
991 		rc = -EAGAIN;
992 		goto free_fence;
993 	}
994 
995 	/* init hl_fence */
996 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
997 
998 	cs->sequence = cs_cmpl->cs_seq;
999 
1000 	ctx->cs_pending[cs_cmpl->cs_seq &
1001 			(hdev->asic_prop.max_pending_cs - 1)] =
1002 							&cs_cmpl->base_fence;
1003 	ctx->cs_sequence++;
1004 
1005 	hl_fence_get(&cs_cmpl->base_fence);
1006 
1007 	hl_fence_put(other);
1008 
1009 	spin_unlock(&ctx->cs_lock);
1010 
1011 	*cs_new = cs;
1012 
1013 	return 0;
1014 
1015 free_fence:
1016 	spin_unlock(&ctx->cs_lock);
1017 	kfree(cs->jobs_in_queue_cnt);
1018 free_cs_cmpl:
1019 	kfree(cs_cmpl);
1020 free_cs:
1021 	kfree(cs);
1022 	hl_ctx_put(ctx);
1023 	return rc;
1024 }
1025 
1026 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1027 {
1028 	struct hl_cs_job *job, *tmp;
1029 
1030 	staged_cs_put(hdev, cs);
1031 
1032 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1033 		hl_complete_job(hdev, job);
1034 }
1035 
1036 /*
1037  * release_reserved_encaps_signals() - release reserved encapsulated signals.
1038  * @hdev: pointer to habanalabs device structure
1039  *
1040  * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1041  * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1042  * For these signals need also to put the refcount of the H/W SOB which was taken at the
1043  * reservation.
1044  */
1045 static void release_reserved_encaps_signals(struct hl_device *hdev)
1046 {
1047 	struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1048 	struct hl_cs_encaps_sig_handle *handle;
1049 	struct hl_encaps_signals_mgr *mgr;
1050 	u32 id;
1051 
1052 	if (!ctx)
1053 		return;
1054 
1055 	mgr = &ctx->sig_mgr;
1056 
1057 	idr_for_each_entry(&mgr->handles, handle, id)
1058 		if (handle->cs_seq == ULLONG_MAX)
1059 			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1060 
1061 	hl_ctx_put(ctx);
1062 }
1063 
1064 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1065 {
1066 	int i;
1067 	struct hl_cs *cs, *tmp;
1068 
1069 	if (!skip_wq_flush) {
1070 		flush_workqueue(hdev->ts_free_obj_wq);
1071 
1072 		/* flush all completions before iterating over the CS mirror list in
1073 		 * order to avoid a race with the release functions
1074 		 */
1075 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1076 			flush_workqueue(hdev->cq_wq[i]);
1077 
1078 		flush_workqueue(hdev->cs_cmplt_wq);
1079 	}
1080 
1081 	/* Make sure we don't have leftovers in the CS mirror list */
1082 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1083 		cs_get(cs);
1084 		cs->aborted = true;
1085 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1086 					cs->ctx->asid, cs->sequence);
1087 		cs_rollback(hdev, cs);
1088 		cs_put(cs);
1089 	}
1090 
1091 	force_complete_multi_cs(hdev);
1092 
1093 	release_reserved_encaps_signals(hdev);
1094 }
1095 
1096 static void
1097 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1098 {
1099 	struct hl_user_pending_interrupt *pend, *temp;
1100 	unsigned long flags;
1101 
1102 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
1103 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, list_node) {
1104 		pend->fence.error = -EIO;
1105 		complete_all(&pend->fence.completion);
1106 	}
1107 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
1108 
1109 	spin_lock_irqsave(&interrupt->ts_list_lock, flags);
1110 	list_for_each_entry_safe(pend, temp, &interrupt->ts_list_head, list_node) {
1111 		list_del(&pend->list_node);
1112 		hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1113 		hl_cb_put(pend->ts_reg_info.cq_cb);
1114 	}
1115 	spin_unlock_irqrestore(&interrupt->ts_list_lock, flags);
1116 }
1117 
1118 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1119 {
1120 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1121 	struct hl_user_interrupt *interrupt;
1122 	int i;
1123 
1124 	if (!prop->user_interrupt_count)
1125 		return;
1126 
1127 	/* We iterate through the user interrupt requests and waking up all
1128 	 * user threads waiting for interrupt completion. We iterate the
1129 	 * list under a lock, this is why all user threads, once awake,
1130 	 * will wait on the same lock and will release the waiting object upon
1131 	 * unlock.
1132 	 */
1133 
1134 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1135 		interrupt = &hdev->user_interrupt[i];
1136 		wake_pending_user_interrupt_threads(interrupt);
1137 	}
1138 
1139 	interrupt = &hdev->common_user_cq_interrupt;
1140 	wake_pending_user_interrupt_threads(interrupt);
1141 
1142 	interrupt = &hdev->common_decoder_interrupt;
1143 	wake_pending_user_interrupt_threads(interrupt);
1144 }
1145 
1146 static void force_complete_cs(struct hl_device *hdev)
1147 {
1148 	struct hl_cs *cs;
1149 
1150 	spin_lock(&hdev->cs_mirror_lock);
1151 
1152 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1153 		cs->fence->error = -EIO;
1154 		complete_all(&cs->fence->completion);
1155 	}
1156 
1157 	spin_unlock(&hdev->cs_mirror_lock);
1158 }
1159 
1160 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev)
1161 {
1162 	force_complete_cs(hdev);
1163 	force_complete_multi_cs(hdev);
1164 }
1165 
1166 static void job_wq_completion(struct work_struct *work)
1167 {
1168 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1169 						finish_work);
1170 	struct hl_cs *cs = job->cs;
1171 	struct hl_device *hdev = cs->ctx->hdev;
1172 
1173 	/* job is no longer needed */
1174 	hl_complete_job(hdev, job);
1175 }
1176 
1177 static void cs_completion(struct work_struct *work)
1178 {
1179 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1180 	struct hl_device *hdev = cs->ctx->hdev;
1181 	struct hl_cs_job *job, *tmp;
1182 
1183 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1184 		hl_complete_job(hdev, job);
1185 }
1186 
1187 u32 hl_get_active_cs_num(struct hl_device *hdev)
1188 {
1189 	u32 active_cs_num = 0;
1190 	struct hl_cs *cs;
1191 
1192 	spin_lock(&hdev->cs_mirror_lock);
1193 
1194 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1195 		if (!cs->completed)
1196 			active_cs_num++;
1197 
1198 	spin_unlock(&hdev->cs_mirror_lock);
1199 
1200 	return active_cs_num;
1201 }
1202 
1203 static int validate_queue_index(struct hl_device *hdev,
1204 				struct hl_cs_chunk *chunk,
1205 				enum hl_queue_type *queue_type,
1206 				bool *is_kernel_allocated_cb)
1207 {
1208 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1209 	struct hw_queue_properties *hw_queue_prop;
1210 
1211 	/* This must be checked here to prevent out-of-bounds access to
1212 	 * hw_queues_props array
1213 	 */
1214 	if (chunk->queue_index >= asic->max_queues) {
1215 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1216 			chunk->queue_index);
1217 		return -EINVAL;
1218 	}
1219 
1220 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1221 
1222 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1223 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1224 			chunk->queue_index);
1225 		return -EINVAL;
1226 	}
1227 
1228 	if (hw_queue_prop->binned) {
1229 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1230 			chunk->queue_index);
1231 		return -EINVAL;
1232 	}
1233 
1234 	if (hw_queue_prop->driver_only) {
1235 		dev_err(hdev->dev,
1236 			"Queue index %d is restricted for the kernel driver\n",
1237 			chunk->queue_index);
1238 		return -EINVAL;
1239 	}
1240 
1241 	/* When hw queue type isn't QUEUE_TYPE_HW,
1242 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1243 	 */
1244 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1245 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1246 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1247 				dev_err(hdev->dev,
1248 					"Queue index %d doesn't support user CB\n",
1249 					chunk->queue_index);
1250 				return -EINVAL;
1251 			}
1252 
1253 			*is_kernel_allocated_cb = false;
1254 		} else {
1255 			if (!(hw_queue_prop->cb_alloc_flags &
1256 					CB_ALLOC_KERNEL)) {
1257 				dev_err(hdev->dev,
1258 					"Queue index %d doesn't support kernel CB\n",
1259 					chunk->queue_index);
1260 				return -EINVAL;
1261 			}
1262 
1263 			*is_kernel_allocated_cb = true;
1264 		}
1265 	} else {
1266 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1267 						& CB_ALLOC_KERNEL);
1268 	}
1269 
1270 	*queue_type = hw_queue_prop->type;
1271 	return 0;
1272 }
1273 
1274 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1275 					struct hl_mem_mgr *mmg,
1276 					struct hl_cs_chunk *chunk)
1277 {
1278 	struct hl_cb *cb;
1279 
1280 	cb = hl_cb_get(mmg, chunk->cb_handle);
1281 	if (!cb) {
1282 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1283 		return NULL;
1284 	}
1285 
1286 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1287 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1288 		goto release_cb;
1289 	}
1290 
1291 	atomic_inc(&cb->cs_cnt);
1292 
1293 	return cb;
1294 
1295 release_cb:
1296 	hl_cb_put(cb);
1297 	return NULL;
1298 }
1299 
1300 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1301 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1302 {
1303 	struct hl_cs_job *job;
1304 
1305 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1306 	if (!job)
1307 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1308 
1309 	if (!job)
1310 		return NULL;
1311 
1312 	kref_init(&job->refcount);
1313 	job->queue_type = queue_type;
1314 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1315 
1316 	if (is_cb_patched(hdev, job))
1317 		INIT_LIST_HEAD(&job->userptr_list);
1318 
1319 	if (job->queue_type == QUEUE_TYPE_EXT)
1320 		INIT_WORK(&job->finish_work, job_wq_completion);
1321 
1322 	return job;
1323 }
1324 
1325 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1326 {
1327 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1328 		return CS_TYPE_SIGNAL;
1329 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1330 		return CS_TYPE_WAIT;
1331 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1332 		return CS_TYPE_COLLECTIVE_WAIT;
1333 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1334 		return CS_RESERVE_SIGNALS;
1335 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1336 		return CS_UNRESERVE_SIGNALS;
1337 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1338 		return CS_TYPE_ENGINE_CORE;
1339 	else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND)
1340 		return CS_TYPE_ENGINES;
1341 	else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1342 		return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1343 	else
1344 		return CS_TYPE_DEFAULT;
1345 }
1346 
1347 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1348 {
1349 	struct hl_device *hdev = hpriv->hdev;
1350 	struct hl_ctx *ctx = hpriv->ctx;
1351 	u32 cs_type_flags, num_chunks;
1352 	enum hl_device_status status;
1353 	enum hl_cs_type cs_type;
1354 	bool is_sync_stream;
1355 	int i;
1356 
1357 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1358 		if (args->in.pad[i]) {
1359 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1360 			return -EINVAL;
1361 		}
1362 
1363 	if (!hl_device_operational(hdev, &status)) {
1364 		return -EBUSY;
1365 	}
1366 
1367 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1368 			!hdev->supports_staged_submission) {
1369 		dev_err(hdev->dev, "staged submission not supported");
1370 		return -EPERM;
1371 	}
1372 
1373 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1374 
1375 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1376 		dev_err(hdev->dev,
1377 			"CS type flags are mutually exclusive, context %d\n",
1378 			ctx->asid);
1379 		return -EINVAL;
1380 	}
1381 
1382 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1383 	num_chunks = args->in.num_chunks_execute;
1384 
1385 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1386 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1387 
1388 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1389 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (cs_type == CS_TYPE_DEFAULT) {
1394 		if (!num_chunks) {
1395 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1396 			return -EINVAL;
1397 		}
