xref: /linux/drivers/accel/habanalabs/common/command_submission.c (revision 8a922b7728a93d837954315c98b84f6b78de0c4f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/drm/habanalabs_accel.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 			HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18 
19 
20 #define MAX_TS_ITER_NUM 10
21 
22 /**
23  * enum hl_cs_wait_status - cs wait status
24  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25  * @CS_WAIT_STATUS_COMPLETED: cs completed
26  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27  */
28 enum hl_cs_wait_status {
29 	CS_WAIT_STATUS_BUSY,
30 	CS_WAIT_STATUS_COMPLETED,
31 	CS_WAIT_STATUS_GONE
32 };
33 
34 static void job_wq_completion(struct work_struct *work);
35 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
36 				enum hl_cs_wait_status *status, s64 *timestamp);
37 static void cs_do_release(struct kref *ref);
38 
39 static void hl_push_cs_outcome(struct hl_device *hdev,
40 			       struct hl_cs_outcome_store *outcome_store,
41 			       u64 seq, ktime_t ts, int error)
42 {
43 	struct hl_cs_outcome *node;
44 	unsigned long flags;
45 
46 	/*
47 	 * CS outcome store supports the following operations:
48 	 * push outcome - store a recent CS outcome in the store
49 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
50 	 * It uses 2 lists: used list and free list.
51 	 * It has a pre-allocated amount of nodes, each node stores
52 	 * a single CS outcome.
53 	 * Initially, all the nodes are in the free list.
54 	 * On push outcome, a node (any) is taken from the free list, its
55 	 * information is filled in, and the node is moved to the used list.
56 	 * It is possible, that there are no nodes left in the free list.
57 	 * In this case, we will lose some information about old outcomes. We
58 	 * will pop the OLDEST node from the used list, and make it free.
59 	 * On pop, the node is searched for in the used list (using a search
60 	 * index).
61 	 * If found, the node is then removed from the used list, and moved
62 	 * back to the free list. The outcome data that the node contained is
63 	 * returned back to the user.
64 	 */
65 
66 	spin_lock_irqsave(&outcome_store->db_lock, flags);
67 
68 	if (list_empty(&outcome_store->free_list)) {
69 		node = list_last_entry(&outcome_store->used_list,
70 				       struct hl_cs_outcome, list_link);
71 		hash_del(&node->map_link);
72 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
73 	} else {
74 		node = list_last_entry(&outcome_store->free_list,
75 				       struct hl_cs_outcome, list_link);
76 	}
77 
78 	list_del_init(&node->list_link);
79 
80 	node->seq = seq;
81 	node->ts = ts;
82 	node->error = error;
83 
84 	list_add(&node->list_link, &outcome_store->used_list);
85 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
86 
87 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
88 }
89 
90 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
91 			       u64 seq, ktime_t *ts, int *error)
92 {
93 	struct hl_cs_outcome *node;
94 	unsigned long flags;
95 
96 	spin_lock_irqsave(&outcome_store->db_lock, flags);
97 
98 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
99 		if (node->seq == seq) {
100 			*ts = node->ts;
101 			*error = node->error;
102 
103 			hash_del(&node->map_link);
104 			list_del_init(&node->list_link);
105 			list_add(&node->list_link, &outcome_store->free_list);
106 
107 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
108 
109 			return true;
110 		}
111 
112 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
113 
114 	return false;
115 }
116 
117 static void hl_sob_reset(struct kref *ref)
118 {
119 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
120 							kref);
121 	struct hl_device *hdev = hw_sob->hdev;
122 
123 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
124 
125 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
126 
127 	hw_sob->need_reset = false;
128 }
129 
130 void hl_sob_reset_error(struct kref *ref)
131 {
132 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
133 							kref);
134 	struct hl_device *hdev = hw_sob->hdev;
135 
136 	dev_crit(hdev->dev,
137 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
138 		hw_sob->q_idx, hw_sob->sob_id);
139 }
140 
141 void hw_sob_put(struct hl_hw_sob *hw_sob)
142 {
143 	if (hw_sob)
144 		kref_put(&hw_sob->kref, hl_sob_reset);
145 }
146 
147 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
148 {
149 	if (hw_sob)
150 		kref_put(&hw_sob->kref, hl_sob_reset_error);
151 }
152 
153 void hw_sob_get(struct hl_hw_sob *hw_sob)
154 {
155 	if (hw_sob)
156 		kref_get(&hw_sob->kref);
157 }
158 
159 /**
160  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
161  * @sob_base: sob base id
162  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
163  * @mask: generated mask
164  *
165  * Return: 0 if given parameters are valid
166  */
167 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
168 {
169 	int i;
170 
171 	if (sob_mask == 0)
172 		return -EINVAL;
173 
174 	if (sob_mask == 0x1) {
175 		*mask = ~(1 << (sob_base & 0x7));
176 	} else {
177 		/* find msb in order to verify sob range is valid */
178 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
179 			if (BIT(i) & sob_mask)
180 				break;
181 
182 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
183 			return -EINVAL;
184 
185 		*mask = ~sob_mask;
186 	}
187 
188 	return 0;
189 }
190 
191 static void hl_fence_release(struct kref *kref)
192 {
193 	struct hl_fence *fence =
194 		container_of(kref, struct hl_fence, refcount);
195 	struct hl_cs_compl *hl_cs_cmpl =
196 		container_of(fence, struct hl_cs_compl, base_fence);
197 
198 	kfree(hl_cs_cmpl);
199 }
200 
201 void hl_fence_put(struct hl_fence *fence)
202 {
203 	if (IS_ERR_OR_NULL(fence))
204 		return;
205 	kref_put(&fence->refcount, hl_fence_release);
206 }
207 
208 void hl_fences_put(struct hl_fence **fence, int len)
209 {
210 	int i;
211 
212 	for (i = 0; i < len; i++, fence++)
213 		hl_fence_put(*fence);
214 }
215 
216 void hl_fence_get(struct hl_fence *fence)
217 {
218 	if (fence)
219 		kref_get(&fence->refcount);
220 }
221 
222 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
223 {
224 	kref_init(&fence->refcount);
225 	fence->cs_sequence = sequence;
226 	fence->error = 0;
227 	fence->timestamp = ktime_set(0, 0);
228 	fence->mcs_handling_done = false;
229 	init_completion(&fence->completion);
230 }
231 
232 void cs_get(struct hl_cs *cs)
233 {
234 	kref_get(&cs->refcount);
235 }
236 
237 static int cs_get_unless_zero(struct hl_cs *cs)
238 {
239 	return kref_get_unless_zero(&cs->refcount);
240 }
241 
242 static void cs_put(struct hl_cs *cs)
243 {
244 	kref_put(&cs->refcount, cs_do_release);
245 }
246 
247 static void cs_job_do_release(struct kref *ref)
248 {
249 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
250 
251 	kfree(job);
252 }
253 
254 static void hl_cs_job_put(struct hl_cs_job *job)
255 {
256 	kref_put(&job->refcount, cs_job_do_release);
257 }
258 
259 bool cs_needs_completion(struct hl_cs *cs)
260 {
261 	/* In case this is a staged CS, only the last CS in sequence should
262 	 * get a completion, any non staged CS will always get a completion
263 	 */
264 	if (cs->staged_cs && !cs->staged_last)
265 		return false;
266 
267 	return true;
268 }
269 
270 bool cs_needs_timeout(struct hl_cs *cs)
271 {
272 	/* In case this is a staged CS, only the first CS in sequence should
273 	 * get a timeout, any non staged CS will always get a timeout
274 	 */
275 	if (cs->staged_cs && !cs->staged_first)
276 		return false;
277 
278 	return true;
279 }
280 
281 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
282 {
283 	/*
284 	 * Patched CB is created for external queues jobs, and for H/W queues
285 	 * jobs if the user CB was allocated by driver and MMU is disabled.
286 	 */
287 	return (job->queue_type == QUEUE_TYPE_EXT ||
288 			(job->queue_type == QUEUE_TYPE_HW &&
289 					job->is_kernel_allocated_cb &&
290 					!hdev->mmu_enable));
291 }
292 
293 /*
294  * cs_parser - parse the user command submission
295  *
296  * @hpriv	: pointer to the private data of the fd
297  * @job        : pointer to the job that holds the command submission info
298  *
299  * The function parses the command submission of the user. It calls the
300  * ASIC specific parser, which returns a list of memory blocks to send
301  * to the device as different command buffers
302  *
303  */
304 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
305 {
306 	struct hl_device *hdev = hpriv->hdev;
307 	struct hl_cs_parser parser;
308 	int rc;
309 
310 	parser.ctx_id = job->cs->ctx->asid;
311 	parser.cs_sequence = job->cs->sequence;
312 	parser.job_id = job->id;
313 
314 	parser.hw_queue_id = job->hw_queue_id;
315 	parser.job_userptr_list = &job->userptr_list;
316 	parser.patched_cb = NULL;
317 	parser.user_cb = job->user_cb;
318 	parser.user_cb_size = job->user_cb_size;
319 	parser.queue_type = job->queue_type;
320 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
321 	job->patched_cb = NULL;
322 	parser.completion = cs_needs_completion(job->cs);
323 
324 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
325 
326 	if (is_cb_patched(hdev, job)) {
327 		if (!rc) {
328 			job->patched_cb = parser.patched_cb;
329 			job->job_cb_size = parser.patched_cb_size;
330 			job->contains_dma_pkt = parser.contains_dma_pkt;
331 			atomic_inc(&job->patched_cb->cs_cnt);
332 		}
333 
334 		/*
335 		 * Whether the parsing worked or not, we don't need the
336 		 * original CB anymore because it was already parsed and
337 		 * won't be accessed again for this CS
338 		 */
339 		atomic_dec(&job->user_cb->cs_cnt);
340 		hl_cb_put(job->user_cb);
341 		job->user_cb = NULL;
342 	} else if (!rc) {
343 		job->job_cb_size = job->user_cb_size;
344 	}
345 
346 	return rc;
347 }
348 
349 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
350 {
351 	struct hl_cs *cs = job->cs;
352 
353 	if (is_cb_patched(hdev, job)) {
354 		hl_userptr_delete_list(hdev, &job->userptr_list);
355 
356 		/*
357 		 * We might arrive here from rollback and patched CB wasn't
358 		 * created, so we need to check it's not NULL
359 		 */
360 		if (job->patched_cb) {
361 			atomic_dec(&job->patched_cb->cs_cnt);
362 			hl_cb_put(job->patched_cb);
363 		}
364 	}
365 
366 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
367 	 * enabled, the user CB isn't released in cs_parser() and thus should be
368 	 * released here. This is also true for INT queues jobs which were
369 	 * allocated by driver.
370 	 */
371 	if ((job->is_kernel_allocated_cb &&
372 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
373 				job->queue_type == QUEUE_TYPE_INT))) {
374 		atomic_dec(&job->user_cb->cs_cnt);
375 		hl_cb_put(job->user_cb);
376 	}
377 
378 	/*
379 	 * This is the only place where there can be multiple threads
380 	 * modifying the list at the same time
381 	 */
382 	spin_lock(&cs->job_lock);
383 	list_del(&job->cs_node);
384 	spin_unlock(&cs->job_lock);
385 
386 	hl_debugfs_remove_job(hdev, job);
387 
388 	/* We decrement reference only for a CS that gets completion
389 	 * because the reference was incremented only for this kind of CS
390 	 * right before it was scheduled.
391 	 *
392 	 * In staged submission, only the last CS marked as 'staged_last'
393 	 * gets completion, hence its release function will be called from here.
394 	 * As for all the rest CS's in the staged submission which do not get
395 	 * completion, their CS reference will be decremented by the
396 	 * 'staged_last' CS during the CS release flow.
397 	 * All relevant PQ CI counters will be incremented during the CS release
398 	 * flow by calling 'hl_hw_queue_update_ci'.
399 	 */
400 	if (cs_needs_completion(cs) &&
401 			(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
402 
403 		/* In CS based completions, the timestamp is already available,
404 		 * so no need to extract it from job
405 		 */
406 		if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
407 			cs->completion_timestamp = job->timestamp;
408 
409 		cs_put(cs);
410 	}
411 
412 	hl_cs_job_put(job);
413 }
414 
415 /*
416  * hl_staged_cs_find_first - locate the first CS in this staged submission
417  *
418  * @hdev: pointer to device structure
419  * @cs_seq: staged submission sequence number
420  *
421  * @note: This function must be called under 'hdev->cs_mirror_lock'
422  *
423  * Find and return a CS pointer with the given sequence
424  */
425 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
426 {
427 	struct hl_cs *cs;
428 
429 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
430 		if (cs->staged_cs && cs->staged_first &&
431 				cs->sequence == cs_seq)
432 			return cs;
433 
434 	return NULL;
435 }
436 
437 /*
438  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
439  *
440  * @hdev: pointer to device structure
441  * @cs: staged submission member
442  *
443  */
444 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
445 {
446 	struct hl_cs *last_entry;
447 
448 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
449 								staged_cs_node);
450 
451 	if (last_entry->staged_last)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * staged_cs_get - get CS reference if this CS is a part of a staged CS
459  *
460  * @hdev: pointer to device structure
461  * @cs: current CS
462  * @cs_seq: staged submission sequence number
463  *
464  * Increment CS reference for every CS in this staged submission except for
465  * the CS which get completion.
466  */
467 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
468 {
469 	/* Only the last CS in this staged submission will get a completion.
470 	 * We must increment the reference for all other CS's in this
471 	 * staged submission.
472 	 * Once we get a completion we will release the whole staged submission.
473 	 */
474 	if (!cs->staged_last)
475 		cs_get(cs);
476 }
477 
478 /*
479  * staged_cs_put - put a CS in case it is part of staged submission
480  *
481  * @hdev: pointer to device structure
482  * @cs: CS to put
483  *
484  * This function decrements a CS reference (for a non completion CS)
485  */
486 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
487 {
488 	/* We release all CS's in a staged submission except the last
489 	 * CS which we have never incremented its reference.
