1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Copyright 2016-2021 HabanaLabs, Ltd. 5 * All Rights Reserved. 6 */ 7 8 #include <uapi/drm/habanalabs_accel.h> 9 #include "habanalabs.h" 10 11 #include <linux/uaccess.h> 12 #include <linux/slab.h> 13 14 #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ 15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ 16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ 17 HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 18 19 20 #define MAX_TS_ITER_NUM 100 21 22 /** 23 * enum hl_cs_wait_status - cs wait status 24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet 25 * @CS_WAIT_STATUS_COMPLETED: cs completed 26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone 27 */ 28 enum hl_cs_wait_status { 29 CS_WAIT_STATUS_BUSY, 30 CS_WAIT_STATUS_COMPLETED, 31 CS_WAIT_STATUS_GONE 32 }; 33 34 /* 35 * Data used while handling wait/timestamp nodes. 36 * The purpose of this struct is to store the needed data for both operations 37 * in one variable instead of passing large number of arguments to functions. 38 */ 39 struct wait_interrupt_data { 40 struct hl_user_interrupt *interrupt; 41 struct hl_mmap_mem_buf *buf; 42 struct hl_mem_mgr *mmg; 43 struct hl_cb *cq_cb; 44 u64 ts_handle; 45 u64 ts_offset; 46 u64 cq_handle; 47 u64 cq_offset; 48 u64 target_value; 49 u64 intr_timeout_us; 50 }; 51 52 static void job_wq_completion(struct work_struct *work); 53 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 54 enum hl_cs_wait_status *status, s64 *timestamp); 55 static void cs_do_release(struct kref *ref); 56 57 static void hl_push_cs_outcome(struct hl_device *hdev, 58 struct hl_cs_outcome_store *outcome_store, 59 u64 seq, ktime_t ts, int error) 60 { 61 struct hl_cs_outcome *node; 62 unsigned long flags; 63 64 /* 65 * CS outcome store supports the following operations: 66 * push outcome - store a recent CS outcome in the store 67 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store 68 * It uses 2 lists: used list and free list. 69 * It has a pre-allocated amount of nodes, each node stores 70 * a single CS outcome. 71 * Initially, all the nodes are in the free list. 72 * On push outcome, a node (any) is taken from the free list, its 73 * information is filled in, and the node is moved to the used list. 74 * It is possible, that there are no nodes left in the free list. 75 * In this case, we will lose some information about old outcomes. We 76 * will pop the OLDEST node from the used list, and make it free. 77 * On pop, the node is searched for in the used list (using a search 78 * index). 79 * If found, the node is then removed from the used list, and moved 80 * back to the free list. The outcome data that the node contained is 81 * returned back to the user. 82 */ 83 84 spin_lock_irqsave(&outcome_store->db_lock, flags); 85 86 if (list_empty(&outcome_store->free_list)) { 87 node = list_last_entry(&outcome_store->used_list, 88 struct hl_cs_outcome, list_link); 89 hash_del(&node->map_link); 90 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); 91 } else { 92 node = list_last_entry(&outcome_store->free_list, 93 struct hl_cs_outcome, list_link); 94 } 95 96 list_del_init(&node->list_link); 97 98 node->seq = seq; 99 node->ts = ts; 100 node->error = error; 101 102 list_add(&node->list_link, &outcome_store->used_list); 103 hash_add(outcome_store->outcome_map, &node->map_link, node->seq); 104 105 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 106 } 107 108 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, 109 u64 seq, ktime_t *ts, int *error) 110 { 111 struct hl_cs_outcome *node; 112 unsigned long flags; 113 114 spin_lock_irqsave(&outcome_store->db_lock, flags); 115 116 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) 117 if (node->seq == seq) { 118 *ts = node->ts; 119 *error = node->error; 120 121 hash_del(&node->map_link); 122 list_del_init(&node->list_link); 123 list_add(&node->list_link, &outcome_store->free_list); 124 125 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 126 127 return true; 128 } 129 130 spin_unlock_irqrestore(&outcome_store->db_lock, flags); 131 132 return false; 133 } 134 135 static void hl_sob_reset(struct kref *ref) 136 { 137 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 138 kref); 139 struct hl_device *hdev = hw_sob->hdev; 140 141 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); 142 143 hdev->asic_funcs->reset_sob(hdev, hw_sob); 144 145 hw_sob->need_reset = false; 146 } 147 148 void hl_sob_reset_error(struct kref *ref) 149 { 150 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, 151 kref); 152 struct hl_device *hdev = hw_sob->hdev; 153 154 dev_crit(hdev->dev, 155 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", 156 hw_sob->q_idx, hw_sob->sob_id); 157 } 158 159 void hw_sob_put(struct hl_hw_sob *hw_sob) 160 { 161 if (hw_sob) 162 kref_put(&hw_sob->kref, hl_sob_reset); 163 } 164 165 static void hw_sob_put_err(struct hl_hw_sob *hw_sob) 166 { 167 if (hw_sob) 168 kref_put(&hw_sob->kref, hl_sob_reset_error); 169 } 170 171 void hw_sob_get(struct hl_hw_sob *hw_sob) 172 { 173 if (hw_sob) 174 kref_get(&hw_sob->kref); 175 } 176 177 /** 178 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet 179 * @sob_base: sob base id 180 * @sob_mask: sob user mask, each bit represents a sob offset from sob base 181 * @mask: generated mask 182 * 183 * Return: 0 if given parameters are valid 184 */ 185 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) 186 { 187 int i; 188 189 if (sob_mask == 0) 190 return -EINVAL; 191 192 if (sob_mask == 0x1) { 193 *mask = ~(1 << (sob_base & 0x7)); 194 } else { 195 /* find msb in order to verify sob range is valid */ 196 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) 197 if (BIT(i) & sob_mask) 198 break; 199 200 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) 201 return -EINVAL; 202 203 *mask = ~sob_mask; 204 } 205 206 return 0; 207 } 208 209 static void hl_fence_release(struct kref *kref) 210 { 211 struct hl_fence *fence = 212 container_of(kref, struct hl_fence, refcount); 213 struct hl_cs_compl *hl_cs_cmpl = 214 container_of(fence, struct hl_cs_compl, base_fence); 215 216 kfree(hl_cs_cmpl); 217 } 218 219 void hl_fence_put(struct hl_fence *fence) 220 { 221 if (IS_ERR_OR_NULL(fence)) 222 return; 223 kref_put(&fence->refcount, hl_fence_release); 224 } 225 226 void hl_fences_put(struct hl_fence **fence, int len) 227 { 228 int i; 229 230 for (i = 0; i < len; i++, fence++) 231 hl_fence_put(*fence); 232 } 233 234 void hl_fence_get(struct hl_fence *fence) 235 { 236 if (fence) 237 kref_get(&fence->refcount); 238 } 239 240 static void hl_fence_init(struct hl_fence *fence, u64 sequence) 241 { 242 kref_init(&fence->refcount); 243 fence->cs_sequence = sequence; 244 fence->error = 0; 245 fence->timestamp = ktime_set(0, 0); 246 fence->mcs_handling_done = false; 247 init_completion(&fence->completion); 248 } 249 250 void cs_get(struct hl_cs *cs) 251 { 252 kref_get(&cs->refcount); 253 } 254 255 static int cs_get_unless_zero(struct hl_cs *cs) 256 { 257 return kref_get_unless_zero(&cs->refcount); 258 } 259 260 static void cs_put(struct hl_cs *cs) 261 { 262 kref_put(&cs->refcount, cs_do_release); 263 } 264 265 static void cs_job_do_release(struct kref *ref) 266 { 267 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); 268 269 kfree(job); 270 } 271 272 static void hl_cs_job_put(struct hl_cs_job *job) 273 { 274 kref_put(&job->refcount, cs_job_do_release); 275 } 276 277 bool cs_needs_completion(struct hl_cs *cs) 278 { 279 /* In case this is a staged CS, only the last CS in sequence should 280 * get a completion, any non staged CS will always get a completion 281 */ 282 if (cs->staged_cs && !cs->staged_last) 283 return false; 284 285 return true; 286 } 287 288 bool cs_needs_timeout(struct hl_cs *cs) 289 { 290 /* In case this is a staged CS, only the first CS in sequence should 291 * get a timeout, any non staged CS will always get a timeout 292 */ 293 if (cs->staged_cs && !cs->staged_first) 294 return false; 295 296 return true; 297 } 298 299 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) 300 { 301 /* Patched CB is created for external queues jobs */ 302 return (job->queue_type == QUEUE_TYPE_EXT); 303 } 304 305 /* 306 * cs_parser - parse the user command submission 307 * 308 * @hpriv : pointer to the private data of the fd 309 * @job : pointer to the job that holds the command submission info 310 * 311 * The function parses the command submission of the user. It calls the 312 * ASIC specific parser, which returns a list of memory blocks to send 313 * to the device as different command buffers 314 * 315 */ 316 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) 317 { 318 struct hl_device *hdev = hpriv->hdev; 319 struct hl_cs_parser parser; 320 int rc; 321 322 parser.ctx_id = job->cs->ctx->asid; 323 parser.cs_sequence = job->cs->sequence; 324 parser.job_id = job->id; 325 326 parser.hw_queue_id = job->hw_queue_id; 327 parser.job_userptr_list = &job->userptr_list; 328 parser.patched_cb = NULL; 329 parser.user_cb = job->user_cb; 330 parser.user_cb_size = job->user_cb_size; 331 parser.queue_type = job->queue_type; 332 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; 333 job->patched_cb = NULL; 334 parser.completion = cs_needs_completion(job->cs); 335 336 rc = hdev->asic_funcs->cs_parser(hdev, &parser); 337 338 if (is_cb_patched(hdev, job)) { 339 if (!rc) { 340 job->patched_cb = parser.patched_cb; 341 job->job_cb_size = parser.patched_cb_size; 342 job->contains_dma_pkt = parser.contains_dma_pkt; 343 atomic_inc(&job->patched_cb->cs_cnt); 344 } 345 346 /* 347 * Whether the parsing worked or not, we don't need the 348 * original CB anymore because it was already parsed and 349 * won't be accessed again for this CS 350 */ 351 atomic_dec(&job->user_cb->cs_cnt); 352 hl_cb_put(job->user_cb); 353 job->user_cb = NULL; 354 } else if (!rc) { 355 job->job_cb_size = job->user_cb_size; 356 } 357 358 return rc; 359 } 360 361 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) 362 { 363 struct hl_cs *cs = job->cs; 364 365 if (is_cb_patched(hdev, job)) { 366 hl_userptr_delete_list(hdev, &job->userptr_list); 367 368 /* 369 * We might arrive here from rollback and patched CB wasn't 370 * created, so we need to check it's not NULL 371 */ 372 if (job->patched_cb) { 373 atomic_dec(&job->patched_cb->cs_cnt); 374 hl_cb_put(job->patched_cb); 375 } 376 } 377 378 /* For H/W queue jobs, if a user CB was allocated by driver, 379 * the user CB isn't released in cs_parser() and thus should be 380 * released here. This is also true for INT queues jobs which were 381 * allocated by driver. 382 */ 383 if (job->is_kernel_allocated_cb && 384 (job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) { 385 atomic_dec(&job->user_cb->cs_cnt); 386 hl_cb_put(job->user_cb); 387 } 388 389 /* 390 * This is the only place where there can be multiple threads 391 * modifying the list at the same time 392 */ 393 spin_lock(&cs->job_lock); 394 list_del(&job->cs_node); 395 spin_unlock(&cs->job_lock); 396 397 hl_debugfs_remove_job(hdev, job); 398 399 /* We decrement reference only for a CS that gets completion 400 * because the reference was incremented only for this kind of CS 401 * right before it was scheduled. 402 * 403 * In staged submission, only the last CS marked as 'staged_last' 404 * gets completion, hence its release function will be called from here. 405 * As for all the rest CS's in the staged submission which do not get 406 * completion, their CS reference will be decremented by the 407 * 'staged_last' CS during the CS release flow. 408 * All relevant PQ CI counters will be incremented during the CS release 409 * flow by calling 'hl_hw_queue_update_ci'. 410 */ 411 if (cs_needs_completion(cs) && 412 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { 413 414 /* In CS based completions, the timestamp is already available, 415 * so no need to extract it from job 416 */ 417 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) 418 cs->completion_timestamp = job->timestamp; 419 420 cs_put(cs); 421 } 422 423 hl_cs_job_put(job); 424 } 425 426 /* 427 * hl_staged_cs_find_first - locate the first CS in this staged submission 428 * 429 * @hdev: pointer to device structure 430 * @cs_seq: staged submission sequence number 431 * 432 * @note: This function must be called under 'hdev->cs_mirror_lock' 433 * 434 * Find and return a CS pointer with the given sequence 435 */ 436 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) 437 { 438 struct hl_cs *cs; 439 440 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) 441 if (cs->staged_cs && cs->staged_first && 442 cs->sequence == cs_seq) 443 return cs; 444 445 return NULL; 446 } 447 448 /* 449 * is_staged_cs_last_exists - returns true if the last CS in sequence exists 450 * 451 * @hdev: pointer to device structure 452 * @cs: staged submission member 453 * 454 */ 455 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) 456 { 457 struct hl_cs *last_entry; 458 459 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, 460 staged_cs_node); 461 462 if (last_entry->staged_last) 463 return true; 464 465 return false; 466 } 467 468 /* 469 * staged_cs_get - get CS reference if this CS is a part of a staged CS 470 * 471 * @hdev: pointer to device structure 472 * @cs: current CS 473 * @cs_seq: staged submission sequence number 474 * 475 * Increment CS reference for every CS in this staged submission except for 476 * the CS which get completion. 477 */ 478 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) 479 { 480 /* Only the last CS in this staged submission will get a completion. 481 * We must increment the reference for all other CS's in this 482 * staged submission. 483 * Once we get a completion we will release the whole staged submission. 484 */ 485 if (!cs->staged_last) 486 cs_get(cs); 487 } 488 489 /* 490 * staged_cs_put - put a CS in case it is part of staged submission 491 * 492 * @hdev: pointer to device structure 493 * @cs: CS to put 494 * 495 * This function decrements a CS reference (for a non completion CS) 496 */ 497 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) 498 { 499 /* We release all CS's in a staged submission except the last 500 * CS which we have never incremented its reference. 