1398 	} else if (is_sync_stream && num_chunks != 1) {
1399 		dev_err(hdev->dev,
1400 			"Sync stream CS mandates one chunk only, context %d\n",
1401 			ctx->asid);
1402 		return -EINVAL;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1409 					struct hl_cs_chunk **cs_chunk_array,
1410 					void __user *chunks, u32 num_chunks,
1411 					struct hl_ctx *ctx)
1412 {
1413 	u32 size_to_copy;
1414 
1415 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1416 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1417 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1418 		dev_err(hdev->dev,
1419 			"Number of chunks can NOT be larger than %d\n",
1420 			HL_MAX_JOBS_PER_CS);
1421 		return -EINVAL;
1422 	}
1423 
1424 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1425 					GFP_ATOMIC);
1426 	if (!*cs_chunk_array)
1427 		*cs_chunk_array = kmalloc_array(num_chunks,
1428 					sizeof(**cs_chunk_array), GFP_KERNEL);
1429 	if (!*cs_chunk_array) {
1430 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1431 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1432 		return -ENOMEM;
1433 	}
1434 
1435 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1436 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1437 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1438 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1439 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1440 		kfree(*cs_chunk_array);
1441 		return -EFAULT;
1442 	}
1443 
1444 	return 0;
1445 }
1446 
1447 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1448 				u64 sequence, u32 flags,
1449 				u32 encaps_signal_handle)
1450 {
1451 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1452 		return 0;
1453 
1454 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1455 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1456 
1457 	if (cs->staged_first) {
1458 		/* Staged CS sequence is the first CS sequence */
1459 		INIT_LIST_HEAD(&cs->staged_cs_node);
1460 		cs->staged_sequence = cs->sequence;
1461 
1462 		if (cs->encaps_signals)
1463 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1464 	} else {
1465 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1466 		 * under the cs_mirror_lock
1467 		 */
1468 		cs->staged_sequence = sequence;
1469 	}
1470 
1471 	/* Increment CS reference if needed */
1472 	staged_cs_get(hdev, cs);
1473 
1474 	cs->staged_cs = true;
1475 
1476 	return 0;
1477 }
1478 
1479 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1480 {
1481 	int i;
1482 
1483 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1484 		if (qid == hdev->stream_master_qid_arr[i])
1485 			return BIT(i);
1486 
1487 	return 0;
1488 }
1489 
1490 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1491 				u32 num_chunks, u64 *cs_seq, u32 flags,
1492 				u32 encaps_signals_handle, u32 timeout,
1493 				u16 *signal_initial_sob_count)
1494 {
1495 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1496 	struct hl_device *hdev = hpriv->hdev;
1497 	struct hl_cs_chunk *cs_chunk_array;
1498 	struct hl_cs_counters_atomic *cntr;
1499 	struct hl_ctx *ctx = hpriv->ctx;
1500 	struct hl_cs_job *job;
1501 	struct hl_cs *cs;
1502 	struct hl_cb *cb;
1503 	u64 user_sequence;
1504 	u8 stream_master_qid_map = 0;
1505 	int rc, i;
1506 
1507 	cntr = &hdev->aggregated_cs_counters;
1508 	user_sequence = *cs_seq;
1509 	*cs_seq = ULLONG_MAX;
1510 
1511 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1512 			hpriv->ctx);
1513 	if (rc)
1514 		goto out;
1515 
1516 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1517 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1518 		staged_mid = true;
1519 	else
1520 		staged_mid = false;
1521 
1522 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1523 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1524 			timeout);
1525 	if (rc)
1526 		goto free_cs_chunk_array;
1527 
1528 	*cs_seq = cs->sequence;
1529 
1530 	hl_debugfs_add_cs(cs);
1531 
1532 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1533 						encaps_signals_handle);
1534 	if (rc)
1535 		goto free_cs_object;
1536 
1537 	/* If this is a staged submission we must return the staged sequence
1538 	 * rather than the internal CS sequence
1539 	 */
1540 	if (cs->staged_cs)
1541 		*cs_seq = cs->staged_sequence;
1542 
1543 	/* Validate ALL the CS chunks before submitting the CS */
1544 	for (i = 0 ; i < num_chunks ; i++) {
1545 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1546 		enum hl_queue_type queue_type;
1547 		bool is_kernel_allocated_cb;
1548 
1549 		rc = validate_queue_index(hdev, chunk, &queue_type,
1550 						&is_kernel_allocated_cb);
1551 		if (rc) {
1552 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1553 			atomic64_inc(&cntr->validation_drop_cnt);
1554 			goto free_cs_object;
1555 		}
1556 
1557 		if (is_kernel_allocated_cb) {
1558 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1559 			if (!cb) {
1560 				atomic64_inc(
1561 					&ctx->cs_counters.validation_drop_cnt);
1562 				atomic64_inc(&cntr->validation_drop_cnt);
1563 				rc = -EINVAL;
1564 				goto free_cs_object;
1565 			}
1566 		} else {
1567 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1568 		}
1569 
1570 		if (queue_type == QUEUE_TYPE_EXT ||
1571 						queue_type == QUEUE_TYPE_HW) {
1572 			int_queues_only = false;
1573 
1574 			/*
1575 			 * store which stream are being used for external/HW
1576 			 * queues of this CS
1577 			 */
1578 			if (hdev->supports_wait_for_multi_cs)
1579 				stream_master_qid_map |=
1580 					get_stream_master_qid_mask(hdev,
1581 							chunk->queue_index);
1582 		}
1583 
1584 		if (queue_type == QUEUE_TYPE_HW)
1585 			using_hw_queues = true;
1586 
1587 		job = hl_cs_allocate_job(hdev, queue_type,
1588 						is_kernel_allocated_cb);
1589 		if (!job) {
1590 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1591 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1592 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1593 			rc = -ENOMEM;
1594 			if (is_kernel_allocated_cb)
1595 				goto release_cb;
1596 
1597 			goto free_cs_object;
1598 		}
1599 
1600 		job->id = i + 1;
1601 		job->cs = cs;
1602 		job->user_cb = cb;
1603 		job->user_cb_size = chunk->cb_size;
1604 		job->hw_queue_id = chunk->queue_index;
1605 
1606 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1607 		cs->jobs_cnt++;
1608 
1609 		list_add_tail(&job->cs_node, &cs->job_list);
1610 
1611 		/*
1612 		 * Increment CS reference. When CS reference is 0, CS is
1613 		 * done and can be signaled to user and free all its resources
1614 		 * Only increment for JOB on external or H/W queues, because
1615 		 * only for those JOBs we get completion
1616 		 */
1617 		if (cs_needs_completion(cs) &&
1618 			(job->queue_type == QUEUE_TYPE_EXT ||
1619 				job->queue_type == QUEUE_TYPE_HW))
1620 			cs_get(cs);
1621 
1622 		hl_debugfs_add_job(hdev, job);
1623 
1624 		rc = cs_parser(hpriv, job);
1625 		if (rc) {
1626 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1627 			atomic64_inc(&cntr->parsing_drop_cnt);
1628 			dev_err(hdev->dev,
1629 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1630 				cs->ctx->asid, cs->sequence, job->id, rc);
1631 			goto free_cs_object;
1632 		}
1633 	}
1634 
1635 	/* We allow a CS with any queue type combination as long as it does
1636 	 * not get a completion
1637 	 */
1638 	if (int_queues_only && cs_needs_completion(cs)) {
1639 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1640 		atomic64_inc(&cntr->validation_drop_cnt);
1641 		dev_err(hdev->dev,
1642 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1643 			cs->ctx->asid, cs->sequence);
1644 		rc = -EINVAL;
1645 		goto free_cs_object;
1646 	}
1647 
1648 	if (using_hw_queues)
1649 		INIT_WORK(&cs->finish_work, cs_completion);
1650 
1651 	/*
1652 	 * store the (external/HW queues) streams used by the CS in the
1653 	 * fence object for multi-CS completion
1654 	 */
1655 	if (hdev->supports_wait_for_multi_cs)
1656 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1657 
1658 	rc = hl_hw_queue_schedule_cs(cs);
1659 	if (rc) {
1660 		if (rc != -EAGAIN)
1661 			dev_err(hdev->dev,
1662 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1663 				cs->ctx->asid, cs->sequence, rc);
1664 		goto free_cs_object;
1665 	}
1666 
1667 	*signal_initial_sob_count = cs->initial_sob_count;
1668 
1669 	rc = HL_CS_STATUS_SUCCESS;
1670 	goto put_cs;
1671 
1672 release_cb:
1673 	atomic_dec(&cb->cs_cnt);
1674 	hl_cb_put(cb);
1675 free_cs_object:
1676 	cs_rollback(hdev, cs);
1677 	*cs_seq = ULLONG_MAX;
1678 	/* The path below is both for good and erroneous exits */
1679 put_cs:
1680 	/* We finished with the CS in this function, so put the ref */
1681 	cs_put(cs);
1682 free_cs_chunk_array:
1683 	kfree(cs_chunk_array);
1684 out:
1685 	return rc;
1686 }
1687 
1688 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1689 				u64 *cs_seq)
1690 {
1691 	struct hl_device *hdev = hpriv->hdev;
1692 	struct hl_ctx *ctx = hpriv->ctx;
1693 	bool need_soft_reset = false;
1694 	int rc = 0, do_ctx_switch = 0;
1695 	void __user *chunks;
1696 	u32 num_chunks, tmp;
1697 	u16 sob_count;
1698 	int ret;
1699 
1700 	if (hdev->supports_ctx_switch)
1701 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1702 
1703 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1704 		mutex_lock(&hpriv->restore_phase_mutex);
1705 
1706 		if (do_ctx_switch) {
1707 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1708 			if (rc) {
1709 				dev_err_ratelimited(hdev->dev,
1710 					"Failed to switch to context %d, rejecting CS! %d\n",
1711 					ctx->asid, rc);
1712 				/*
1713 				 * If we timedout, or if the device is not IDLE
1714 				 * while we want to do context-switch (-EBUSY),
1715 				 * we need to soft-reset because QMAN is
1716 				 * probably stuck. However, we can't call to
1717 				 * reset here directly because of deadlock, so
1718 				 * need to do it at the very end of this
1719 				 * function
1720 				 */
1721 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1722 					need_soft_reset = true;
1723 				mutex_unlock(&hpriv->restore_phase_mutex);
1724 				goto out;
1725 			}
1726 		}
1727 
1728 		hdev->asic_funcs->restore_phase_topology(hdev);
1729 
1730 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1731 		num_chunks = args->in.num_chunks_restore;
1732 
1733 		if (!num_chunks) {
1734 			dev_dbg(hdev->dev,
1735 				"Need to run restore phase but restore CS is empty\n");
1736 			rc = 0;
1737 		} else {
1738 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1739 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1740 		}
1741 
1742 		mutex_unlock(&hpriv->restore_phase_mutex);
1743 
1744 		if (rc) {
1745 			dev_err(hdev->dev,
1746 				"Failed to submit restore CS for context %d (%d)\n",
1747 				ctx->asid, rc);
1748 			goto out;
1749 		}
1750 
1751 		/* Need to wait for restore completion before execution phase */
1752 		if (num_chunks) {
1753 			enum hl_cs_wait_status status;
1754 
1755 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1756 					jiffies_to_usecs(hdev->timeout_jiffies),
1757 					*cs_seq, &status, NULL);
1758 			if (ret) {
1759 				dev_err(hdev->dev,
1760 					"Restore CS for context %d failed to complete %d\n",
1761 					ctx->asid, ret);
1762 				rc = -ENOEXEC;
1763 				goto out;
1764 			}
1765 		}
1766 
1767 		if (hdev->supports_ctx_switch)
1768 			ctx->thread_ctx_switch_wait_token = 1;
1769 
1770 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1771 		rc = hl_poll_timeout_memory(hdev,
1772 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1773 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1774 
1775 		if (rc == -ETIMEDOUT) {
1776 			dev_err(hdev->dev,
1777 				"context switch phase timeout (%d)\n", tmp);
1778 			goto out;
1779 		}
1780 	}
1781 
1782 out:
1783 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1784 		hl_device_reset(hdev, 0);
1785 
1786 	return rc;
1787 }
1788 
1789 /*
1790  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1791  * if the SOB value reaches the max value move to the other SOB reserved
1792  * to the queue.