490 	 */
491 	if (!cs_needs_completion(cs))
492 		cs_put(cs);
493 }
494 
495 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
496 {
497 	struct hl_cs *next = NULL, *iter, *first_cs;
498 
499 	if (!cs_needs_timeout(cs))
500 		return;
501 
502 	spin_lock(&hdev->cs_mirror_lock);
503 
504 	/* We need to handle tdr only once for the complete staged submission.
505 	 * Hence, we choose the CS that reaches this function first which is
506 	 * the CS marked as 'staged_last'.
507 	 * In case single staged cs was submitted which has both first and last
508 	 * indications, then "cs_find_first" below will return NULL, since we
509 	 * removed the cs node from the list before getting here,
510 	 * in such cases just continue with the cs to cancel it's TDR work.
511 	 */
512 	if (cs->staged_cs && cs->staged_last) {
513 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
514 		if (first_cs)
515 			cs = first_cs;
516 	}
517 
518 	spin_unlock(&hdev->cs_mirror_lock);
519 
520 	/* Don't cancel TDR in case this CS was timedout because we might be
521 	 * running from the TDR context
522 	 */
523 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
524 		return;
525 
526 	if (cs->tdr_active)
527 		cancel_delayed_work_sync(&cs->work_tdr);
528 
529 	spin_lock(&hdev->cs_mirror_lock);
530 
531 	/* queue TDR for next CS */
532 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
533 		if (cs_needs_timeout(iter)) {
534 			next = iter;
535 			break;
536 		}
537 
538 	if (next && !next->tdr_active) {
539 		next->tdr_active = true;
540 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
541 	}
542 
543 	spin_unlock(&hdev->cs_mirror_lock);
544 }
545 
546 /*
547  * force_complete_multi_cs - complete all contexts that wait on multi-CS
548  *
549  * @hdev: pointer to habanalabs device structure
550  */
551 static void force_complete_multi_cs(struct hl_device *hdev)
552 {
553 	int i;
554 
555 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
556 		struct multi_cs_completion *mcs_compl;
557 
558 		mcs_compl = &hdev->multi_cs_completion[i];
559 
560 		spin_lock(&mcs_compl->lock);
561 
562 		if (!mcs_compl->used) {
563 			spin_unlock(&mcs_compl->lock);
564 			continue;
565 		}
566 
567 		/* when calling force complete no context should be waiting on
568 		 * multi-cS.
569 		 * We are calling the function as a protection for such case
570 		 * to free any pending context and print error message
571 		 */
572 		dev_err(hdev->dev,
573 				"multi-CS completion context %d still waiting when calling force completion\n",
574 				i);
575 		complete_all(&mcs_compl->completion);
576 		spin_unlock(&mcs_compl->lock);
577 	}
578 }
579 
580 /*
581  * complete_multi_cs - complete all waiting entities on multi-CS
582  *
583  * @hdev: pointer to habanalabs device structure
584  * @cs: CS structure
585  * The function signals a waiting entity that has an overlapping stream masters
586  * with the completed CS.
587  * For example:
588  * - a completed CS worked on stream master QID 4, multi CS completion
589  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
590  *   common stream master QID
591  * - a completed CS worked on stream master QID 4, multi CS completion
592  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
593  *   master QID 4 is common
594  */
595 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
596 {
597 	struct hl_fence *fence = cs->fence;
598 	int i;
599 
600 	/* in case of multi CS check for completion only for the first CS */
601 	if (cs->staged_cs && !cs->staged_first)
602 		return;
603 
604 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
605 		struct multi_cs_completion *mcs_compl;
606 
607 		mcs_compl = &hdev->multi_cs_completion[i];
608 		if (!mcs_compl->used)
609 			continue;
610 
611 		spin_lock(&mcs_compl->lock);
612 
613 		/*
614 		 * complete if:
615 		 * 1. still waiting for completion
616 		 * 2. the completed CS has at least one overlapping stream
617 		 *    master with the stream masters in the completion
618 		 */
619 		if (mcs_compl->used &&
620 				(fence->stream_master_qid_map &
621 					mcs_compl->stream_master_qid_map)) {
622 			/* extract the timestamp only of first completed CS */
623 			if (!mcs_compl->timestamp)
624 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
625 
626 			complete_all(&mcs_compl->completion);
627 
628 			/*
629 			 * Setting mcs_handling_done inside the lock ensures
630 			 * at least one fence have mcs_handling_done set to
631 			 * true before wait for mcs finish. This ensures at
632 			 * least one CS will be set as completed when polling
633 			 * mcs fences.
634 			 */
635 			fence->mcs_handling_done = true;
636 		}
637 
638 		spin_unlock(&mcs_compl->lock);
639 	}
640 	/* In case CS completed without mcs completion initialized */
641 	fence->mcs_handling_done = true;
642 }
643 
644 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
645 					struct hl_cs *cs,
646 					struct hl_cs_compl *hl_cs_cmpl)
647 {
648 	/* Skip this handler if the cs wasn't submitted, to avoid putting
649 	 * the hw_sob twice, since this case already handled at this point,
650 	 * also skip if the hw_sob pointer wasn't set.
651 	 */
652 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
653 		return;
654 
655 	spin_lock(&hl_cs_cmpl->lock);
656 
657 	/*
658 	 * we get refcount upon reservation of signals or signal/wait cs for the
659 	 * hw_sob object, and need to put it when the first staged cs
660 	 * (which cotains the encaps signals) or cs signal/wait is completed.
661 	 */
662 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
663 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
664 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
665 			(!!hl_cs_cmpl->encaps_signals)) {
666 		dev_dbg(hdev->dev,
667 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
668 				hl_cs_cmpl->cs_seq,
669 				hl_cs_cmpl->type,
670 				hl_cs_cmpl->hw_sob->sob_id,
671 				hl_cs_cmpl->sob_val);
672 
673 		hw_sob_put(hl_cs_cmpl->hw_sob);
674 
675 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
676 			hdev->asic_funcs->reset_sob_group(hdev,
677 					hl_cs_cmpl->sob_group);
678 	}
679 
680 	spin_unlock(&hl_cs_cmpl->lock);
681 }
682 
683 static void cs_do_release(struct kref *ref)
684 {
685 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
686 	struct hl_device *hdev = cs->ctx->hdev;
687 	struct hl_cs_job *job, *tmp;
688 	struct hl_cs_compl *hl_cs_cmpl =
689 			container_of(cs->fence, struct hl_cs_compl, base_fence);
690 
691 	cs->completed = true;
692 
693 	/*
694 	 * Although if we reached here it means that all external jobs have
695 	 * finished, because each one of them took refcnt to CS, we still
696 	 * need to go over the internal jobs and complete them. Otherwise, we
697 	 * will have leaked memory and what's worse, the CS object (and
698 	 * potentially the CTX object) could be released, while the JOB
699 	 * still holds a pointer to them (but no reference).
700 	 */
701 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
702 		hl_complete_job(hdev, job);
703 
704 	if (!cs->submitted) {
705 		/*
706 		 * In case the wait for signal CS was submitted, the fence put
707 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
708 		 * right before hanging on the PQ.
709 		 */
710 		if (cs->type == CS_TYPE_WAIT ||
711 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
712 			hl_fence_put(cs->signal_fence);
713 
714 		goto out;
715 	}
716 
717 	/* Need to update CI for all queue jobs that does not get completion */
718 	hl_hw_queue_update_ci(cs);
719 
720 	/* remove CS from CS mirror list */
721 	spin_lock(&hdev->cs_mirror_lock);
722 	list_del_init(&cs->mirror_node);
723 	spin_unlock(&hdev->cs_mirror_lock);
724 
725 	cs_handle_tdr(hdev, cs);
726 
727 	if (cs->staged_cs) {
728 		/* the completion CS decrements reference for the entire
729 		 * staged submission
730 		 */
731 		if (cs->staged_last) {
732 			struct hl_cs *staged_cs, *tmp_cs;
733 
734 			list_for_each_entry_safe(staged_cs, tmp_cs,
735 					&cs->staged_cs_node, staged_cs_node)
736 				staged_cs_put(hdev, staged_cs);
737 		}
738 
739 		/* A staged CS will be a member in the list only after it
740 		 * was submitted. We used 'cs_mirror_lock' when inserting
741 		 * it to list so we will use it again when removing it
742 		 */
743 		if (cs->submitted) {
744 			spin_lock(&hdev->cs_mirror_lock);
745 			list_del(&cs->staged_cs_node);
746 			spin_unlock(&hdev->cs_mirror_lock);
747 		}
748 
749 		/* decrement refcount to handle when first staged cs
750 		 * with encaps signals is completed.
751 		 */
752 		if (hl_cs_cmpl->encaps_signals)
753 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
754 					hl_encaps_release_handle_and_put_ctx);
755 	}
756 
757 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
758 		kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
759 
760 out:
761 	/* Must be called before hl_ctx_put because inside we use ctx to get
762 	 * the device
763 	 */
764 	hl_debugfs_remove_cs(cs);
765 
766 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
767 
768 	/* We need to mark an error for not submitted because in that case
769 	 * the hl fence release flow is different. Mainly, we don't need
770 	 * to handle hw_sob for signal/wait
771 	 */
772 	if (cs->timedout)
773 		cs->fence->error = -ETIMEDOUT;
774 	else if (cs->aborted)
775 		cs->fence->error = -EIO;
776 	else if (!cs->submitted)
777 		cs->fence->error = -EBUSY;
778 
779 	if (unlikely(cs->skip_reset_on_timeout)) {
780 		dev_err(hdev->dev,
781 			"Command submission %llu completed after %llu (s)\n",
782 			cs->sequence,
783 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
784 	}
785 
786 	if (cs->timestamp) {
787 		cs->fence->timestamp = cs->completion_timestamp;
788 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
789 				   cs->fence->timestamp, cs->fence->error);
790 	}
791 
792 	hl_ctx_put(cs->ctx);
793 
794 	complete_all(&cs->fence->completion);
795 	complete_multi_cs(hdev, cs);
796 
797 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
798 
799 	hl_fence_put(cs->fence);
800 
801 	kfree(cs->jobs_in_queue_cnt);
802 	kfree(cs);
803 }
804 
805 static void cs_timedout(struct work_struct *work)
806 {
807 	struct hl_device *hdev;
808 	u64 event_mask = 0x0;
809 	int rc;
810 	struct hl_cs *cs = container_of(work, struct hl_cs,
811 						 work_tdr.work);
812 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
813 
814 	rc = cs_get_unless_zero(cs);
815 	if (!rc)
816 		return;
817 
818 	if ((!cs->submitted) || (cs->completed)) {
819 		cs_put(cs);
820 		return;
821 	}
822 
823 	hdev = cs->ctx->hdev;
824 
825 	if (likely(!skip_reset_on_timeout)) {
826 		if (hdev->reset_on_lockup)
827 			device_reset = true;
828 		else
829 			hdev->reset_info.needs_reset = true;
830 
831 		/* Mark the CS is timed out so we won't try to cancel its TDR */
832 		cs->timedout = true;
833 	}
834 
835 	/* Save only the first CS timeout parameters */
836 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
837 	if (rc) {
838 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
839 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
840 		event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
841 	}
842 
843 	switch (cs->type) {
844 	case CS_TYPE_SIGNAL:
845 		dev_err(hdev->dev,
846 			"Signal command submission %llu has not finished in time!\n",
847 			cs->sequence);
848 		break;
849 
850 	case CS_TYPE_WAIT:
851 		dev_err(hdev->dev,
852 			"Wait command submission %llu has not finished in time!\n",
853 			cs->sequence);
854 		break;
855 
856 	case CS_TYPE_COLLECTIVE_WAIT:
857 		dev_err(hdev->dev,
858 			"Collective Wait command submission %llu has not finished in time!\n",
859 			cs->sequence);
860 		break;
861 
862 	default:
863 		dev_err(hdev->dev,
864 			"Command submission %llu has not finished in time!\n",
865 			cs->sequence);
866 		break;
867 	}
868 
869 	rc = hl_state_dump(hdev);
870 	if (rc)
871 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
872 
873 	cs_put(cs);
874 
875 	if (device_reset) {
876 		event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
877 		hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
878 	} else if (event_mask) {
879 		hl_notifier_event_send_all(hdev, event_mask);
880 	}
881 }
882 
883 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
884 			enum hl_cs_type cs_type, u64 user_sequence,
885 			struct hl_cs **cs_new, u32 flags, u32 timeout)
886 {
887 	struct hl_cs_counters_atomic *cntr;
888 	struct hl_fence *other = NULL;
889 	struct hl_cs_compl *cs_cmpl;
890 	struct hl_cs *cs;
891 	int rc;
892 
893 	cntr = &hdev->aggregated_cs_counters;
894 
895 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
896 	if (!cs)
897 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
898 
899 	if (!cs) {
900 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
901 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
902 		return -ENOMEM;
903 	}
904 
905 	/* increment refcnt for context */
906 	hl_ctx_get(ctx);
907 
908 	cs->ctx = ctx;
909 	cs->submitted = false;
910 	cs->completed = false;
911 	cs->type = cs_type;
912 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
913 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
914 	cs->timeout_jiffies = timeout;
915 	cs->skip_reset_on_timeout =
916 		hdev->reset_info.skip_reset_on_timeout ||
917 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
918 	cs->submission_time_jiffies = jiffies;
919 	INIT_LIST_HEAD(&cs->job_list);
920 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
921 	kref_init(&cs->refcount);
922 	spin_lock_init(&cs->job_lock);
923 
924 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
925 	if (!cs_cmpl)
926 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
927 
928 	if (!cs_cmpl) {
929 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
930 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
931 		rc = -ENOMEM;
932 		goto free_cs;
933 	}
934 
935 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
936 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
937 	if (!cs->jobs_in_queue_cnt)
938 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
939 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
940 
941 	if (!cs->jobs_in_queue_cnt) {
942 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
943 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
944 		rc = -ENOMEM;
945 		goto free_cs_cmpl;
946 	}
947 
948 	cs_cmpl->hdev = hdev;
949 	cs_cmpl->type = cs->type;
950 	spin_lock_init(&cs_cmpl->lock);
951 	cs->fence = &cs_cmpl->base_fence;
952 
953 	spin_lock(&ctx->cs_lock);
954 
955 	cs_cmpl->cs_seq = ctx->cs_sequence;
956 	other = ctx->cs_pending[cs_cmpl->cs_seq &
957 				(hdev->asic_prop.max_pending_cs - 1)];
958 
959 	if (other && !completion_done(&other->completion)) {
960 		/* If the following statement is true, it means we have reached
961 		 * a point in which only part of the staged submission was
962 		 * submitted and we don't have enough room in the 'cs_pending'
963 		 * array for the rest of the submission.