501 */ 502 if (!cs_needs_completion(cs)) 503 cs_put(cs); 504 } 505 506 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) 507 { 508 struct hl_cs *next = NULL, *iter, *first_cs; 509 510 if (!cs_needs_timeout(cs)) 511 return; 512 513 spin_lock(&hdev->cs_mirror_lock); 514 515 /* We need to handle tdr only once for the complete staged submission. 516 * Hence, we choose the CS that reaches this function first which is 517 * the CS marked as 'staged_last'. 518 * In case single staged cs was submitted which has both first and last 519 * indications, then "cs_find_first" below will return NULL, since we 520 * removed the cs node from the list before getting here, 521 * in such cases just continue with the cs to cancel it's TDR work. 522 */ 523 if (cs->staged_cs && cs->staged_last) { 524 first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); 525 if (first_cs) 526 cs = first_cs; 527 } 528 529 spin_unlock(&hdev->cs_mirror_lock); 530 531 /* Don't cancel TDR in case this CS was timedout because we might be 532 * running from the TDR context 533 */ 534 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) 535 return; 536 537 if (cs->tdr_active) 538 cancel_delayed_work_sync(&cs->work_tdr); 539 540 spin_lock(&hdev->cs_mirror_lock); 541 542 /* queue TDR for next CS */ 543 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) 544 if (cs_needs_timeout(iter)) { 545 next = iter; 546 break; 547 } 548 549 if (next && !next->tdr_active) { 550 next->tdr_active = true; 551 schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); 552 } 553 554 spin_unlock(&hdev->cs_mirror_lock); 555 } 556 557 /* 558 * force_complete_multi_cs - complete all contexts that wait on multi-CS 559 * 560 * @hdev: pointer to habanalabs device structure 561 */ 562 static void force_complete_multi_cs(struct hl_device *hdev) 563 { 564 int i; 565 566 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 567 struct multi_cs_completion *mcs_compl; 568 569 mcs_compl = &hdev->multi_cs_completion[i]; 570 571 spin_lock(&mcs_compl->lock); 572 573 if (!mcs_compl->used) { 574 spin_unlock(&mcs_compl->lock); 575 continue; 576 } 577 578 /* when calling force complete no context should be waiting on 579 * multi-cS. 580 * We are calling the function as a protection for such case 581 * to free any pending context and print error message 582 */ 583 dev_err(hdev->dev, 584 "multi-CS completion context %d still waiting when calling force completion\n", 585 i); 586 complete_all(&mcs_compl->completion); 587 spin_unlock(&mcs_compl->lock); 588 } 589 } 590 591 /* 592 * complete_multi_cs - complete all waiting entities on multi-CS 593 * 594 * @hdev: pointer to habanalabs device structure 595 * @cs: CS structure 596 * The function signals a waiting entity that has an overlapping stream masters 597 * with the completed CS. 598 * For example: 599 * - a completed CS worked on stream master QID 4, multi CS completion 600 * is actively waiting on stream master QIDs 3, 5. don't send signal as no 601 * common stream master QID 602 * - a completed CS worked on stream master QID 4, multi CS completion 603 * is actively waiting on stream master QIDs 3, 4. send signal as stream 604 * master QID 4 is common 605 */ 606 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) 607 { 608 struct hl_fence *fence = cs->fence; 609 int i; 610 611 /* in case of multi CS check for completion only for the first CS */ 612 if (cs->staged_cs && !cs->staged_first) 613 return; 614 615 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 616 struct multi_cs_completion *mcs_compl; 617 618 mcs_compl = &hdev->multi_cs_completion[i]; 619 if (!mcs_compl->used) 620 continue; 621 622 spin_lock(&mcs_compl->lock); 623 624 /* 625 * complete if: 626 * 1. still waiting for completion 627 * 2. the completed CS has at least one overlapping stream 628 * master with the stream masters in the completion 629 */ 630 if (mcs_compl->used && 631 (fence->stream_master_qid_map & 632 mcs_compl->stream_master_qid_map)) { 633 /* extract the timestamp only of first completed CS */ 634 if (!mcs_compl->timestamp) 635 mcs_compl->timestamp = ktime_to_ns(fence->timestamp); 636 637 complete_all(&mcs_compl->completion); 638 639 /* 640 * Setting mcs_handling_done inside the lock ensures 641 * at least one fence have mcs_handling_done set to 642 * true before wait for mcs finish. This ensures at 643 * least one CS will be set as completed when polling 644 * mcs fences. 645 */ 646 fence->mcs_handling_done = true; 647 } 648 649 spin_unlock(&mcs_compl->lock); 650 } 651 /* In case CS completed without mcs completion initialized */ 652 fence->mcs_handling_done = true; 653 } 654 655 static inline void cs_release_sob_reset_handler(struct hl_device *hdev, 656 struct hl_cs *cs, 657 struct hl_cs_compl *hl_cs_cmpl) 658 { 659 /* Skip this handler if the cs wasn't submitted, to avoid putting 660 * the hw_sob twice, since this case already handled at this point, 661 * also skip if the hw_sob pointer wasn't set. 662 */ 663 if (!hl_cs_cmpl->hw_sob || !cs->submitted) 664 return; 665 666 spin_lock(&hl_cs_cmpl->lock); 667 668 /* 669 * we get refcount upon reservation of signals or signal/wait cs for the 670 * hw_sob object, and need to put it when the first staged cs 671 * (which contains the encaps signals) or cs signal/wait is completed. 672 */ 673 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || 674 (hl_cs_cmpl->type == CS_TYPE_WAIT) || 675 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || 676 (!!hl_cs_cmpl->encaps_signals)) { 677 dev_dbg(hdev->dev, 678 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", 679 hl_cs_cmpl->cs_seq, 680 hl_cs_cmpl->type, 681 hl_cs_cmpl->hw_sob->sob_id, 682 hl_cs_cmpl->sob_val); 683 684 hw_sob_put(hl_cs_cmpl->hw_sob); 685 686 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) 687 hdev->asic_funcs->reset_sob_group(hdev, 688 hl_cs_cmpl->sob_group); 689 } 690 691 spin_unlock(&hl_cs_cmpl->lock); 692 } 693 694 static void cs_do_release(struct kref *ref) 695 { 696 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); 697 struct hl_device *hdev = cs->ctx->hdev; 698 struct hl_cs_job *job, *tmp; 699 struct hl_cs_compl *hl_cs_cmpl = 700 container_of(cs->fence, struct hl_cs_compl, base_fence); 701 702 cs->completed = true; 703 704 /* 705 * Although if we reached here it means that all external jobs have 706 * finished, because each one of them took refcnt to CS, we still 707 * need to go over the internal jobs and complete them. Otherwise, we 708 * will have leaked memory and what's worse, the CS object (and 709 * potentially the CTX object) could be released, while the JOB 710 * still holds a pointer to them (but no reference). 711 */ 712 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 713 hl_complete_job(hdev, job); 714 715 if (!cs->submitted) { 716 /* 717 * In case the wait for signal CS was submitted, the fence put 718 * occurs in init_signal_wait_cs() or collective_wait_init_cs() 719 * right before hanging on the PQ. 720 */ 721 if (cs->type == CS_TYPE_WAIT || 722 cs->type == CS_TYPE_COLLECTIVE_WAIT) 723 hl_fence_put(cs->signal_fence); 724 725 goto out; 726 } 727 728 /* Need to update CI for all queue jobs that does not get completion */ 729 hl_hw_queue_update_ci(cs); 730 731 /* remove CS from CS mirror list */ 732 spin_lock(&hdev->cs_mirror_lock); 733 list_del_init(&cs->mirror_node); 734 spin_unlock(&hdev->cs_mirror_lock); 735 736 cs_handle_tdr(hdev, cs); 737 738 if (cs->staged_cs) { 739 /* the completion CS decrements reference for the entire 740 * staged submission 741 */ 742 if (cs->staged_last) { 743 struct hl_cs *staged_cs, *tmp_cs; 744 745 list_for_each_entry_safe(staged_cs, tmp_cs, 746 &cs->staged_cs_node, staged_cs_node) 747 staged_cs_put(hdev, staged_cs); 748 } 749 750 /* A staged CS will be a member in the list only after it 751 * was submitted. We used 'cs_mirror_lock' when inserting 752 * it to list so we will use it again when removing it 753 */ 754 if (cs->submitted) { 755 spin_lock(&hdev->cs_mirror_lock); 756 list_del(&cs->staged_cs_node); 757 spin_unlock(&hdev->cs_mirror_lock); 758 } 759 760 /* decrement refcount to handle when first staged cs 761 * with encaps signals is completed. 762 */ 763 if (hl_cs_cmpl->encaps_signals) 764 kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, 765 hl_encaps_release_handle_and_put_ctx); 766 } 767 768 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) 769 kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 770 771 out: 772 /* Must be called before hl_ctx_put because inside we use ctx to get 773 * the device 774 */ 775 hl_debugfs_remove_cs(cs); 776 777 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; 778 779 /* We need to mark an error for not submitted because in that case 780 * the hl fence release flow is different. Mainly, we don't need 781 * to handle hw_sob for signal/wait 782 */ 783 if (cs->timedout) 784 cs->fence->error = -ETIMEDOUT; 785 else if (cs->aborted) 786 cs->fence->error = -EIO; 787 else if (!cs->submitted) 788 cs->fence->error = -EBUSY; 789 790 if (unlikely(cs->skip_reset_on_timeout)) { 791 dev_err(hdev->dev, 792 "Command submission %llu completed after %llu (s)\n", 793 cs->sequence, 794 div_u64(jiffies - cs->submission_time_jiffies, HZ)); 795 } 796 797 if (cs->timestamp) { 798 cs->fence->timestamp = cs->completion_timestamp; 799 hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, 800 cs->fence->timestamp, cs->fence->error); 801 } 802 803 hl_ctx_put(cs->ctx); 804 805 complete_all(&cs->fence->completion); 806 complete_multi_cs(hdev, cs); 807 808 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); 809 810 hl_fence_put(cs->fence); 811 812 kfree(cs->jobs_in_queue_cnt); 813 kfree(cs); 814 } 815 816 static void cs_timedout(struct work_struct *work) 817 { 818 struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work); 819 bool skip_reset_on_timeout, device_reset = false; 820 struct hl_device *hdev; 821 u64 event_mask = 0x0; 822 uint timeout_sec; 823 int rc; 824 825 skip_reset_on_timeout = cs->skip_reset_on_timeout; 826 827 rc = cs_get_unless_zero(cs); 828 if (!rc) 829 return; 830 831 if ((!cs->submitted) || (cs->completed)) { 832 cs_put(cs); 833 return; 834 } 835 836 hdev = cs->ctx->hdev; 837 838 if (likely(!skip_reset_on_timeout)) { 839 if (hdev->reset_on_lockup) 840 device_reset = true; 841 else 842 hdev->reset_info.needs_reset = true; 843 844 /* Mark the CS is timed out so we won't try to cancel its TDR */ 845 cs->timedout = true; 846 } 847 848 /* Save only the first CS timeout parameters */ 849 rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); 850 if (rc) { 851 hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); 852 hdev->captured_err_info.cs_timeout.seq = cs->sequence; 853 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; 854 } 855 856 timeout_sec = jiffies_to_msecs(hdev->timeout_jiffies) / 1000; 857 858 switch (cs->type) { 859 case CS_TYPE_SIGNAL: 860 dev_err(hdev->dev, 861 "Signal command submission %llu has not finished in %u seconds!\n", 862 cs->sequence, timeout_sec); 863 break; 864 865 case CS_TYPE_WAIT: 866 dev_err(hdev->dev, 867 "Wait command submission %llu has not finished in %u seconds!\n", 868 cs->sequence, timeout_sec); 869 break; 870 871 case CS_TYPE_COLLECTIVE_WAIT: 872 dev_err(hdev->dev, 873 "Collective Wait command submission %llu has not finished in %u seconds!\n", 874 cs->sequence, timeout_sec); 875 break; 876 877 default: 878 dev_err(hdev->dev, 879 "Command submission %llu has not finished in %u seconds!\n", 880 cs->sequence, timeout_sec); 881 break; 882 } 883 884 rc = hl_state_dump(hdev); 885 if (rc) 886 dev_err(hdev->dev, "Error during system state dump %d\n", rc); 887 888 cs_put(cs); 889 890 if (device_reset) { 891 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; 892 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); 893 } else if (event_mask) { 894 hl_notifier_event_send_all(hdev, event_mask); 895 } 896 } 897 898 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, 899 enum hl_cs_type cs_type, u64 user_sequence, 900 struct hl_cs **cs_new, u32 flags, u32 timeout) 901 { 902 struct hl_cs_counters_atomic *cntr; 903 struct hl_fence *other = NULL; 904 struct hl_cs_compl *cs_cmpl; 905 struct hl_cs *cs; 906 int rc; 907 908 cntr = &hdev->aggregated_cs_counters; 909 910 cs = kzalloc(sizeof(*cs), GFP_ATOMIC); 911 if (!cs) 912 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 913 914 if (!cs) { 915 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 916 atomic64_inc(&cntr->out_of_mem_drop_cnt); 917 return -ENOMEM; 918 } 919 920 /* increment refcnt for context */ 921 hl_ctx_get(ctx); 922 923 cs->ctx = ctx; 924 cs->submitted = false; 925 cs->completed = false; 926 cs->type = cs_type; 927 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); 928 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 929 cs->timeout_jiffies = timeout; 930 cs->skip_reset_on_timeout = 931 hdev->reset_info.skip_reset_on_timeout || 932 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); 933 cs->submission_time_jiffies = jiffies; 934 INIT_LIST_HEAD(&cs->job_list); 935 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); 936 kref_init(&cs->refcount); 937 spin_lock_init(&cs->job_lock); 938 939 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); 940 if (!cs_cmpl) 941 cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); 942 943 if (!cs_cmpl) { 944 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 945 atomic64_inc(&cntr->out_of_mem_drop_cnt); 946 rc = -ENOMEM; 947 goto free_cs; 948 } 949 950 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 951 sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); 952 if (!cs->jobs_in_queue_cnt) 953 cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, 954 sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); 955 956 if (!cs->jobs_in_queue_cnt) { 957 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 958 atomic64_inc(&cntr->out_of_mem_drop_cnt); 959 rc = -ENOMEM; 960 goto free_cs_cmpl; 961 } 962 963 cs_cmpl->hdev = hdev; 964 cs_cmpl->type = cs->type; 965 spin_lock_init(&cs_cmpl->lock); 966 cs->fence = &cs_cmpl->base_fence; 967 968 spin_lock(&ctx->cs_lock); 969 970 cs_cmpl->cs_seq = ctx->cs_sequence; 971 other = ctx->cs_pending[cs_cmpl->cs_seq & 972 (hdev->asic_prop.max_pending_cs - 1)]; 973 974 if (other && !completion_done(&other->completion)) { 975 /* If the following statement is true, it means we have reached 976 * a point in which only part of the staged submission was 977 * submitted and we don't have enough room in the 'cs_pending' 978 * array for the rest of the submission. 