1793  * @hdev: pointer to device structure
1794  * @q_idx: stream queue index
1795  * @hw_sob: the H/W SOB used in this signal CS.
1796  * @count: signals count
1797  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1798  *
1799  * Note that this function must be called while hw_queues_lock is taken.
1800  */
1801 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1802 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1803 
1804 {
1805 	struct hl_sync_stream_properties *prop;
1806 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1807 	u8 other_sob_offset;
1808 
1809 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1810 
1811 	hw_sob_get(sob);
1812 
1813 	/* check for wraparound */
1814 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1815 		/*
1816 		 * Decrement as we reached the max value.
1817 		 * The release function won't be called here as we've
1818 		 * just incremented the refcount right before calling this
1819 		 * function.
1820 		 */
1821 		hw_sob_put_err(sob);
1822 
1823 		/*
1824 		 * check the other sob value, if it still in use then fail
1825 		 * otherwise make the switch
1826 		 */
1827 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1828 		other_sob = &prop->hw_sob[other_sob_offset];
1829 
1830 		if (kref_read(&other_sob->kref) != 1) {
1831 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1832 								q_idx);
1833 			return -EINVAL;
1834 		}
1835 
1836 		/*
1837 		 * next_sob_val always points to the next available signal
1838 		 * in the sob, so in encaps signals it will be the next one
1839 		 * after reserving the required amount.
1840 		 */
1841 		if (encaps_sig)
1842 			prop->next_sob_val = count + 1;
1843 		else
1844 			prop->next_sob_val = count;
1845 
1846 		/* only two SOBs are currently in use */
1847 		prop->curr_sob_offset = other_sob_offset;
1848 		*hw_sob = other_sob;
1849 
1850 		/*
1851 		 * check if other_sob needs reset, then do it before using it
1852 		 * for the reservation or the next signal cs.
1853 		 * we do it here, and for both encaps and regular signal cs
1854 		 * cases in order to avoid possible races of two kref_put
1855 		 * of the sob which can occur at the same time if we move the
1856 		 * sob reset(kref_put) to cs_do_release function.
1857 		 * in addition, if we have combination of cs signal and
1858 		 * encaps, and at the point we need to reset the sob there was
1859 		 * no more reservations and only signal cs keep coming,
1860 		 * in such case we need signal_cs to put the refcount and
1861 		 * reset the sob.
1862 		 */
1863 		if (other_sob->need_reset)
1864 			hw_sob_put(other_sob);
1865 
1866 		if (encaps_sig) {
1867 			/* set reset indication for the sob */
1868 			sob->need_reset = true;
1869 			hw_sob_get(other_sob);
1870 		}
1871 
1872 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1873 				prop->curr_sob_offset, q_idx);
1874 	} else {
1875 		prop->next_sob_val += count;
1876 	}
1877 
1878 	return 0;
1879 }
1880 
1881 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1882 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1883 		bool encaps_signals)
1884 {
1885 	u64 *signal_seq_arr = NULL;
1886 	u32 size_to_copy, signal_seq_arr_len;
1887 	int rc = 0;
1888 
1889 	if (encaps_signals) {
1890 		*signal_seq = chunk->encaps_signal_seq;
1891 		return 0;
1892 	}
1893 
1894 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1895 
1896 	/* currently only one signal seq is supported */
1897 	if (signal_seq_arr_len != 1) {
1898 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1899 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1900 		dev_err(hdev->dev,
1901 			"Wait for signal CS supports only one signal CS seq\n");
1902 		return -EINVAL;
1903 	}
1904 
1905 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1906 					sizeof(*signal_seq_arr),
1907 					GFP_ATOMIC);
1908 	if (!signal_seq_arr)
1909 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1910 					sizeof(*signal_seq_arr),
1911 					GFP_KERNEL);
1912 	if (!signal_seq_arr) {
1913 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1914 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1919 	if (copy_from_user(signal_seq_arr,
1920 				u64_to_user_ptr(chunk->signal_seq_arr),
1921 				size_to_copy)) {
1922 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1923 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1924 		dev_err(hdev->dev,
1925 			"Failed to copy signal seq array from user\n");
1926 		rc = -EFAULT;
1927 		goto out;
1928 	}
1929 
1930 	/* currently it is guaranteed to have only one signal seq */
1931 	*signal_seq = signal_seq_arr[0];
1932 
1933 out:
1934 	kfree(signal_seq_arr);
1935 
1936 	return rc;
1937 }
1938 
1939 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1940 		struct hl_ctx *ctx, struct hl_cs *cs,
1941 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1942 {
1943 	struct hl_cs_counters_atomic *cntr;
1944 	struct hl_cs_job *job;
1945 	struct hl_cb *cb;
1946 	u32 cb_size;
1947 
1948 	cntr = &hdev->aggregated_cs_counters;
1949 
1950 	job = hl_cs_allocate_job(hdev, q_type, true);
1951 	if (!job) {
1952 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1953 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1954 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1955 		return -ENOMEM;
1956 	}
1957 
1958 	if (cs->type == CS_TYPE_WAIT)
1959 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1960 	else
1961 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1962 
1963 	cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW);
1964 	if (!cb) {
1965 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1966 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1967 		kfree(job);
1968 		return -EFAULT;
1969 	}
1970 
1971 	job->id = 0;
1972 	job->cs = cs;
1973 	job->user_cb = cb;
1974 	atomic_inc(&job->user_cb->cs_cnt);
1975 	job->user_cb_size = cb_size;
1976 	job->hw_queue_id = q_idx;
1977 
1978 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1979 			&& cs->encaps_signals)
1980 		job->encaps_sig_wait_offset = encaps_signal_offset;
1981 	/*
1982 	 * No need in parsing, user CB is the patched CB.
1983 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1984 	 * the CB idr anymore and to decrement its refcount as it was
1985 	 * incremented inside hl_cb_kernel_create().
1986 	 */
1987 	job->patched_cb = job->user_cb;
1988 	job->job_cb_size = job->user_cb_size;
1989 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1990 
1991 	/* increment refcount as for external queues we get completion */
1992 	cs_get(cs);
1993 
1994 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1995 	cs->jobs_cnt++;
1996 
1997 	list_add_tail(&job->cs_node, &cs->job_list);
1998 
1999 	hl_debugfs_add_job(hdev, job);
2000 
2001 	return 0;
2002 }
2003 
2004 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
2005 				u32 q_idx, u32 count,
2006 				u32 *handle_id, u32 *sob_addr,
2007 				u32 *signals_count)
2008 {
2009 	struct hw_queue_properties *hw_queue_prop;
2010 	struct hl_sync_stream_properties *prop;
2011 	struct hl_device *hdev = hpriv->hdev;
2012 	struct hl_cs_encaps_sig_handle *handle;
2013 	struct hl_encaps_signals_mgr *mgr;
2014 	struct hl_hw_sob *hw_sob;
2015 	int hdl_id;
2016 	int rc = 0;
2017 
2018 	if (count >= HL_MAX_SOB_VAL) {
2019 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2020 						count);
2021 		rc = -EINVAL;
2022 		goto out;
2023 	}
2024 
2025 	if (q_idx >= hdev->asic_prop.max_queues) {
2026 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2027 			q_idx);
2028 		rc = -EINVAL;
2029 		goto out;
2030 	}
2031 
2032 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2033 
2034 	if (!hw_queue_prop->supports_sync_stream) {
2035 		dev_err(hdev->dev,
2036 			"Queue index %d does not support sync stream operations\n",
2037 									q_idx);
2038 		rc = -EINVAL;
2039 		goto out;
2040 	}
2041 
2042 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2043 
2044 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2045 	if (!handle) {
2046 		rc = -ENOMEM;
2047 		goto out;
2048 	}
2049 
2050 	handle->count = count;
2051 
2052 	hl_ctx_get(hpriv->ctx);
2053 	handle->ctx = hpriv->ctx;
2054 	mgr = &hpriv->ctx->sig_mgr;
2055 
2056 	spin_lock(&mgr->lock);
2057 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2058 	spin_unlock(&mgr->lock);
2059 
2060 	if (hdl_id < 0) {
2061 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2062 		rc = -EINVAL;
2063 		goto put_ctx;
2064 	}
2065 
2066 	handle->id = hdl_id;
2067 	handle->q_idx = q_idx;
2068 	handle->hdev = hdev;
2069 	kref_init(&handle->refcount);
2070 
2071 	hdev->asic_funcs->hw_queues_lock(hdev);
2072 
2073 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2074 
2075 	/*
2076 	 * Increment the SOB value by count by user request
2077 	 * to reserve those signals
2078 	 * check if the signals amount to reserve is not exceeding the max sob
2079 	 * value, if yes then switch sob.
2080 	 */
2081 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2082 								true);
2083 	if (rc) {
2084 		dev_err(hdev->dev, "Failed to switch SOB\n");
2085 		hdev->asic_funcs->hw_queues_unlock(hdev);
2086 		rc = -EINVAL;
2087 		goto remove_idr;
2088 	}
2089 	/* set the hw_sob to the handle after calling the sob wraparound handler
2090 	 * since sob could have changed.