964 		 * This causes a deadlock because this CS will never be
965 		 * completed as it depends on future CS's for completion.
966 		 */
967 		if (other->cs_sequence == user_sequence)
968 			dev_crit_ratelimited(hdev->dev,
969 				"Staged CS %llu deadlock due to lack of resources",
970 				user_sequence);
971 
972 		dev_dbg_ratelimited(hdev->dev,
973 			"Rejecting CS because of too many in-flights CS\n");
974 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
975 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
976 		rc = -EAGAIN;
977 		goto free_fence;
978 	}
979 
980 	/* init hl_fence */
981 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
982 
983 	cs->sequence = cs_cmpl->cs_seq;
984 
985 	ctx->cs_pending[cs_cmpl->cs_seq &
986 			(hdev->asic_prop.max_pending_cs - 1)] =
987 							&cs_cmpl->base_fence;
988 	ctx->cs_sequence++;
989 
990 	hl_fence_get(&cs_cmpl->base_fence);
991 
992 	hl_fence_put(other);
993 
994 	spin_unlock(&ctx->cs_lock);
995 
996 	*cs_new = cs;
997 
998 	return 0;
999 
1000 free_fence:
1001 	spin_unlock(&ctx->cs_lock);
1002 	kfree(cs->jobs_in_queue_cnt);
1003 free_cs_cmpl:
1004 	kfree(cs_cmpl);
1005 free_cs:
1006 	kfree(cs);
1007 	hl_ctx_put(ctx);
1008 	return rc;
1009 }
1010 
1011 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1012 {
1013 	struct hl_cs_job *job, *tmp;
1014 
1015 	staged_cs_put(hdev, cs);
1016 
1017 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1018 		hl_complete_job(hdev, job);
1019 }
1020 
1021 /*
1022  * release_reserved_encaps_signals() - release reserved encapsulated signals.
1023  * @hdev: pointer to habanalabs device structure
1024  *
1025  * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1026  * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1027  * For these signals need also to put the refcount of the H/W SOB which was taken at the
1028  * reservation.
1029  */
1030 static void release_reserved_encaps_signals(struct hl_device *hdev)
1031 {
1032 	struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1033 	struct hl_cs_encaps_sig_handle *handle;
1034 	struct hl_encaps_signals_mgr *mgr;
1035 	u32 id;
1036 
1037 	if (!ctx)
1038 		return;
1039 
1040 	mgr = &ctx->sig_mgr;
1041 
1042 	idr_for_each_entry(&mgr->handles, handle, id)
1043 		if (handle->cs_seq == ULLONG_MAX)
1044 			kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
1045 
1046 	hl_ctx_put(ctx);
1047 }
1048 
1049 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1050 {
1051 	int i;
1052 	struct hl_cs *cs, *tmp;
1053 
1054 	if (!skip_wq_flush) {
1055 		flush_workqueue(hdev->ts_free_obj_wq);
1056 
1057 		/* flush all completions before iterating over the CS mirror list in
1058 		 * order to avoid a race with the release functions
1059 		 */
1060 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1061 			flush_workqueue(hdev->cq_wq[i]);
1062 
1063 		flush_workqueue(hdev->cs_cmplt_wq);
1064 	}
1065 
1066 	/* Make sure we don't have leftovers in the CS mirror list */
1067 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1068 		cs_get(cs);
1069 		cs->aborted = true;
1070 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1071 					cs->ctx->asid, cs->sequence);
1072 		cs_rollback(hdev, cs);
1073 		cs_put(cs);
1074 	}
1075 
1076 	force_complete_multi_cs(hdev);
1077 
1078 	release_reserved_encaps_signals(hdev);
1079 }
1080 
1081 static void
1082 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1083 {
1084 	struct hl_user_pending_interrupt *pend, *temp;
1085 	unsigned long flags;
1086 
1087 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
1088 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1089 		if (pend->ts_reg_info.buf) {
1090 			list_del(&pend->wait_list_node);
1091 			hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1092 			hl_cb_put(pend->ts_reg_info.cq_cb);
1093 		} else {
1094 			pend->fence.error = -EIO;
1095 			complete_all(&pend->fence.completion);
1096 		}
1097 	}
1098 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
1099 }
1100 
1101 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1102 {
1103 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1104 	struct hl_user_interrupt *interrupt;
1105 	int i;
1106 
1107 	if (!prop->user_interrupt_count)
1108 		return;
1109 
1110 	/* We iterate through the user interrupt requests and waking up all
1111 	 * user threads waiting for interrupt completion. We iterate the
1112 	 * list under a lock, this is why all user threads, once awake,
1113 	 * will wait on the same lock and will release the waiting object upon
1114 	 * unlock.
1115 	 */
1116 
1117 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1118 		interrupt = &hdev->user_interrupt[i];
1119 		wake_pending_user_interrupt_threads(interrupt);
1120 	}
1121 
1122 	interrupt = &hdev->common_user_cq_interrupt;
1123 	wake_pending_user_interrupt_threads(interrupt);
1124 
1125 	interrupt = &hdev->common_decoder_interrupt;
1126 	wake_pending_user_interrupt_threads(interrupt);
1127 }
1128 
1129 static void force_complete_cs(struct hl_device *hdev)
1130 {
1131 	struct hl_cs *cs;
1132 
1133 	spin_lock(&hdev->cs_mirror_lock);
1134 
1135 	list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1136 		cs->fence->error = -EIO;
1137 		complete_all(&cs->fence->completion);
1138 	}
1139 
1140 	spin_unlock(&hdev->cs_mirror_lock);
1141 }
1142 
1143 void hl_abort_waitings_for_completion(struct hl_device *hdev)
1144 {
1145 	force_complete_cs(hdev);
1146 	force_complete_multi_cs(hdev);
1147 	hl_release_pending_user_interrupts(hdev);
1148 }
1149 
1150 static void job_wq_completion(struct work_struct *work)
1151 {
1152 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1153 						finish_work);
1154 	struct hl_cs *cs = job->cs;
1155 	struct hl_device *hdev = cs->ctx->hdev;
1156 
1157 	/* job is no longer needed */
1158 	hl_complete_job(hdev, job);
1159 }
1160 
1161 static void cs_completion(struct work_struct *work)
1162 {
1163 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1164 	struct hl_device *hdev = cs->ctx->hdev;
1165 	struct hl_cs_job *job, *tmp;
1166 
1167 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1168 		hl_complete_job(hdev, job);
1169 }
1170 
1171 static int validate_queue_index(struct hl_device *hdev,
1172 				struct hl_cs_chunk *chunk,
1173 				enum hl_queue_type *queue_type,
1174 				bool *is_kernel_allocated_cb)
1175 {
1176 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1177 	struct hw_queue_properties *hw_queue_prop;
1178 
1179 	/* This must be checked here to prevent out-of-bounds access to
1180 	 * hw_queues_props array
1181 	 */
1182 	if (chunk->queue_index >= asic->max_queues) {
1183 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1184 			chunk->queue_index);
1185 		return -EINVAL;
1186 	}
1187 
1188 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1189 
1190 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1191 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1192 			chunk->queue_index);
1193 		return -EINVAL;
1194 	}
1195 
1196 	if (hw_queue_prop->binned) {
1197 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1198 			chunk->queue_index);
1199 		return -EINVAL;
1200 	}
1201 
1202 	if (hw_queue_prop->driver_only) {
1203 		dev_err(hdev->dev,
1204 			"Queue index %d is restricted for the kernel driver\n",
1205 			chunk->queue_index);
1206 		return -EINVAL;
1207 	}
1208 
1209 	/* When hw queue type isn't QUEUE_TYPE_HW,
1210 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1211 	 */
1212 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1213 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1214 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1215 				dev_err(hdev->dev,
1216 					"Queue index %d doesn't support user CB\n",
1217 					chunk->queue_index);
1218 				return -EINVAL;
1219 			}
1220 
1221 			*is_kernel_allocated_cb = false;
1222 		} else {
1223 			if (!(hw_queue_prop->cb_alloc_flags &
1224 					CB_ALLOC_KERNEL)) {
1225 				dev_err(hdev->dev,
1226 					"Queue index %d doesn't support kernel CB\n",
1227 					chunk->queue_index);
1228 				return -EINVAL;
1229 			}
1230 
1231 			*is_kernel_allocated_cb = true;
1232 		}
1233 	} else {
1234 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1235 						& CB_ALLOC_KERNEL);
1236 	}
1237 
1238 	*queue_type = hw_queue_prop->type;
1239 	return 0;
1240 }
1241 
1242 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1243 					struct hl_mem_mgr *mmg,
1244 					struct hl_cs_chunk *chunk)
1245 {
1246 	struct hl_cb *cb;
1247 
1248 	cb = hl_cb_get(mmg, chunk->cb_handle);
1249 	if (!cb) {
1250 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1251 		return NULL;
1252 	}
1253 
1254 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1255 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1256 		goto release_cb;
1257 	}
1258 
1259 	atomic_inc(&cb->cs_cnt);
1260 
1261 	return cb;
1262 
1263 release_cb:
1264 	hl_cb_put(cb);
1265 	return NULL;
1266 }
1267 
1268 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1269 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1270 {
1271 	struct hl_cs_job *job;
1272 
1273 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1274 	if (!job)
1275 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1276 
1277 	if (!job)
1278 		return NULL;
1279 
1280 	kref_init(&job->refcount);
1281 	job->queue_type = queue_type;
1282 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1283 
1284 	if (is_cb_patched(hdev, job))
1285 		INIT_LIST_HEAD(&job->userptr_list);
1286 
1287 	if (job->queue_type == QUEUE_TYPE_EXT)
1288 		INIT_WORK(&job->finish_work, job_wq_completion);
1289 
1290 	return job;
1291 }
1292 
1293 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1294 {
1295 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1296 		return CS_TYPE_SIGNAL;
1297 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1298 		return CS_TYPE_WAIT;
1299 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1300 		return CS_TYPE_COLLECTIVE_WAIT;
1301 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1302 		return CS_RESERVE_SIGNALS;
1303 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1304 		return CS_UNRESERVE_SIGNALS;
1305 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1306 		return CS_TYPE_ENGINE_CORE;
1307 	else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1308 		return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1309 	else
1310 		return CS_TYPE_DEFAULT;
1311 }
1312 
1313 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1314 {
1315 	struct hl_device *hdev = hpriv->hdev;
1316 	struct hl_ctx *ctx = hpriv->ctx;
1317 	u32 cs_type_flags, num_chunks;
1318 	enum hl_device_status status;
1319 	enum hl_cs_type cs_type;
1320 	bool is_sync_stream;
1321 	int i;
1322 
1323 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1324 		if (args->in.pad[i]) {
1325 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1326 			return -EINVAL;
1327 		}
1328 
1329 	if (!hl_device_operational(hdev, &status)) {
1330 		return -EBUSY;
1331 	}
1332 
1333 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1334 			!hdev->supports_staged_submission) {
1335 		dev_err(hdev->dev, "staged submission not supported");
1336 		return -EPERM;
1337 	}
1338 
1339 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1340 
1341 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1342 		dev_err(hdev->dev,
1343 			"CS type flags are mutually exclusive, context %d\n",
1344 			ctx->asid);
1345 		return -EINVAL;
1346 	}
1347 
1348 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1349 	num_chunks = args->in.num_chunks_execute;
1350 
1351 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1352 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1353 
1354 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1355 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1356 		return -EINVAL;
1357 	}
1358 
1359 	if (cs_type == CS_TYPE_DEFAULT) {
1360 		if (!num_chunks) {
1361 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1362 			return -EINVAL;
1363 		}
1364 	} else if (is_sync_stream && num_chunks != 1) {
1365 		dev_err(hdev->dev,
1366 			"Sync stream CS mandates one chunk only, context %d\n",
1367 			ctx->asid);
1368 		return -EINVAL;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1375 					struct hl_cs_chunk **cs_chunk_array,
1376 					void __user *chunks, u32 num_chunks,
1377 					struct hl_ctx *ctx)
1378 {
1379 	u32 size_to_copy;
1380 
1381 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1382 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1383 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1384 		dev_err(hdev->dev,
1385 			"Number of chunks can NOT be larger than %d\n",
1386 			HL_MAX_JOBS_PER_CS);
1387 		return -EINVAL;
1388 	}
1389 
1390 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1391 					GFP_ATOMIC);
1392 	if (!*cs_chunk_array)
1393 		*cs_chunk_array = kmalloc_array(num_chunks,
1394 					sizeof(**cs_chunk_array), GFP_KERNEL);
1395 	if (!*cs_chunk_array) {
1396 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1397 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1398 		return -ENOMEM;
1399 	}
1400 
1401 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1402 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1403 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1404 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1405 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1406 		kfree(*cs_chunk_array);