979 * This causes a deadlock because this CS will never be 980 * completed as it depends on future CS's for completion. 981 */ 982 if (other->cs_sequence == user_sequence) 983 dev_crit_ratelimited(hdev->dev, 984 "Staged CS %llu deadlock due to lack of resources", 985 user_sequence); 986 987 dev_dbg_ratelimited(hdev->dev, 988 "Rejecting CS because of too many in-flights CS\n"); 989 atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); 990 atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); 991 rc = -EAGAIN; 992 goto free_fence; 993 } 994 995 /* init hl_fence */ 996 hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); 997 998 cs->sequence = cs_cmpl->cs_seq; 999 1000 ctx->cs_pending[cs_cmpl->cs_seq & 1001 (hdev->asic_prop.max_pending_cs - 1)] = 1002 &cs_cmpl->base_fence; 1003 ctx->cs_sequence++; 1004 1005 hl_fence_get(&cs_cmpl->base_fence); 1006 1007 hl_fence_put(other); 1008 1009 spin_unlock(&ctx->cs_lock); 1010 1011 *cs_new = cs; 1012 1013 return 0; 1014 1015 free_fence: 1016 spin_unlock(&ctx->cs_lock); 1017 kfree(cs->jobs_in_queue_cnt); 1018 free_cs_cmpl: 1019 kfree(cs_cmpl); 1020 free_cs: 1021 kfree(cs); 1022 hl_ctx_put(ctx); 1023 return rc; 1024 } 1025 1026 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) 1027 { 1028 struct hl_cs_job *job, *tmp; 1029 1030 staged_cs_put(hdev, cs); 1031 1032 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1033 hl_complete_job(hdev, job); 1034 } 1035 1036 /* 1037 * release_reserved_encaps_signals() - release reserved encapsulated signals. 1038 * @hdev: pointer to habanalabs device structure 1039 * 1040 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with 1041 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. 1042 * For these signals need also to put the refcount of the H/W SOB which was taken at the 1043 * reservation. 1044 */ 1045 static void release_reserved_encaps_signals(struct hl_device *hdev) 1046 { 1047 struct hl_ctx *ctx = hl_get_compute_ctx(hdev); 1048 struct hl_cs_encaps_sig_handle *handle; 1049 struct hl_encaps_signals_mgr *mgr; 1050 u32 id; 1051 1052 if (!ctx) 1053 return; 1054 1055 mgr = &ctx->sig_mgr; 1056 1057 idr_for_each_entry(&mgr->handles, handle, id) 1058 if (handle->cs_seq == ULLONG_MAX) 1059 kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); 1060 1061 hl_ctx_put(ctx); 1062 } 1063 1064 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) 1065 { 1066 int i; 1067 struct hl_cs *cs, *tmp; 1068 1069 if (!skip_wq_flush) { 1070 flush_workqueue(hdev->ts_free_obj_wq); 1071 1072 /* flush all completions before iterating over the CS mirror list in 1073 * order to avoid a race with the release functions 1074 */ 1075 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) 1076 flush_workqueue(hdev->cq_wq[i]); 1077 1078 flush_workqueue(hdev->cs_cmplt_wq); 1079 } 1080 1081 /* Make sure we don't have leftovers in the CS mirror list */ 1082 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { 1083 cs_get(cs); 1084 cs->aborted = true; 1085 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", 1086 cs->ctx->asid, cs->sequence); 1087 cs_rollback(hdev, cs); 1088 cs_put(cs); 1089 } 1090 1091 force_complete_multi_cs(hdev); 1092 1093 release_reserved_encaps_signals(hdev); 1094 } 1095 1096 static void 1097 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) 1098 { 1099 struct hl_user_pending_interrupt *pend, *temp; 1100 unsigned long flags; 1101 1102 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 1103 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, list_node) { 1104 pend->fence.error = -EIO; 1105 complete_all(&pend->fence.completion); 1106 } 1107 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 1108 1109 spin_lock_irqsave(&interrupt->ts_list_lock, flags); 1110 list_for_each_entry_safe(pend, temp, &interrupt->ts_list_head, list_node) { 1111 list_del(&pend->list_node); 1112 hl_mmap_mem_buf_put(pend->ts_reg_info.buf); 1113 hl_cb_put(pend->ts_reg_info.cq_cb); 1114 } 1115 spin_unlock_irqrestore(&interrupt->ts_list_lock, flags); 1116 } 1117 1118 void hl_release_pending_user_interrupts(struct hl_device *hdev) 1119 { 1120 struct asic_fixed_properties *prop = &hdev->asic_prop; 1121 struct hl_user_interrupt *interrupt; 1122 int i; 1123 1124 if (!prop->user_interrupt_count) 1125 return; 1126 1127 /* We iterate through the user interrupt requests and waking up all 1128 * user threads waiting for interrupt completion. We iterate the 1129 * list under a lock, this is why all user threads, once awake, 1130 * will wait on the same lock and will release the waiting object upon 1131 * unlock. 1132 */ 1133 1134 for (i = 0 ; i < prop->user_interrupt_count ; i++) { 1135 interrupt = &hdev->user_interrupt[i]; 1136 wake_pending_user_interrupt_threads(interrupt); 1137 } 1138 1139 interrupt = &hdev->common_user_cq_interrupt; 1140 wake_pending_user_interrupt_threads(interrupt); 1141 1142 interrupt = &hdev->common_decoder_interrupt; 1143 wake_pending_user_interrupt_threads(interrupt); 1144 } 1145 1146 static void force_complete_cs(struct hl_device *hdev) 1147 { 1148 struct hl_cs *cs; 1149 1150 spin_lock(&hdev->cs_mirror_lock); 1151 1152 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { 1153 cs->fence->error = -EIO; 1154 complete_all(&cs->fence->completion); 1155 } 1156 1157 spin_unlock(&hdev->cs_mirror_lock); 1158 } 1159 1160 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev) 1161 { 1162 force_complete_cs(hdev); 1163 force_complete_multi_cs(hdev); 1164 } 1165 1166 static void job_wq_completion(struct work_struct *work) 1167 { 1168 struct hl_cs_job *job = container_of(work, struct hl_cs_job, 1169 finish_work); 1170 struct hl_cs *cs = job->cs; 1171 struct hl_device *hdev = cs->ctx->hdev; 1172 1173 /* job is no longer needed */ 1174 hl_complete_job(hdev, job); 1175 } 1176 1177 static void cs_completion(struct work_struct *work) 1178 { 1179 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); 1180 struct hl_device *hdev = cs->ctx->hdev; 1181 struct hl_cs_job *job, *tmp; 1182 1183 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) 1184 hl_complete_job(hdev, job); 1185 } 1186 1187 u32 hl_get_active_cs_num(struct hl_device *hdev) 1188 { 1189 u32 active_cs_num = 0; 1190 struct hl_cs *cs; 1191 1192 spin_lock(&hdev->cs_mirror_lock); 1193 1194 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) 1195 if (!cs->completed) 1196 active_cs_num++; 1197 1198 spin_unlock(&hdev->cs_mirror_lock); 1199 1200 return active_cs_num; 1201 } 1202 1203 static int validate_queue_index(struct hl_device *hdev, 1204 struct hl_cs_chunk *chunk, 1205 enum hl_queue_type *queue_type, 1206 bool *is_kernel_allocated_cb) 1207 { 1208 struct asic_fixed_properties *asic = &hdev->asic_prop; 1209 struct hw_queue_properties *hw_queue_prop; 1210 1211 /* This must be checked here to prevent out-of-bounds access to 1212 * hw_queues_props array 1213 */ 1214 if (chunk->queue_index >= asic->max_queues) { 1215 dev_err(hdev->dev, "Queue index %d is invalid\n", 1216 chunk->queue_index); 1217 return -EINVAL; 1218 } 1219 1220 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; 1221 1222 if (hw_queue_prop->type == QUEUE_TYPE_NA) { 1223 dev_err(hdev->dev, "Queue index %d is not applicable\n", 1224 chunk->queue_index); 1225 return -EINVAL; 1226 } 1227 1228 if (hw_queue_prop->binned) { 1229 dev_err(hdev->dev, "Queue index %d is binned out\n", 1230 chunk->queue_index); 1231 return -EINVAL; 1232 } 1233 1234 if (hw_queue_prop->driver_only) { 1235 dev_err(hdev->dev, 1236 "Queue index %d is restricted for the kernel driver\n", 1237 chunk->queue_index); 1238 return -EINVAL; 1239 } 1240 1241 /* When hw queue type isn't QUEUE_TYPE_HW, 1242 * USER_ALLOC_CB flag shall be referred as "don't care". 1243 */ 1244 if (hw_queue_prop->type == QUEUE_TYPE_HW) { 1245 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { 1246 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { 1247 dev_err(hdev->dev, 1248 "Queue index %d doesn't support user CB\n", 1249 chunk->queue_index); 1250 return -EINVAL; 1251 } 1252 1253 *is_kernel_allocated_cb = false; 1254 } else { 1255 if (!(hw_queue_prop->cb_alloc_flags & 1256 CB_ALLOC_KERNEL)) { 1257 dev_err(hdev->dev, 1258 "Queue index %d doesn't support kernel CB\n", 1259 chunk->queue_index); 1260 return -EINVAL; 1261 } 1262 1263 *is_kernel_allocated_cb = true; 1264 } 1265 } else { 1266 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags 1267 & CB_ALLOC_KERNEL); 1268 } 1269 1270 *queue_type = hw_queue_prop->type; 1271 return 0; 1272 } 1273 1274 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, 1275 struct hl_mem_mgr *mmg, 1276 struct hl_cs_chunk *chunk) 1277 { 1278 struct hl_cb *cb; 1279 1280 cb = hl_cb_get(mmg, chunk->cb_handle); 1281 if (!cb) { 1282 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); 1283 return NULL; 1284 } 1285 1286 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { 1287 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); 1288 goto release_cb; 1289 } 1290 1291 atomic_inc(&cb->cs_cnt); 1292 1293 return cb; 1294 1295 release_cb: 1296 hl_cb_put(cb); 1297 return NULL; 1298 } 1299 1300 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, 1301 enum hl_queue_type queue_type, bool is_kernel_allocated_cb) 1302 { 1303 struct hl_cs_job *job; 1304 1305 job = kzalloc(sizeof(*job), GFP_ATOMIC); 1306 if (!job) 1307 job = kzalloc(sizeof(*job), GFP_KERNEL); 1308 1309 if (!job) 1310 return NULL; 1311 1312 kref_init(&job->refcount); 1313 job->queue_type = queue_type; 1314 job->is_kernel_allocated_cb = is_kernel_allocated_cb; 1315 1316 if (is_cb_patched(hdev, job)) 1317 INIT_LIST_HEAD(&job->userptr_list); 1318 1319 if (job->queue_type == QUEUE_TYPE_EXT) 1320 INIT_WORK(&job->finish_work, job_wq_completion); 1321 1322 return job; 1323 } 1324 1325 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) 1326 { 1327 if (cs_type_flags & HL_CS_FLAGS_SIGNAL) 1328 return CS_TYPE_SIGNAL; 1329 else if (cs_type_flags & HL_CS_FLAGS_WAIT) 1330 return CS_TYPE_WAIT; 1331 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) 1332 return CS_TYPE_COLLECTIVE_WAIT; 1333 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) 1334 return CS_RESERVE_SIGNALS; 1335 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) 1336 return CS_UNRESERVE_SIGNALS; 1337 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) 1338 return CS_TYPE_ENGINE_CORE; 1339 else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND) 1340 return CS_TYPE_ENGINES; 1341 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) 1342 return CS_TYPE_FLUSH_PCI_HBW_WRITES; 1343 else 1344 return CS_TYPE_DEFAULT; 1345 } 1346 1347 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) 1348 { 1349 struct hl_device *hdev = hpriv->hdev; 1350 struct hl_ctx *ctx = hpriv->ctx; 1351 u32 cs_type_flags, num_chunks; 1352 enum hl_device_status status; 1353 enum hl_cs_type cs_type; 1354 bool is_sync_stream; 1355 int i; 1356 1357 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 1358 if (args->in.pad[i]) { 1359 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 1360 return -EINVAL; 1361 } 1362 1363 if (!hl_device_operational(hdev, &status)) 1364 return -EBUSY; 1365 1366 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1367 !hdev->supports_staged_submission) { 1368 dev_err(hdev->dev, "staged submission not supported"); 1369 return -EPERM; 1370 } 1371 1372 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; 1373 1374 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { 1375 dev_err(hdev->dev, 1376 "CS type flags are mutually exclusive, context %d\n", 1377 ctx->asid); 1378 return -EINVAL; 1379 } 1380 1381 cs_type = hl_cs_get_cs_type(cs_type_flags); 1382 num_chunks = args->in.num_chunks_execute; 1383 1384 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || 1385 cs_type == CS_TYPE_COLLECTIVE_WAIT); 1386 1387 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { 1388 dev_err(hdev->dev, "Sync stream CS is not supported\n"); 1389 return -EINVAL; 1390 } 1391 1392 if (cs_type == CS_TYPE_DEFAULT) { 1393 if (!num_chunks) { 1394 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); 1395 return -EINVAL; 1396 } 1397 } else if (is_sync_stream && num_chunks != 1) { 1398 dev_err(hdev->dev, 1399 "Sync stream CS mandates one chunk only, context %d\n", 1400 ctx->asid); 1401 return -EINVAL; 1402 } 1403 1404 return 0; 1405 } 1406 1407 static int hl_cs_copy_chunk_array(struct hl_device *hdev, 1408 struct hl_cs_chunk **cs_chunk_array, 1409 void __user *chunks, u32 num_chunks, 1410 struct hl_ctx *ctx) 1411 { 1412 u32 size_to_copy; 1413 1414 if (num_chunks > HL_MAX_JOBS_PER_CS) { 1415 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1416 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1417 dev_err(hdev->dev, 1418 "Number of chunks can NOT be larger than %d\n", 1419 HL_MAX_JOBS_PER_CS); 1420 return -EINVAL; 1421 } 1422 1423 *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), 1424 GFP_ATOMIC); 1425 if (!*cs_chunk_array) 1426 *cs_chunk_array = kmalloc_array(num_chunks, 1427 sizeof(**cs_chunk_array), GFP_KERNEL); 1428 if (!