2091 	 */
2092 	handle->hw_sob = hw_sob;
2093 
2094 	/* store the current sob value for unreserve validity check, and
2095 	 * signal offset support
2096 	 */
2097 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2098 
2099 	handle->cs_seq = ULLONG_MAX;
2100 
2101 	*signals_count = prop->next_sob_val;
2102 	hdev->asic_funcs->hw_queues_unlock(hdev);
2103 
2104 	*sob_addr = handle->hw_sob->sob_addr;
2105 	*handle_id = hdl_id;
2106 
2107 	dev_dbg(hdev->dev,
2108 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2109 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2110 			prop->next_sob_val - 1, q_idx, hdl_id);
2111 	goto out;
2112 
2113 remove_idr:
2114 	spin_lock(&mgr->lock);
2115 	idr_remove(&mgr->handles, hdl_id);
2116 	spin_unlock(&mgr->lock);
2117 
2118 put_ctx:
2119 	hl_ctx_put(handle->ctx);
2120 	kfree(handle);
2121 
2122 out:
2123 	return rc;
2124 }
2125 
2126 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2127 {
2128 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2129 	struct hl_sync_stream_properties *prop;
2130 	struct hl_device *hdev = hpriv->hdev;
2131 	struct hl_encaps_signals_mgr *mgr;
2132 	struct hl_hw_sob *hw_sob;
2133 	u32 q_idx, sob_addr;
2134 	int rc = 0;
2135 
2136 	mgr = &hpriv->ctx->sig_mgr;
2137 
2138 	spin_lock(&mgr->lock);
2139 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2140 	if (encaps_sig_hdl) {
2141 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2142 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2143 					encaps_sig_hdl->count);
2144 
2145 		hdev->asic_funcs->hw_queues_lock(hdev);
2146 
2147 		q_idx = encaps_sig_hdl->q_idx;
2148 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2149 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2150 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2151 
2152 		/* Check if sob_val got out of sync due to other
2153 		 * signal submission requests which were handled
2154 		 * between the reserve-unreserve calls or SOB switch
2155 		 * upon reaching SOB max value.
2156 		 */
2157 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2158 				!= prop->next_sob_val ||
2159 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2160 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2161 				encaps_sig_hdl->pre_sob_val,
2162 				(prop->next_sob_val - encaps_sig_hdl->count));
2163 
2164 			hdev->asic_funcs->hw_queues_unlock(hdev);
2165 			rc = -EINVAL;
2166 			goto out_unlock;
2167 		}
2168 
2169 		/*
2170 		 * Decrement the SOB value by count by user request
2171 		 * to unreserve those signals
2172 		 */
2173 		prop->next_sob_val -= encaps_sig_hdl->count;
2174 
2175 		hdev->asic_funcs->hw_queues_unlock(hdev);
2176 
2177 		hw_sob_put(hw_sob);
2178 
2179 		/* Release the id and free allocated memory of the handle */
2180 		idr_remove(&mgr->handles, handle_id);
2181 
2182 		/* unlock before calling ctx_put, where we might sleep */
2183 		spin_unlock(&mgr->lock);
2184 		hl_ctx_put(encaps_sig_hdl->ctx);
2185 		kfree(encaps_sig_hdl);
2186 		goto out;
2187 	} else {
2188 		rc = -EINVAL;
2189 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2190 	}
2191 
2192 out_unlock:
2193 	spin_unlock(&mgr->lock);
2194 
2195 out:
2196 	return rc;
2197 }
2198 
2199 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2200 				void __user *chunks, u32 num_chunks,
2201 				u64 *cs_seq, u32 flags, u32 timeout,
2202 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2203 {
2204 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2205 	bool handle_found = false, is_wait_cs = false,
2206 			wait_cs_submitted = false,
2207 			cs_encaps_signals = false;
2208 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2209 	bool staged_cs_with_encaps_signals = false;
2210 	struct hw_queue_properties *hw_queue_prop;
2211 	struct hl_device *hdev = hpriv->hdev;
2212 	struct hl_cs_compl *sig_waitcs_cmpl;
2213 	u32 q_idx, collective_engine_id = 0;
2214 	struct hl_cs_counters_atomic *cntr;
2215 	struct hl_fence *sig_fence = NULL;
2216 	struct hl_ctx *ctx = hpriv->ctx;
2217 	enum hl_queue_type q_type;
2218 	struct hl_cs *cs;
2219 	u64 signal_seq;
2220 	int rc;
2221 
2222 	cntr = &hdev->aggregated_cs_counters;
2223 	*cs_seq = ULLONG_MAX;
2224 
2225 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2226 			ctx);
2227 	if (rc)
2228 		goto out;
2229 
2230 	/* currently it is guaranteed to have only one chunk */
2231 	chunk = &cs_chunk_array[0];
2232 
2233 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2234 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2235 		atomic64_inc(&cntr->validation_drop_cnt);
2236 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2237 			chunk->queue_index);
2238 		rc = -EINVAL;
2239 		goto free_cs_chunk_array;
2240 	}
2241 
2242 	q_idx = chunk->queue_index;
2243 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2244 	q_type = hw_queue_prop->type;
2245 
2246 	if (!hw_queue_prop->supports_sync_stream) {
2247 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2248 		atomic64_inc(&cntr->validation_drop_cnt);
2249 		dev_err(hdev->dev,
2250 			"Queue index %d does not support sync stream operations\n",
2251 			q_idx);
2252 		rc = -EINVAL;
2253 		goto free_cs_chunk_array;
2254 	}
2255 
2256 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2257 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2258 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2259 			atomic64_inc(&cntr->validation_drop_cnt);
2260 			dev_err(hdev->dev,
2261 				"Queue index %d is invalid\n", q_idx);
2262 			rc = -EINVAL;
2263 			goto free_cs_chunk_array;
2264 		}
2265 
2266 		if (!hdev->nic_ports_mask) {
2267 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2268 			atomic64_inc(&cntr->validation_drop_cnt);
2269 			dev_err(hdev->dev,
2270 				"Collective operations not supported when NIC ports are disabled");
2271 			rc = -EINVAL;
2272 			goto free_cs_chunk_array;
2273 		}
2274 
2275 		collective_engine_id = chunk->collective_engine_id;
2276 	}
2277 
2278 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2279 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2280 
2281 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2282 
2283 	if (is_wait_cs) {
2284 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2285 				ctx, cs_encaps_signals);
2286 		if (rc)
2287 			goto free_cs_chunk_array;
2288 
2289 		if (cs_encaps_signals) {
2290 			/* check if cs sequence has encapsulated
2291 			 * signals handle
2292 			 */
2293 			struct idr *idp;
2294 			u32 id;
2295 
2296 			spin_lock(&ctx->sig_mgr.lock);
2297 			idp = &ctx->sig_mgr.handles;
2298 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2299 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2300 					/* get refcount to protect removing this handle from idr,
2301 					 * needed when multiple wait cs are used with offset
2302 					 * to wait on reserved encaps signals.
2303 					 * Since kref_put of this handle is executed outside the
2304 					 * current lock, it is possible that the handle refcount
2305 					 * is 0 but it yet to be removed from the list. In this
2306 					 * case need to consider the handle as not valid.
2307 					 */
2308 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2309 						handle_found = true;
2310 					break;
2311 				}
2312 			}
2313 			spin_unlock(&ctx->sig_mgr.lock);
2314 
2315 			if (!handle_found) {
2316 				/* treat as signal CS already finished */
2317 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2318 						signal_seq);
2319 				rc = 0;
2320 				goto free_cs_chunk_array;
2321 			}
2322 
2323 			/* validate also the signal offset value */
2324 			if (chunk->encaps_signal_offset >
2325 					encaps_sig_hdl->count) {
2326 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2327 						chunk->encaps_signal_offset,
2328 						encaps_sig_hdl->count);
2329 				rc = -EINVAL;
2330 				goto free_cs_chunk_array;
2331 			}
2332 		}
2333 
2334 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2335 		if (IS_ERR(sig_fence)) {
2336 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2337 			atomic64_inc(&cntr->validation_drop_cnt);
2338 			dev_err(hdev->dev,
2339 				"Failed to get signal CS with seq 0x%llx\n",
2340 				signal_seq);
2341 			rc = PTR_ERR(sig_fence);
2342 			goto free_cs_chunk_array;
2343 		}
2344 
2345 		if (!sig_fence) {
2346 			/* signal CS already finished */
2347 			rc = 0;
2348 			goto free_cs_chunk_array;
2349 		}
2350 
2351 		sig_waitcs_cmpl =
2352 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2353 
2354 		staged_cs_with_encaps_signals = !!
2355 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2356 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2357 
2358 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2359 				!staged_cs_with_encaps_signals) {
2360 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2361 			atomic64_inc(&cntr->validation_drop_cnt);
2362 			dev_err(hdev->dev,
2363 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2364 				signal_seq);
2365 			hl_fence_put(sig_fence);
2366 			rc = -EINVAL;
2367 			goto free_cs_chunk_array;
2368 		}
2369 
2370 		if (completion_done(&sig_fence->completion)) {
2371 			/* signal CS already finished */
2372 			hl_fence_put(sig_fence);
2373 			rc = 0;
2374 			goto free_cs_chunk_array;
2375 		}
2376 	}
2377 
2378 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2379 	if (rc) {
2380 		if (is_wait_cs)
2381 			hl_fence_put(sig_fence);
2382 
2383 		goto free_cs_chunk_array;
2384 	}
2385 
2386 	/*
2387 	 * Save the signal CS fence for later initialization right before
2388 	 * hanging the wait CS on the queue.
2389 	 * for encaps signals case, we save the cs sequence and handle pointer
2390 	 * for later initialization.
2391 	 */
2392 	if (is_wait_cs) {
2393 		cs->signal_fence = sig_fence;
2394 		/* store the handle pointer, so we don't have to
2395 		 * look for it again, later on the flow
2396 		 * when we need to set SOB info in hw_queue.
2397 		 */
2398 		if (cs->encaps_signals)
2399 			cs->encaps_sig_hdl = encaps_sig_hdl;
2400 	}
2401 
2402 	hl_debugfs_add_cs(cs);
2403 
2404 	*cs_seq = cs->sequence;
2405 
2406 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2407 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2408 				q_idx, chunk->encaps_signal_offset);
2409 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2410 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2411 				cs, q_idx, collective_engine_id,
2412 				chunk->encaps_signal_offset);
2413 	else {
2414 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2415 		atomic64_inc(&cntr->validation_drop_cnt);
2416 		rc = -EINVAL;
2417 	}
2418 
2419 	if (rc)
2420 		goto free_cs_object;
2421 
2422 	if (q_type == QUEUE_TYPE_HW)
2423 		INIT_WORK(&cs->finish_work, cs_completion);
2424 
2425 	rc = hl_hw_queue_schedule_cs(cs);
2426 	if (rc) {
2427 		/* In case wait cs failed here, it means the signal cs
2428 		 * already completed. we want to free all it's related objects
2429 		 * but we don't want to fail the ioctl.