1407 		return -EFAULT;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1414 				u64 sequence, u32 flags,
1415 				u32 encaps_signal_handle)
1416 {
1417 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1418 		return 0;
1419 
1420 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1421 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1422 
1423 	if (cs->staged_first) {
1424 		/* Staged CS sequence is the first CS sequence */
1425 		INIT_LIST_HEAD(&cs->staged_cs_node);
1426 		cs->staged_sequence = cs->sequence;
1427 
1428 		if (cs->encaps_signals)
1429 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1430 	} else {
1431 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1432 		 * under the cs_mirror_lock
1433 		 */
1434 		cs->staged_sequence = sequence;
1435 	}
1436 
1437 	/* Increment CS reference if needed */
1438 	staged_cs_get(hdev, cs);
1439 
1440 	cs->staged_cs = true;
1441 
1442 	return 0;
1443 }
1444 
1445 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1446 {
1447 	int i;
1448 
1449 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1450 		if (qid == hdev->stream_master_qid_arr[i])
1451 			return BIT(i);
1452 
1453 	return 0;
1454 }
1455 
1456 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1457 				u32 num_chunks, u64 *cs_seq, u32 flags,
1458 				u32 encaps_signals_handle, u32 timeout,
1459 				u16 *signal_initial_sob_count)
1460 {
1461 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1462 	struct hl_device *hdev = hpriv->hdev;
1463 	struct hl_cs_chunk *cs_chunk_array;
1464 	struct hl_cs_counters_atomic *cntr;
1465 	struct hl_ctx *ctx = hpriv->ctx;
1466 	struct hl_cs_job *job;
1467 	struct hl_cs *cs;
1468 	struct hl_cb *cb;
1469 	u64 user_sequence;
1470 	u8 stream_master_qid_map = 0;
1471 	int rc, i;
1472 
1473 	cntr = &hdev->aggregated_cs_counters;
1474 	user_sequence = *cs_seq;
1475 	*cs_seq = ULLONG_MAX;
1476 
1477 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1478 			hpriv->ctx);
1479 	if (rc)
1480 		goto out;
1481 
1482 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1483 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1484 		staged_mid = true;
1485 	else
1486 		staged_mid = false;
1487 
1488 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1489 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1490 			timeout);
1491 	if (rc)
1492 		goto free_cs_chunk_array;
1493 
1494 	*cs_seq = cs->sequence;
1495 
1496 	hl_debugfs_add_cs(cs);
1497 
1498 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1499 						encaps_signals_handle);
1500 	if (rc)
1501 		goto free_cs_object;
1502 
1503 	/* If this is a staged submission we must return the staged sequence
1504 	 * rather than the internal CS sequence
1505 	 */
1506 	if (cs->staged_cs)
1507 		*cs_seq = cs->staged_sequence;
1508 
1509 	/* Validate ALL the CS chunks before submitting the CS */
1510 	for (i = 0 ; i < num_chunks ; i++) {
1511 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1512 		enum hl_queue_type queue_type;
1513 		bool is_kernel_allocated_cb;
1514 
1515 		rc = validate_queue_index(hdev, chunk, &queue_type,
1516 						&is_kernel_allocated_cb);
1517 		if (rc) {
1518 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1519 			atomic64_inc(&cntr->validation_drop_cnt);
1520 			goto free_cs_object;
1521 		}
1522 
1523 		if (is_kernel_allocated_cb) {
1524 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1525 			if (!cb) {
1526 				atomic64_inc(
1527 					&ctx->cs_counters.validation_drop_cnt);
1528 				atomic64_inc(&cntr->validation_drop_cnt);
1529 				rc = -EINVAL;
1530 				goto free_cs_object;
1531 			}
1532 		} else {
1533 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1534 		}
1535 
1536 		if (queue_type == QUEUE_TYPE_EXT ||
1537 						queue_type == QUEUE_TYPE_HW) {
1538 			int_queues_only = false;
1539 
1540 			/*
1541 			 * store which stream are being used for external/HW
1542 			 * queues of this CS
1543 			 */
1544 			if (hdev->supports_wait_for_multi_cs)
1545 				stream_master_qid_map |=
1546 					get_stream_master_qid_mask(hdev,
1547 							chunk->queue_index);
1548 		}
1549 
1550 		if (queue_type == QUEUE_TYPE_HW)
1551 			using_hw_queues = true;
1552 
1553 		job = hl_cs_allocate_job(hdev, queue_type,
1554 						is_kernel_allocated_cb);
1555 		if (!job) {
1556 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1557 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1558 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1559 			rc = -ENOMEM;
1560 			if (is_kernel_allocated_cb)
1561 				goto release_cb;
1562 
1563 			goto free_cs_object;
1564 		}
1565 
1566 		job->id = i + 1;
1567 		job->cs = cs;
1568 		job->user_cb = cb;
1569 		job->user_cb_size = chunk->cb_size;
1570 		job->hw_queue_id = chunk->queue_index;
1571 
1572 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1573 		cs->jobs_cnt++;
1574 
1575 		list_add_tail(&job->cs_node, &cs->job_list);
1576 
1577 		/*
1578 		 * Increment CS reference. When CS reference is 0, CS is
1579 		 * done and can be signaled to user and free all its resources
1580 		 * Only increment for JOB on external or H/W queues, because
1581 		 * only for those JOBs we get completion
1582 		 */
1583 		if (cs_needs_completion(cs) &&
1584 			(job->queue_type == QUEUE_TYPE_EXT ||
1585 				job->queue_type == QUEUE_TYPE_HW))
1586 			cs_get(cs);
1587 
1588 		hl_debugfs_add_job(hdev, job);
1589 
1590 		rc = cs_parser(hpriv, job);
1591 		if (rc) {
1592 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1593 			atomic64_inc(&cntr->parsing_drop_cnt);
1594 			dev_err(hdev->dev,
1595 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1596 				cs->ctx->asid, cs->sequence, job->id, rc);
1597 			goto free_cs_object;
1598 		}
1599 	}
1600 
1601 	/* We allow a CS with any queue type combination as long as it does
1602 	 * not get a completion
1603 	 */
1604 	if (int_queues_only && cs_needs_completion(cs)) {
1605 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1606 		atomic64_inc(&cntr->validation_drop_cnt);
1607 		dev_err(hdev->dev,
1608 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1609 			cs->ctx->asid, cs->sequence);
1610 		rc = -EINVAL;
1611 		goto free_cs_object;
1612 	}
1613 
1614 	if (using_hw_queues)
1615 		INIT_WORK(&cs->finish_work, cs_completion);
1616 
1617 	/*
1618 	 * store the (external/HW queues) streams used by the CS in the
1619 	 * fence object for multi-CS completion
1620 	 */
1621 	if (hdev->supports_wait_for_multi_cs)
1622 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1623 
1624 	rc = hl_hw_queue_schedule_cs(cs);
1625 	if (rc) {
1626 		if (rc != -EAGAIN)
1627 			dev_err(hdev->dev,
1628 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1629 				cs->ctx->asid, cs->sequence, rc);
1630 		goto free_cs_object;
1631 	}
1632 
1633 	*signal_initial_sob_count = cs->initial_sob_count;
1634 
1635 	rc = HL_CS_STATUS_SUCCESS;
1636 	goto put_cs;
1637 
1638 release_cb:
1639 	atomic_dec(&cb->cs_cnt);
1640 	hl_cb_put(cb);
1641 free_cs_object:
1642 	cs_rollback(hdev, cs);
1643 	*cs_seq = ULLONG_MAX;
1644 	/* The path below is both for good and erroneous exits */
1645 put_cs:
1646 	/* We finished with the CS in this function, so put the ref */
1647 	cs_put(cs);
1648 free_cs_chunk_array:
1649 	kfree(cs_chunk_array);
1650 out:
1651 	return rc;
1652 }
1653 
1654 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1655 				u64 *cs_seq)
1656 {
1657 	struct hl_device *hdev = hpriv->hdev;
1658 	struct hl_ctx *ctx = hpriv->ctx;
1659 	bool need_soft_reset = false;
1660 	int rc = 0, do_ctx_switch = 0;
1661 	void __user *chunks;
1662 	u32 num_chunks, tmp;
1663 	u16 sob_count;
1664 	int ret;
1665 
1666 	if (hdev->supports_ctx_switch)
1667 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1668 
1669 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1670 		mutex_lock(&hpriv->restore_phase_mutex);
1671 
1672 		if (do_ctx_switch) {
1673 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1674 			if (rc) {
1675 				dev_err_ratelimited(hdev->dev,
1676 					"Failed to switch to context %d, rejecting CS! %d\n",
1677 					ctx->asid, rc);
1678 				/*
1679 				 * If we timedout, or if the device is not IDLE
1680 				 * while we want to do context-switch (-EBUSY),
1681 				 * we need to soft-reset because QMAN is
1682 				 * probably stuck. However, we can't call to
1683 				 * reset here directly because of deadlock, so
1684 				 * need to do it at the very end of this
1685 				 * function
1686 				 */
1687 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1688 					need_soft_reset = true;
1689 				mutex_unlock(&hpriv->restore_phase_mutex);
1690 				goto out;
1691 			}
1692 		}
1693 
1694 		hdev->asic_funcs->restore_phase_topology(hdev);
1695 
1696 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1697 		num_chunks = args->in.num_chunks_restore;
1698 
1699 		if (!num_chunks) {
1700 			dev_dbg(hdev->dev,
1701 				"Need to run restore phase but restore CS is empty\n");
1702 			rc = 0;
1703 		} else {
1704 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1705 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1706 		}
1707 
1708 		mutex_unlock(&hpriv->restore_phase_mutex);
1709 
1710 		if (rc) {
1711 			dev_err(hdev->dev,
1712 				"Failed to submit restore CS for context %d (%d)\n",
1713 				ctx->asid, rc);
1714 			goto out;
1715 		}
1716 
1717 		/* Need to wait for restore completion before execution phase */
1718 		if (num_chunks) {
1719 			enum hl_cs_wait_status status;
1720 wait_again:
1721 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1722 					jiffies_to_usecs(hdev->timeout_jiffies),
1723 					*cs_seq, &status, NULL);
1724 			if (ret) {
1725 				if (ret == -ERESTARTSYS) {
1726 					usleep_range(100, 200);
1727 					goto wait_again;
1728 				}
1729 
1730 				dev_err(hdev->dev,
1731 					"Restore CS for context %d failed to complete %d\n",
1732 					ctx->asid, ret);
1733 				rc = -ENOEXEC;
1734 				goto out;
1735 			}
1736 		}
1737 
1738 		if (hdev->supports_ctx_switch)
1739 			ctx->thread_ctx_switch_wait_token = 1;
1740 
1741 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1742 		rc = hl_poll_timeout_memory(hdev,
1743 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1744 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1745 
1746 		if (rc == -ETIMEDOUT) {
1747 			dev_err(hdev->dev,
1748 				"context switch phase timeout (%d)\n", tmp);
1749 			goto out;
1750 		}
1751 	}
1752 
1753 out:
1754 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1755 		hl_device_reset(hdev, 0);
1756 
1757 	return rc;
1758 }
1759 
1760 /*
1761  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1762  * if the SOB value reaches the max value move to the other SOB reserved
1763  * to the queue.
1764  * @hdev: pointer to device structure
1765  * @q_idx: stream queue index
1766  * @hw_sob: the H/W SOB used in this signal CS.
1767  * @count: signals count
1768  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1769  *
1770  * Note that this function must be called while hw_queues_lock is taken.
1771  */
1772 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1773 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1774 
1775 {
1776 	struct hl_sync_stream_properties *prop;
1777 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1778 	u8 other_sob_offset;
1779 
1780 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1781 
1782 	hw_sob_get(sob);
1783 
1784 	/* check for wraparound */
1785 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1786 		/*
1787 		 * Decrement as we reached the max value.
1788 		 * The release function won't be called here as we've
1789 		 * just incremented the refcount right before calling this
1790 		 * function.
1791 		 */
1792 		hw_sob_put_err(sob);
1793 
1794 		/*
1795 		 * check the other sob value, if it still in use then fail
1796 		 * otherwise make the switch
1797 		 */
1798 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1799 		other_sob = &prop->hw_sob[other_sob_offset];
1800 
1801 		if (kref_read(&other_sob->kref) != 1) {
1802 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1803 								q_idx);
1804 			return -EINVAL;
1805 		}
1806 
1807 		/*
1808 		 * next_sob_val always points to the next available signal
1809 		 * in the sob, so in encaps signals it will be the next one
1810 		 * after reserving the required amount.
1811 		 */
1812 		if (encaps_sig)
1813 			prop->next_sob_val = count + 1;
1814 		else
1815 			prop->next_sob_val = count;
1816 
1817 		/* only two SOBs are currently in use */
1818 		prop->curr_sob_offset = other_sob_offset;
1819 		*hw_sob = other_sob;
1820 
1821 		/*
1822 		 * check if other_sob needs reset, then do it before using it
1823 		 * for the reservation or the next signal cs.
1824 		 * we do it here, and for both encaps and regular signal cs
1825 		 * cases in order to avoid possible races of two kref_put
1826 		 * of the sob which can occur at the same time if we move the
1827 		 * sob reset(kref_put) to cs_do_release function.
1828 		 * in addition, if we have combination of cs signal and
1829 		 * encaps, and at the point we need to reset the sob there was
1830 		 * no more reservations and only signal cs keep coming,
1831 		 * in such case we need signal_cs to put the refcount and
1832 		 * reset the sob.