*cs_chunk_array) { 1429 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1430 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1431 return -ENOMEM; 1432 } 1433 1434 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); 1435 if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { 1436 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1437 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1438 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); 1439 kfree(*cs_chunk_array); 1440 return -EFAULT; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, 1447 u64 sequence, u32 flags, 1448 u32 encaps_signal_handle) 1449 { 1450 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) 1451 return 0; 1452 1453 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); 1454 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); 1455 1456 if (cs->staged_first) { 1457 /* Staged CS sequence is the first CS sequence */ 1458 INIT_LIST_HEAD(&cs->staged_cs_node); 1459 cs->staged_sequence = cs->sequence; 1460 1461 if (cs->encaps_signals) 1462 cs->encaps_sig_hdl_id = encaps_signal_handle; 1463 } else { 1464 /* User sequence will be validated in 'hl_hw_queue_schedule_cs' 1465 * under the cs_mirror_lock 1466 */ 1467 cs->staged_sequence = sequence; 1468 } 1469 1470 /* Increment CS reference if needed */ 1471 staged_cs_get(hdev, cs); 1472 1473 cs->staged_cs = true; 1474 1475 return 0; 1476 } 1477 1478 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) 1479 { 1480 int i; 1481 1482 for (i = 0; i < hdev->stream_master_qid_arr_size; i++) 1483 if (qid == hdev->stream_master_qid_arr[i]) 1484 return BIT(i); 1485 1486 return 0; 1487 } 1488 1489 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, 1490 u32 num_chunks, u64 *cs_seq, u32 flags, 1491 u32 encaps_signals_handle, u32 timeout, 1492 u16 *signal_initial_sob_count) 1493 { 1494 bool staged_mid, int_queues_only = true, using_hw_queues = false; 1495 struct hl_device *hdev = hpriv->hdev; 1496 struct hl_cs_chunk *cs_chunk_array; 1497 struct hl_cs_counters_atomic *cntr; 1498 struct hl_ctx *ctx = hpriv->ctx; 1499 struct hl_cs_job *job; 1500 struct hl_cs *cs; 1501 struct hl_cb *cb; 1502 u64 user_sequence; 1503 u8 stream_master_qid_map = 0; 1504 int rc, i; 1505 1506 cntr = &hdev->aggregated_cs_counters; 1507 user_sequence = *cs_seq; 1508 *cs_seq = ULLONG_MAX; 1509 1510 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 1511 hpriv->ctx); 1512 if (rc) 1513 goto out; 1514 1515 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 1516 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 1517 staged_mid = true; 1518 else 1519 staged_mid = false; 1520 1521 rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, 1522 staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, 1523 timeout); 1524 if (rc) 1525 goto free_cs_chunk_array; 1526 1527 *cs_seq = cs->sequence; 1528 1529 hl_debugfs_add_cs(cs); 1530 1531 rc = cs_staged_submission(hdev, cs, user_sequence, flags, 1532 encaps_signals_handle); 1533 if (rc) 1534 goto free_cs_object; 1535 1536 /* If this is a staged submission we must return the staged sequence 1537 * rather than the internal CS sequence 1538 */ 1539 if (cs->staged_cs) 1540 *cs_seq = cs->staged_sequence; 1541 1542 /* Validate ALL the CS chunks before submitting the CS */ 1543 for (i = 0 ; i < num_chunks ; i++) { 1544 struct hl_cs_chunk *chunk = &cs_chunk_array[i]; 1545 enum hl_queue_type queue_type; 1546 bool is_kernel_allocated_cb; 1547 1548 rc = validate_queue_index(hdev, chunk, &queue_type, 1549 &is_kernel_allocated_cb); 1550 if (rc) { 1551 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1552 atomic64_inc(&cntr->validation_drop_cnt); 1553 goto free_cs_object; 1554 } 1555 1556 if (is_kernel_allocated_cb) { 1557 cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); 1558 if (!cb) { 1559 atomic64_inc( 1560 &ctx->cs_counters.validation_drop_cnt); 1561 atomic64_inc(&cntr->validation_drop_cnt); 1562 rc = -EINVAL; 1563 goto free_cs_object; 1564 } 1565 } else { 1566 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; 1567 } 1568 1569 if (queue_type == QUEUE_TYPE_EXT || 1570 queue_type == QUEUE_TYPE_HW) { 1571 int_queues_only = false; 1572 1573 /* 1574 * store which stream are being used for external/HW 1575 * queues of this CS 1576 */ 1577 if (hdev->supports_wait_for_multi_cs) 1578 stream_master_qid_map |= 1579 get_stream_master_qid_mask(hdev, 1580 chunk->queue_index); 1581 } 1582 1583 if (queue_type == QUEUE_TYPE_HW) 1584 using_hw_queues = true; 1585 1586 job = hl_cs_allocate_job(hdev, queue_type, 1587 is_kernel_allocated_cb); 1588 if (!job) { 1589 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1590 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1591 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1592 rc = -ENOMEM; 1593 if (is_kernel_allocated_cb) 1594 goto release_cb; 1595 1596 goto free_cs_object; 1597 } 1598 1599 job->id = i + 1; 1600 job->cs = cs; 1601 job->user_cb = cb; 1602 job->user_cb_size = chunk->cb_size; 1603 job->hw_queue_id = chunk->queue_index; 1604 1605 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1606 cs->jobs_cnt++; 1607 1608 list_add_tail(&job->cs_node, &cs->job_list); 1609 1610 /* 1611 * Increment CS reference. When CS reference is 0, CS is 1612 * done and can be signaled to user and free all its resources 1613 * Only increment for JOB on external or H/W queues, because 1614 * only for those JOBs we get completion 1615 */ 1616 if (cs_needs_completion(cs) && 1617 (job->queue_type == QUEUE_TYPE_EXT || 1618 job->queue_type == QUEUE_TYPE_HW)) 1619 cs_get(cs); 1620 1621 hl_debugfs_add_job(hdev, job); 1622 1623 rc = cs_parser(hpriv, job); 1624 if (rc) { 1625 atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); 1626 atomic64_inc(&cntr->parsing_drop_cnt); 1627 dev_err(hdev->dev, 1628 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", 1629 cs->ctx->asid, cs->sequence, job->id, rc); 1630 goto free_cs_object; 1631 } 1632 } 1633 1634 /* We allow a CS with any queue type combination as long as it does 1635 * not get a completion 1636 */ 1637 if (int_queues_only && cs_needs_completion(cs)) { 1638 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1639 atomic64_inc(&cntr->validation_drop_cnt); 1640 dev_err(hdev->dev, 1641 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", 1642 cs->ctx->asid, cs->sequence); 1643 rc = -EINVAL; 1644 goto free_cs_object; 1645 } 1646 1647 if (using_hw_queues) 1648 INIT_WORK(&cs->finish_work, cs_completion); 1649 1650 /* 1651 * store the (external/HW queues) streams used by the CS in the 1652 * fence object for multi-CS completion 1653 */ 1654 if (hdev->supports_wait_for_multi_cs) 1655 cs->fence->stream_master_qid_map = stream_master_qid_map; 1656 1657 rc = hl_hw_queue_schedule_cs(cs); 1658 if (rc) { 1659 if (rc != -EAGAIN) 1660 dev_err(hdev->dev, 1661 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 1662 cs->ctx->asid, cs->sequence, rc); 1663 goto free_cs_object; 1664 } 1665 1666 *signal_initial_sob_count = cs->initial_sob_count; 1667 1668 rc = HL_CS_STATUS_SUCCESS; 1669 goto put_cs; 1670 1671 release_cb: 1672 atomic_dec(&cb->cs_cnt); 1673 hl_cb_put(cb); 1674 free_cs_object: 1675 cs_rollback(hdev, cs); 1676 *cs_seq = ULLONG_MAX; 1677 /* The path below is both for good and erroneous exits */ 1678 put_cs: 1679 /* We finished with the CS in this function, so put the ref */ 1680 cs_put(cs); 1681 free_cs_chunk_array: 1682 kfree(cs_chunk_array); 1683 out: 1684 return rc; 1685 } 1686 1687 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, 1688 u64 *cs_seq) 1689 { 1690 struct hl_device *hdev = hpriv->hdev; 1691 struct hl_ctx *ctx = hpriv->ctx; 1692 bool need_soft_reset = false; 1693 int rc = 0, do_ctx_switch = 0; 1694 void __user *chunks; 1695 u32 num_chunks, tmp; 1696 u16 sob_count; 1697 int ret; 1698 1699 if (hdev->supports_ctx_switch) 1700 do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); 1701 1702 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { 1703 mutex_lock(&hpriv->restore_phase_mutex); 1704 1705 if (do_ctx_switch) { 1706 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); 1707 if (rc) { 1708 dev_err_ratelimited(hdev->dev, 1709 "Failed to switch to context %d, rejecting CS! %d\n", 1710 ctx->asid, rc); 1711 /* 1712 * If we timedout, or if the device is not IDLE 1713 * while we want to do context-switch (-EBUSY), 1714 * we need to soft-reset because QMAN is 1715 * probably stuck. However, we can't call to 1716 * reset here directly because of deadlock, so 1717 * need to do it at the very end of this 1718 * function 1719 */ 1720 if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) 1721 need_soft_reset = true; 1722 mutex_unlock(&hpriv->restore_phase_mutex); 1723 goto out; 1724 } 1725 } 1726 1727 hdev->asic_funcs->restore_phase_topology(hdev); 1728 1729 chunks = (void __user *) (uintptr_t) args->in.chunks_restore; 1730 num_chunks = args->in.num_chunks_restore; 1731 1732 if (!num_chunks) { 1733 dev_dbg(hdev->dev, 1734 "Need to run restore phase but restore CS is empty\n"); 1735 rc = 0; 1736 } else { 1737 rc = cs_ioctl_default(hpriv, chunks, num_chunks, 1738 cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); 1739 } 1740 1741 mutex_unlock(&hpriv->restore_phase_mutex); 1742 1743 if (rc) { 1744 dev_err(hdev->dev, 1745 "Failed to submit restore CS for context %d (%d)\n", 1746 ctx->asid, rc); 1747 goto out; 1748 } 1749 1750 /* Need to wait for restore completion before execution phase */ 1751 if (num_chunks) { 1752 enum hl_cs_wait_status status; 1753 1754 ret = _hl_cs_wait_ioctl(hdev, ctx, 1755 jiffies_to_usecs(hdev->timeout_jiffies), 1756 *cs_seq, &status, NULL); 1757 if (ret) { 1758 dev_err(hdev->dev, 1759 "Restore CS for context %d failed to complete %d\n", 1760 ctx->asid, ret); 1761 rc = -ENOEXEC; 1762 goto out; 1763 } 1764 } 1765 1766 if (hdev->supports_ctx_switch) 1767 ctx->thread_ctx_switch_wait_token = 1; 1768 1769 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { 1770 rc = hl_poll_timeout_memory(hdev, 1771 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), 1772 100, jiffies_to_usecs(hdev->timeout_jiffies), false); 1773 1774 if (rc == -ETIMEDOUT) { 1775 dev_err(hdev->dev, 1776 "context switch phase timeout (%d)\n", tmp); 1777 goto out; 1778 } 1779 } 1780 1781 out: 1782 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) 1783 hl_device_reset(hdev, 0); 1784 1785 return rc; 1786 } 1787 1788 /* 1789 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. 1790 * if the SOB value reaches the max value move to the other SOB reserved 1791 * to the queue. 1792 * @hdev: pointer to device structure 1793 * @q_idx: stream queue index 1794 * @hw_sob: the H/W SOB used in this signal CS. 1795 * @count: signals count 1796 * @encaps_sig: tells whether it's reservation for encaps signals or not. 1797 * 1798 * Note that this function must be called while hw_queues_lock is taken. 1799 */ 1800 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, 1801 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) 1802 1803 { 1804 struct hl_sync_stream_properties *prop; 1805 struct hl_hw_sob *sob = *hw_sob, *other_sob; 1806 u8 other_sob_offset; 1807 1808 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 1809 1810 hw_sob_get(sob); 1811 1812 /* check for wraparound */ 1813 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { 1814 /* 1815 * Decrement as we reached the max value. 1816 * The release function won't be called here as we've 1817 * just incremented the refcount right before calling this 1818 * function. 1819 */ 1820 hw_sob_put_err(sob); 1821 1822 /* 1823 * check the other sob value, if it still in use then fail 1824 * otherwise make the switch 1825 */ 1826 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; 1827 other_sob = &prop->hw_sob[other_sob_offset]; 1828 1829 if (kref_read(&other_sob->kref) != 1) { 1830 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", 1831 q_idx); 1832 return -EINVAL; 1833 } 1834 1835 /* 1836 * next_sob_val always points to the next available signal 1837 * in the sob, so in encaps signals it will be the next one 1838 * after reserving the required amount. 1839 */ 1840 if (encaps_sig) 1841 prop->next_sob_val = count + 1; 1842 else 1843 prop->next_sob_val = count; 1844 1845 /* only two SOBs are currently in use */ 1846 prop->curr_sob_offset = other_sob_offset; 1847 *hw_sob = other_sob; 1848 1849 /* 1850 * check if other_sob needs reset, then do it before using it 1851 * for the reservation or the next signal cs. 1852 * we do it here, and for both encaps and regular signal cs 1853 * cases in order to avoid possible races of two kref_put 1854 * of the sob which can occur at the same time if we move the 1855 * sob reset(kref_put) to cs_do_release function. 1856 * in addition, if we have combination of cs signal and 1857 * encaps, and at the point we need to reset the sob there was 1858 * no more reservations and only signal cs keep coming, 1859 * in such case we need signal_cs to put the refcount and 1860 * reset the sob. 1861 */ 1862 if (other_sob->need_reset) 1863 hw_sob_put(other_sob); 1864 1865 if (encaps_sig) { 1866 /* set reset indication for the sob */ 1867 sob->need_reset = true; 1868 hw_sob_get(other_sob); 1869 } 1870 1871 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", 1872 prop->curr_sob_offset, q_idx); 1873 } else { 1874 prop->next_sob_val += count; 1875 } 1876 1877 return 0; 1878 } 1879 1880 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, 1881 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, 1882 bool encaps_signals) 1883 { 1884 u64 *signal_seq_arr = NULL; 1885 u32 size_to_copy, signal_seq_arr_len; 1886 int rc = 0; 1887 1888 if (encaps_signals) { 1889 *signal_seq = chunk->encaps_signal_seq; 1890 return 0; 1891 } 1892 1893 signal_seq_arr_len = chunk->num_signal_seq_arr; 1894 1895 /* currently only one signal seq is supported */ 1896 if (signal_seq_arr_len != 1) { 1897 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1898 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1899 dev_err(hdev->dev, 1900 "Wait for signal CS supports only one signal CS seq\n"); 1901 return -EINVAL; 1902 } 1903 1904 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1905 sizeof(*signal_seq_arr), 1906 GFP_ATOMIC); 1907 if (!signal_seq_arr) 1908 signal_seq_arr = kmalloc_array(signal_seq_arr_len, 1909 sizeof(*signal_seq_arr), 1910 GFP_KERNEL); 1911 if (!signal_seq_arr) { 1912 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1913 atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); 1914 return -ENOMEM; 1915 } 1916 1917 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); 1918 if (copy_from_user(signal_seq_arr, 1919 u64_to_user_ptr(chunk->signal_seq_arr), 1920 size_to_copy)) { 1921 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 1922 atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); 1923 dev_err(hdev->dev, 1924 "Failed to copy signal seq array from user\n"); 1925 rc = -EFAULT; 1926 goto out; 1927 } 1928 1929 /* currently it is guaranteed to have only one signal seq */ 1930 *signal_seq = signal_seq_arr[0]; 1931 1932 out: 1933 kfree(signal_seq_arr); 1934 1935 return rc; 1936 } 1937 1938 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, 1939 struct hl_ctx *ctx, struct hl_cs *cs, 1940 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) 1941 { 1942 struct hl_cs_counters_atomic *cntr; 1943 struct hl_cs_job *job; 1944 struct hl_cb *cb; 1945 u32 cb_size; 1946 1947 cntr = &hdev->aggregated_cs_counters; 1948 1949 job = hl_cs_allocate_job(hdev, q_type, true); 1950 if (!job) { 1951 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1952 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1953 dev_err(hdev->dev, "Failed to allocate a new job\n"); 1954 return -ENOMEM; 1955 } 1956 1957 if (cs->type == CS_TYPE_WAIT) 1958 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); 1959 else 1960 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); 1961 1962 cb = hl_cb_kernel_create(hdev, cb_size, q_type == QUEUE_TYPE_HW); 1963 if (!cb) { 1964 atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); 1965 atomic64_inc(&cntr->out_of_mem_drop_cnt); 1966 kfree(job); 1967 return -EFAULT; 1968 } 1969 1970 job->id = 0; 1971 job->cs = cs; 1972 job->user_cb = cb; 1973 atomic_inc(&job->user_cb->cs_cnt); 1974 job->user_cb_size = cb_size; 1975 job->hw_queue_id = q_idx; 1976 1977 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) 1978 && cs->encaps_signals) 1979 job->encaps_sig_wait_offset = encaps_signal_offset; 1980 /* 1981 * No need in parsing, user CB is the patched CB. 1982 * We call hl_cb_destroy() out of two reasons - we don't need the CB in 1983 * the CB idr anymore and to decrement its refcount as it was 1984 * incremented inside hl_cb_kernel_create(). 