2430 		 */
2431 		if (is_wait_cs)
2432 			rc = 0;
2433 		else if (rc != -EAGAIN)
2434 			dev_err(hdev->dev,
2435 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2436 				ctx->asid, cs->sequence, rc);
2437 		goto free_cs_object;
2438 	}
2439 
2440 	*signal_sob_addr_offset = cs->sob_addr_offset;
2441 	*signal_initial_sob_count = cs->initial_sob_count;
2442 
2443 	rc = HL_CS_STATUS_SUCCESS;
2444 	if (is_wait_cs)
2445 		wait_cs_submitted = true;
2446 	goto put_cs;
2447 
2448 free_cs_object:
2449 	cs_rollback(hdev, cs);
2450 	*cs_seq = ULLONG_MAX;
2451 	/* The path below is both for good and erroneous exits */
2452 put_cs:
2453 	/* We finished with the CS in this function, so put the ref */
2454 	cs_put(cs);
2455 free_cs_chunk_array:
2456 	if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2457 		kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2458 	kfree(cs_chunk_array);
2459 out:
2460 	return rc;
2461 }
2462 
2463 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2464 						u32 num_engine_cores, u32 core_command)
2465 {
2466 	struct hl_device *hdev = hpriv->hdev;
2467 	void __user *engine_cores_arr;
2468 	u32 *cores;
2469 	int rc;
2470 
2471 	if (!hdev->asic_prop.supports_engine_modes)
2472 		return -EPERM;
2473 
2474 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2475 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2480 		dev_err(hdev->dev, "Engine core command is invalid\n");
2481 		return -EINVAL;
2482 	}
2483 
2484 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2485 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2486 	if (!cores)
2487 		return -ENOMEM;
2488 
2489 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2490 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2491 		kfree(cores);
2492 		return -EFAULT;
2493 	}
2494 
2495 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2496 	kfree(cores);
2497 
2498 	return rc;
2499 }
2500 
2501 static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr,
2502 						u32 num_engines, enum hl_engine_command command)
2503 {
2504 	struct hl_device *hdev = hpriv->hdev;
2505 	u32 *engines, max_num_of_engines;
2506 	void __user *engines_arr;
2507 	int rc;
2508 
2509 	if (!hdev->asic_prop.supports_engine_modes)
2510 		return -EPERM;
2511 
2512 	if (command >= HL_ENGINE_COMMAND_MAX) {
2513 		dev_err(hdev->dev, "Engine command is invalid\n");
2514 		return -EINVAL;
2515 	}
2516 
2517 	max_num_of_engines = hdev->asic_prop.max_num_of_engines;
2518 	if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT)
2519 		max_num_of_engines = hdev->asic_prop.num_engine_cores;
2520 
2521 	if (!num_engines || num_engines > max_num_of_engines) {
2522 		dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines);
2523 		return -EINVAL;
2524 	}
2525 
2526 	engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr;
2527 	engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL);
2528 	if (!engines)
2529 		return -ENOMEM;
2530 
2531 	if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) {
2532 		dev_err(hdev->dev, "Failed to copy engine-ids array from user\n");
2533 		kfree(engines);
2534 		return -EFAULT;
2535 	}
2536 
2537 	rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command);
2538 	kfree(engines);
2539 
2540 	return rc;
2541 }
2542 
2543 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2544 {
2545 	struct hl_device *hdev = hpriv->hdev;
2546 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2547 
2548 	if (!prop->hbw_flush_reg) {
2549 		dev_dbg(hdev->dev, "HBW flush is not supported\n");
2550 		return -EOPNOTSUPP;
2551 	}
2552 
2553 	RREG32(prop->hbw_flush_reg);
2554 
2555 	return 0;
2556 }
2557 
2558 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2559 {
2560 	struct hl_fpriv *hpriv = file_priv->driver_priv;
2561 	union hl_cs_args *args = data;
2562 	enum hl_cs_type cs_type = 0;
2563 	u64 cs_seq = ULONG_MAX;
2564 	void __user *chunks;
2565 	u32 num_chunks, flags, timeout,
2566 		signals_count = 0, sob_addr = 0, handle_id = 0;
2567 	u16 sob_initial_count = 0;
2568 	int rc;
2569 
2570 	rc = hl_cs_sanity_checks(hpriv, args);
2571 	if (rc)
2572 		goto out;
2573 
2574 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2575 	if (rc)
2576 		goto out;
2577 
2578 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2579 					~HL_CS_FLAGS_FORCE_RESTORE);
2580 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2581 	num_chunks = args->in.num_chunks_execute;
2582 	flags = args->in.cs_flags;
2583 
2584 	/* In case this is a staged CS, user should supply the CS sequence */
2585 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2586 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2587 		cs_seq = args->in.seq;
2588 
2589 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2590 			? msecs_to_jiffies(args->in.timeout * 1000)
2591 			: hpriv->hdev->timeout_jiffies;
2592 
2593 	switch (cs_type) {
2594 	case CS_TYPE_SIGNAL:
2595 	case CS_TYPE_WAIT:
2596 	case CS_TYPE_COLLECTIVE_WAIT:
2597 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2598 					&cs_seq, args->in.cs_flags, timeout,
2599 					&sob_addr, &sob_initial_count);
2600 		break;
2601 	case CS_RESERVE_SIGNALS:
2602 		rc = cs_ioctl_reserve_signals(hpriv,
2603 					args->in.encaps_signals_q_idx,
2604 					args->in.encaps_signals_count,
2605 					&handle_id, &sob_addr, &signals_count);
2606 		break;
2607 	case CS_UNRESERVE_SIGNALS:
2608 		rc = cs_ioctl_unreserve_signals(hpriv,
2609 					args->in.encaps_sig_handle_id);
2610 		break;
2611 	case CS_TYPE_ENGINE_CORE:
2612 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2613 				args->in.num_engine_cores, args->in.core_command);
2614 		break;
2615 	case CS_TYPE_ENGINES:
2616 		rc = cs_ioctl_engines(hpriv, args->in.engines,
2617 				args->in.num_engines, args->in.engine_command);
2618 		break;
2619 	case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2620 		rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2621 		break;
2622 	default:
2623 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2624 						args->in.cs_flags,
2625 						args->in.encaps_sig_handle_id,
2626 						timeout, &sob_initial_count);
2627 		break;
2628 	}
2629 out:
2630 	if (rc != -EAGAIN) {
2631 		memset(args, 0, sizeof(*args));
2632 
2633 		switch (cs_type) {
2634 		case CS_RESERVE_SIGNALS:
2635 			args->out.handle_id = handle_id;
2636 			args->out.sob_base_addr_offset = sob_addr;
2637 			args->out.count = signals_count;
2638 			break;
2639 		case CS_TYPE_SIGNAL:
2640 			args->out.sob_base_addr_offset = sob_addr;
2641 			args->out.sob_count_before_submission = sob_initial_count;
2642 			args->out.seq = cs_seq;
2643 			break;
2644 		case CS_TYPE_DEFAULT:
2645 			args->out.sob_count_before_submission = sob_initial_count;
2646 			args->out.seq = cs_seq;
2647 			break;
2648 		default:
2649 			args->out.seq = cs_seq;
2650 			break;
2651 		}
2652 
2653 		args->out.status = rc;
2654 	}
2655 
2656 	return rc;
2657 }
2658 
2659 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2660 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2661 {
2662 	struct hl_device *hdev = ctx->hdev;
2663 	ktime_t timestamp_kt;
2664 	long completion_rc;
2665 	int rc = 0, error;
2666 
2667 	if (IS_ERR(fence)) {
2668 		rc = PTR_ERR(fence);
2669 		if (rc == -EINVAL)
2670 			dev_notice_ratelimited(hdev->dev,
2671 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2672 				seq, ctx->cs_sequence);
2673 		return rc;
2674 	}
2675 
2676 	if (!fence) {
2677 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2678 			dev_dbg(hdev->dev,
2679 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2680 				seq, ctx->cs_sequence);
2681 			*status = CS_WAIT_STATUS_GONE;
2682 			return 0;
2683 		}
2684 
2685 		completion_rc = 1;
2686 		goto report_results;
2687 	}
2688 
2689 	if (!timeout_us) {
2690 		completion_rc = completion_done(&fence->completion);
2691 	} else {
2692 		unsigned long timeout;
2693 
2694 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2695 				timeout_us : usecs_to_jiffies(timeout_us);
2696 		completion_rc =
2697 			wait_for_completion_interruptible_timeout(
2698 				&fence->completion, timeout);
2699 	}
2700 
2701 	error = fence->error;
2702 	timestamp_kt = fence->timestamp;
2703 
2704 report_results:
2705 	if (completion_rc > 0) {
2706 		*status = CS_WAIT_STATUS_COMPLETED;
2707 		if (timestamp)
2708 			*timestamp = ktime_to_ns(timestamp_kt);
2709 	} else {
2710 		*status = CS_WAIT_STATUS_BUSY;
2711 	}
2712 
2713 	if (completion_rc == -ERESTARTSYS)
2714 		rc = completion_rc;
2715 	else if (error == -ETIMEDOUT || error == -EIO)
2716 		rc = error;
2717 
2718 	return rc;
2719 }
2720 
2721 /*
2722  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2723  *
2724  * @mcs_data: multi-CS internal data
2725  * @mcs_compl: multi-CS completion structure
2726  *
2727  * @return 0 on success, otherwise non 0 error code
2728  *
2729  * The function iterates on all CS sequence in the list and set bit in
2730  * completion_bitmap for each completed CS.
2731  * While iterating, the function sets the stream map of each fence in the fence
2732  * array in the completion QID stream map to be used by CSs to perform
2733  * completion to the multi-CS context.
2734  * This function shall be called after taking context ref
2735  */
2736 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2737 {
2738 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2739 	struct hl_device *hdev = mcs_data->ctx->hdev;
2740 	int i, rc, arr_len = mcs_data->arr_len;
2741 	u64 *seq_arr = mcs_data->seq_arr;
2742 	ktime_t max_ktime, first_cs_time;
2743 	enum hl_cs_wait_status status;
2744 
2745 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2746 
2747 	/* get all fences under the same lock */
2748 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2749 	if (rc)
2750 		return rc;
2751 
2752 	/*
2753 	 * re-initialize the completion here to handle 2 possible cases:
2754 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2755 	 *    case the fence iteration is guaranteed to catch the CS completion.
2756 	 * 2. the completion will occur after re-init of the completion.
2757 	 *    in which case we will wake up immediately in wait_for_completion.