1833 		 */
1834 		if (other_sob->need_reset)
1835 			hw_sob_put(other_sob);
1836 
1837 		if (encaps_sig) {
1838 			/* set reset indication for the sob */
1839 			sob->need_reset = true;
1840 			hw_sob_get(other_sob);
1841 		}
1842 
1843 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1844 				prop->curr_sob_offset, q_idx);
1845 	} else {
1846 		prop->next_sob_val += count;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1853 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1854 		bool encaps_signals)
1855 {
1856 	u64 *signal_seq_arr = NULL;
1857 	u32 size_to_copy, signal_seq_arr_len;
1858 	int rc = 0;
1859 
1860 	if (encaps_signals) {
1861 		*signal_seq = chunk->encaps_signal_seq;
1862 		return 0;
1863 	}
1864 
1865 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1866 
1867 	/* currently only one signal seq is supported */
1868 	if (signal_seq_arr_len != 1) {
1869 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1870 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1871 		dev_err(hdev->dev,
1872 			"Wait for signal CS supports only one signal CS seq\n");
1873 		return -EINVAL;
1874 	}
1875 
1876 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1877 					sizeof(*signal_seq_arr),
1878 					GFP_ATOMIC);
1879 	if (!signal_seq_arr)
1880 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1881 					sizeof(*signal_seq_arr),
1882 					GFP_KERNEL);
1883 	if (!signal_seq_arr) {
1884 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1885 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1886 		return -ENOMEM;
1887 	}
1888 
1889 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1890 	if (copy_from_user(signal_seq_arr,
1891 				u64_to_user_ptr(chunk->signal_seq_arr),
1892 				size_to_copy)) {
1893 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1894 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1895 		dev_err(hdev->dev,
1896 			"Failed to copy signal seq array from user\n");
1897 		rc = -EFAULT;
1898 		goto out;
1899 	}
1900 
1901 	/* currently it is guaranteed to have only one signal seq */
1902 	*signal_seq = signal_seq_arr[0];
1903 
1904 out:
1905 	kfree(signal_seq_arr);
1906 
1907 	return rc;
1908 }
1909 
1910 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1911 		struct hl_ctx *ctx, struct hl_cs *cs,
1912 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1913 {
1914 	struct hl_cs_counters_atomic *cntr;
1915 	struct hl_cs_job *job;
1916 	struct hl_cb *cb;
1917 	u32 cb_size;
1918 
1919 	cntr = &hdev->aggregated_cs_counters;
1920 
1921 	job = hl_cs_allocate_job(hdev, q_type, true);
1922 	if (!job) {
1923 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1924 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1925 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1926 		return -ENOMEM;
1927 	}
1928 
1929 	if (cs->type == CS_TYPE_WAIT)
1930 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1931 	else
1932 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1933 
1934 	cb = hl_cb_kernel_create(hdev, cb_size,
1935 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1936 	if (!cb) {
1937 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1938 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1939 		kfree(job);
1940 		return -EFAULT;
1941 	}
1942 
1943 	job->id = 0;
1944 	job->cs = cs;
1945 	job->user_cb = cb;
1946 	atomic_inc(&job->user_cb->cs_cnt);
1947 	job->user_cb_size = cb_size;
1948 	job->hw_queue_id = q_idx;
1949 
1950 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1951 			&& cs->encaps_signals)
1952 		job->encaps_sig_wait_offset = encaps_signal_offset;
1953 	/*
1954 	 * No need in parsing, user CB is the patched CB.
1955 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1956 	 * the CB idr anymore and to decrement its refcount as it was
1957 	 * incremented inside hl_cb_kernel_create().
1958 	 */
1959 	job->patched_cb = job->user_cb;
1960 	job->job_cb_size = job->user_cb_size;
1961 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1962 
1963 	/* increment refcount as for external queues we get completion */
1964 	cs_get(cs);
1965 
1966 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1967 	cs->jobs_cnt++;
1968 
1969 	list_add_tail(&job->cs_node, &cs->job_list);
1970 
1971 	hl_debugfs_add_job(hdev, job);
1972 
1973 	return 0;
1974 }
1975 
1976 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1977 				u32 q_idx, u32 count,
1978 				u32 *handle_id, u32 *sob_addr,
1979 				u32 *signals_count)
1980 {
1981 	struct hw_queue_properties *hw_queue_prop;
1982 	struct hl_sync_stream_properties *prop;
1983 	struct hl_device *hdev = hpriv->hdev;
1984 	struct hl_cs_encaps_sig_handle *handle;
1985 	struct hl_encaps_signals_mgr *mgr;
1986 	struct hl_hw_sob *hw_sob;
1987 	int hdl_id;
1988 	int rc = 0;
1989 
1990 	if (count >= HL_MAX_SOB_VAL) {
1991 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
1992 						count);
1993 		rc = -EINVAL;
1994 		goto out;
1995 	}
1996 
1997 	if (q_idx >= hdev->asic_prop.max_queues) {
1998 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1999 			q_idx);
2000 		rc = -EINVAL;
2001 		goto out;
2002 	}
2003 
2004 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2005 
2006 	if (!hw_queue_prop->supports_sync_stream) {
2007 		dev_err(hdev->dev,
2008 			"Queue index %d does not support sync stream operations\n",
2009 									q_idx);
2010 		rc = -EINVAL;
2011 		goto out;
2012 	}
2013 
2014 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2015 
2016 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
2017 	if (!handle) {
2018 		rc = -ENOMEM;
2019 		goto out;
2020 	}
2021 
2022 	handle->count = count;
2023 
2024 	hl_ctx_get(hpriv->ctx);
2025 	handle->ctx = hpriv->ctx;
2026 	mgr = &hpriv->ctx->sig_mgr;
2027 
2028 	spin_lock(&mgr->lock);
2029 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
2030 	spin_unlock(&mgr->lock);
2031 
2032 	if (hdl_id < 0) {
2033 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2034 		rc = -EINVAL;
2035 		goto put_ctx;
2036 	}
2037 
2038 	handle->id = hdl_id;
2039 	handle->q_idx = q_idx;
2040 	handle->hdev = hdev;
2041 	kref_init(&handle->refcount);
2042 
2043 	hdev->asic_funcs->hw_queues_lock(hdev);
2044 
2045 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2046 
2047 	/*
2048 	 * Increment the SOB value by count by user request
2049 	 * to reserve those signals
2050 	 * check if the signals amount to reserve is not exceeding the max sob
2051 	 * value, if yes then switch sob.
2052 	 */
2053 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
2054 								true);
2055 	if (rc) {
2056 		dev_err(hdev->dev, "Failed to switch SOB\n");
2057 		hdev->asic_funcs->hw_queues_unlock(hdev);
2058 		rc = -EINVAL;
2059 		goto remove_idr;
2060 	}
2061 	/* set the hw_sob to the handle after calling the sob wraparound handler
2062 	 * since sob could have changed.
2063 	 */
2064 	handle->hw_sob = hw_sob;
2065 
2066 	/* store the current sob value for unreserve validity check, and
2067 	 * signal offset support
2068 	 */
2069 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2070 
2071 	handle->cs_seq = ULLONG_MAX;
2072 
2073 	*signals_count = prop->next_sob_val;
2074 	hdev->asic_funcs->hw_queues_unlock(hdev);
2075 
2076 	*sob_addr = handle->hw_sob->sob_addr;
2077 	*handle_id = hdl_id;
2078 
2079 	dev_dbg(hdev->dev,
2080 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2081 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2082 			prop->next_sob_val - 1, q_idx, hdl_id);
2083 	goto out;
2084 
2085 remove_idr:
2086 	spin_lock(&mgr->lock);
2087 	idr_remove(&mgr->handles, hdl_id);
2088 	spin_unlock(&mgr->lock);
2089 
2090 put_ctx:
2091 	hl_ctx_put(handle->ctx);
2092 	kfree(handle);
2093 
2094 out:
2095 	return rc;
2096 }
2097 
2098 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2099 {
2100 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2101 	struct hl_sync_stream_properties *prop;
2102 	struct hl_device *hdev = hpriv->hdev;
2103 	struct hl_encaps_signals_mgr *mgr;
2104 	struct hl_hw_sob *hw_sob;
2105 	u32 q_idx, sob_addr;
2106 	int rc = 0;
2107 
2108 	mgr = &hpriv->ctx->sig_mgr;
2109 
2110 	spin_lock(&mgr->lock);
2111 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2112 	if (encaps_sig_hdl) {
2113 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2114 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2115 					encaps_sig_hdl->count);
2116 
2117 		hdev->asic_funcs->hw_queues_lock(hdev);
2118 
2119 		q_idx = encaps_sig_hdl->q_idx;
2120 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2121 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2122 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2123 
2124 		/* Check if sob_val got out of sync due to other
2125 		 * signal submission requests which were handled
2126 		 * between the reserve-unreserve calls or SOB switch
2127 		 * upon reaching SOB max value.
2128 		 */
2129 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2130 				!= prop->next_sob_val ||
2131 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2132 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2133 				encaps_sig_hdl->pre_sob_val,
2134 				(prop->next_sob_val - encaps_sig_hdl->count));
2135 
2136 			hdev->asic_funcs->hw_queues_unlock(hdev);
2137 			rc = -EINVAL;
2138 			goto out;
2139 		}
2140 
2141 		/*
2142 		 * Decrement the SOB value by count by user request
2143 		 * to unreserve those signals
2144 		 */
2145 		prop->next_sob_val -= encaps_sig_hdl->count;
2146 
2147 		hdev->asic_funcs->hw_queues_unlock(hdev);
2148 
2149 		hw_sob_put(hw_sob);
2150 
2151 		/* Release the id and free allocated memory of the handle */
2152 		idr_remove(&mgr->handles, handle_id);
2153 		hl_ctx_put(encaps_sig_hdl->ctx);
2154 		kfree(encaps_sig_hdl);
2155 	} else {
2156 		rc = -EINVAL;
2157 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2158 	}
2159 out:
2160 	spin_unlock(&mgr->lock);
2161 
2162 	return rc;
2163 }
2164 
2165 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2166 				void __user *chunks, u32 num_chunks,
2167 				u64 *cs_seq, u32 flags, u32 timeout,
2168 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2169 {
2170 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2171 	bool handle_found = false, is_wait_cs = false,
2172 			wait_cs_submitted = false,
2173 			cs_encaps_signals = false;
2174 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2175 	bool staged_cs_with_encaps_signals = false;
2176 	struct hw_queue_properties *hw_queue_prop;
2177 	struct hl_device *hdev = hpriv->hdev;
2178 	struct hl_cs_compl *sig_waitcs_cmpl;
2179 	u32 q_idx, collective_engine_id = 0;
2180 	struct hl_cs_counters_atomic *cntr;
2181 	struct hl_fence *sig_fence = NULL;
2182 	struct hl_ctx *ctx = hpriv->ctx;
2183 	enum hl_queue_type q_type;
2184 	struct hl_cs *cs;
2185 	u64 signal_seq;
2186 	int rc;
2187 
2188 	cntr = &hdev->aggregated_cs_counters;
2189 	*cs_seq = ULLONG_MAX;
2190 
2191 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2192 			ctx);
2193 	if (rc)
2194 		goto out;
2195 
2196 	/* currently it is guaranteed to have only one chunk */
2197 	chunk = &cs_chunk_array[0];
2198 
2199 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2200 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2201 		atomic64_inc(&cntr->validation_drop_cnt);
2202 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2203 			chunk->queue_index);
2204 		rc = -EINVAL;
2205 		goto free_cs_chunk_array;
2206 	}
2207 
2208 	q_idx = chunk->queue_index;
2209 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2210 	q_type = hw_queue_prop->type;
2211 
2212 	if (!hw_queue_prop->supports_sync_stream) {
2213 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2214 		atomic64_inc(&cntr->validation_drop_cnt);
2215 		dev_err(hdev->dev,
2216 			"Queue index %d does not support sync stream operations\n",
2217 			q_idx);
2218 		rc = -EINVAL;
2219 		goto free_cs_chunk_array;
2220 	}
2221 
2222 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2223 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2224 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2225 			atomic64_inc(&cntr->validation_drop_cnt);
2226 			dev_err(hdev->dev,
2227 				"Queue index %d is invalid\n", q_idx);
2228 			rc = -EINVAL;
2229 			goto free_cs_chunk_array;
2230 		}
2231 
2232 		if (!hdev->nic_ports_mask) {
2233 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2234 			atomic64_inc(&cntr->validation_drop_cnt);
2235 			dev_err(hdev->dev,
2236 				"Collective operations not supported when NIC ports are disabled");
2237 			rc = -EINVAL;
2238 			goto free_cs_chunk_array;
2239 		}
2240 
2241 		collective_engine_id = chunk->collective_engine_id;
2242 	}
2243 
2244 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2245 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2246 
2247 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2248 
2249 	if (is_wait_cs) {
2250 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2251 				ctx, cs_encaps_signals);
2252 		if (rc)
2253 			goto free_cs_chunk_array;
2254 
2255 		if (cs_encaps_signals) {
2256 			/* check if cs sequence has encapsulated
2257 			 * signals handle
2258 			 */
2259 			struct idr *idp;
2260 			u32 id;
2261 
2262 			spin_lock(&ctx->sig_mgr.lock);
2263 			idp = &ctx->sig_mgr.handles;
2264 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2265 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2266 					/* get refcount to protect removing this handle from idr,
2267 					 * needed when multiple wait cs are used with offset
2268 					 * to wait on reserved encaps signals.
2269 					 * Since kref_put of this handle is executed outside the
2270 					 * current lock, it is possible that the handle refcount
2271 					 * is 0 but it yet to be removed from the list. In this
2272 					 * case need to consider the handle as not valid.