1985 */ 1986 job->patched_cb = job->user_cb; 1987 job->job_cb_size = job->user_cb_size; 1988 hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); 1989 1990 /* increment refcount as for external queues we get completion */ 1991 cs_get(cs); 1992 1993 cs->jobs_in_queue_cnt[job->hw_queue_id]++; 1994 cs->jobs_cnt++; 1995 1996 list_add_tail(&job->cs_node, &cs->job_list); 1997 1998 hl_debugfs_add_job(hdev, job); 1999 2000 return 0; 2001 } 2002 2003 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, 2004 u32 q_idx, u32 count, 2005 u32 *handle_id, u32 *sob_addr, 2006 u32 *signals_count) 2007 { 2008 struct hw_queue_properties *hw_queue_prop; 2009 struct hl_sync_stream_properties *prop; 2010 struct hl_device *hdev = hpriv->hdev; 2011 struct hl_cs_encaps_sig_handle *handle; 2012 struct hl_encaps_signals_mgr *mgr; 2013 struct hl_hw_sob *hw_sob; 2014 int hdl_id; 2015 int rc = 0; 2016 2017 if (count >= HL_MAX_SOB_VAL) { 2018 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", 2019 count); 2020 rc = -EINVAL; 2021 goto out; 2022 } 2023 2024 if (q_idx >= hdev->asic_prop.max_queues) { 2025 dev_err(hdev->dev, "Queue index %d is invalid\n", 2026 q_idx); 2027 rc = -EINVAL; 2028 goto out; 2029 } 2030 2031 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2032 2033 if (!hw_queue_prop->supports_sync_stream) { 2034 dev_err(hdev->dev, 2035 "Queue index %d does not support sync stream operations\n", 2036 q_idx); 2037 rc = -EINVAL; 2038 goto out; 2039 } 2040 2041 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2042 2043 handle = kzalloc(sizeof(*handle), GFP_KERNEL); 2044 if (!handle) { 2045 rc = -ENOMEM; 2046 goto out; 2047 } 2048 2049 handle->count = count; 2050 2051 hl_ctx_get(hpriv->ctx); 2052 handle->ctx = hpriv->ctx; 2053 mgr = &hpriv->ctx->sig_mgr; 2054 2055 spin_lock(&mgr->lock); 2056 hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); 2057 spin_unlock(&mgr->lock); 2058 2059 if (hdl_id < 0) { 2060 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); 2061 rc = -EINVAL; 2062 goto put_ctx; 2063 } 2064 2065 handle->id = hdl_id; 2066 handle->q_idx = q_idx; 2067 handle->hdev = hdev; 2068 kref_init(&handle->refcount); 2069 2070 hdev->asic_funcs->hw_queues_lock(hdev); 2071 2072 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2073 2074 /* 2075 * Increment the SOB value by count by user request 2076 * to reserve those signals 2077 * check if the signals amount to reserve is not exceeding the max sob 2078 * value, if yes then switch sob. 2079 */ 2080 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, 2081 true); 2082 if (rc) { 2083 dev_err(hdev->dev, "Failed to switch SOB\n"); 2084 hdev->asic_funcs->hw_queues_unlock(hdev); 2085 rc = -EINVAL; 2086 goto remove_idr; 2087 } 2088 /* set the hw_sob to the handle after calling the sob wraparound handler 2089 * since sob could have changed. 2090 */ 2091 handle->hw_sob = hw_sob; 2092 2093 /* store the current sob value for unreserve validity check, and 2094 * signal offset support 2095 */ 2096 handle->pre_sob_val = prop->next_sob_val - handle->count; 2097 2098 handle->cs_seq = ULLONG_MAX; 2099 2100 *signals_count = prop->next_sob_val; 2101 hdev->asic_funcs->hw_queues_unlock(hdev); 2102 2103 *sob_addr = handle->hw_sob->sob_addr; 2104 *handle_id = hdl_id; 2105 2106 dev_dbg(hdev->dev, 2107 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", 2108 hw_sob->sob_id, handle->hw_sob->sob_addr, 2109 prop->next_sob_val - 1, q_idx, hdl_id); 2110 goto out; 2111 2112 remove_idr: 2113 spin_lock(&mgr->lock); 2114 idr_remove(&mgr->handles, hdl_id); 2115 spin_unlock(&mgr->lock); 2116 2117 put_ctx: 2118 hl_ctx_put(handle->ctx); 2119 kfree(handle); 2120 2121 out: 2122 return rc; 2123 } 2124 2125 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) 2126 { 2127 struct hl_cs_encaps_sig_handle *encaps_sig_hdl; 2128 struct hl_sync_stream_properties *prop; 2129 struct hl_device *hdev = hpriv->hdev; 2130 struct hl_encaps_signals_mgr *mgr; 2131 struct hl_hw_sob *hw_sob; 2132 u32 q_idx, sob_addr; 2133 int rc = 0; 2134 2135 mgr = &hpriv->ctx->sig_mgr; 2136 2137 spin_lock(&mgr->lock); 2138 encaps_sig_hdl = idr_find(&mgr->handles, handle_id); 2139 if (encaps_sig_hdl) { 2140 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", 2141 handle_id, encaps_sig_hdl->hw_sob->sob_addr, 2142 encaps_sig_hdl->count); 2143 2144 hdev->asic_funcs->hw_queues_lock(hdev); 2145 2146 q_idx = encaps_sig_hdl->q_idx; 2147 prop = &hdev->kernel_queues[q_idx].sync_stream_prop; 2148 hw_sob = &prop->hw_sob[prop->curr_sob_offset]; 2149 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); 2150 2151 /* Check if sob_val got out of sync due to other 2152 * signal submission requests which were handled 2153 * between the reserve-unreserve calls or SOB switch 2154 * upon reaching SOB max value. 2155 */ 2156 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count 2157 != prop->next_sob_val || 2158 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { 2159 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", 2160 encaps_sig_hdl->pre_sob_val, 2161 (prop->next_sob_val - encaps_sig_hdl->count)); 2162 2163 hdev->asic_funcs->hw_queues_unlock(hdev); 2164 rc = -EINVAL; 2165 goto out_unlock; 2166 } 2167 2168 /* 2169 * Decrement the SOB value by count by user request 2170 * to unreserve those signals 2171 */ 2172 prop->next_sob_val -= encaps_sig_hdl->count; 2173 2174 hdev->asic_funcs->hw_queues_unlock(hdev); 2175 2176 hw_sob_put(hw_sob); 2177 2178 /* Release the id and free allocated memory of the handle */ 2179 idr_remove(&mgr->handles, handle_id); 2180 2181 /* unlock before calling ctx_put, where we might sleep */ 2182 spin_unlock(&mgr->lock); 2183 hl_ctx_put(encaps_sig_hdl->ctx); 2184 kfree(encaps_sig_hdl); 2185 goto out; 2186 } else { 2187 rc = -EINVAL; 2188 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); 2189 } 2190 2191 out_unlock: 2192 spin_unlock(&mgr->lock); 2193 2194 out: 2195 return rc; 2196 } 2197 2198 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, 2199 void __user *chunks, u32 num_chunks, 2200 u64 *cs_seq, u32 flags, u32 timeout, 2201 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) 2202 { 2203 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; 2204 bool handle_found = false, is_wait_cs = false, 2205 wait_cs_submitted = false, 2206 cs_encaps_signals = false; 2207 struct hl_cs_chunk *cs_chunk_array, *chunk; 2208 bool staged_cs_with_encaps_signals = false; 2209 struct hw_queue_properties *hw_queue_prop; 2210 struct hl_device *hdev = hpriv->hdev; 2211 struct hl_cs_compl *sig_waitcs_cmpl; 2212 u32 q_idx, collective_engine_id = 0; 2213 struct hl_cs_counters_atomic *cntr; 2214 struct hl_fence *sig_fence = NULL; 2215 struct hl_ctx *ctx = hpriv->ctx; 2216 enum hl_queue_type q_type; 2217 struct hl_cs *cs; 2218 u64 signal_seq; 2219 int rc; 2220 2221 cntr = &hdev->aggregated_cs_counters; 2222 *cs_seq = ULLONG_MAX; 2223 2224 rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, 2225 ctx); 2226 if (rc) 2227 goto out; 2228 2229 /* currently it is guaranteed to have only one chunk */ 2230 chunk = &cs_chunk_array[0]; 2231 2232 if (chunk->queue_index >= hdev->asic_prop.max_queues) { 2233 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2234 atomic64_inc(&cntr->validation_drop_cnt); 2235 dev_err(hdev->dev, "Queue index %d is invalid\n", 2236 chunk->queue_index); 2237 rc = -EINVAL; 2238 goto free_cs_chunk_array; 2239 } 2240 2241 q_idx = chunk->queue_index; 2242 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; 2243 q_type = hw_queue_prop->type; 2244 2245 if (!hw_queue_prop->supports_sync_stream) { 2246 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2247 atomic64_inc(&cntr->validation_drop_cnt); 2248 dev_err(hdev->dev, 2249 "Queue index %d does not support sync stream operations\n", 2250 q_idx); 2251 rc = -EINVAL; 2252 goto free_cs_chunk_array; 2253 } 2254 2255 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { 2256 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { 2257 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2258 atomic64_inc(&cntr->validation_drop_cnt); 2259 dev_err(hdev->dev, 2260 "Queue index %d is invalid\n", q_idx); 2261 rc = -EINVAL; 2262 goto free_cs_chunk_array; 2263 } 2264 2265 if (!hdev->nic_ports_mask) { 2266 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2267 atomic64_inc(&cntr->validation_drop_cnt); 2268 dev_err(hdev->dev, 2269 "Collective operations not supported when NIC ports are disabled"); 2270 rc = -EINVAL; 2271 goto free_cs_chunk_array; 2272 } 2273 2274 collective_engine_id = chunk->collective_engine_id; 2275 } 2276 2277 is_wait_cs = !!(cs_type == CS_TYPE_WAIT || 2278 cs_type == CS_TYPE_COLLECTIVE_WAIT); 2279 2280 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); 2281 2282 if (is_wait_cs) { 2283 rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, 2284 ctx, cs_encaps_signals); 2285 if (rc) 2286 goto free_cs_chunk_array; 2287 2288 if (cs_encaps_signals) { 2289 /* check if cs sequence has encapsulated 2290 * signals handle 2291 */ 2292 struct idr *idp; 2293 u32 id; 2294 2295 spin_lock(&ctx->sig_mgr.lock); 2296 idp = &ctx->sig_mgr.handles; 2297 idr_for_each_entry(idp, encaps_sig_hdl, id) { 2298 if (encaps_sig_hdl->cs_seq == signal_seq) { 2299 /* get refcount to protect removing this handle from idr, 2300 * needed when multiple wait cs are used with offset 2301 * to wait on reserved encaps signals. 2302 * Since kref_put of this handle is executed outside the 2303 * current lock, it is possible that the handle refcount 2304 * is 0 but it yet to be removed from the list. In this 2305 * case need to consider the handle as not valid. 2306 */ 2307 if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) 2308 handle_found = true; 2309 break; 2310 } 2311 } 2312 spin_unlock(&ctx->sig_mgr.lock); 2313 2314 if (!handle_found) { 2315 /* treat as signal CS already finished */ 2316 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", 2317 signal_seq); 2318 rc = 0; 2319 goto free_cs_chunk_array; 2320 } 2321 2322 /* validate also the signal offset value */ 2323 if (chunk->encaps_signal_offset > 2324 encaps_sig_hdl->count) { 2325 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", 2326 chunk->encaps_signal_offset, 2327 encaps_sig_hdl->count); 2328 rc = -EINVAL; 2329 goto free_cs_chunk_array; 2330 } 2331 } 2332 2333 sig_fence = hl_ctx_get_fence(ctx, signal_seq); 2334 if (IS_ERR(sig_fence)) { 2335 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2336 atomic64_inc(&cntr->validation_drop_cnt); 2337 dev_err(hdev->dev, 2338 "Failed to get signal CS with seq 0x%llx\n", 2339 signal_seq); 2340 rc = PTR_ERR(sig_fence); 2341 goto free_cs_chunk_array; 2342 } 2343 2344 if (!sig_fence) { 2345 /* signal CS already finished */ 2346 rc = 0; 2347 goto free_cs_chunk_array; 2348 } 2349 2350 sig_waitcs_cmpl = 2351 container_of(sig_fence, struct hl_cs_compl, base_fence); 2352 2353 staged_cs_with_encaps_signals = !! 2354 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && 2355 (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); 2356 2357 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && 2358 !staged_cs_with_encaps_signals) { 2359 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2360 atomic64_inc(&cntr->validation_drop_cnt); 2361 dev_err(hdev->dev, 2362 "CS seq 0x%llx is not of a signal/encaps-signal CS\n", 2363 signal_seq); 2364 hl_fence_put(sig_fence); 2365 rc = -EINVAL; 2366 goto free_cs_chunk_array; 2367 } 2368 2369 if (completion_done(&sig_fence->completion)) { 2370 /* signal CS already finished */ 2371 hl_fence_put(sig_fence); 2372 rc = 0; 2373 goto free_cs_chunk_array; 2374 } 2375 } 2376 2377 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); 2378 if (rc) { 2379 if (is_wait_cs) 2380 hl_fence_put(sig_fence); 2381 2382 goto free_cs_chunk_array; 2383 } 2384 2385 /* 2386 * Save the signal CS fence for later initialization right before 2387 * hanging the wait CS on the queue. 2388 * for encaps signals case, we save the cs sequence and handle pointer 2389 * for later initialization. 2390 */ 2391 if (is_wait_cs) { 2392 cs->signal_fence = sig_fence; 2393 /* store the handle pointer, so we don't have to 2394 * look for it again, later on the flow 2395 * when we need to set SOB info in hw_queue. 