2758 	 */
2759 	reinit_completion(&mcs_compl->completion);
2760 
2761 	/*
2762 	 * set to maximum time to verify timestamp is valid: if at the end
2763 	 * this value is maintained- no timestamp was updated
2764 	 */
2765 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2766 	first_cs_time = max_ktime;
2767 
2768 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2769 		struct hl_fence *fence = *fence_ptr;
2770 
2771 		/*
2772 		 * In order to prevent case where we wait until timeout even though a CS associated
2773 		 * with the multi-CS actually completed we do things in the below order:
2774 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2775 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2776 		 *    that once completion is initialized, calling complete* and then wait on the
2777 		 *    completion will cause it to return at once)
2778 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2779 		 *    the specific CS already completed (and thus the wait for completion part will
2780 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2781 		 *    wake up the completion.
2782 		 */
2783 		if (fence)
2784 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2785 
2786 		/*
2787 		 * function won't sleep as it is called with timeout 0 (i.e.
2788 		 * poll the fence)
2789 		 */
2790 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2791 		if (rc) {
2792 			dev_err(hdev->dev,
2793 				"wait_for_fence error :%d for CS seq %llu\n",
2794 								rc, seq_arr[i]);
2795 			break;
2796 		}
2797 
2798 		switch (status) {
2799 		case CS_WAIT_STATUS_BUSY:
2800 			/* CS did not finished, QID to wait on already stored */
2801 			break;
2802 		case CS_WAIT_STATUS_COMPLETED:
2803 			/*
2804 			 * Using mcs_handling_done to avoid possibility of mcs_data
2805 			 * returns to user indicating CS completed before it finished
2806 			 * all of its mcs handling, to avoid race the next time the
2807 			 * user waits for mcs.
2808 			 * note: when reaching this case fence is definitely not NULL
2809 			 *       but NULL check was added to overcome static analysis
2810 			 */
2811 			if (fence && !fence->mcs_handling_done) {
2812 				/*
2813 				 * in case multi CS is completed but MCS handling not done
2814 				 * we "complete" the multi CS to prevent it from waiting
2815 				 * until time-out and the "multi-CS handling done" will have
2816 				 * another chance at the next iteration
2817 				 */
2818 				complete_all(&mcs_compl->completion);
2819 				break;
2820 			}
2821 
2822 			mcs_data->completion_bitmap |= BIT(i);
2823 			/*
2824 			 * For all completed CSs we take the earliest timestamp.
2825 			 * For this we have to validate that the timestamp is
2826 			 * earliest of all timestamps so far.
2827 			 */
2828 			if (fence && mcs_data->update_ts &&
2829 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2830 				first_cs_time = fence->timestamp;
2831 			break;
2832 		case CS_WAIT_STATUS_GONE:
2833 			mcs_data->update_ts = false;
2834 			mcs_data->gone_cs = true;
2835 			/*
2836 			 * It is possible to get an old sequence numbers from user
2837 			 * which related to already completed CSs and their fences
2838 			 * already gone. In this case, CS set as completed but
2839 			 * no need to consider its QID for mcs completion.
2840 			 */
2841 			mcs_data->completion_bitmap |= BIT(i);
2842 			break;
2843 		default:
2844 			dev_err(hdev->dev, "Invalid fence status\n");
2845 			rc = -EINVAL;
2846 			break;
2847 		}
2848 
2849 	}
2850 
2851 	hl_fences_put(mcs_data->fence_arr, arr_len);
2852 
2853 	if (mcs_data->update_ts &&
2854 			(ktime_compare(first_cs_time, max_ktime) != 0))
2855 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2856 
2857 	return rc;
2858 }
2859 
2860 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2861 				enum hl_cs_wait_status *status, s64 *timestamp)
2862 {
2863 	struct hl_fence *fence;
2864 	int rc = 0;
2865 
2866 	if (timestamp)
2867 		*timestamp = 0;
2868 
2869 	hl_ctx_get(ctx);
2870 
2871 	fence = hl_ctx_get_fence(ctx, seq);
2872 
2873 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2874 	hl_fence_put(fence);
2875 	hl_ctx_put(ctx);
2876 
2877 	return rc;
2878 }
2879 
2880 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2881 {
2882 	if (usecs <= U32_MAX)
2883 		return usecs_to_jiffies(usecs);
2884 
2885 	/*
2886 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2887 	 * 64 bit value.
2888 	 */
2889 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2890 		return nsecs_to_jiffies(U64_MAX);
2891 
2892 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2893 }
2894 
2895 /*
2896  * hl_wait_multi_cs_completion_init - init completion structure
2897  *
2898  * @hdev: pointer to habanalabs device structure
2899  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2900  *                        master QID to wait on
2901  *
2902  * @return valid completion struct pointer on success, otherwise error pointer
2903  *
2904  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2905  * the function gets the first available completion (by marking it "used")
2906  * and initialize its values.
2907  */
2908 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2909 {
2910 	struct multi_cs_completion *mcs_compl;
2911 	int i;
2912 
2913 	/* find free multi_cs completion structure */
2914 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2915 		mcs_compl = &hdev->multi_cs_completion[i];
2916 		spin_lock(&mcs_compl->lock);
2917 		if (!mcs_compl->used) {
2918 			mcs_compl->used = 1;
2919 			mcs_compl->timestamp = 0;
2920 			/*
2921 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2922 			 * to multi-CS CSs will be set incrementally at a later stage
2923 			 */
2924 			mcs_compl->stream_master_qid_map = 0;
2925 			spin_unlock(&mcs_compl->lock);
2926 			break;
2927 		}
2928 		spin_unlock(&mcs_compl->lock);
2929 	}
2930 
2931 	if (i == MULTI_CS_MAX_USER_CTX) {
2932 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2933 		return ERR_PTR(-ENOMEM);
2934 	}
2935 	return mcs_compl;
2936 }
2937 
2938 /*
2939  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2940  *                                    unused
2941  *
2942  * @mcs_compl: pointer to the completion structure
2943  */
2944 static void hl_wait_multi_cs_completion_fini(
2945 					struct multi_cs_completion *mcs_compl)
2946 {
2947 	/*
2948 	 * free completion structure, do it under lock to be in-sync with the
2949 	 * thread that signals completion
2950 	 */
2951 	spin_lock(&mcs_compl->lock);
2952 	mcs_compl->used = 0;
2953 	spin_unlock(&mcs_compl->lock);
2954 }
2955 
2956 /*
2957  * hl_wait_multi_cs_completion - wait for first CS to complete
2958  *
2959  * @mcs_data: multi-CS internal data
2960  *
2961  * @return 0 on success, otherwise non 0 error code
2962  */
2963 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2964 						struct multi_cs_completion *mcs_compl)
2965 {
2966 	long completion_rc;
2967 
2968 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2969 									mcs_data->timeout_jiffies);
2970 
2971 	/* update timestamp */
2972 	if (completion_rc > 0)
2973 		mcs_data->timestamp = mcs_compl->timestamp;
2974 
2975 	if (completion_rc == -ERESTARTSYS)
2976 		return completion_rc;
2977 
2978 	mcs_data->wait_status = completion_rc;
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2985  *
2986  * @hdev: pointer to habanalabs device structure
2987  */
2988 void hl_multi_cs_completion_init(struct hl_device *hdev)
2989 {
2990 	struct multi_cs_completion *mcs_cmpl;
2991 	int i;
2992 
2993 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2994 		mcs_cmpl = &hdev->multi_cs_completion[i];
2995 		mcs_cmpl->used = 0;
2996 		spin_lock_init(&mcs_cmpl->lock);
2997 		init_completion(&mcs_cmpl->completion);
2998 	}
2999 }
3000 
3001 /*
3002  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
3003  *
3004  * @hpriv: pointer to the private data of the fd
3005  * @data: pointer to multi-CS wait ioctl in/out args
3006  *
3007  */
3008 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3009 {
3010 	struct multi_cs_completion *mcs_compl;
3011 	struct hl_device *hdev = hpriv->hdev;
3012 	struct multi_cs_data mcs_data = {};
3013 	union hl_wait_cs_args *args = data;
3014 	struct hl_ctx *ctx = hpriv->ctx;
3015 	struct hl_fence **fence_arr;
3016 	void __user *seq_arr;
3017 	u32 size_to_copy;
3018 	u64 *cs_seq_arr;
3019 	u8 seq_arr_len;
3020 	int rc, i;
3021 
3022 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
3023 		if (args->in.pad[i]) {
3024 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
3025 			return -EINVAL;
3026 		}
3027 
3028 	if (!hdev->supports_wait_for_multi_cs) {
3029 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
3030 		return -EPERM;
3031 	}
3032 
3033 	seq_arr_len = args->in.seq_arr_len;
3034 
3035 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
3036 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
3037 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
3038 		return -EINVAL;
3039 	}
3040 
3041 	/* allocate memory for sequence array */
3042 	cs_seq_arr =
3043 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
3044 	if (!cs_seq_arr)
3045 		return -ENOMEM;
3046 
3047 	/* copy CS sequence array from user */
3048 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
3049 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
3050 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
3051 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
3052 		rc = -EFAULT;
3053 		goto free_seq_arr;
3054 	}
3055 
3056 	/* allocate array for the fences */
3057 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
3058 	if (!fence_arr) {
3059 		rc = -ENOMEM;
3060 		goto free_seq_arr;
3061 	}
3062 
3063 	/* initialize the multi-CS internal data */
3064 	mcs_data.ctx = ctx;
3065 	mcs_data.seq_arr = cs_seq_arr;
3066 	mcs_data.fence_arr = fence_arr;
3067 	mcs_data.arr_len = seq_arr_len;
3068 
3069 	hl_ctx_get(ctx);
3070 
3071 	/* wait (with timeout) for the first CS to be completed */
3072 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
3073 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3074 	if (IS_ERR(mcs_compl)) {
3075 		rc = PTR_ERR(mcs_compl);
3076 		goto put_ctx;
3077 	}
3078 
3079 	/* poll all CS fences, extract timestamp */
3080 	mcs_data.update_ts = true;
3081 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3082 	/*
3083 	 * skip wait for CS completion when one of the below is true:
3084 	 * - an error on the poll function
3085 	 * - one or more CS in the list completed
3086 	 * - the user called ioctl with timeout 0
3087 	 */
3088 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3089 		goto completion_fini;
3090 
3091 	while (true) {
3092 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3093 		if (rc || (mcs_data.wait_status == 0))
3094 			break;
3095 
3096 		/*
3097 		 * poll fences once again to update the CS map.
3098 		 * no timestamp should be updated this time.