2273 					 */
2274 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2275 						handle_found = true;
2276 					break;
2277 				}
2278 			}
2279 			spin_unlock(&ctx->sig_mgr.lock);
2280 
2281 			if (!handle_found) {
2282 				/* treat as signal CS already finished */
2283 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2284 						signal_seq);
2285 				rc = 0;
2286 				goto free_cs_chunk_array;
2287 			}
2288 
2289 			/* validate also the signal offset value */
2290 			if (chunk->encaps_signal_offset >
2291 					encaps_sig_hdl->count) {
2292 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2293 						chunk->encaps_signal_offset,
2294 						encaps_sig_hdl->count);
2295 				rc = -EINVAL;
2296 				goto free_cs_chunk_array;
2297 			}
2298 		}
2299 
2300 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2301 		if (IS_ERR(sig_fence)) {
2302 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2303 			atomic64_inc(&cntr->validation_drop_cnt);
2304 			dev_err(hdev->dev,
2305 				"Failed to get signal CS with seq 0x%llx\n",
2306 				signal_seq);
2307 			rc = PTR_ERR(sig_fence);
2308 			goto free_cs_chunk_array;
2309 		}
2310 
2311 		if (!sig_fence) {
2312 			/* signal CS already finished */
2313 			rc = 0;
2314 			goto free_cs_chunk_array;
2315 		}
2316 
2317 		sig_waitcs_cmpl =
2318 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2319 
2320 		staged_cs_with_encaps_signals = !!
2321 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2322 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2323 
2324 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2325 				!staged_cs_with_encaps_signals) {
2326 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2327 			atomic64_inc(&cntr->validation_drop_cnt);
2328 			dev_err(hdev->dev,
2329 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2330 				signal_seq);
2331 			hl_fence_put(sig_fence);
2332 			rc = -EINVAL;
2333 			goto free_cs_chunk_array;
2334 		}
2335 
2336 		if (completion_done(&sig_fence->completion)) {
2337 			/* signal CS already finished */
2338 			hl_fence_put(sig_fence);
2339 			rc = 0;
2340 			goto free_cs_chunk_array;
2341 		}
2342 	}
2343 
2344 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2345 	if (rc) {
2346 		if (is_wait_cs)
2347 			hl_fence_put(sig_fence);
2348 
2349 		goto free_cs_chunk_array;
2350 	}
2351 
2352 	/*
2353 	 * Save the signal CS fence for later initialization right before
2354 	 * hanging the wait CS on the queue.
2355 	 * for encaps signals case, we save the cs sequence and handle pointer
2356 	 * for later initialization.
2357 	 */
2358 	if (is_wait_cs) {
2359 		cs->signal_fence = sig_fence;
2360 		/* store the handle pointer, so we don't have to
2361 		 * look for it again, later on the flow
2362 		 * when we need to set SOB info in hw_queue.
2363 		 */
2364 		if (cs->encaps_signals)
2365 			cs->encaps_sig_hdl = encaps_sig_hdl;
2366 	}
2367 
2368 	hl_debugfs_add_cs(cs);
2369 
2370 	*cs_seq = cs->sequence;
2371 
2372 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2373 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2374 				q_idx, chunk->encaps_signal_offset);
2375 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2376 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2377 				cs, q_idx, collective_engine_id,
2378 				chunk->encaps_signal_offset);
2379 	else {
2380 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2381 		atomic64_inc(&cntr->validation_drop_cnt);
2382 		rc = -EINVAL;
2383 	}
2384 
2385 	if (rc)
2386 		goto free_cs_object;
2387 
2388 	if (q_type == QUEUE_TYPE_HW)
2389 		INIT_WORK(&cs->finish_work, cs_completion);
2390 
2391 	rc = hl_hw_queue_schedule_cs(cs);
2392 	if (rc) {
2393 		/* In case wait cs failed here, it means the signal cs
2394 		 * already completed. we want to free all it's related objects
2395 		 * but we don't want to fail the ioctl.
2396 		 */
2397 		if (is_wait_cs)
2398 			rc = 0;
2399 		else if (rc != -EAGAIN)
2400 			dev_err(hdev->dev,
2401 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2402 				ctx->asid, cs->sequence, rc);
2403 		goto free_cs_object;
2404 	}
2405 
2406 	*signal_sob_addr_offset = cs->sob_addr_offset;
2407 	*signal_initial_sob_count = cs->initial_sob_count;
2408 
2409 	rc = HL_CS_STATUS_SUCCESS;
2410 	if (is_wait_cs)
2411 		wait_cs_submitted = true;
2412 	goto put_cs;
2413 
2414 free_cs_object:
2415 	cs_rollback(hdev, cs);
2416 	*cs_seq = ULLONG_MAX;
2417 	/* The path below is both for good and erroneous exits */
2418 put_cs:
2419 	/* We finished with the CS in this function, so put the ref */
2420 	cs_put(cs);
2421 free_cs_chunk_array:
2422 	if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2423 		kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
2424 	kfree(cs_chunk_array);
2425 out:
2426 	return rc;
2427 }
2428 
2429 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2430 						u32 num_engine_cores, u32 core_command)
2431 {
2432 	int rc;
2433 	struct hl_device *hdev = hpriv->hdev;
2434 	void __user *engine_cores_arr;
2435 	u32 *cores;
2436 
2437 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2438 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2439 		return -EINVAL;
2440 	}
2441 
2442 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2443 		dev_err(hdev->dev, "Engine core command is invalid\n");
2444 		return -EINVAL;
2445 	}
2446 
2447 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2448 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2449 	if (!cores)
2450 		return -ENOMEM;
2451 
2452 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2453 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2454 		kfree(cores);
2455 		return -EFAULT;
2456 	}
2457 
2458 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2459 	kfree(cores);
2460 
2461 	return rc;
2462 }
2463 
2464 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2465 {
2466 	struct hl_device *hdev = hpriv->hdev;
2467 	struct asic_fixed_properties *prop = &hdev->asic_prop;
2468 
2469 	if (!prop->hbw_flush_reg) {
2470 		dev_dbg(hdev->dev, "HBW flush is not supported\n");
2471 		return -EOPNOTSUPP;
2472 	}
2473 
2474 	RREG32(prop->hbw_flush_reg);
2475 
2476 	return 0;
2477 }
2478 
2479 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2480 {
2481 	union hl_cs_args *args = data;
2482 	enum hl_cs_type cs_type = 0;
2483 	u64 cs_seq = ULONG_MAX;
2484 	void __user *chunks;
2485 	u32 num_chunks, flags, timeout,
2486 		signals_count = 0, sob_addr = 0, handle_id = 0;
2487 	u16 sob_initial_count = 0;
2488 	int rc;
2489 
2490 	rc = hl_cs_sanity_checks(hpriv, args);
2491 	if (rc)
2492 		goto out;
2493 
2494 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2495 	if (rc)
2496 		goto out;
2497 
2498 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2499 					~HL_CS_FLAGS_FORCE_RESTORE);
2500 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2501 	num_chunks = args->in.num_chunks_execute;
2502 	flags = args->in.cs_flags;
2503 
2504 	/* In case this is a staged CS, user should supply the CS sequence */
2505 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2506 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2507 		cs_seq = args->in.seq;
2508 
2509 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2510 			? msecs_to_jiffies(args->in.timeout * 1000)
2511 			: hpriv->hdev->timeout_jiffies;
2512 
2513 	switch (cs_type) {
2514 	case CS_TYPE_SIGNAL:
2515 	case CS_TYPE_WAIT:
2516 	case CS_TYPE_COLLECTIVE_WAIT:
2517 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2518 					&cs_seq, args->in.cs_flags, timeout,
2519 					&sob_addr, &sob_initial_count);
2520 		break;
2521 	case CS_RESERVE_SIGNALS:
2522 		rc = cs_ioctl_reserve_signals(hpriv,
2523 					args->in.encaps_signals_q_idx,
2524 					args->in.encaps_signals_count,
2525 					&handle_id, &sob_addr, &signals_count);
2526 		break;
2527 	case CS_UNRESERVE_SIGNALS:
2528 		rc = cs_ioctl_unreserve_signals(hpriv,
2529 					args->in.encaps_sig_handle_id);
2530 		break;
2531 	case CS_TYPE_ENGINE_CORE:
2532 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2533 				args->in.num_engine_cores, args->in.core_command);
2534 		break;
2535 	case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2536 		rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2537 		break;
2538 	default:
2539 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2540 						args->in.cs_flags,
2541 						args->in.encaps_sig_handle_id,
2542 						timeout, &sob_initial_count);
2543 		break;
2544 	}
2545 out:
2546 	if (rc != -EAGAIN) {
2547 		memset(args, 0, sizeof(*args));
2548 
2549 		switch (cs_type) {
2550 		case CS_RESERVE_SIGNALS:
2551 			args->out.handle_id = handle_id;
2552 			args->out.sob_base_addr_offset = sob_addr;
2553 			args->out.count = signals_count;
2554 			break;
2555 		case CS_TYPE_SIGNAL:
2556 			args->out.sob_base_addr_offset = sob_addr;
2557 			args->out.sob_count_before_submission = sob_initial_count;
2558 			args->out.seq = cs_seq;
2559 			break;
2560 		case CS_TYPE_DEFAULT:
2561 			args->out.sob_count_before_submission = sob_initial_count;
2562 			args->out.seq = cs_seq;
2563 			break;
2564 		default:
2565 			args->out.seq = cs_seq;
2566 			break;
2567 		}
2568 
2569 		args->out.status = rc;
2570 	}
2571 
2572 	return rc;
2573 }
2574 
2575 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2576 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2577 {
2578 	struct hl_device *hdev = ctx->hdev;
2579 	ktime_t timestamp_kt;
2580 	long completion_rc;
2581 	int rc = 0, error;
2582 
2583 	if (IS_ERR(fence)) {
2584 		rc = PTR_ERR(fence);
2585 		if (rc == -EINVAL)
2586 			dev_notice_ratelimited(hdev->dev,
2587 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2588 				seq, ctx->cs_sequence);
2589 		return rc;
2590 	}
2591 
2592 	if (!fence) {
2593 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2594 			dev_dbg(hdev->dev,
2595 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2596 				seq, ctx->cs_sequence);
2597 			*status = CS_WAIT_STATUS_GONE;
2598 			return 0;
2599 		}
2600 
2601 		completion_rc = 1;
2602 		goto report_results;
2603 	}
2604 
2605 	if (!timeout_us) {
2606 		completion_rc = completion_done(&fence->completion);
2607 	} else {
2608 		unsigned long timeout;
2609 
2610 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2611 				timeout_us : usecs_to_jiffies(timeout_us);
2612 		completion_rc =
2613 			wait_for_completion_interruptible_timeout(
2614 				&fence->completion, timeout);
2615 	}
2616 
2617 	error = fence->error;
2618 	timestamp_kt = fence->timestamp;
2619 
2620 report_results:
2621 	if (completion_rc > 0) {
2622 		*status = CS_WAIT_STATUS_COMPLETED;
2623 		if (timestamp)
2624 			*timestamp = ktime_to_ns(timestamp_kt);
2625 	} else {
2626 		*status = CS_WAIT_STATUS_BUSY;
2627 	}
2628 
2629 	if (completion_rc == -ERESTARTSYS)
2630 		rc = completion_rc;
2631 	else if (error == -ETIMEDOUT || error == -EIO)
2632 		rc = error;
2633 
2634 	return rc;
2635 }
2636 
2637 /*
2638  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2639  *
2640  * @mcs_data: multi-CS internal data
2641  * @mcs_compl: multi-CS completion structure
2642  *
2643  * @return 0 on success, otherwise non 0 error code
2644  *
2645  * The function iterates on all CS sequence in the list and set bit in
2646  * completion_bitmap for each completed CS.
2647  * While iterating, the function sets the stream map of each fence in the fence
2648  * array in the completion QID stream map to be used by CSs to perform
2649  * completion to the multi-CS context.
2650  * This function shall be called after taking context ref
2651  */
2652 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2653 {
2654 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2655 	struct hl_device *hdev = mcs_data->ctx->hdev;
2656 	int i, rc, arr_len = mcs_data->arr_len;
2657 	u64 *seq_arr = mcs_data->seq_arr;
2658 	ktime_t max_ktime, first_cs_time;
2659 	enum hl_cs_wait_status status;
2660 
2661 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2662 
2663 	/* get all fences under the same lock */
2664 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2665 	if (rc)
2666 		return rc;
2667 
2668 	/*
2669 	 * re-initialize the completion here to handle 2 possible cases:
2670 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2671 	 *    case the fence iteration is guaranteed to catch the CS completion.
2672 	 * 2. the completion will occur after re-init of the completion.
2673 	 *    in which case we will wake up immediately in wait_for_completion.
2674 	 */
2675 	reinit_completion(&mcs_compl->completion);
2676 
2677 	/*
2678 	 * set to maximum time to verify timestamp is valid: if at the end
2679 	 * this value is maintained- no timestamp was updated
2680 	 */
2681 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2682 	first_cs_time = max_ktime;
2683 
2684 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2685 		struct hl_fence *fence = *fence_ptr;
2686 
2687 		/*
2688 		 * In order to prevent case where we wait until timeout even though a CS associated
2689 		 * with the multi-CS actually completed we do things in the below order:
2690 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2691 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2692 		 *    that once completion is initialized, calling complete* and then wait on the
2693 		 *    completion will cause it to return at once)
2694 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2695 		 *    the specific CS already completed (and thus the wait for completion part will
2696 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2697 		 *    wake up the completion.
2698 		 */
2699 		if (fence)
2700 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2701 
2702 		/*
2703 		 * function won't sleep as it is called with timeout 0 (i.e.
2704 		 * poll the fence)
2705 		 */
2706 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2707 		if (rc) {
2708 			dev_err(hdev->dev,
2709 				"wait_for_fence error :%d for CS seq %llu\n",
2710 								rc, seq_arr[i]);
2711 			break;
2712 		}
2713 
2714 		switch (status) {
2715 		case CS_WAIT_STATUS_BUSY:
2716 			/* CS did not finished, QID to wait on already stored */
2717 			break;
2718 		case CS_WAIT_STATUS_COMPLETED:
2719 			/*
2720 			 * Using mcs_handling_done to avoid possibility of mcs_data
2721 			 * returns to user indicating CS completed before it finished
2722 			 * all of its mcs handling, to avoid race the next time the
2723 			 * user waits for mcs.