2396 */ 2397 if (cs->encaps_signals) 2398 cs->encaps_sig_hdl = encaps_sig_hdl; 2399 } 2400 2401 hl_debugfs_add_cs(cs); 2402 2403 *cs_seq = cs->sequence; 2404 2405 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) 2406 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, 2407 q_idx, chunk->encaps_signal_offset); 2408 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) 2409 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, 2410 cs, q_idx, collective_engine_id, 2411 chunk->encaps_signal_offset); 2412 else { 2413 atomic64_inc(&ctx->cs_counters.validation_drop_cnt); 2414 atomic64_inc(&cntr->validation_drop_cnt); 2415 rc = -EINVAL; 2416 } 2417 2418 if (rc) 2419 goto free_cs_object; 2420 2421 if (q_type == QUEUE_TYPE_HW) 2422 INIT_WORK(&cs->finish_work, cs_completion); 2423 2424 rc = hl_hw_queue_schedule_cs(cs); 2425 if (rc) { 2426 /* In case wait cs failed here, it means the signal cs 2427 * already completed. we want to free all it's related objects 2428 * but we don't want to fail the ioctl. 2429 */ 2430 if (is_wait_cs) 2431 rc = 0; 2432 else if (rc != -EAGAIN) 2433 dev_err(hdev->dev, 2434 "Failed to submit CS %d.%llu to H/W queues, error %d\n", 2435 ctx->asid, cs->sequence, rc); 2436 goto free_cs_object; 2437 } 2438 2439 *signal_sob_addr_offset = cs->sob_addr_offset; 2440 *signal_initial_sob_count = cs->initial_sob_count; 2441 2442 rc = HL_CS_STATUS_SUCCESS; 2443 if (is_wait_cs) 2444 wait_cs_submitted = true; 2445 goto put_cs; 2446 2447 free_cs_object: 2448 cs_rollback(hdev, cs); 2449 *cs_seq = ULLONG_MAX; 2450 /* The path below is both for good and erroneous exits */ 2451 put_cs: 2452 /* We finished with the CS in this function, so put the ref */ 2453 cs_put(cs); 2454 free_cs_chunk_array: 2455 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) 2456 kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); 2457 kfree(cs_chunk_array); 2458 out: 2459 return rc; 2460 } 2461 2462 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, 2463 u32 num_engine_cores, u32 core_command) 2464 { 2465 struct hl_device *hdev = hpriv->hdev; 2466 void __user *engine_cores_arr; 2467 u32 *cores; 2468 int rc; 2469 2470 if (!hdev->asic_prop.supports_engine_modes) 2471 return -EPERM; 2472 2473 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { 2474 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); 2475 return -EINVAL; 2476 } 2477 2478 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { 2479 dev_err(hdev->dev, "Engine core command is invalid\n"); 2480 return -EINVAL; 2481 } 2482 2483 engine_cores_arr = (void __user *) (uintptr_t) engine_cores; 2484 cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); 2485 if (!cores) 2486 return -ENOMEM; 2487 2488 if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { 2489 dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); 2490 kfree(cores); 2491 return -EFAULT; 2492 } 2493 2494 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); 2495 kfree(cores); 2496 2497 return rc; 2498 } 2499 2500 static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr, 2501 u32 num_engines, enum hl_engine_command command) 2502 { 2503 struct hl_device *hdev = hpriv->hdev; 2504 u32 *engines, max_num_of_engines; 2505 void __user *engines_arr; 2506 int rc; 2507 2508 if (!hdev->asic_prop.supports_engine_modes) 2509 return -EPERM; 2510 2511 if (command >= HL_ENGINE_COMMAND_MAX) { 2512 dev_err(hdev->dev, "Engine command is invalid\n"); 2513 return -EINVAL; 2514 } 2515 2516 max_num_of_engines = hdev->asic_prop.max_num_of_engines; 2517 if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT) 2518 max_num_of_engines = hdev->asic_prop.num_engine_cores; 2519 2520 if (!num_engines || num_engines > max_num_of_engines) { 2521 dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines); 2522 return -EINVAL; 2523 } 2524 2525 engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr; 2526 engines = kmalloc_array(num_engines, sizeof(u32), GFP_KERNEL); 2527 if (!engines) 2528 return -ENOMEM; 2529 2530 if (copy_from_user(engines, engines_arr, num_engines * sizeof(u32))) { 2531 dev_err(hdev->dev, "Failed to copy engine-ids array from user\n"); 2532 kfree(engines); 2533 return -EFAULT; 2534 } 2535 2536 rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command); 2537 kfree(engines); 2538 2539 return rc; 2540 } 2541 2542 static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) 2543 { 2544 struct hl_device *hdev = hpriv->hdev; 2545 struct asic_fixed_properties *prop = &hdev->asic_prop; 2546 2547 if (!prop->hbw_flush_reg) { 2548 dev_dbg(hdev->dev, "HBW flush is not supported\n"); 2549 return -EOPNOTSUPP; 2550 } 2551 2552 RREG32(prop->hbw_flush_reg); 2553 2554 return 0; 2555 } 2556 2557 int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) 2558 { 2559 struct hl_fpriv *hpriv = file_priv->driver_priv; 2560 union hl_cs_args *args = data; 2561 enum hl_cs_type cs_type = 0; 2562 u64 cs_seq = ULONG_MAX; 2563 void __user *chunks; 2564 u32 num_chunks, flags, timeout, 2565 signals_count = 0, sob_addr = 0, handle_id = 0; 2566 u16 sob_initial_count = 0; 2567 int rc; 2568 2569 rc = hl_cs_sanity_checks(hpriv, args); 2570 if (rc) 2571 goto out; 2572 2573 rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); 2574 if (rc) 2575 goto out; 2576 2577 cs_type = hl_cs_get_cs_type(args->in.cs_flags & 2578 ~HL_CS_FLAGS_FORCE_RESTORE); 2579 chunks = (void __user *) (uintptr_t) args->in.chunks_execute; 2580 num_chunks = args->in.num_chunks_execute; 2581 flags = args->in.cs_flags; 2582 2583 /* In case this is a staged CS, user should supply the CS sequence */ 2584 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && 2585 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) 2586 cs_seq = args->in.seq; 2587 2588 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT 2589 ? msecs_to_jiffies(args->in.timeout * 1000) 2590 : hpriv->hdev->timeout_jiffies; 2591 2592 switch (cs_type) { 2593 case CS_TYPE_SIGNAL: 2594 case CS_TYPE_WAIT: 2595 case CS_TYPE_COLLECTIVE_WAIT: 2596 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, 2597 &cs_seq, args->in.cs_flags, timeout, 2598 &sob_addr, &sob_initial_count); 2599 break; 2600 case CS_RESERVE_SIGNALS: 2601 rc = cs_ioctl_reserve_signals(hpriv, 2602 args->in.encaps_signals_q_idx, 2603 args->in.encaps_signals_count, 2604 &handle_id, &sob_addr, &signals_count); 2605 break; 2606 case CS_UNRESERVE_SIGNALS: 2607 rc = cs_ioctl_unreserve_signals(hpriv, 2608 args->in.encaps_sig_handle_id); 2609 break; 2610 case CS_TYPE_ENGINE_CORE: 2611 rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, 2612 args->in.num_engine_cores, args->in.core_command); 2613 break; 2614 case CS_TYPE_ENGINES: 2615 rc = cs_ioctl_engines(hpriv, args->in.engines, 2616 args->in.num_engines, args->in.engine_command); 2617 break; 2618 case CS_TYPE_FLUSH_PCI_HBW_WRITES: 2619 rc = cs_ioctl_flush_pci_hbw_writes(hpriv); 2620 break; 2621 default: 2622 rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, 2623 args->in.cs_flags, 2624 args->in.encaps_sig_handle_id, 2625 timeout, &sob_initial_count); 2626 break; 2627 } 2628 out: 2629 if (rc != -EAGAIN) { 2630 memset(args, 0, sizeof(*args)); 2631 2632 switch (cs_type) { 2633 case CS_RESERVE_SIGNALS: 2634 args->out.handle_id = handle_id; 2635 args->out.sob_base_addr_offset = sob_addr; 2636 args->out.count = signals_count; 2637 break; 2638 case CS_TYPE_SIGNAL: 2639 args->out.sob_base_addr_offset = sob_addr; 2640 args->out.sob_count_before_submission = sob_initial_count; 2641 args->out.seq = cs_seq; 2642 break; 2643 case CS_TYPE_DEFAULT: 2644 args->out.sob_count_before_submission = sob_initial_count; 2645 args->out.seq = cs_seq; 2646 break; 2647 default: 2648 args->out.seq = cs_seq; 2649 break; 2650 } 2651 2652 args->out.status = rc; 2653 } 2654 2655 return rc; 2656 } 2657 2658 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, 2659 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) 2660 { 2661 struct hl_device *hdev = ctx->hdev; 2662 ktime_t timestamp_kt; 2663 long completion_rc; 2664 int rc = 0, error; 2665 2666 if (IS_ERR(fence)) { 2667 rc = PTR_ERR(fence); 2668 if (rc == -EINVAL) 2669 dev_notice_ratelimited(hdev->dev, 2670 "Can't wait on CS %llu because current CS is at seq %llu\n", 2671 seq, ctx->cs_sequence); 2672 return rc; 2673 } 2674 2675 if (!fence) { 2676 if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { 2677 dev_dbg(hdev->dev, 2678 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", 2679 seq, ctx->cs_sequence); 2680 *status = CS_WAIT_STATUS_GONE; 2681 return 0; 2682 } 2683 2684 completion_rc = 1; 2685 goto report_results; 2686 } 2687 2688 if (!timeout_us) { 2689 completion_rc = completion_done(&fence->completion); 2690 } else { 2691 unsigned long timeout; 2692 2693 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? 2694 timeout_us : usecs_to_jiffies(timeout_us); 2695 completion_rc = 2696 wait_for_completion_interruptible_timeout( 2697 &fence->completion, timeout); 2698 } 2699 2700 error = fence->error; 2701 timestamp_kt = fence->timestamp; 2702 2703 report_results: 2704 if (completion_rc > 0) { 2705 *status = CS_WAIT_STATUS_COMPLETED; 2706 if (timestamp) 2707 *timestamp = ktime_to_ns(timestamp_kt); 2708 } else { 2709 *status = CS_WAIT_STATUS_BUSY; 2710 } 2711 2712 if (completion_rc == -ERESTARTSYS) 2713 rc = completion_rc; 2714 else if (error == -ETIMEDOUT || error == -EIO) 2715 rc = error; 2716 2717 return rc; 2718 } 2719 2720 /* 2721 * hl_cs_poll_fences - iterate CS fences to check for CS completion 2722 * 2723 * @mcs_data: multi-CS internal data 2724 * @mcs_compl: multi-CS completion structure 2725 * 2726 * @return 0 on success, otherwise non 0 error code 2727 * 2728 * The function iterates on all CS sequence in the list and set bit in 2729 * completion_bitmap for each completed CS. 2730 * While iterating, the function sets the stream map of each fence in the fence 2731 * array in the completion QID stream map to be used by CSs to perform 2732 * completion to the multi-CS context. 2733 * This function shall be called after taking context ref 2734 */ 2735 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) 2736 { 2737 struct hl_fence **fence_ptr = mcs_data->fence_arr; 2738 struct hl_device *hdev = mcs_data->ctx->hdev; 2739 int i, rc, arr_len = mcs_data->arr_len; 2740 u64 *seq_arr = mcs_data->seq_arr; 2741 ktime_t max_ktime, first_cs_time; 2742 enum hl_cs_wait_status status; 2743 2744 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); 2745 2746 /* get all fences under the same lock */ 2747 rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); 2748 if (rc) 2749 return rc; 2750 2751 /* 2752 * re-initialize the completion here to handle 2 possible cases: 2753 * 1. CS will complete the multi-CS prior clearing the completion. in which 2754 * case the fence iteration is guaranteed to catch the CS completion. 2755 * 2. the completion will occur after re-init of the completion. 2756 * in which case we will wake up immediately in wait_for_completion. 2757 */ 2758 reinit_completion(&mcs_compl->completion); 2759 2760 /* 2761 * set to maximum time to verify timestamp is valid: if at the end 2762 * this value is maintained- no timestamp was updated 2763 */ 2764 max_ktime = ktime_set(KTIME_SEC_MAX, 0); 2765 first_cs_time = max_ktime; 2766 2767 for (i = 0; i < arr_len; i++, fence_ptr++) { 2768 struct hl_fence *fence = *fence_ptr; 2769 2770 /* 2771 * In order to prevent case where we wait until timeout even though a CS associated 2772 * with the multi-CS actually completed we do things in the below order: 2773 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way 2774 * any CS can, potentially, complete the multi CS for the specific QID (note 2775 * that once completion is initialized, calling complete* and then wait on the 2776 * completion will cause it to return at once) 2777 * 2. only after allowing multi-CS completion for the specific QID we check whether 2778 * the specific CS already completed (and thus the wait for completion part will 2779 * be skipped). if the CS not completed it is guaranteed that completing CS will 2780 * wake up the completion. 2781 */ 2782 if (fence) 2783 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; 2784 2785 /* 2786 * function won't sleep as it is called with timeout 0 (i.e. 2787 * poll the fence) 2788 */ 2789 rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); 2790 if (rc) { 2791 dev_err(hdev->dev, 2792 "wait_for_fence error :%d for CS seq %llu\n", 2793 rc, seq_arr[i]); 2794 break; 2795 } 2796 2797 switch (status) { 2798 case CS_WAIT_STATUS_BUSY: 2799 /* CS did not finished, QID to wait on already stored */ 2800 break; 2801 case CS_WAIT_STATUS_COMPLETED: 2802 /* 2803 * Using mcs_handling_done to avoid possibility of mcs_data 2804 * returns to user indicating CS completed before it finished 2805 * all of its mcs handling, to avoid race the next time the 2806 * user waits for mcs. 2807 * note: when reaching this case fence is definitely not NULL 2808 * but NULL check was added to overcome static analysis 2809 */ 2810 if (fence && !fence->mcs_handling_done) { 2811 /* 2812 * in case multi CS is completed but MCS handling not done 2813 * we "complete" the multi CS to prevent it from waiting 2814 * until time-out and the "multi-CS handling done" will have 2815 * another chance at the next iteration 2816 */ 2817 complete_all(&mcs_compl->completion); 2818 break; 2819 } 2820 2821 mcs_data->completion_bitmap |= BIT(i); 2822 /* 2823 * For all completed CSs we take the earliest timestamp. 2824 * For this we have to validate that the timestamp is 2825 * earliest of all timestamps so far. 2826 */ 2827 if (fence && mcs_data->update_ts && 2828 (ktime_compare(fence->timestamp, first_cs_time) < 0)) 2829 first_cs_time = fence->timestamp; 2830 break; 2831 case CS_WAIT_STATUS_GONE: 2832 mcs_data->update_ts = false; 2833 mcs_data->gone_cs = true; 2834 /* 2835 * It is possible to get an old sequence numbers from user 2836 * which related to already completed CSs and their fences 2837 * already gone. In this case, CS set as completed but 2838 * no need to consider its QID for mcs completion. 