3099 		 */
3100 		mcs_data.update_ts = false;
3101 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3102 
3103 		if (rc || mcs_data.completion_bitmap)
3104 			break;
3105 
3106 		/*
3107 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3108 		 * it got a completion) it either got completed by CS in the multi CS list
3109 		 * (in which case the indication will be non empty completion_bitmap) or it
3110 		 * got completed by CS submitted to one of the shared stream master but
3111 		 * not in the multi CS list (in which case we should wait again but modify
3112 		 * the timeout and set timestamp as zero to let a CS related to the current
3113 		 * multi-CS set a new, relevant, timestamp)
3114 		 */
3115 		mcs_data.timeout_jiffies = mcs_data.wait_status;
3116 		mcs_compl->timestamp = 0;
3117 	}
3118 
3119 completion_fini:
3120 	hl_wait_multi_cs_completion_fini(mcs_compl);
3121 
3122 put_ctx:
3123 	hl_ctx_put(ctx);
3124 	kfree(fence_arr);
3125 
3126 free_seq_arr:
3127 	kfree(cs_seq_arr);
3128 
3129 	if (rc == -ERESTARTSYS) {
3130 		dev_err_ratelimited(hdev->dev,
3131 				"user process got signal while waiting for Multi-CS\n");
3132 		rc = -EINTR;
3133 	}
3134 
3135 	if (rc)
3136 		return rc;
3137 
3138 	/* update output args */
3139 	memset(args, 0, sizeof(*args));
3140 
3141 	if (mcs_data.completion_bitmap) {
3142 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3143 		args->out.cs_completion_map = mcs_data.completion_bitmap;
3144 
3145 		/* if timestamp not 0- it's valid */
3146 		if (mcs_data.timestamp) {
3147 			args->out.timestamp_nsec = mcs_data.timestamp;
3148 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3149 		}
3150 
3151 		/* update if some CS was gone */
3152 		if (!mcs_data.timestamp)
3153 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3154 	} else {
3155 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3156 	}
3157 
3158 	return 0;
3159 }
3160 
3161 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3162 {
3163 	struct hl_device *hdev = hpriv->hdev;
3164 	union hl_wait_cs_args *args = data;
3165 	enum hl_cs_wait_status status;
3166 	u64 seq = args->in.seq;
3167 	s64 timestamp;
3168 	int rc;
3169 
3170 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
3171 
3172 	if (rc == -ERESTARTSYS) {
3173 		dev_err_ratelimited(hdev->dev,
3174 			"user process got signal while waiting for CS handle %llu\n",
3175 			seq);
3176 		return -EINTR;
3177 	}
3178 
3179 	memset(args, 0, sizeof(*args));
3180 
3181 	if (rc) {
3182 		if (rc == -ETIMEDOUT) {
3183 			dev_err_ratelimited(hdev->dev,
3184 				"CS %llu has timed-out while user process is waiting for it\n",
3185 				seq);
3186 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3187 		} else if (rc == -EIO) {
3188 			dev_err_ratelimited(hdev->dev,
3189 				"CS %llu has been aborted while user process is waiting for it\n",
3190 				seq);
3191 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3192 		}
3193 		return rc;
3194 	}
3195 
3196 	if (timestamp) {
3197 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3198 		args->out.timestamp_nsec = timestamp;
3199 	}
3200 
3201 	switch (status) {
3202 	case CS_WAIT_STATUS_GONE:
3203 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3204 		fallthrough;
3205 	case CS_WAIT_STATUS_COMPLETED:
3206 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3207 		break;
3208 	case CS_WAIT_STATUS_BUSY:
3209 	default:
3210 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3211 		break;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 static inline void set_record_cq_info(struct hl_user_pending_interrupt *record,
3218 					struct hl_cb *cq_cb, u32 cq_offset, u32 target_value)
3219 {
3220 	record->ts_reg_info.cq_cb = cq_cb;
3221 	record->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_offset;
3222 	record->cq_target_value = target_value;
3223 }
3224 
3225 static int validate_and_get_ts_record(struct device *dev,
3226 					struct hl_ts_buff *ts_buff, u64 ts_offset,
3227 					struct hl_user_pending_interrupt **req_event_record)
3228 {
3229 	struct hl_user_pending_interrupt *ts_cb_last;
3230 
3231 	*req_event_record = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3232 						ts_offset;
3233 	ts_cb_last = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3234 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3235 
3236 	/* Validate ts_offset not exceeding last max */
3237 	if (*req_event_record >= ts_cb_last) {
3238 		dev_err(dev, "Ts offset(%llu) exceeds max CB offset(0x%llx)\n",
3239 				ts_offset, (u64)(uintptr_t)ts_cb_last);
3240 		return -EINVAL;
3241 	}
3242 
3243 	return 0;
3244 }
3245 
3246 static void unregister_timestamp_node(struct hl_device *hdev,
3247 			struct hl_user_pending_interrupt *record, bool need_lock)
3248 {
3249 	struct hl_user_interrupt *interrupt = record->ts_reg_info.interrupt;
3250 	bool ts_rec_found = false;
3251 	unsigned long flags;
3252 
3253 	if (need_lock)
3254 		spin_lock_irqsave(&interrupt->ts_list_lock, flags);
3255 
3256 	if (record->ts_reg_info.in_use) {
3257 		record->ts_reg_info.in_use = false;
3258 		list_del(&record->list_node);
3259 		ts_rec_found = true;
3260 	}
3261 
3262 	if (need_lock)
3263 		spin_unlock_irqrestore(&interrupt->ts_list_lock, flags);
3264 
3265 	/* Put refcounts that were taken when we registered the event */
3266 	if (ts_rec_found) {
3267 		hl_mmap_mem_buf_put(record->ts_reg_info.buf);
3268 		hl_cb_put(record->ts_reg_info.cq_cb);
3269 	}
3270 }
3271 
3272 static int ts_get_and_handle_kernel_record(struct hl_device *hdev, struct hl_ctx *ctx,
3273 					struct wait_interrupt_data *data, unsigned long *flags,
3274 					struct hl_user_pending_interrupt **pend)
3275 {
3276 	struct hl_user_pending_interrupt *req_offset_record;
3277 	struct hl_ts_buff *ts_buff = data->buf->private;
3278 	bool need_lock = false;
3279 	int rc;
3280 
3281 	rc = validate_and_get_ts_record(data->buf->mmg->dev, ts_buff, data->ts_offset,
3282 									&req_offset_record);
3283 	if (rc)
3284 		return rc;
3285 
3286 	/* In case the node already registered, need to unregister first then re-use */
3287 	if (req_offset_record->ts_reg_info.in_use) {
3288 		dev_dbg(data->buf->mmg->dev,
3289 				"Requested record %p is in use on irq: %u ts addr: %p, unregister first then put on irq: %u\n",
3290 				req_offset_record,
3291 				req_offset_record->ts_reg_info.interrupt->interrupt_id,
3292 				req_offset_record->ts_reg_info.timestamp_kernel_addr,
3293 				data->interrupt->interrupt_id);
3294 		/*
3295 		 * Since interrupt here can be different than the one the node currently registered
3296 		 * on, and we don't want to lock two lists while we're doing unregister, so
3297 		 * unlock the new interrupt wait list here and acquire the lock again after you done
3298 		 */
3299 		if (data->interrupt->interrupt_id !=
3300 				req_offset_record->ts_reg_info.interrupt->interrupt_id) {
3301 
3302 			need_lock = true;
3303 			spin_unlock_irqrestore(&data->interrupt->ts_list_lock, *flags);
3304 		}
3305 
3306 		unregister_timestamp_node(hdev, req_offset_record, need_lock);
3307 
3308 		if (need_lock)
3309 			spin_lock_irqsave(&data->interrupt->ts_list_lock, *flags);
3310 	}
3311 
3312 	/* Fill up the new registration node info and add it to the list */
3313 	req_offset_record->ts_reg_info.in_use = true;
3314 	req_offset_record->ts_reg_info.buf = data->buf;
3315 	req_offset_record->ts_reg_info.timestamp_kernel_addr =
3316 			(u64 *) ts_buff->user_buff_address + data->ts_offset;
3317 	req_offset_record->ts_reg_info.interrupt = data->interrupt;
3318 	set_record_cq_info(req_offset_record, data->cq_cb, data->cq_offset,
3319 						data->target_value);
3320 
3321 	*pend = req_offset_record;
3322 
3323 	return rc;
3324 }
3325 
3326 static int _hl_interrupt_ts_reg_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3327 				struct wait_interrupt_data *data,
3328 				u32 *status, u64 *timestamp)
3329 {
3330 	struct hl_user_pending_interrupt *pend;
3331 	unsigned long flags;
3332 	int rc = 0;
3333 
3334 	hl_ctx_get(ctx);
3335 
3336 	data->cq_cb = hl_cb_get(data->mmg, data->cq_handle);
3337 	if (!data->cq_cb) {
3338 		rc = -EINVAL;
3339 		goto put_ctx;
3340 	}
3341 
3342 	/* Validate the cq offset */
3343 	if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
3344 			((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
3345 		rc = -EINVAL;
3346 		goto put_cq_cb;
3347 	}
3348 
3349 	dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, handle: 0x%llx, ts offset: %llu, cq_offset: %llu\n",
3350 					data->interrupt->interrupt_id, data->ts_handle,
3351 					data->ts_offset, data->cq_offset);
3352 
3353 	data->buf = hl_mmap_mem_buf_get(data->mmg, data->ts_handle);
3354 	if (!data->buf) {
3355 		rc = -EINVAL;
3356 		goto put_cq_cb;
3357 	}
3358 
3359 	spin_lock_irqsave(&data->interrupt->ts_list_lock, flags);
3360 
3361 	/* get ts buffer record */
3362 	rc = ts_get_and_handle_kernel_record(hdev, ctx, data, &flags, &pend);
3363 	if (rc) {
3364 		spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
3365 		goto put_ts_buff;
3366 	}
3367 
3368 	/* We check for completion value as interrupt could have been received
3369 	 * before we add the timestamp node to the ts list.
3370 	 */
3371 	if (*pend->cq_kernel_addr >= data->target_value) {
3372 		spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
3373 
3374 		dev_dbg(hdev->dev, "Target value already reached release ts record: pend: %p, offset: %llu, interrupt: %u\n",
3375 				pend, data->ts_offset, data->interrupt->interrupt_id);
3376 
3377 		pend->ts_reg_info.in_use = 0;
3378 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3379 		*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3380 
3381 		goto put_ts_buff;
3382 	}
3383 
3384 	list_add_tail(&pend->list_node, &data->interrupt->ts_list_head);
3385 	spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags);
3386 
3387 	rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3388 
3389 	hl_ctx_put(ctx);
3390 
3391 	return rc;
3392 
3393 put_ts_buff:
3394 	hl_mmap_mem_buf_put(data->buf);
3395 put_cq_cb:
3396 	hl_cb_put(data->cq_cb);
3397 put_ctx:
3398 	hl_ctx_put(ctx);
3399 
3400 	return rc;
3401 }
3402 
3403 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3404 				struct wait_interrupt_data *data,
3405 				u32 *status, u64 *timestamp)
3406 {
3407 	struct hl_user_pending_interrupt *pend;
3408 	unsigned long timeout, flags;
3409 	long completion_rc;
3410 	int rc = 0;
3411 
3412 	timeout = hl_usecs64_to_jiffies(data->intr_timeout_us);
3413 
3414 	hl_ctx_get(ctx);
3415 
3416 	data->cq_cb = hl_cb_get(data->mmg, data->cq_handle);
3417 	if (!data->cq_cb) {
3418 		rc = -EINVAL;
3419 		goto put_ctx;
3420 	}
3421 
3422 	/* Validate the cq offset */
3423 	if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
3424 			((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
3425 		rc = -EINVAL;
3426 		goto put_cq_cb;
3427 	}
3428 
3429 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3430 	if (!pend) {
3431 		rc = -ENOMEM;
3432 		goto put_cq_cb;
3433 	}
3434 
3435 	hl_fence_init(&pend->fence, ULONG_MAX);
3436 	pend->cq_kernel_addr = (u64 *) data->cq_cb->kernel_address + data->cq_offset;
3437 	pend->cq_target_value = data->target_value;
3438 	spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
3439 
3440 
3441 	/* We check for completion value as interrupt could have been received
3442 	 * before we add the wait node to the wait list.