2724 			 * note: when reaching this case fence is definitely not NULL
2725 			 *       but NULL check was added to overcome static analysis
2726 			 */
2727 			if (fence && !fence->mcs_handling_done) {
2728 				/*
2729 				 * in case multi CS is completed but MCS handling not done
2730 				 * we "complete" the multi CS to prevent it from waiting
2731 				 * until time-out and the "multi-CS handling done" will have
2732 				 * another chance at the next iteration
2733 				 */
2734 				complete_all(&mcs_compl->completion);
2735 				break;
2736 			}
2737 
2738 			mcs_data->completion_bitmap |= BIT(i);
2739 			/*
2740 			 * For all completed CSs we take the earliest timestamp.
2741 			 * For this we have to validate that the timestamp is
2742 			 * earliest of all timestamps so far.
2743 			 */
2744 			if (fence && mcs_data->update_ts &&
2745 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2746 				first_cs_time = fence->timestamp;
2747 			break;
2748 		case CS_WAIT_STATUS_GONE:
2749 			mcs_data->update_ts = false;
2750 			mcs_data->gone_cs = true;
2751 			/*
2752 			 * It is possible to get an old sequence numbers from user
2753 			 * which related to already completed CSs and their fences
2754 			 * already gone. In this case, CS set as completed but
2755 			 * no need to consider its QID for mcs completion.
2756 			 */
2757 			mcs_data->completion_bitmap |= BIT(i);
2758 			break;
2759 		default:
2760 			dev_err(hdev->dev, "Invalid fence status\n");
2761 			rc = -EINVAL;
2762 			break;
2763 		}
2764 
2765 	}
2766 
2767 	hl_fences_put(mcs_data->fence_arr, arr_len);
2768 
2769 	if (mcs_data->update_ts &&
2770 			(ktime_compare(first_cs_time, max_ktime) != 0))
2771 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2772 
2773 	return rc;
2774 }
2775 
2776 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2777 				enum hl_cs_wait_status *status, s64 *timestamp)
2778 {
2779 	struct hl_fence *fence;
2780 	int rc = 0;
2781 
2782 	if (timestamp)
2783 		*timestamp = 0;
2784 
2785 	hl_ctx_get(ctx);
2786 
2787 	fence = hl_ctx_get_fence(ctx, seq);
2788 
2789 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2790 	hl_fence_put(fence);
2791 	hl_ctx_put(ctx);
2792 
2793 	return rc;
2794 }
2795 
2796 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2797 {
2798 	if (usecs <= U32_MAX)
2799 		return usecs_to_jiffies(usecs);
2800 
2801 	/*
2802 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2803 	 * 64 bit value.
2804 	 */
2805 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2806 		return nsecs_to_jiffies(U64_MAX);
2807 
2808 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2809 }
2810 
2811 /*
2812  * hl_wait_multi_cs_completion_init - init completion structure
2813  *
2814  * @hdev: pointer to habanalabs device structure
2815  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2816  *                        master QID to wait on
2817  *
2818  * @return valid completion struct pointer on success, otherwise error pointer
2819  *
2820  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2821  * the function gets the first available completion (by marking it "used")
2822  * and initialize its values.
2823  */
2824 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2825 {
2826 	struct multi_cs_completion *mcs_compl;
2827 	int i;
2828 
2829 	/* find free multi_cs completion structure */
2830 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2831 		mcs_compl = &hdev->multi_cs_completion[i];
2832 		spin_lock(&mcs_compl->lock);
2833 		if (!mcs_compl->used) {
2834 			mcs_compl->used = 1;
2835 			mcs_compl->timestamp = 0;
2836 			/*
2837 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2838 			 * to multi-CS CSs will be set incrementally at a later stage
2839 			 */
2840 			mcs_compl->stream_master_qid_map = 0;
2841 			spin_unlock(&mcs_compl->lock);
2842 			break;
2843 		}
2844 		spin_unlock(&mcs_compl->lock);
2845 	}
2846 
2847 	if (i == MULTI_CS_MAX_USER_CTX) {
2848 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2849 		return ERR_PTR(-ENOMEM);
2850 	}
2851 	return mcs_compl;
2852 }
2853 
2854 /*
2855  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2856  *                                    unused
2857  *
2858  * @mcs_compl: pointer to the completion structure
2859  */
2860 static void hl_wait_multi_cs_completion_fini(
2861 					struct multi_cs_completion *mcs_compl)
2862 {
2863 	/*
2864 	 * free completion structure, do it under lock to be in-sync with the
2865 	 * thread that signals completion
2866 	 */
2867 	spin_lock(&mcs_compl->lock);
2868 	mcs_compl->used = 0;
2869 	spin_unlock(&mcs_compl->lock);
2870 }
2871 
2872 /*
2873  * hl_wait_multi_cs_completion - wait for first CS to complete
2874  *
2875  * @mcs_data: multi-CS internal data
2876  *
2877  * @return 0 on success, otherwise non 0 error code
2878  */
2879 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2880 						struct multi_cs_completion *mcs_compl)
2881 {
2882 	long completion_rc;
2883 
2884 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2885 									mcs_data->timeout_jiffies);
2886 
2887 	/* update timestamp */
2888 	if (completion_rc > 0)
2889 		mcs_data->timestamp = mcs_compl->timestamp;
2890 
2891 	if (completion_rc == -ERESTARTSYS)
2892 		return completion_rc;
2893 
2894 	mcs_data->wait_status = completion_rc;
2895 
2896 	return 0;
2897 }
2898 
2899 /*
2900  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2901  *
2902  * @hdev: pointer to habanalabs device structure
2903  */
2904 void hl_multi_cs_completion_init(struct hl_device *hdev)
2905 {
2906 	struct multi_cs_completion *mcs_cmpl;
2907 	int i;
2908 
2909 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2910 		mcs_cmpl = &hdev->multi_cs_completion[i];
2911 		mcs_cmpl->used = 0;
2912 		spin_lock_init(&mcs_cmpl->lock);
2913 		init_completion(&mcs_cmpl->completion);
2914 	}
2915 }
2916 
2917 /*
2918  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2919  *
2920  * @hpriv: pointer to the private data of the fd
2921  * @data: pointer to multi-CS wait ioctl in/out args
2922  *
2923  */
2924 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2925 {
2926 	struct multi_cs_completion *mcs_compl;
2927 	struct hl_device *hdev = hpriv->hdev;
2928 	struct multi_cs_data mcs_data = {};
2929 	union hl_wait_cs_args *args = data;
2930 	struct hl_ctx *ctx = hpriv->ctx;
2931 	struct hl_fence **fence_arr;
2932 	void __user *seq_arr;
2933 	u32 size_to_copy;
2934 	u64 *cs_seq_arr;
2935 	u8 seq_arr_len;
2936 	int rc, i;
2937 
2938 	for (i = 0 ; i < sizeof(args->in.pad) ; i++)
2939 		if (args->in.pad[i]) {
2940 			dev_dbg(hdev->dev, "Padding bytes must be 0\n");
2941 			return -EINVAL;
2942 		}
2943 
2944 	if (!hdev->supports_wait_for_multi_cs) {
2945 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
2946 		return -EPERM;
2947 	}
2948 
2949 	seq_arr_len = args->in.seq_arr_len;
2950 
2951 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
2952 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
2953 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
2954 		return -EINVAL;
2955 	}
2956 
2957 	/* allocate memory for sequence array */
2958 	cs_seq_arr =
2959 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
2960 	if (!cs_seq_arr)
2961 		return -ENOMEM;
2962 
2963 	/* copy CS sequence array from user */
2964 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
2965 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
2966 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
2967 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
2968 		rc = -EFAULT;
2969 		goto free_seq_arr;
2970 	}
2971 
2972 	/* allocate array for the fences */
2973 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
2974 	if (!fence_arr) {
2975 		rc = -ENOMEM;
2976 		goto free_seq_arr;
2977 	}
2978 
2979 	/* initialize the multi-CS internal data */
2980 	mcs_data.ctx = ctx;
2981 	mcs_data.seq_arr = cs_seq_arr;
2982 	mcs_data.fence_arr = fence_arr;
2983 	mcs_data.arr_len = seq_arr_len;
2984 
2985 	hl_ctx_get(ctx);
2986 
2987 	/* wait (with timeout) for the first CS to be completed */
2988 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
2989 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
2990 	if (IS_ERR(mcs_compl)) {
2991 		rc = PTR_ERR(mcs_compl);
2992 		goto put_ctx;
2993 	}
2994 
2995 	/* poll all CS fences, extract timestamp */
2996 	mcs_data.update_ts = true;
2997 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
2998 	/*
2999 	 * skip wait for CS completion when one of the below is true:
3000 	 * - an error on the poll function
3001 	 * - one or more CS in the list completed
3002 	 * - the user called ioctl with timeout 0
3003 	 */
3004 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3005 		goto completion_fini;
3006 
3007 	while (true) {
3008 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
3009 		if (rc || (mcs_data.wait_status == 0))
3010 			break;
3011 
3012 		/*
3013 		 * poll fences once again to update the CS map.
3014 		 * no timestamp should be updated this time.
3015 		 */
3016 		mcs_data.update_ts = false;
3017 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
3018 
3019 		if (rc || mcs_data.completion_bitmap)
3020 			break;
3021 
3022 		/*
3023 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3024 		 * it got a completion) it either got completed by CS in the multi CS list
3025 		 * (in which case the indication will be non empty completion_bitmap) or it
3026 		 * got completed by CS submitted to one of the shared stream master but
3027 		 * not in the multi CS list (in which case we should wait again but modify
3028 		 * the timeout and set timestamp as zero to let a CS related to the current
3029 		 * multi-CS set a new, relevant, timestamp)
3030 		 */
3031 		mcs_data.timeout_jiffies = mcs_data.wait_status;
3032 		mcs_compl->timestamp = 0;
3033 	}
3034 
3035 completion_fini:
3036 	hl_wait_multi_cs_completion_fini(mcs_compl);
3037 
3038 put_ctx:
3039 	hl_ctx_put(ctx);
3040 	kfree(fence_arr);
3041 
3042 free_seq_arr:
3043 	kfree(cs_seq_arr);
3044 
3045 	if (rc == -ERESTARTSYS) {
3046 		dev_err_ratelimited(hdev->dev,
3047 				"user process got signal while waiting for Multi-CS\n");
3048 		rc = -EINTR;
3049 	}
3050 
3051 	if (rc)
3052 		return rc;
3053 
3054 	/* update output args */
3055 	memset(args, 0, sizeof(*args));
3056 
3057 	if (mcs_data.completion_bitmap) {
3058 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3059 		args->out.cs_completion_map = mcs_data.completion_bitmap;
3060 
3061 		/* if timestamp not 0- it's valid */
3062 		if (mcs_data.timestamp) {
3063 			args->out.timestamp_nsec = mcs_data.timestamp;
3064 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3065 		}
3066 
3067 		/* update if some CS was gone */
3068 		if (!mcs_data.timestamp)
3069 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3070 	} else {
3071 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3078 {
3079 	struct hl_device *hdev = hpriv->hdev;
3080 	union hl_wait_cs_args *args = data;
3081 	enum hl_cs_wait_status status;
3082 	u64 seq = args->in.seq;
3083 	s64 timestamp;
3084 	int rc;
3085 
3086 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
3087 
3088 	if (rc == -ERESTARTSYS) {
3089 		dev_err_ratelimited(hdev->dev,
3090 			"user process got signal while waiting for CS handle %llu\n",
3091 			seq);
3092 		return -EINTR;
3093 	}
3094 
3095 	memset(args, 0, sizeof(*args));
3096 
3097 	if (rc) {
3098 		if (rc == -ETIMEDOUT) {
3099 			dev_err_ratelimited(hdev->dev,
3100 				"CS %llu has timed-out while user process is waiting for it\n",
3101 				seq);
3102 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3103 		} else if (rc == -EIO) {
3104 			dev_err_ratelimited(hdev->dev,
3105 				"CS %llu has been aborted while user process is waiting for it\n",
3106 				seq);
3107 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3108 		}
3109 		return rc;
3110 	}
3111 
3112 	if (timestamp) {
3113 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3114 		args->out.timestamp_nsec = timestamp;
3115 	}
3116 
3117 	switch (status) {
3118 	case CS_WAIT_STATUS_GONE:
3119 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3120 		fallthrough;
3121 	case CS_WAIT_STATUS_COMPLETED:
3122 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3123 		break;
3124 	case CS_WAIT_STATUS_BUSY:
3125 	default:
3126 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3127 		break;
3128 	}
3129 
3130 	return 0;
3131 }
3132 
3133 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3134 					struct hl_cb *cq_cb,
3135 					u64 ts_offset, u64 cq_offset, u64 target_value,
3136 					spinlock_t *wait_list_lock,
3137 					struct hl_user_pending_interrupt **pend)
3138 {
3139 	struct hl_ts_buff *ts_buff = buf->private;
3140 	struct hl_user_pending_interrupt *requested_offset_record =
3141 				(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3142 				ts_offset;
3143 	struct hl_user_pending_interrupt *cb_last =
3144 			(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3145 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3146 	unsigned long flags, iter_counter = 0;
3147 	u64 current_cq_counter;
3148 
3149 	/* Validate ts_offset not exceeding last max */
3150 	if (requested_offset_record >= cb_last) {
3151 		dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3152 								(u64)(uintptr_t)cb_last);
3153 		return -EINVAL;
3154 	}
3155 
3156 start_over:
3157 	spin_lock_irqsave(wait_list_lock, flags);
3158 
3159 	/* Unregister only if we didn't reach the target value
3160 	 * since in this case there will be no handling in irq context
3161 	 * and then it's safe to delete the node out of the interrupt list
3162 	 * then re-use it on other interrupt
3163 	 */
3164 	if (requested_offset_record->ts_reg_info.in_use) {
3165 		current_cq_counter = *requested_offset_record->cq_kernel_addr;
3166 		if (current_cq_counter < requested_offset_record->cq_target_value) {
3167 			list_del(&requested_offset_record->wait_list_node);
3168 			spin_unlock_irqrestore(wait_list_lock, flags);
3169 
3170 			hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3171 			hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3172 
3173 			dev_dbg(buf->mmg->dev,
3174 				"ts node removed from interrupt list now can re-use\n");