2839 */ 2840 mcs_data->completion_bitmap |= BIT(i); 2841 break; 2842 default: 2843 dev_err(hdev->dev, "Invalid fence status\n"); 2844 rc = -EINVAL; 2845 break; 2846 } 2847 2848 } 2849 2850 hl_fences_put(mcs_data->fence_arr, arr_len); 2851 2852 if (mcs_data->update_ts && 2853 (ktime_compare(first_cs_time, max_ktime) != 0)) 2854 mcs_data->timestamp = ktime_to_ns(first_cs_time); 2855 2856 return rc; 2857 } 2858 2859 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, 2860 enum hl_cs_wait_status *status, s64 *timestamp) 2861 { 2862 struct hl_fence *fence; 2863 int rc = 0; 2864 2865 if (timestamp) 2866 *timestamp = 0; 2867 2868 hl_ctx_get(ctx); 2869 2870 fence = hl_ctx_get_fence(ctx, seq); 2871 2872 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); 2873 hl_fence_put(fence); 2874 hl_ctx_put(ctx); 2875 2876 return rc; 2877 } 2878 2879 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) 2880 { 2881 if (usecs <= U32_MAX) 2882 return usecs_to_jiffies(usecs); 2883 2884 /* 2885 * If the value in nanoseconds is larger than 64 bit, use the largest 2886 * 64 bit value. 2887 */ 2888 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) 2889 return nsecs_to_jiffies(U64_MAX); 2890 2891 return nsecs_to_jiffies(usecs * NSEC_PER_USEC); 2892 } 2893 2894 /* 2895 * hl_wait_multi_cs_completion_init - init completion structure 2896 * 2897 * @hdev: pointer to habanalabs device structure 2898 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream 2899 * master QID to wait on 2900 * 2901 * @return valid completion struct pointer on success, otherwise error pointer 2902 * 2903 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. 2904 * the function gets the first available completion (by marking it "used") 2905 * and initialize its values. 2906 */ 2907 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) 2908 { 2909 struct multi_cs_completion *mcs_compl; 2910 int i; 2911 2912 /* find free multi_cs completion structure */ 2913 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2914 mcs_compl = &hdev->multi_cs_completion[i]; 2915 spin_lock(&mcs_compl->lock); 2916 if (!mcs_compl->used) { 2917 mcs_compl->used = 1; 2918 mcs_compl->timestamp = 0; 2919 /* 2920 * init QID map to 0 to avoid completion by CSs. the actual QID map 2921 * to multi-CS CSs will be set incrementally at a later stage 2922 */ 2923 mcs_compl->stream_master_qid_map = 0; 2924 spin_unlock(&mcs_compl->lock); 2925 break; 2926 } 2927 spin_unlock(&mcs_compl->lock); 2928 } 2929 2930 if (i == MULTI_CS_MAX_USER_CTX) { 2931 dev_err(hdev->dev, "no available multi-CS completion structure\n"); 2932 return ERR_PTR(-ENOMEM); 2933 } 2934 return mcs_compl; 2935 } 2936 2937 /* 2938 * hl_wait_multi_cs_completion_fini - return completion structure and set as 2939 * unused 2940 * 2941 * @mcs_compl: pointer to the completion structure 2942 */ 2943 static void hl_wait_multi_cs_completion_fini( 2944 struct multi_cs_completion *mcs_compl) 2945 { 2946 /* 2947 * free completion structure, do it under lock to be in-sync with the 2948 * thread that signals completion 2949 */ 2950 spin_lock(&mcs_compl->lock); 2951 mcs_compl->used = 0; 2952 spin_unlock(&mcs_compl->lock); 2953 } 2954 2955 /* 2956 * hl_wait_multi_cs_completion - wait for first CS to complete 2957 * 2958 * @mcs_data: multi-CS internal data 2959 * 2960 * @return 0 on success, otherwise non 0 error code 2961 */ 2962 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, 2963 struct multi_cs_completion *mcs_compl) 2964 { 2965 long completion_rc; 2966 2967 completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, 2968 mcs_data->timeout_jiffies); 2969 2970 /* update timestamp */ 2971 if (completion_rc > 0) 2972 mcs_data->timestamp = mcs_compl->timestamp; 2973 2974 if (completion_rc == -ERESTARTSYS) 2975 return completion_rc; 2976 2977 mcs_data->wait_status = completion_rc; 2978 2979 return 0; 2980 } 2981 2982 /* 2983 * hl_multi_cs_completion_init - init array of multi-CS completion structures 2984 * 2985 * @hdev: pointer to habanalabs device structure 2986 */ 2987 void hl_multi_cs_completion_init(struct hl_device *hdev) 2988 { 2989 struct multi_cs_completion *mcs_cmpl; 2990 int i; 2991 2992 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { 2993 mcs_cmpl = &hdev->multi_cs_completion[i]; 2994 mcs_cmpl->used = 0; 2995 spin_lock_init(&mcs_cmpl->lock); 2996 init_completion(&mcs_cmpl->completion); 2997 } 2998 } 2999 3000 /* 3001 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl 3002 * 3003 * @hpriv: pointer to the private data of the fd 3004 * @data: pointer to multi-CS wait ioctl in/out args 3005 * 3006 */ 3007 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3008 { 3009 struct multi_cs_completion *mcs_compl; 3010 struct hl_device *hdev = hpriv->hdev; 3011 struct multi_cs_data mcs_data = {}; 3012 union hl_wait_cs_args *args = data; 3013 struct hl_ctx *ctx = hpriv->ctx; 3014 struct hl_fence **fence_arr; 3015 void __user *seq_arr; 3016 u32 size_to_copy; 3017 u64 *cs_seq_arr; 3018 u8 seq_arr_len; 3019 int rc, i; 3020 3021 for (i = 0 ; i < sizeof(args->in.pad) ; i++) 3022 if (args->in.pad[i]) { 3023 dev_dbg(hdev->dev, "Padding bytes must be 0\n"); 3024 return -EINVAL; 3025 } 3026 3027 if (!hdev->supports_wait_for_multi_cs) { 3028 dev_err(hdev->dev, "Wait for multi CS is not supported\n"); 3029 return -EPERM; 3030 } 3031 3032 seq_arr_len = args->in.seq_arr_len; 3033 3034 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { 3035 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", 3036 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); 3037 return -EINVAL; 3038 } 3039 3040 /* allocate memory for sequence array */ 3041 cs_seq_arr = 3042 kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); 3043 if (!cs_seq_arr) 3044 return -ENOMEM; 3045 3046 /* copy CS sequence array from user */ 3047 seq_arr = (void __user *) (uintptr_t) args->in.seq; 3048 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); 3049 if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { 3050 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); 3051 rc = -EFAULT; 3052 goto free_seq_arr; 3053 } 3054 3055 /* allocate array for the fences */ 3056 fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); 3057 if (!fence_arr) { 3058 rc = -ENOMEM; 3059 goto free_seq_arr; 3060 } 3061 3062 /* initialize the multi-CS internal data */ 3063 mcs_data.ctx = ctx; 3064 mcs_data.seq_arr = cs_seq_arr; 3065 mcs_data.fence_arr = fence_arr; 3066 mcs_data.arr_len = seq_arr_len; 3067 3068 hl_ctx_get(ctx); 3069 3070 /* wait (with timeout) for the first CS to be completed */ 3071 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); 3072 mcs_compl = hl_wait_multi_cs_completion_init(hdev); 3073 if (IS_ERR(mcs_compl)) { 3074 rc = PTR_ERR(mcs_compl); 3075 goto put_ctx; 3076 } 3077 3078 /* poll all CS fences, extract timestamp */ 3079 mcs_data.update_ts = true; 3080 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3081 /* 3082 * skip wait for CS completion when one of the below is true: 3083 * - an error on the poll function 3084 * - one or more CS in the list completed 3085 * - the user called ioctl with timeout 0 3086 */ 3087 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) 3088 goto completion_fini; 3089 3090 while (true) { 3091 rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); 3092 if (rc || (mcs_data.wait_status == 0)) 3093 break; 3094 3095 /* 3096 * poll fences once again to update the CS map. 3097 * no timestamp should be updated this time. 3098 */ 3099 mcs_data.update_ts = false; 3100 rc = hl_cs_poll_fences(&mcs_data, mcs_compl); 3101 3102 if (rc || mcs_data.completion_bitmap) 3103 break; 3104 3105 /* 3106 * if hl_wait_multi_cs_completion returned before timeout (i.e. 3107 * it got a completion) it either got completed by CS in the multi CS list 3108 * (in which case the indication will be non empty completion_bitmap) or it 3109 * got completed by CS submitted to one of the shared stream master but 3110 * not in the multi CS list (in which case we should wait again but modify 3111 * the timeout and set timestamp as zero to let a CS related to the current 3112 * multi-CS set a new, relevant, timestamp) 3113 */ 3114 mcs_data.timeout_jiffies = mcs_data.wait_status; 3115 mcs_compl->timestamp = 0; 3116 } 3117 3118 completion_fini: 3119 hl_wait_multi_cs_completion_fini(mcs_compl); 3120 3121 put_ctx: 3122 hl_ctx_put(ctx); 3123 kfree(fence_arr); 3124 3125 free_seq_arr: 3126 kfree(cs_seq_arr); 3127 3128 if (rc == -ERESTARTSYS) { 3129 dev_err_ratelimited(hdev->dev, 3130 "user process got signal while waiting for Multi-CS\n"); 3131 rc = -EINTR; 3132 } 3133 3134 if (rc) 3135 return rc; 3136 3137 /* update output args */ 3138 memset(args, 0, sizeof(*args)); 3139 3140 if (mcs_data.completion_bitmap) { 3141 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3142 args->out.cs_completion_map = mcs_data.completion_bitmap; 3143 3144 /* if timestamp not 0- it's valid */ 3145 if (mcs_data.timestamp) { 3146 args->out.timestamp_nsec = mcs_data.timestamp; 3147 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3148 } 3149 3150 /* update if some CS was gone */ 3151 if (!mcs_data.timestamp) 3152 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3153 } else { 3154 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3155 } 3156 3157 return 0; 3158 } 3159 3160 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3161 { 3162 struct hl_device *hdev = hpriv->hdev; 3163 union hl_wait_cs_args *args = data; 3164 enum hl_cs_wait_status status; 3165 u64 seq = args->in.seq; 3166 s64 timestamp; 3167 int rc; 3168 3169 rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); 3170 3171 if (rc == -ERESTARTSYS) { 3172 dev_err_ratelimited(hdev->dev, 3173 "user process got signal while waiting for CS handle %llu\n", 3174 seq); 3175 return -EINTR; 3176 } 3177 3178 memset(args, 0, sizeof(*args)); 3179 3180 if (rc) { 3181 if (rc == -ETIMEDOUT) { 3182 dev_err_ratelimited(hdev->dev, 3183 "CS %llu has timed-out while user process is waiting for it\n", 3184 seq); 3185 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; 3186 } else if (rc == -EIO) { 3187 dev_err_ratelimited(hdev->dev, 3188 "CS %llu has been aborted while user process is waiting for it\n", 3189 seq); 3190 args->out.status = HL_WAIT_CS_STATUS_ABORTED; 3191 } 3192 return rc; 3193 } 3194 3195 if (timestamp) { 3196 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3197 args->out.timestamp_nsec = timestamp; 3198 } 3199 3200 switch (status) { 3201 case CS_WAIT_STATUS_GONE: 3202 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; 3203 fallthrough; 3204 case CS_WAIT_STATUS_COMPLETED: 3205 args->out.status = HL_WAIT_CS_STATUS_COMPLETED; 3206 break; 3207 case CS_WAIT_STATUS_BUSY: 3208 default: 3209 args->out.status = HL_WAIT_CS_STATUS_BUSY; 3210 break; 3211 } 3212 3213 return 0; 3214 } 3215 3216 static inline void set_record_cq_info(struct hl_user_pending_interrupt *record, 3217 struct hl_cb *cq_cb, u32 cq_offset, u32 target_value) 3218 { 3219 record->ts_reg_info.cq_cb = cq_cb; 3220 record->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_offset; 3221 record->cq_target_value = target_value; 3222 } 3223 3224 static int validate_and_get_ts_record(struct device *dev, 3225 struct hl_ts_buff *ts_buff, u64 ts_offset, 3226 struct hl_user_pending_interrupt **req_event_record) 3227 { 3228 struct hl_user_pending_interrupt *ts_cb_last; 3229 3230 *req_event_record = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3231 ts_offset; 3232 ts_cb_last = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + 3233 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); 3234 3235 /* Validate ts_offset not exceeding last max */ 3236 if (*req_event_record >= ts_cb_last) { 3237 dev_err(dev, "Ts offset(%llu) exceeds max CB offset(0x%llx)\n", 3238 ts_offset, (u64)(uintptr_t)ts_cb_last); 3239 return -EINVAL; 3240 } 3241 3242 return 0; 3243 } 3244 3245 static void unregister_timestamp_node(struct hl_device *hdev, 3246 struct hl_user_pending_interrupt *record, bool need_lock) 3247 { 3248 struct hl_user_interrupt *interrupt = record->ts_reg_info.interrupt; 3249 bool ts_rec_found = false; 3250 unsigned long flags; 3251 3252 if (need_lock) 3253 spin_lock_irqsave(&interrupt->ts_list_lock, flags); 3254 3255 if (record->ts_reg_info.in_use) { 3256 record->ts_reg_info.in_use = false; 3257 list_del(&record->list_node); 3258 ts_rec_found = true; 3259 } 3260 3261 if (need_lock) 3262 spin_unlock_irqrestore(&interrupt->ts_list_lock, flags); 3263 3264 /* Put refcounts that were taken when we registered the event */ 3265 if (ts_rec_found) { 3266 hl_mmap_mem_buf_put(record->ts_reg_info.buf); 3267 hl_cb_put(record->ts_reg_info.cq_cb); 3268 } 3269 } 3270 3271 static int ts_get_and_handle_kernel_record(struct hl_device *hdev, struct hl_ctx *ctx, 3272 struct wait_interrupt_data *data, unsigned long *flags, 3273 struct hl_user_pending_interrupt **pend) 3274 { 3275 struct hl_user_pending_interrupt *req_offset_record; 3276 struct hl_ts_buff *ts_buff = data->buf->private; 3277 bool need_lock = false; 3278 int rc; 3279 3280 rc = validate_and_get_ts_record(data->buf->mmg->dev, ts_buff, data->ts_offset, 3281 &req_offset_record); 3282 if (rc) 3283 return rc; 3284 3285 /* In case the node already registered, need to unregister first then re-use */ 3286 if (req_offset_record->ts_reg_info.in_use) { 3287 dev_dbg(data->buf->mmg->dev, 3288 "Requested record %p is in use on irq: %u ts addr: %p, unregister first then put on irq: %u\n", 3289 req_offset_record, 3290 req_offset_record->ts_reg_info.interrupt->interrupt_id, 3291 req_offset_record->ts_reg_info.timestamp_kernel_addr, 3292 data->interrupt->interrupt_id); 3293 /* 3294 * Since interrupt here can be different than the one the node currently registered 3295 * on, and we don't want to lock two lists while we're doing unregister, so 3296 * unlock the new interrupt wait list here and acquire the lock again after you done 3297 */ 3298 if (data->interrupt->interrupt_id != 3299 req_offset_record->ts_reg_info.interrupt->interrupt_id) { 3300 3301 need_lock = true; 3302 spin_unlock_irqrestore(&data->interrupt->ts_list_lock, *flags); 3303 } 3304 3305 unregister_timestamp_node(hdev, req_offset_record, need_lock); 3306 3307 if (need_lock) 3308 spin_lock_irqsave(&data->interrupt->ts_list_lock, *flags); 3309 } 3310 3311 /* Fill up the new registration node info and add it to the list */ 3312 req_offset_record->ts_reg_info.in_use = true; 3313 req_offset_record->ts_reg_info.buf = data->buf; 3314 req_offset_record->ts_reg_info.timestamp_kernel_addr = 3315 (u64 *) ts_buff->user_buff_address + data->ts_offset; 3316 req_offset_record->ts_reg_info.interrupt = data->interrupt; 3317 set_record_cq_info(req_offset_record, data->cq_cb, data->cq_offset, 