3443 	 */
3444 	if (*pend->cq_kernel_addr >= data->target_value || (!data->intr_timeout_us)) {
3445 		spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
3446 
3447 		if (*pend->cq_kernel_addr >= data->target_value)
3448 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3449 		else
3450 			*status = HL_WAIT_CS_STATUS_BUSY;
3451 
3452 		pend->fence.timestamp = ktime_get();
3453 		goto set_timestamp;
3454 	}
3455 
3456 	/* Add pending user interrupt to relevant list for the interrupt
3457 	 * handler to monitor.
3458 	 * Note that we cannot have sorted list by target value,
3459 	 * in order to shorten the list pass loop, since
3460 	 * same list could have nodes for different cq counter handle.
3461 	 */
3462 	list_add_tail(&pend->list_node, &data->interrupt->wait_list_head);
3463 	spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
3464 
3465 	/* Wait for interrupt handler to signal completion */
3466 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3467 								timeout);
3468 	if (completion_rc > 0) {
3469 		if (pend->fence.error == -EIO) {
3470 			dev_err_ratelimited(hdev->dev,
3471 					"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3472 					pend->fence.error);
3473 			rc = -EIO;
3474 			*status = HL_WAIT_CS_STATUS_ABORTED;
3475 		} else {
3476 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3477 		}
3478 	} else {
3479 		if (completion_rc == -ERESTARTSYS) {
3480 			dev_err_ratelimited(hdev->dev,
3481 					"user process got signal while waiting for interrupt ID %d\n",
3482 					data->interrupt->interrupt_id);
3483 			rc = -EINTR;
3484 			*status = HL_WAIT_CS_STATUS_ABORTED;
3485 		} else {
3486 			/* The wait has timed-out. We don't know anything beyond that
3487 			 * because the workload was not submitted through the driver.
3488 			 * Therefore, from driver's perspective, the workload is still
3489 			 * executing.
3490 			 */
3491 			rc = 0;
3492 			*status = HL_WAIT_CS_STATUS_BUSY;
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * We keep removing the node from list here, and not at the irq handler
3498 	 * for completion timeout case. and if it's a registration
3499 	 * for ts record, the node will be deleted in the irq handler after
3500 	 * we reach the target value.
3501 	 */
3502 	spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
3503 	list_del(&pend->list_node);
3504 	spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags);
3505 
3506 set_timestamp:
3507 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3508 	kfree(pend);
3509 	hl_cb_put(data->cq_cb);
3510 	hl_ctx_put(ctx);
3511 
3512 	return rc;
3513 
3514 put_cq_cb:
3515 	hl_cb_put(data->cq_cb);
3516 put_ctx:
3517 	hl_ctx_put(ctx);
3518 
3519 	return rc;
3520 }
3521 
3522 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3523 				u64 timeout_us, u64 user_address,
3524 				u64 target_value, struct hl_user_interrupt *interrupt,
3525 				u32 *status,
3526 				u64 *timestamp)
3527 {
3528 	struct hl_user_pending_interrupt *pend;
3529 	unsigned long timeout, flags;
3530 	u64 completion_value;
3531 	long completion_rc;
3532 	int rc = 0;
3533 
3534 	timeout = hl_usecs64_to_jiffies(timeout_us);
3535 
3536 	hl_ctx_get(ctx);
3537 
3538 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3539 	if (!pend) {
3540 		hl_ctx_put(ctx);
3541 		return -ENOMEM;
3542 	}
3543 
3544 	hl_fence_init(&pend->fence, ULONG_MAX);
3545 
3546 	/* Add pending user interrupt to relevant list for the interrupt
3547 	 * handler to monitor
3548 	 */
3549 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3550 	list_add_tail(&pend->list_node, &interrupt->wait_list_head);
3551 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3552 
3553 	/* We check for completion value as interrupt could have been received
3554 	 * before we added the node to the wait list
3555 	 */
3556 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3557 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3558 		rc = -EFAULT;
3559 		goto remove_pending_user_interrupt;
3560 	}
3561 
3562 	if (completion_value >= target_value) {
3563 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3564 		/* There was no interrupt, we assume the completion is now. */
3565 		pend->fence.timestamp = ktime_get();
3566 	} else {
3567 		*status = HL_WAIT_CS_STATUS_BUSY;
3568 	}
3569 
3570 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3571 		goto remove_pending_user_interrupt;
3572 
3573 wait_again:
3574 	/* Wait for interrupt handler to signal completion */
3575 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3576 										timeout);
3577 
3578 	/* If timeout did not expire we need to perform the comparison.
3579 	 * If comparison fails, keep waiting until timeout expires
3580 	 */
3581 	if (completion_rc > 0) {
3582 		spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3583 		/* reinit_completion must be called before we check for user
3584 		 * completion value, otherwise, if interrupt is received after
3585 		 * the comparison and before the next wait_for_completion,
3586 		 * we will reach timeout and fail
3587 		 */
3588 		reinit_completion(&pend->fence.completion);
3589 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3590 
3591 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3592 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3593 			rc = -EFAULT;
3594 
3595 			goto remove_pending_user_interrupt;
3596 		}
3597 
3598 		if (completion_value >= target_value) {
3599 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3600 		} else if (pend->fence.error) {
3601 			dev_err_ratelimited(hdev->dev,
3602 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3603 				pend->fence.error);
3604 			/* set the command completion status as ABORTED */
3605 			*status = HL_WAIT_CS_STATUS_ABORTED;
3606 		} else {
3607 			timeout = completion_rc;
3608 			goto wait_again;
3609 		}
3610 	} else if (completion_rc == -ERESTARTSYS) {
3611 		dev_err_ratelimited(hdev->dev,
3612 			"user process got signal while waiting for interrupt ID %d\n",
3613 			interrupt->interrupt_id);
3614 		rc = -EINTR;
3615 	} else {
3616 		/* The wait has timed-out. We don't know anything beyond that
3617 		 * because the workload wasn't submitted through the driver.
3618 		 * Therefore, from driver's perspective, the workload is still
3619 		 * executing.
3620 		 */
3621 		rc = 0;
3622 		*status = HL_WAIT_CS_STATUS_BUSY;
3623 	}
3624 
3625 remove_pending_user_interrupt:
3626 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3627 	list_del(&pend->list_node);
3628 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3629 
3630 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3631 
3632 	kfree(pend);
3633 	hl_ctx_put(ctx);
3634 
3635 	return rc;
3636 }
3637 
3638 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3639 {
3640 	u16 interrupt_id, first_interrupt, last_interrupt;
3641 	struct hl_device *hdev = hpriv->hdev;
3642 	struct asic_fixed_properties *prop;
3643 	struct hl_user_interrupt *interrupt;
3644 	union hl_wait_cs_args *args = data;
3645 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3646 	u64 timestamp = 0;
3647 	int rc, int_idx;
3648 
3649 	prop = &hdev->asic_prop;
3650 
3651 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3652 		dev_err(hdev->dev, "no user interrupts allowed");
3653 		return -EPERM;
3654 	}
3655 
3656 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3657 
3658 	first_interrupt = prop->first_available_user_interrupt;
3659 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3660 
3661 	if (interrupt_id < prop->user_dec_intr_count) {
3662 
3663 		/* Check if the requested core is enabled */
3664 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3665 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3666 				interrupt_id);
3667 			return -EINVAL;
3668 		}
3669 
3670 		interrupt = &hdev->user_interrupt[interrupt_id];
3671 
3672 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3673 
3674 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3675 		interrupt = &hdev->user_interrupt[int_idx];
3676 
3677 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3678 		interrupt = &hdev->common_user_cq_interrupt;
3679 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3680 		interrupt = &hdev->common_decoder_interrupt;
3681 	} else {
3682 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3683 		return -EINVAL;
3684 	}
3685 
3686 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) {
3687 		struct wait_interrupt_data wait_intr_data = {0};
3688 
3689 		wait_intr_data.interrupt = interrupt;
3690 		wait_intr_data.mmg = &hpriv->mem_mgr;
3691 		wait_intr_data.cq_handle = args->in.cq_counters_handle;
3692 		wait_intr_data.cq_offset = args->in.cq_counters_offset;
3693 		wait_intr_data.ts_handle = args->in.timestamp_handle;
3694 		wait_intr_data.ts_offset = args->in.timestamp_offset;
3695 		wait_intr_data.target_value = args->in.target;
3696 		wait_intr_data.intr_timeout_us = args->in.interrupt_timeout_us;
3697 
3698 		if (args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT) {
3699 			/*
3700 			 * Allow only one registration at a time. this is needed in order to prevent
3701 			 * issues while handling the flow of re-use of the same offset.
3702 			 * Since the registration flow is protected only by the interrupt lock,
3703 			 * re-use flow might request to move ts node to another interrupt list,
3704 			 * and in such case we're not protected.
3705 			 */
3706 			mutex_lock(&hpriv->ctx->ts_reg_lock);
3707 
3708 			rc = _hl_interrupt_ts_reg_ioctl(hdev, hpriv->ctx, &wait_intr_data,
3709 						&status, &timestamp);
3710 
3711 			mutex_unlock(&hpriv->ctx->ts_reg_lock);
3712 		} else
3713 			rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &wait_intr_data,
3714 						&status, &timestamp);
3715 	} else {
3716 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3717 				args->in.interrupt_timeout_us, args->in.addr,
3718 				args->in.target, interrupt, &status,
3719 				&timestamp);
3720 	}
3721 
3722 	if (rc)
3723 		return rc;
3724 
3725 	memset(args, 0, sizeof(*args));
3726 	args->out.status = status;
3727 
3728 	if (timestamp) {
3729 		args->out.timestamp_nsec = timestamp;
3730 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3731 	}
3732 
3733 	return 0;
3734 }
3735 
3736 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
3737 {
3738 	struct hl_fpriv *hpriv = file_priv->driver_priv;
3739 	struct hl_device *hdev = hpriv->hdev;
3740 	union hl_wait_cs_args *args = data;
3741 	u32 flags = args->in.flags;
3742 	int rc;
3743 
3744 	/* If the device is not operational, or if an error has happened and user should release the
3745 	 * device, there is no point in waiting for any command submission or user interrupt.
3746 	 */
3747 	if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3748 		return -EBUSY;
3749 
3750 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3751 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3752 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3753 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3754 	else
3755 		rc = hl_cs_wait_ioctl(hpriv, data);
3756 
3757 	return rc;
3758 }
3759