3175 		} else {
3176 			dev_dbg(buf->mmg->dev,
3177 				"ts node in middle of irq handling\n");
3178 
3179 			/* irq handling in the middle give it time to finish */
3180 			spin_unlock_irqrestore(wait_list_lock, flags);
3181 			usleep_range(1, 10);
3182 			if (++iter_counter == MAX_TS_ITER_NUM) {
3183 				dev_err(buf->mmg->dev,
3184 					"handling registration interrupt took too long!!\n");
3185 				return -EINVAL;
3186 			}
3187 
3188 			goto start_over;
3189 		}
3190 	} else {
3191 		/* Fill up the new registration node info */
3192 		requested_offset_record->ts_reg_info.buf = buf;
3193 		requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3194 		requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3195 				(u64 *) ts_buff->user_buff_address + ts_offset;
3196 		requested_offset_record->cq_kernel_addr =
3197 				(u64 *) cq_cb->kernel_address + cq_offset;
3198 		requested_offset_record->cq_target_value = target_value;
3199 
3200 		spin_unlock_irqrestore(wait_list_lock, flags);
3201 	}
3202 
3203 	*pend = requested_offset_record;
3204 
3205 	dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3206 		requested_offset_record);
3207 	return 0;
3208 }
3209 
3210 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3211 				struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3212 				u64 timeout_us, u64 cq_counters_handle,	u64 cq_counters_offset,
3213 				u64 target_value, struct hl_user_interrupt *interrupt,
3214 				bool register_ts_record, u64 ts_handle, u64 ts_offset,
3215 				u32 *status, u64 *timestamp)
3216 {
3217 	struct hl_user_pending_interrupt *pend;
3218 	struct hl_mmap_mem_buf *buf;
3219 	struct hl_cb *cq_cb;
3220 	unsigned long timeout, flags;
3221 	long completion_rc;
3222 	int rc = 0;
3223 
3224 	timeout = hl_usecs64_to_jiffies(timeout_us);
3225 
3226 	hl_ctx_get(ctx);
3227 
3228 	cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3229 	if (!cq_cb) {
3230 		rc = -EINVAL;
3231 		goto put_ctx;
3232 	}
3233 
3234 	/* Validate the cq offset */
3235 	if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3236 			((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3237 		rc = -EINVAL;
3238 		goto put_cq_cb;
3239 	}
3240 
3241 	if (register_ts_record) {
3242 		dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3243 					interrupt->interrupt_id, ts_offset, cq_counters_offset);
3244 		buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3245 		if (!buf) {
3246 			rc = -EINVAL;
3247 			goto put_cq_cb;
3248 		}
3249 
3250 		/* get ts buffer record */
3251 		rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3252 						cq_counters_offset, target_value,
3253 						&interrupt->wait_list_lock, &pend);
3254 		if (rc)
3255 			goto put_ts_buff;
3256 	} else {
3257 		pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3258 		if (!pend) {
3259 			rc = -ENOMEM;
3260 			goto put_cq_cb;
3261 		}
3262 		hl_fence_init(&pend->fence, ULONG_MAX);
3263 		pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3264 		pend->cq_target_value = target_value;
3265 	}
3266 
3267 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3268 
3269 	/* We check for completion value as interrupt could have been received
3270 	 * before we added the node to the wait list
3271 	 */
3272 	if (*pend->cq_kernel_addr >= target_value) {
3273 		if (register_ts_record)
3274 			pend->ts_reg_info.in_use = 0;
3275 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3276 
3277 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3278 
3279 		if (register_ts_record) {
3280 			*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3281 			goto put_ts_buff;
3282 		} else {
3283 			pend->fence.timestamp = ktime_get();
3284 			goto set_timestamp;
3285 		}
3286 	} else if (!timeout_us) {
3287 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3288 		*status = HL_WAIT_CS_STATUS_BUSY;
3289 		pend->fence.timestamp = ktime_get();
3290 		goto set_timestamp;
3291 	}
3292 
3293 	/* Add pending user interrupt to relevant list for the interrupt
3294 	 * handler to monitor.
3295 	 * Note that we cannot have sorted list by target value,
3296 	 * in order to shorten the list pass loop, since
3297 	 * same list could have nodes for different cq counter handle.
3298 	 * Note:
3299 	 * Mark ts buff offset as in use here in the spinlock protection area
3300 	 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3301 	 * before adding the node to the list. this scenario might happen when
3302 	 * multiple threads are racing on same offset and one thread could
3303 	 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3304 	 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3305 	 * to re-use the same ts buff offset, and will try to delete a non existing
3306 	 * node from the list.
3307 	 */
3308 	if (register_ts_record)
3309 		pend->ts_reg_info.in_use = 1;
3310 
3311 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3312 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3313 
3314 	if (register_ts_record) {
3315 		rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3316 		goto ts_registration_exit;
3317 	}
3318 
3319 	/* Wait for interrupt handler to signal completion */
3320 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3321 								timeout);
3322 	if (completion_rc > 0) {
3323 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3324 	} else {
3325 		if (completion_rc == -ERESTARTSYS) {
3326 			dev_err_ratelimited(hdev->dev,
3327 					"user process got signal while waiting for interrupt ID %d\n",
3328 					interrupt->interrupt_id);
3329 			rc = -EINTR;
3330 			*status = HL_WAIT_CS_STATUS_ABORTED;
3331 		} else {
3332 			if (pend->fence.error == -EIO) {
3333 				dev_err_ratelimited(hdev->dev,
3334 						"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3335 						pend->fence.error);
3336 				rc = -EIO;
3337 				*status = HL_WAIT_CS_STATUS_ABORTED;
3338 			} else {
3339 				/* The wait has timed-out. We don't know anything beyond that
3340 				 * because the workload wasn't submitted through the driver.
3341 				 * Therefore, from driver's perspective, the workload is still
3342 				 * executing.
3343 				 */
3344 				rc = 0;
3345 				*status = HL_WAIT_CS_STATUS_BUSY;
3346 			}
3347 		}
3348 	}
3349 
3350 	/*
3351 	 * We keep removing the node from list here, and not at the irq handler
3352 	 * for completion timeout case. and if it's a registration
3353 	 * for ts record, the node will be deleted in the irq handler after
3354 	 * we reach the target value.
3355 	 */
3356 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3357 	list_del(&pend->wait_list_node);
3358 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3359 
3360 set_timestamp:
3361 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3362 	kfree(pend);
3363 	hl_cb_put(cq_cb);
3364 ts_registration_exit:
3365 	hl_ctx_put(ctx);
3366 
3367 	return rc;
3368 
3369 put_ts_buff:
3370 	hl_mmap_mem_buf_put(buf);
3371 put_cq_cb:
3372 	hl_cb_put(cq_cb);
3373 put_ctx:
3374 	hl_ctx_put(ctx);
3375 
3376 	return rc;
3377 }
3378 
3379 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3380 				u64 timeout_us, u64 user_address,
3381 				u64 target_value, struct hl_user_interrupt *interrupt,
3382 				u32 *status,
3383 				u64 *timestamp)
3384 {
3385 	struct hl_user_pending_interrupt *pend;
3386 	unsigned long timeout, flags;
3387 	u64 completion_value;
3388 	long completion_rc;
3389 	int rc = 0;
3390 
3391 	timeout = hl_usecs64_to_jiffies(timeout_us);
3392 
3393 	hl_ctx_get(ctx);
3394 
3395 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3396 	if (!pend) {
3397 		hl_ctx_put(ctx);
3398 		return -ENOMEM;
3399 	}
3400 
3401 	hl_fence_init(&pend->fence, ULONG_MAX);
3402 
3403 	/* Add pending user interrupt to relevant list for the interrupt
3404 	 * handler to monitor
3405 	 */
3406 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3407 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3408 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3409 
3410 	/* We check for completion value as interrupt could have been received
3411 	 * before we added the node to the wait list
3412 	 */
3413 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3414 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3415 		rc = -EFAULT;
3416 		goto remove_pending_user_interrupt;
3417 	}
3418 
3419 	if (completion_value >= target_value) {
3420 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3421 		/* There was no interrupt, we assume the completion is now. */
3422 		pend->fence.timestamp = ktime_get();
3423 	} else {
3424 		*status = HL_WAIT_CS_STATUS_BUSY;
3425 	}
3426 
3427 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3428 		goto remove_pending_user_interrupt;
3429 
3430 wait_again:
3431 	/* Wait for interrupt handler to signal completion */
3432 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3433 										timeout);
3434 
3435 	/* If timeout did not expire we need to perform the comparison.
3436 	 * If comparison fails, keep waiting until timeout expires
3437 	 */
3438 	if (completion_rc > 0) {
3439 		spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3440 		/* reinit_completion must be called before we check for user
3441 		 * completion value, otherwise, if interrupt is received after
3442 		 * the comparison and before the next wait_for_completion,
3443 		 * we will reach timeout and fail
3444 		 */
3445 		reinit_completion(&pend->fence.completion);
3446 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3447 
3448 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3449 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3450 			rc = -EFAULT;
3451 
3452 			goto remove_pending_user_interrupt;
3453 		}
3454 
3455 		if (completion_value >= target_value) {
3456 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3457 		} else if (pend->fence.error) {
3458 			dev_err_ratelimited(hdev->dev,
3459 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3460 				pend->fence.error);
3461 			/* set the command completion status as ABORTED */
3462 			*status = HL_WAIT_CS_STATUS_ABORTED;
3463 		} else {
3464 			timeout = completion_rc;
3465 			goto wait_again;
3466 		}
3467 	} else if (completion_rc == -ERESTARTSYS) {
3468 		dev_err_ratelimited(hdev->dev,
3469 			"user process got signal while waiting for interrupt ID %d\n",
3470 			interrupt->interrupt_id);
3471 		rc = -EINTR;
3472 	} else {
3473 		/* The wait has timed-out. We don't know anything beyond that
3474 		 * because the workload wasn't submitted through the driver.
3475 		 * Therefore, from driver's perspective, the workload is still
3476 		 * executing.
3477 		 */
3478 		rc = 0;
3479 		*status = HL_WAIT_CS_STATUS_BUSY;
3480 	}
3481 
3482 remove_pending_user_interrupt:
3483 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3484 	list_del(&pend->wait_list_node);
3485 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3486 
3487 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3488 
3489 	kfree(pend);
3490 	hl_ctx_put(ctx);
3491 
3492 	return rc;
3493 }
3494 
3495 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3496 {
3497 	u16 interrupt_id, first_interrupt, last_interrupt;
3498 	struct hl_device *hdev = hpriv->hdev;
3499 	struct asic_fixed_properties *prop;
3500 	struct hl_user_interrupt *interrupt;
3501 	union hl_wait_cs_args *args = data;
3502 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3503 	u64 timestamp = 0;
3504 	int rc, int_idx;
3505 
3506 	prop = &hdev->asic_prop;
3507 
3508 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3509 		dev_err(hdev->dev, "no user interrupts allowed");
3510 		return -EPERM;
3511 	}
3512 
3513 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3514 
3515 	first_interrupt = prop->first_available_user_interrupt;
3516 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3517 
3518 	if (interrupt_id < prop->user_dec_intr_count) {
3519 
3520 		/* Check if the requested core is enabled */
3521 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3522 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3523 				interrupt_id);
3524 			return -EINVAL;
3525 		}
3526 
3527 		interrupt = &hdev->user_interrupt[interrupt_id];
3528 
3529 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3530 
3531 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3532 		interrupt = &hdev->user_interrupt[int_idx];
3533 
3534 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3535 		interrupt = &hdev->common_user_cq_interrupt;
3536 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3537 		interrupt = &hdev->common_decoder_interrupt;
3538 	} else {
3539 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3540 		return -EINVAL;
3541 	}
3542 
3543 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3544 		rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3545 				args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3546 				args->in.cq_counters_offset,
3547 				args->in.target, interrupt,
3548 				!!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3549 				args->in.timestamp_handle, args->in.timestamp_offset,
3550 				&status, &timestamp);
3551 	else
3552 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3553 				args->in.interrupt_timeout_us, args->in.addr,
3554 				args->in.target, interrupt, &status,
3555 				&timestamp);
3556 	if (rc)
3557 		return rc;
3558 
3559 	memset(args, 0, sizeof(*args));
3560 	args->out.status = status;
3561 
3562 	if (timestamp) {
3563 		args->out.timestamp_nsec = timestamp;
3564 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3571 {
3572 	struct hl_device *hdev = hpriv->hdev;
3573 	union hl_wait_cs_args *args = data;
3574 	u32 flags = args->in.flags;
3575 	int rc;
3576 
3577 	/* If the device is not operational, or if an error has happened and user should release the
3578 	 * device, there is no point in waiting for any command submission or user interrupt.
3579 	 */
3580 	if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3581 		return -EBUSY;
3582 
3583 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3584 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3585 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3586 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3587 	else
3588 		rc = hl_cs_wait_ioctl(hpriv, data);
3589 
3590 	return rc;
3591 }
3592