3318 data->target_value); 3319 3320 *pend = req_offset_record; 3321 3322 return rc; 3323 } 3324 3325 static int _hl_interrupt_ts_reg_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3326 struct wait_interrupt_data *data, 3327 u32 *status, u64 *timestamp) 3328 { 3329 struct hl_user_pending_interrupt *pend; 3330 unsigned long flags; 3331 int rc = 0; 3332 3333 hl_ctx_get(ctx); 3334 3335 data->cq_cb = hl_cb_get(data->mmg, data->cq_handle); 3336 if (!data->cq_cb) { 3337 rc = -EINVAL; 3338 goto put_ctx; 3339 } 3340 3341 /* Validate the cq offset */ 3342 if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >= 3343 ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) { 3344 rc = -EINVAL; 3345 goto put_cq_cb; 3346 } 3347 3348 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, handle: 0x%llx, ts offset: %llu, cq_offset: %llu\n", 3349 data->interrupt->interrupt_id, data->ts_handle, 3350 data->ts_offset, data->cq_offset); 3351 3352 data->buf = hl_mmap_mem_buf_get(data->mmg, data->ts_handle); 3353 if (!data->buf) { 3354 rc = -EINVAL; 3355 goto put_cq_cb; 3356 } 3357 3358 spin_lock_irqsave(&data->interrupt->ts_list_lock, flags); 3359 3360 /* get ts buffer record */ 3361 rc = ts_get_and_handle_kernel_record(hdev, ctx, data, &flags, &pend); 3362 if (rc) { 3363 spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); 3364 goto put_ts_buff; 3365 } 3366 3367 /* We check for completion value as interrupt could have been received 3368 * before we add the timestamp node to the ts list. 3369 */ 3370 if (*pend->cq_kernel_addr >= data->target_value) { 3371 spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); 3372 3373 dev_dbg(hdev->dev, "Target value already reached release ts record: pend: %p, offset: %llu, interrupt: %u\n", 3374 pend, data->ts_offset, data->interrupt->interrupt_id); 3375 3376 pend->ts_reg_info.in_use = 0; 3377 *status = HL_WAIT_CS_STATUS_COMPLETED; 3378 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); 3379 3380 goto put_ts_buff; 3381 } 3382 3383 list_add_tail(&pend->list_node, &data->interrupt->ts_list_head); 3384 spin_unlock_irqrestore(&data->interrupt->ts_list_lock, flags); 3385 3386 rc = *status = HL_WAIT_CS_STATUS_COMPLETED; 3387 3388 hl_ctx_put(ctx); 3389 3390 return rc; 3391 3392 put_ts_buff: 3393 hl_mmap_mem_buf_put(data->buf); 3394 put_cq_cb: 3395 hl_cb_put(data->cq_cb); 3396 put_ctx: 3397 hl_ctx_put(ctx); 3398 3399 return rc; 3400 } 3401 3402 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, 3403 struct wait_interrupt_data *data, 3404 u32 *status, u64 *timestamp) 3405 { 3406 struct hl_user_pending_interrupt *pend; 3407 unsigned long timeout, flags; 3408 long completion_rc; 3409 int rc = 0; 3410 3411 timeout = hl_usecs64_to_jiffies(data->intr_timeout_us); 3412 3413 hl_ctx_get(ctx); 3414 3415 data->cq_cb = hl_cb_get(data->mmg, data->cq_handle); 3416 if (!data->cq_cb) { 3417 rc = -EINVAL; 3418 goto put_ctx; 3419 } 3420 3421 /* Validate the cq offset */ 3422 if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >= 3423 ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) { 3424 rc = -EINVAL; 3425 goto put_cq_cb; 3426 } 3427 3428 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3429 if (!pend) { 3430 rc = -ENOMEM; 3431 goto put_cq_cb; 3432 } 3433 3434 hl_fence_init(&pend->fence, ULONG_MAX); 3435 pend->cq_kernel_addr = (u64 *) data->cq_cb->kernel_address + data->cq_offset; 3436 pend->cq_target_value = data->target_value; 3437 spin_lock_irqsave(&data->interrupt->wait_list_lock, flags); 3438 3439 3440 /* We check for completion value as interrupt could have been received 3441 * before we add the wait node to the wait list. 3442 */ 3443 if (*pend->cq_kernel_addr >= data->target_value || (!data->intr_timeout_us)) { 3444 spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); 3445 3446 if (*pend->cq_kernel_addr >= data->target_value) 3447 *status = HL_WAIT_CS_STATUS_COMPLETED; 3448 else 3449 *status = HL_WAIT_CS_STATUS_BUSY; 3450 3451 pend->fence.timestamp = ktime_get(); 3452 goto set_timestamp; 3453 } 3454 3455 /* Add pending user interrupt to relevant list for the interrupt 3456 * handler to monitor. 3457 * Note that we cannot have sorted list by target value, 3458 * in order to shorten the list pass loop, since 3459 * same list could have nodes for different cq counter handle. 3460 */ 3461 list_add_tail(&pend->list_node, &data->interrupt->wait_list_head); 3462 spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); 3463 3464 /* Wait for interrupt handler to signal completion */ 3465 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3466 timeout); 3467 if (completion_rc > 0) { 3468 if (pend->fence.error == -EIO) { 3469 dev_err_ratelimited(hdev->dev, 3470 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3471 pend->fence.error); 3472 rc = -EIO; 3473 *status = HL_WAIT_CS_STATUS_ABORTED; 3474 } else { 3475 *status = HL_WAIT_CS_STATUS_COMPLETED; 3476 } 3477 } else { 3478 if (completion_rc == -ERESTARTSYS) { 3479 dev_err_ratelimited(hdev->dev, 3480 "user process got signal while waiting for interrupt ID %d\n", 3481 data->interrupt->interrupt_id); 3482 rc = -EINTR; 3483 *status = HL_WAIT_CS_STATUS_ABORTED; 3484 } else { 3485 /* The wait has timed-out. We don't know anything beyond that 3486 * because the workload was not submitted through the driver. 3487 * Therefore, from driver's perspective, the workload is still 3488 * executing. 3489 */ 3490 rc = 0; 3491 *status = HL_WAIT_CS_STATUS_BUSY; 3492 } 3493 } 3494 3495 /* 3496 * We keep removing the node from list here, and not at the irq handler 3497 * for completion timeout case. and if it's a registration 3498 * for ts record, the node will be deleted in the irq handler after 3499 * we reach the target value. 3500 */ 3501 spin_lock_irqsave(&data->interrupt->wait_list_lock, flags); 3502 list_del(&pend->list_node); 3503 spin_unlock_irqrestore(&data->interrupt->wait_list_lock, flags); 3504 3505 set_timestamp: 3506 *timestamp = ktime_to_ns(pend->fence.timestamp); 3507 kfree(pend); 3508 hl_cb_put(data->cq_cb); 3509 hl_ctx_put(ctx); 3510 3511 return rc; 3512 3513 put_cq_cb: 3514 hl_cb_put(data->cq_cb); 3515 put_ctx: 3516 hl_ctx_put(ctx); 3517 3518 return rc; 3519 } 3520 3521 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, 3522 u64 timeout_us, u64 user_address, 3523 u64 target_value, struct hl_user_interrupt *interrupt, 3524 u32 *status, 3525 u64 *timestamp) 3526 { 3527 struct hl_user_pending_interrupt *pend; 3528 unsigned long timeout, flags; 3529 u64 completion_value; 3530 long completion_rc; 3531 int rc = 0; 3532 3533 timeout = hl_usecs64_to_jiffies(timeout_us); 3534 3535 hl_ctx_get(ctx); 3536 3537 pend = kzalloc(sizeof(*pend), GFP_KERNEL); 3538 if (!pend) { 3539 hl_ctx_put(ctx); 3540 return -ENOMEM; 3541 } 3542 3543 hl_fence_init(&pend->fence, ULONG_MAX); 3544 3545 /* Add pending user interrupt to relevant list for the interrupt 3546 * handler to monitor 3547 */ 3548 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3549 list_add_tail(&pend->list_node, &interrupt->wait_list_head); 3550 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3551 3552 /* We check for completion value as interrupt could have been received 3553 * before we added the node to the wait list 3554 */ 3555 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3556 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3557 rc = -EFAULT; 3558 goto remove_pending_user_interrupt; 3559 } 3560 3561 if (completion_value >= target_value) { 3562 *status = HL_WAIT_CS_STATUS_COMPLETED; 3563 /* There was no interrupt, we assume the completion is now. */ 3564 pend->fence.timestamp = ktime_get(); 3565 } else { 3566 *status = HL_WAIT_CS_STATUS_BUSY; 3567 } 3568 3569 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) 3570 goto remove_pending_user_interrupt; 3571 3572 wait_again: 3573 /* Wait for interrupt handler to signal completion */ 3574 completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, 3575 timeout); 3576 3577 /* If timeout did not expire we need to perform the comparison. 3578 * If comparison fails, keep waiting until timeout expires 3579 */ 3580 if (completion_rc > 0) { 3581 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3582 /* reinit_completion must be called before we check for user 3583 * completion value, otherwise, if interrupt is received after 3584 * the comparison and before the next wait_for_completion, 3585 * we will reach timeout and fail 3586 */ 3587 reinit_completion(&pend->fence.completion); 3588 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3589 3590 if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { 3591 dev_err(hdev->dev, "Failed to copy completion value from user\n"); 3592 rc = -EFAULT; 3593 3594 goto remove_pending_user_interrupt; 3595 } 3596 3597 if (completion_value >= target_value) { 3598 *status = HL_WAIT_CS_STATUS_COMPLETED; 3599 } else if (pend->fence.error) { 3600 dev_err_ratelimited(hdev->dev, 3601 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", 3602 pend->fence.error); 3603 /* set the command completion status as ABORTED */ 3604 *status = HL_WAIT_CS_STATUS_ABORTED; 3605 } else { 3606 timeout = completion_rc; 3607 goto wait_again; 3608 } 3609 } else if (completion_rc == -ERESTARTSYS) { 3610 dev_err_ratelimited(hdev->dev, 3611 "user process got signal while waiting for interrupt ID %d\n", 3612 interrupt->interrupt_id); 3613 rc = -EINTR; 3614 } else { 3615 /* The wait has timed-out. We don't know anything beyond that 3616 * because the workload wasn't submitted through the driver. 3617 * Therefore, from driver's perspective, the workload is still 3618 * executing. 3619 */ 3620 rc = 0; 3621 *status = HL_WAIT_CS_STATUS_BUSY; 3622 } 3623 3624 remove_pending_user_interrupt: 3625 spin_lock_irqsave(&interrupt->wait_list_lock, flags); 3626 list_del(&pend->list_node); 3627 spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); 3628 3629 *timestamp = ktime_to_ns(pend->fence.timestamp); 3630 3631 kfree(pend); 3632 hl_ctx_put(ctx); 3633 3634 return rc; 3635 } 3636 3637 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) 3638 { 3639 u16 interrupt_id, first_interrupt, last_interrupt; 3640 struct hl_device *hdev = hpriv->hdev; 3641 struct asic_fixed_properties *prop; 3642 struct hl_user_interrupt *interrupt; 3643 union hl_wait_cs_args *args = data; 3644 u32 status = HL_WAIT_CS_STATUS_BUSY; 3645 u64 timestamp = 0; 3646 int rc, int_idx; 3647 3648 prop = &hdev->asic_prop; 3649 3650 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { 3651 dev_err(hdev->dev, "no user interrupts allowed"); 3652 return -EPERM; 3653 } 3654 3655 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); 3656 3657 first_interrupt = prop->first_available_user_interrupt; 3658 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; 3659 3660 if (interrupt_id < prop->user_dec_intr_count) { 3661 3662 /* Check if the requested core is enabled */ 3663 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { 3664 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", 3665 interrupt_id); 3666 return -EINVAL; 3667 } 3668 3669 interrupt = &hdev->user_interrupt[interrupt_id]; 3670 3671 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { 3672 3673 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; 3674 interrupt = &hdev->user_interrupt[int_idx]; 3675 3676 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { 3677 interrupt = &hdev->common_user_cq_interrupt; 3678 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { 3679 interrupt = &hdev->common_decoder_interrupt; 3680 } else { 3681 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); 3682 return -EINVAL; 3683 } 3684 3685 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) { 3686 struct wait_interrupt_data wait_intr_data = {0}; 3687 3688 wait_intr_data.interrupt = interrupt; 3689 wait_intr_data.mmg = &hpriv->mem_mgr; 3690 wait_intr_data.cq_handle = args->in.cq_counters_handle; 3691 wait_intr_data.cq_offset = args->in.cq_counters_offset; 3692 wait_intr_data.ts_handle = args->in.timestamp_handle; 3693 wait_intr_data.ts_offset = args->in.timestamp_offset; 3694 wait_intr_data.target_value = args->in.target; 3695 wait_intr_data.intr_timeout_us = args->in.interrupt_timeout_us; 3696 3697 if (args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT) { 3698 /* 3699 * Allow only one registration at a time. this is needed in order to prevent 3700 * issues while handling the flow of re-use of the same offset. 3701 * Since the registration flow is protected only by the interrupt lock, 3702 * re-use flow might request to move ts node to another interrupt list, 3703 * and in such case we're not protected. 3704 */ 3705 mutex_lock(&hpriv->ctx->ts_reg_lock); 3706 3707 rc = _hl_interrupt_ts_reg_ioctl(hdev, hpriv->ctx, &wait_intr_data, 3708 &status, ×tamp); 3709 3710 mutex_unlock(&hpriv->ctx->ts_reg_lock); 3711 } else 3712 rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &wait_intr_data, 3713 &status, ×tamp); 3714 } else { 3715 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, 3716 args->in.interrupt_timeout_us, args->in.addr, 3717 args->in.target, interrupt, &status, 3718 ×tamp); 3719 } 3720 3721 if (rc) 3722 return rc; 3723 3724 memset(args, 0, sizeof(*args)); 3725 args->out.status = status; 3726 3727 if (timestamp) { 3728 args->out.timestamp_nsec = timestamp; 3729 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; 3730 } 3731 3732 return 0; 3733 } 3734 3735 int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) 3736 { 3737 struct hl_fpriv *hpriv = file_priv->driver_priv; 3738 struct hl_device *hdev = hpriv->hdev; 3739 union hl_wait_cs_args *args = data; 3740 u32 flags = args->in.flags; 3741 int rc; 3742 3743 /* If the device is not operational, or if an error has happened and user should release the 3744 * device, there is no point in waiting for any command submission or user interrupt. 3745 */ 3746 if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) 3747 return -EBUSY; 3748 3749 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) 3750 rc = hl_interrupt_wait_ioctl(hpriv, data); 3751 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) 3752 rc = hl_multi_cs_wait_ioctl(hpriv, data); 3753 else 3754 rc = hl_cs_wait_ioctl(hpriv, data); 3755 3756 return rc; 3757 } 3758